WorldWideScience

Sample records for electrochemical analyses novye

  1. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. New developments in the analysis and measurement of thicknesses by {beta}-particle excitation of X fluorescent rays; Nouveaux developpements de l'analyse et de la mesure des epaisseurs par excitation des raies de fluorescence X au moyen de particules {beta}; Novye usovershenstvovaniya analiza i izmereniya plotnosti putem vozbuzhdeniya fluorestsiruyushchikh spektrov rentgenovskogo lucha beta-chastitsami; Nuevos adelantos en el analisis y la medicion de espesores mediante la excitacion de rayos X por particulas beta

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, P [Commissariat a l' Energie Atomique, Saclay (France); Seibel, G [Institut de Recherches de la Siderurgie, St-Germain-en-Laye (France)

    1962-01-15

    The method of analysing and measuring the thickness of deposits by {beta}-X fluorescence which we previously described has been further developed. Using Pm{sup 147} and Kr{sup 85} sources, it is possible to reduce the background observed with Sr{sup 90}. We quote the results obtained for various thickness measurements of metal deposits, an analysis of the solutions, and the continuous measurement of calcium and iron in core samples. We describe experiments made for analysis of the X-radiation by crystal. (author) [French] Le procede d'analyse et de mesure des epaisseurs de depots par fluorescence {beta}-X que nous avons precedemment decrit a fait l'objet de nouveaux developpements. L'emploi de sources de {sup 147}Pm et de {sup 85}Kr permet de reduire le bruit de fond que l'on observe avec le {sup 90}Sr. Nous donnons les resultats obtenus pour diverses mesures d'epaisseurs de depots metalliques, l'analyse des solutions et la mesure en continu du calcium et du fer dans les carottes de minerais. Nous decrivons les essais effectues en vue d'analyser le rayonnement X au moyen d'un cristal. (author) [Spanish] Los autores han introducido nuevos perfeccionamientos en su procedimiento de analisis y de medicion de espesores de depositos por fluorescencia de rayos X excitada por particulas beta. La utilizacion de fuentes de {sup 147}Pm y de {sup 85}Kr permite reducir la actividad de fondo que se observa empleando {sup 90}Sr. Los autores exponen los resultados obtenidos en materia de mediciones de espesores de depositos metalicos, analisis de soluciones y medicion continua del calcio y del hierro en muestras de minerales extraidas por sondeo. Tambien describen los ensayos realizados con miras a analizar los rayos X por medio de un cristal. (author) [Russian] Protsess analiza i izmereniya plotnosti sloev putem fluorestsiruyushchikh beta- i rentgenovskikh luchej, kotoryj opisyvalsya nami ran'she, byl predmetom novykh usovershenstvovanij. Ispol'zovanie istochnikov prometeya-147 i

  3. Development of an on-line electrochemical analyser for trace level aluminium

    International Nuclear Information System (INIS)

    Chow, Christopher W.K.; Thomas, Shaun D.; Davey, David E.; Mulcahy, Dennis E.; Drikas, Mary

    2003-01-01

    An in-house designed computerised flow injection (FI) system for low-level aluminium analysis is examined. A simple, low cost electrochemical detection system has been implemented with computerised control and data acquisition system. The system consists of a commercial electrochemical analyser, FI components (manifold, pumps and valves) and an in-house designed control system to perform automated analysis. This system was developed to study aluminium speciation in water, particularly for drinking water. The analytical technique was based upon the complexation reaction between aluminium and a ligand--DASA (1,2-dihydroxy-anthraquinone-3-sulphonic acid). 'Labile' and total aluminium concentrations, Al labile and Al total , respectively, were determined by measuring the sample before and after UV irradiation by amperometry at +0.6 V. The limit of detection for this technique was 10 μg/l (0.37 μM) and the linear calibration range was up to 1.6 mg/l (60 μM) with r 2 value of 0.999. The Al labile /Al total ratios of the water treated by 40, 80 and 100 mg/l of alum using a laboratory scale pilot plant to simulate conventional drinking water treatment processes were found to be 0.4, 0.5 and 0.8, respectively. These results indicated that when higher alum dose was employed, the residual aluminium was present mostly as the 'labile' species. Whereas, if the treatment process was not running at its optimum condition (underdosing), a large portion of aluminium was present as natural organic matter (NOM) - aluminium complexes in the treated water. The system offers a practical and effective means of providing extended knowledge of residual aluminium in drinking water

  4. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Santhi, Kalavathy [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Department of Physics, Women’s Christian College, Chennai 600006 (India); Kumarsan, Dhanapal [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Vengidusamy, Naryanan [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Arumainathan, Stephen, E-mail: stephen_arum@hotmail.com [Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)

    2017-07-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  5. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses

    International Nuclear Information System (INIS)

    Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen

    2017-01-01

    Highlights: • Ag-Co alloy has been prepared using pulsed electrodeposition method. • Wide range of Ag composition in the alloy was obtained. • XPS measurement evident the Ag and Co in metallic nature. • The electrodeposition method develop dendrite like morphology. • Detailed analysis of magnetic behaviour is carried out. - Abstract: Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.

  6. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  7. Electrochemical analyses of diffusion behaviors and nucleation mechanisms for neodymium complexes in [DEME][TFSA] ionic liquid

    International Nuclear Information System (INIS)

    MATSUMIYA, Masahiko; ISHII, Mai; KAZAMA, Ryo; KAWAKAMI, Satoshi

    2014-01-01

    Highlights: • The cathodic reaction; Nd(III) + 3e − → Nd(0) was observed at −3.30 V in [DEME][TFSA]. • The diffusion coefficient of Nd(III) in [DEME][TFSA] was evaluated from semi-integral analysis. • The nucleation mechanism of Nd nuclei was altered from instantaneous to progressive nucleation. • The number density of Nd nuclei was increased as the overpotential was increased. • The electrodeposits from [DEME][TFSA] were identified Nd metal and oxide mixtures by XPS. - ABSTRACT: The electrochemical and nucleation behavior of Nd(III) in the ammonium-based ionic liquid (IL), N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethyl-sulfonyl) amide, [DEME] [TFSA], were investigated in this study. The cathodic reaction of Nd(III) [Nd(III) + 3e − → Nd(0)] was observed at −3.30 V vs. Ag/Ag(I) using cyclic voltammetry at 353 K. The diffusion coefficient of Nd(III) was estimated to be 1.35 ± 0.10 × 10 −13 m 2 s −1 at 353 K using semi-integral and semi-differential analyses. The initial process of Nd electrodeposition was also evaluated by chronoamperometry, indicating that the initial nucleation and growth of Nd on the Pt electrode occurred via instantaneous nucleation at −3.40 V. As the applied potential became more negative, the mechanism changed from instantaneous to progressive nucleation. The number density of Nd nuclei in the initial stage of nucleation decreased as the overpotential increased. Furthermore, the electrodeposition of Nd was carried out under the conditions of −3.40 V and −3.60 V at 353 K. SEM observations of the electrodeposits were consistent with the series of results obtained by chronoamperometry. The electrodeposits consisted mainly of Nd metal and oxide mixtures, whereas bonding with the light elements (C, F, and S) of the IL was suppressed, as demonstrated by EDX and XPS. The results suggested that sufficient dehydration and control of the water content of the electrolyte are important factors

  8. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    International Nuclear Information System (INIS)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y.; Lee, E.S.

    2014-01-01

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis

  9. New counting circuits with E1T tubes; Nouveaux circuits de comptage a tubes E1T; Novye schetnye kontury s lampami E1T; Nuevos circuitos de contaje con valvulas E1T

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V [Institut Rudjer Boskovic, Zagreb, Yugoslavia (Croatia)

    1962-04-15

    continu non stabilise. (author) [Spanish] Se dan soluciones nuevas para circuitos deflectores de haz que permiten montar circuitos contadores sencillos y seguros. La precision con que tiene que ser desviado el haz es deducida por el autor partiendo de investigaciones teoricas del proceso de contaje publicadas anteriormente. Calcula la disminucion de los limites de error en la deflexion que resulta de la diferencia entre las caracteristicas real e ideal de la valvula. Se demuestra que el limite de error en la deflexion es maximo hasta unos 3x10{sup 5} impulsos por segundo, e independiente de la velocidad de contaje, por lo que es posible disenar circuitos mas simples. Para contar hasta 10{sup 6} impulsos por segundo, se requieren circuitos deflectores de mayor precision. La memoria describe dos circuitos que se pueden emplear hasta estos limites de velocidad de recuento. No es necesario que los componentes del circuito sean muy estables o muy exactos. Solamente se precisa una tension continua de alimentacion no estabilizada. (author) [Russian] Dayutsya novye resheniya dlya polucheniya otklonyayushchikh puchek luchej konturov, chto pozvolyaet osushchestvlyat' prostye i nadezhnye schetnye kontury. Trebovaniya tochnosti otkloneniya puchka luchej vyvedeny iz teoreticheskikh izyskanij schetnykh protsessov, opublikovannykh avtorom ranee. Podschityvaetsya umen'shenie predela pogreshnosti otkloneniya, vytekayushchej iz raznitsy mezhdu dejstvitel'noj i teoreticheskoj kharakteristikami ehlektronnoj lampy. Dokazyvaetsya, chto priblizitel'no okolo 3 x 10{sup 5} impul'sov v sekundu predel pogreshnosti otkloneniya dostigaet svoego maksimal'nogo znacheniya; on ne zavisit ot skorosti scheta, chto daet vozmozhnost' uprostit' konstruktsiyu konturov. Dlya otscheta do 10{sup 6} impul'sov v sekundu trebuyutsya bolee tochnye kontury otkloneniya. Opisyvayutsya dva kontura dlya ispol'zovaniya ikh do ehtikh predelov skorosti scheta. Trebovaniya, pred{sup y}avlyaemye k sostavnym chastyam kontura v

  10. The enhancing power of iodide on corrosion prevention of mild steel in the presence of a synthetic-soluble Schiff-base: Electrochemical and surface analyses

    International Nuclear Information System (INIS)

    Lashgari, Mohsen; Arshadi, Mohammad-Reza; Miandari, Somaieh

    2010-01-01

    The inhibitory action of N,N'-1,3-propylen-bis(3-methoxysalicylidenimine) {PMSI} on mild steel corrosion in sulfuric acid medium was investigated through electrochemical methods and evaluations based on infrared spectroscopy and scanning electron micrographs. The studies revealed that the molecule is a good mixed-type inhibitor (mostly anodic), acts as a multi-dentate ligand and repels the corrosive agents by hydrophobic forces. Its adsorption on metal surface has a physicochemical nature and obeys the Langmuir isotherm. At a critical (optimum) concentration, an anomalous inhibitory behavior was observed and interpreted at microscopic level by means of desorption/adsorption process and horizontal ↔vertical hypothesis. The addition of iodide into acid moreover causes a synergistic influence, a substantial enhancement on inhibitory performance. Finally, using isolated inhibitor calculations at B3LYP/6-31G + (d,p) level of theory, the equilibrium geometry of PMSI was determined and the energy required for hindrance avoidance was predicted.

  11. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  12. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  13. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  14. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  15. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  16. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  17. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  18. New Frontiers for Non-Destructive Testing in the Nuclear Age; Perspectives des Essais Non Destructifs a l'Ere Nucleaire; ''Novye rubezhi'' nedestruktivnykh ispytanij v yadernyj vek; Nuevas Posibilidades de los Ensayos No Destructivos en la Era Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, D. W. [Sandia Laboratory Albuquerque, NM (United States)

    1965-10-15

    aplicarlas a la produccion si se quiere lograr un mayor nivel de seguridad en el empleo-del equipo nuclear. (author) [Russian] Posle vtoroj mirovoj vojny kolossal'no vozroslo chislo metodov nedestruktivnyh ispytanij chto mozhno v znachitel'noj stepeni ob'jasnit' tem, chto v jadernoj promyshlennosti pred{sup j}av- ljajutsja vse bolee strogie trebovanija k kachestvu i nadezhnosti oborudovanija. Slozhnost' sis- temy i obshhie rashody, svjazannye s povrezhdenijami, nastol'ko vozrosli, chto sushhestvuet na stojatel'naja neobhodimost' v razrabotke bolee jeffektivnyh metodov nedestruktivnyh ispy- tanij, a takzhe v ih ispol'zovanii na vsem protjazhenii proizvodstvennogo cikla. V nastojashhee vremja znachitel'no rasshirjajutsja vozmozhnosti primenenija horosho izvest- nyh metodov ispytanij, naprimer s pomoshh'ju radiografii, ul'trazvuka i jelektromagnitnyh kolebanij, dlja udovletvorenija vse vozrastajushhih trebovanij tehnicheskogo usovershenstvova- nija. Odnovremenno razrabatyvajutsja novye principy ispytanij special'no dlja togo , chto- by proverit' te trebovanija, kotorye pred{sup j}avljajutsja k staticheskim i dinamicheskim harakte- ristikam. Jeti bystrodejstvujushhie metody s vysokoj razreshajushhej sposobnost'ju, javljaju- shhiesja poistine ''novymi rubezhami'' nedestruktivnyh ispytanij, polozheny v osnovu nasto- jashhej raboty. V chislo novejshih metodov, kotorye rassmatrivajutsja v doklade, vhodit ispol'zovanie infrakrasnyh luchej dlja opredelenija prochnosti svarnyh soedinenij. Rassmatrivaetsja ispy- tanie struktur metodom kinoradiografii vo vremja vibracionnogo ispytanija s cel'ju izuche- nija ih dinamicheskogo povedenija. Drugoj oblast'ju, kotoraja imeet iskljuchitel'no vazhnoe zna- chenie dlja poluchenija nadezhnogo reaktornogo topliva, javljaetsja jeffektivnoe nahozhdenie mesta techi. Rassmatrivaetsja metod proverki zakljuchennyh v o''olochku komponentov, pri kotorom ispol'zuetsja radioaktivnyj gaz i kotoryj pozvoljaet izmerjat' skorosti utechki, sostavlja- jushhie 10

  19. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  20. Electrochemical sensors: a powerful tool in analytical chemistry

    Directory of Open Access Journals (Sweden)

    Stradiotto Nelson R.

    2003-01-01

    Full Text Available Potentiometric, amperometric and conductometric electrochemical sensors have found a number of interesting applications in the areas of environmental, industrial, and clinical analyses. This review presents a general overview of the three main types of electrochemical sensors, describing fundamental aspects, developments and their contribution to the area of analytical chemistry, relating relevant aspects of the development of electrochemical sensors in Brazil.

  1. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  2. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  3. Au-based/electrochemically etched cavity-microelectrodes as optimal tool for quantitative analyses on finely dispersed electrode materials: Pt/C, IrO2-SnO2 and Ag catalysts

    International Nuclear Information System (INIS)

    Minguzzi, Alessandro; Locatelli, Cristina; Lugaresi, Ottavio; Vertova, Alberto; Rondinini, Sandra

    2013-01-01

    In this work, we report the preparation and properties of Au-based cavity-microelectrodes. The use of gold as cavity current collector allows obtaining a regular cylindrical recess, whose volume is easily determined with good accuracy and precision. This in turn leads to an improved and much more reliable use of the cavity microelectrode (C-ME) as a tool for the quantitative characterization of finely dispersed materials and for their quantitative rapid screening. The features of Au/C-MEs are well demonstrated by the good linear correlation between the cavity volume (determined by electrochemical methods) and the quantity of charge related to the amount of electroactive powder inserted into the cavity. To prove this point, we adopted two different test systems: Pt/C and an IrO 2 -based material. Finally, we proved the adequacy of Au/C-MEs in the case of Ag particles as electrocatalysts for the hydrodehalogenation of trichloromethane. In this last part, C-ME interestingly appears as a flexible and versatile tool that presents peculiar features: the voltammetric signal can be controlled by either the electron transfer or by mass transport and can be associated to the outer surface or to the whole amount of material inserted into the cavity. This means that C-MEs can be used either as a microdisk of a desired material (that is very useful, especially in scanning electrochemical microscopy) or for precise quantitative studies of the material inserted inside it

  4. Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales

    KAUST Repository

    Ren, Zhiyong; Yan, Hengjing; Wang, Wei; Mench, Matthew M.; Regan, John M.

    2011-01-01

    The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant

  5. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  6. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  7. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  8. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  9. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  10. New processing techniques for radioisotopes at Oak Ridge National Laboratory; Production de radioisotopes: nouvelles techniques employees au Laboratoire national d'Oak Ridge; Novye tekhnologicheskie metody polucheniya radioizotopov v Okridzhskoj natsional'noj laboratorii; Nuevos metodos de preparacion de radioisotopos aplicados en el Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Butler, T A; Lamb, E; Rupp, A F [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-01-15

    combinacion de procedimientos de precipitacion y de extraccion con disolventes, se han podido recuperar cantidades de tecnecio-99 del orden de algunos gramos, a partir de desechos de productos de fision. La pureza quimica del tecnecio obtenido es superior al 99,9%, en tanto que su pureza radioquimica sobrepasa el 99.99%. Trabajando tambien con vestigios, se ha demostrado la posibilidad de separar y purificar por extraccion continua pequenas cantidades de estroncio contenidas en otros materiales. Se obtuvo estroncio de 98% de pureza a partir de un material contaminado por un 95% de calcio inerte. El estroncio se transforma en titanato de estroncio, con el que se elaboran elementos ceramicos. (author) [Russian] Novejshaya progressivnaya programma proizvodstva radioizotopov v Okridzhskoj natsional'noj laboratorii vklyuchaet novye tekhnologicheskie protsessy i uluchsheniya ikh dlya proizvodstva tseriya-144, prometiya-147, tekhnetsiya-99 i strontsiya-90. TSerij-144 byl proizveden v kolichestve neskol'kikh kilokyuri pri probnoj postanovke proizvodstva. Produkt byl rekuperirovan bolee chem na 98 protsentov pri chistote produkta svyshe 99 protsentov. Posle ehtogo tserij byl obrabotan dlya polucheniya chistoj okisi tseriya-144 v vide poroshka s kontsentratsiej aktivnosti v 235 kyuri na gramm. Poroshok spressovyvalsya v tabletki, kotorye spekalis' v vide plotnogo keramicheskogo tela. Prometij-147 byl proizveden v kolichestve neskol'kikh kilokyuri po metodu osazhdeniya sovmestno s metodom ionnogo obmena. Dlya otdeleniya prometiya-147 ot drugikh redkikh zemel' byl isprobovan v masshtabe indikatorov metod izvlecheniya rastvoritelem. Iz produktov deleniya v stoke otkhodnykh materialov bylo rekuperirovano neskol'ko grammov tekhnetsiya-99 pri pomoshchi protsessa osazhdeniya sovmestno s protsessom izvlecheniya rastvoritelem. Tekhnetsij byl poluchen bolee chem s 99,9-protsentnoj khimicheskoj chistotoj i s radiokhimicheskoj chistotoj bolee chem 99,99%. V masshtabe indikatorov byla dokazana

  11. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  12. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  13. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  14. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  15. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  16. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  17. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  18. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  19. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  1. Thiolato-technetium complexes. 5. Synthesis, characterization, and electrochemical properties of bis(o-phenylenebis(dimethylarsine))technetium(II) and -technetium(III) complexes with thiolato ligands. Single-crystal structural analyses of trans-[Tc(SCH3)2(DIARS)2]PF6 and trans-[Tc(SC6H5)2(DIARS)2]0

    International Nuclear Information System (INIS)

    Konno, Takumi; Heineman, W.R.; Deutsch, E.; Kirchhoff, J.R.; Heeg, M.J.; Stuckey, J.A.

    1992-01-01

    Three different thiols have been brought into reaction with trans-[Tc(OH)(O)(DIARS) 2 ] 2+ to produce initially the Tc(II) complex, [Tc(SR) 2 (DIARS) 2 ] 0 , which can be oxidized to the Tc(III) complex, [Tc(SR) 2 (DIARS) 2 ] + (DIARS = o-phenylenebis(dimethylarsine)). In the case of SR = SCH 3 and SCH 2 C 6 H 5 , the Tc(II) and Tc(III) products were found to be in the trans geometry, while for SR = SC 6 H 5 , both cis and trans isomers were generated. Two of the complexes were structurally characterized by X-ray diffraction. trans-[Tc(SCH 3 ) 2 (DIARS) 2 ]PF 6 , chemical formula TcAs 4 S 2 PF 6 C 22 H 38 , crystallizes in the monoclinic space group. The Tc atom occupies an inversion center. Representative elemental analyses, FAB mass spectra, and visible-UV spectra are reported. Electrochemical and spectroelectrochemical measurements were taken on trans-[Tc(SCH 3 ) 2 (DIARS) 2 ] + , trans-[Tc(SCH 2 C 6 H 5 ) 2 (DIARS) 2 ] + , and cis-[Tc(SC 6 H 5 ) 2 (DIARS) 2 ] + , which exhibit a reversible Tc(III/II) redox couple in the range -0.32 to -0.47 V vs. Ag/AgCl. Another redox couple is present in the range -1.22 to -1.70 V; this is ascribed to Tc(II/I) and is reversible only for SR = SCH 2 C 6 H 5 at 20C. At room temperature, chemically irreversible couples are exhibited at ca. +1.0 V for Tc(IV/III)

  2. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  3. Electrochemical destruction of nitrosamines

    Energy Technology Data Exchange (ETDEWEB)

    Lejen, T; Volchek, K; Ladanowski, C; Velicogna, D; Whittaker, H [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Div.

    1996-09-01

    Treatment conditions for the electrolytic destruction of nitrosamines were studied. The joint investigation between Canada and the Ukraine was part of an assessment of hazardous contaminants at former Soviet ICBM missile sites. The electrochemical destruction of N-dimethylnitrosamines (NDMA) on carbon/platinum electrodes was studied under basic and acidic conditions by UV spectroscopy, gas chromatography, mass spectroscopy, and colorimetry. Experiments with a 100 ppm NDMA solution showed that electrolytic-reduction was pH sensitive within a range of pH 0.5 to 4.0. Electrolysis was effective for the reduction of NDMA in strong acidic conditions. 30 refs., 1 tab., 4 figs.

  4. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  5. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  6. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  7. Thermodynamics of irreversible electrochemical phenomena

    NARCIS (Netherlands)

    Groot, S.R. de; Mazur, P.; Tolhoek, H.A.

    1953-01-01

    A discussion from first principles is given of the energy and entropy laws in electrochemical systems. It is found that it is possible to clarify such controversial concepts as the form of the second law and the role of the electrochemical potential in the systems concerned.

  8. Dynamical analysis of electrochemical wall shear rate measurements

    NARCIS (Netherlands)

    Steenhoven, van A.A.; Beucken, van den F.J.H.M.

    1991-01-01

    The performance of a circular electrochemical wall shear rate probe under unsteady flow conditions is analysed through a combined ezxperimental, numerical and analytical approach. The experiments are performed with a ferri- and ferrocyanide redox couple and compared to finite element analysis of the

  9. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  10. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  11. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  12. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  13. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  14. Fast electrochemical actuator

    International Nuclear Information System (INIS)

    Uvarov, I V; Postnikov, A V; Svetovoy, V B

    2016-01-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics. (paper)

  15. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  16. Electrochemical sensors for biofilm and biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tribollet, B. [UPR 15 du CNRS, Universite Paris 6, 4 Place Jussieu, 75252 Paris Cedex05 (France)

    2003-07-01

    The presence of biofilm modifies the electrochemical properties of the interface and the mass transport near the interface. Two biofilm effects are damageable: the reduction of heat and/or mass transfer and the biocorrosion or microbiologically influenced corrosion (MIC). Two kinds of electrochemical sensors were developed: the first kind for the biofilm detection and the second one to evaluate the MIC risk. The biofilm detection is obtained by considering either the potential modification of the interface or the mass transport modification. The mass transport modification is analysed by considering the limiting diffusion current measured on a gold electrode where the biofilm development occurs. The MIC risk is evaluated with a sensor composed of two concentric electrodes in the material under investigation (e.g. carbon steel): a small disk electrode in the centre and a large ring. In a first step, a pit is artificially initiated by applying a current through these electrodes. In a second step, the risk factors of MIC are investigated by analysing the free coupling current circulating between these two short-circuited electrodes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  17. Mathematical modeling and hydrodynamics of Electrochemical deburring process

    Science.gov (United States)

    Prabhu, Satisha; Abhishek Kumar, K., Dr

    2018-04-01

    The electrochemical deburring (ECD) is a variation of electrochemical machining is considered as one of the efficient methods for deburring of intersecting features and internal parts. Since manual deburring costs are comparatively high one can potentially use this method in both batch production and flow production. The other advantage of this process is that time of deburring as is on the order of seconds as compared to other methods. In this paper, the mathematical modeling of Electrochemical deburring is analysed from its deburring time and base metal removal point of view. Simultaneously material removal rate is affected by electrolyte temperature and bubble formation. The mathematical model and hydrodynamics of the process throw limelight upon optimum velocity calculations which can be theoretically determined. The analysis can be the powerful tool for prediction of the above-mentioned parameters by experimentation.

  18. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  19. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  20. Electrochemical immunosensors - A powerful tool for analytical applications.

    Science.gov (United States)

    Felix, Fabiana S; Angnes, Lúcio

    2018-04-15

    Immunosensors are biosensors based on interactions between an antibody and antigen on a transducer surface. Either antibody or antigen can be the species immobilized on the transducer to detect antigen or antibody, respectively. Because of the strong binding forces between these biomolecules, immunosensors present high selectivity and very high sensitivity, making them very attractive for many applications in different science fields. Electrochemical immunosensors explore measurements of an electrical signal produced on an electrochemical transductor. This signal can be voltammetric, potentiometric, conductometric or impedimetric. Immunosensors utilizing electrochemical detection have been explored in several analyses since they are specific, simple, portable, and generally disposable and can carry out in situ or automated detection. This review addresses the potential of immunosensors destined for application in food and environmental analysis, and cancer biomarker diagnosis. Emphasis is given to the approaches that have been used for construction of electrochemical immunosensors. Additionally, the fundamentals of immunosensors, technology of transducers and nanomaterials and a general overview of the possible applications of electrochemical immunosensors to the food, environmental and diseases analysis fields are described. Copyright © 2017. Published by Elsevier B.V.

  1. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  2. Electrochemical incineration of wastes

    Science.gov (United States)

    Kaba, L.; Hitchens, G. D.; Bockris, J. OM.

    1989-01-01

    The disposal of domestic organic waste in its raw state is a matter of increasing public concern. Earlier, it was regarded as permissible to reject wastes into the apparently infinite sink of the sea but, during the last 20 years, it has become clear that this is environmentally unacceptable. On the other hand, sewage farms and drainage systems for cities and for new housing developments are cumbersome and expensive to build and operate. New technology whereby waste is converted to acceptable chemicals and pollution-free gases at site is desirable. The problems posed by wastes are particularly demanding in space vehicles where it is desirable to utilize treatments that will convert wastes into chemicals that can be recycled. In this situation, the combustion of waste is undesirable due to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. Here, in particular, electrochemical techniques offer several advantages including the low temperatures which may be used and the absence of any NO and CO in the evolved gases. Work done in this area was restricted to technological papers, and the present report is an attempt to give a more fundamental basis to the early stages of a potentially valuable technology.

  3. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  4. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  6. Tracking polaron generation in electrochemically doped polyaniline thin films

    Science.gov (United States)

    Kalagi, S. S.; Patil, P. S.

    2018-04-01

    Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.

  7. SUPPLEMENTARY INFORMATION A combined Electrochemical ...

    Indian Academy of Sciences (India)

    DELL

    A combined Electrochemical and Theoretical study of pyridine-based Schiff bases as novel corrosion inhibitors for mild steel in hydrochloric acid medium. PARUL DOHAREa, M A QURAISHIb* and I B OBOTb. aDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar. Pradesh 221 ...

  8. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  9. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  10. Electrochemical method for transferring graphene

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a method for separating a graphene-support layer laminate from a conducting substrate-graphene-support layer laminate, using a gentle, controllable electrochemical method. In this way, substrates which are fragile, expensive or difficult to manufacture can be used...... - and even re-used - without damage or destruction of the substrate or the graphene....

  11. Materials for electrochemical device safety

    Science.gov (United States)

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  12. (Bio)electrochemical ammonia recovery

    NARCIS (Netherlands)

    Kuntke, P.; Sleutels, T.H.J.A.; Rodríguez Arredondo, M.; Georg, S.; Barbosa, S.G.; Heijne, Ter A.; Hamelers, Hubertus V.M.; Buisman, C.J.N.

    2018-01-01

    In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an

  13. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors. The samples prepared by exfoliation of graphitic oxide and by the transformation of nanodiamond exhibit high specific capacitance in aq. H2SO4, the value reaching up to 117 F/g. By using an ...

  14. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    WINTEC

    been great interest in graphene, which constitutes an entirely new class of carbon. Electrical characteriza- tion of single-layer graphene has been reported. 12,13. We have investigated the use of graphene as elec- trode material in electrochemical supercapacitors. For this purpose, we have employed graphene prepared.

  15. SURFACE PROPERTIES OF ELECTROCHEMICALLY REDUCED ...

    African Journals Online (AJOL)

    DJFLEX

    A viscose rayon based activated carbon cloth (ACC) was electrochemically reduced ..... bath of liquid nitrogen at a temperature of 77 K. ... that above 59,400 c/g extent of oxidation, the ..... ACC react with aldehyde groups to produce ether.

  16. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2 ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... ABSTRACT. In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE) is achieved in 0.1M boric acid; in the second step, the ...

  17. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    . The optimized polymer electrolyte demonstrated even higher proton conductivity than pure HPAs and the enabled electrochemical capacitors have demonstrated an exceptionally high rate capability of 50 Vs-1 in cyclic voltammograms and a 10 ms time constant in impedance analyses.

  18. Electrochemical sensing carcinogens in beverages

    CERN Document Server

    Zia, Asif Iqbal

    2016-01-01

    This book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be high...

  19. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  20. Recent Advances in Electrochemical Glycobiosensing

    Directory of Open Access Journals (Sweden)

    Germarie Sánchez-Pomales

    2011-01-01

    Full Text Available Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy provide detailed identification and structural analysis of glycan species, there are significantly few low-cost, rapid glycan assays available for diagnostic and screening applications. Here we review instances in which glyco-biosensors have been used for glycan analysis using a variety of electrochemical transduction mechanisms (e.g., amperometric, potentiometric, impedimetric, and voltammetric, selective binding agents (e.g., lectins and antibodies, and redox species (e.g., enzyme substrates, inorganic, and nanomaterial.

  1. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  2. Electrochemical Applications in Metal Bioleaching.

    Science.gov (United States)

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified

  3. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  4. Electrochemical Design of Optical Nanoantennas

    Directory of Open Access Journals (Sweden)

    Vasilchenko V.E.

    2015-01-01

    Full Text Available Electrochemical techniques for fabricating tapered gold nanoantennas (tips are discussed. In the paper, the tunable design of nanoantennas is demonstrated. Tip parameters such as a tip apex curvature, mesoscopic morphology, aspect ratio and enhancement factor can be varied with etching electrolyte and applied voltage. The low-cost method makes tipehnahced optical spectroscopy and microscopy feasible for routine optical measurements beyond the diffraction limit.

  5. Electrochemical studies of ruthenium compounds

    International Nuclear Information System (INIS)

    Kumar Ghosh, B.; Chakravorty, A.

    1989-01-01

    In many ways the chemistry of transition metals is the chemistry of multiple oxidation states and the associated redox phenomena. If a particular element were to be singeld out to illustrate this viewpoint, a model choice would be ruthenium - an element that is directly or indirectly the active centre of a plethora of redox phenomena encompassing ten different oxidation states and a breathtaking diversity of structure and bonding. In the present review the authors are primarily concerned with the oxidation states of certain ligands coordinated to ruthenium. This choice is deliberate since this is one area where the unique power of electrochemical methods is splendidly revealed. Without these methods, development in this area would have been greatly hampered. A brief summary of metal oxidation states is also included as a prelude to the main subject of this review. The authors have generally emphasize the information derived which is of chemical interest leaving the details of formal electrochemical arguments in the background. The authors have reviewed the pattern and systematics of ligand redox in ruthenium complexes. The synergistic combination of electrochemical and spectroscopic methods have vastly increased our understanding of ligand phenomena during the last 15 years or so. This in turn has led to better understanding and new developments in other fields. Photophysics and photochemistry could be cited as examples. (author). 176 refs.; 10 figs.; 10 tabs

  6. Neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Stillwagon, G.B.; Morgan, K.Z.

    1977-01-01

    Registration of α-tracks and fast-neutron-induced recoils tracks by the electrochemical etching technique as applied to sensitive polymer foils (e.g., polycarbonate) provides a simple, sensitive and inexpensive means of fast neutron personnel dosimetry as well as a valuable research tool for microdosimetry. When tracks were amplified by our electrochemical technique and the etching results compared with conventional etching technique a striking difference was noted. The electrochemically etched tracks were of much larger diameter (approx. 100 μm) and gave superior contrast. Two optical devices--the transparency projector and microfiche reader--were adapted to facilitate counting of the tracks appearing on our polycarbonate foils. The projector produced a magnification of 14X for a screen to projector distance of 5.0 meter and read's magnification was 50X. A Poisson distribution was determined for the number of tracks located in a particular area of the foil and experimentally verified by random counting of quarter sections of the microfiche reader screen. Finally, in an effort to determine dose equivalent (rem), a conversion factor is being determined by finding the sensitivity response (tracks/neutron) of recoil particle induced tracks as a function of monoenergetic fast neutrons and comparing results with those obtained by others

  7. Corrosion protection of ENIG surface finishing using electrochemical methods

    International Nuclear Information System (INIS)

    Bui, Q.V.; Nam, N.D.; Choi, D.H.; Lee, J.B.; Lee, C.Y.; Kar, A.; Kim, J.G.; Jung, S.B.

    2010-01-01

    Four types of thin film coating were carried out on copper for electronic materials by the electroless plating method at a pH range from 3 to 9. The coating performance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization testing in a 3.5 wt.% NaCl solution. In addition, atomic force microscopy and X-ray diffraction were also used to analyze the coating surfaces. The electrochemical behavior of the coatings was improved using the electroless nickel plating solution of pH 5. The electroless nickel/immersion gold on the copper substrate exhibited high protective efficiency, charge transfer resistance and very low porosity, indicating an increase in corrosion resistance. Atomic force microscopy and X-ray diffraction analyses confirmed the surface uniformity and the formation of the crystalline-refined NiP {1 2 2} phase at pH 5.

  8. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  9. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  10. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  11. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained utilising...

  12. Management of processes of electrochemical dimensional processing

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  13. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  14. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  15. Electrochemical surface nitriding of pure iron by molten salt electrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroyuki; Goto, Takuya; Ito, Yasuhiko

    2004-08-11

    Electrochemical surface nitriding of pure iron was investigated in molten LiCl-KCl-Li{sub 3}N systems at 773 K. An outer compound layer and an inner diffusion layer were obtained by means of potentiostatic electrolysis at 1.00 V (versus Li{sup +}/Li). From XRD and SEM analyses, it was confirmed that the obtained compound layer consisted of {epsilon}-Fe{sub 2-3}N and {gamma}'-Fe{sub 4}N; the free energies of formation of the two nitrides are positive and the equilibrium nitrogen partial pressure of those are of the order of 10{sup 4} atm at 773 K. This result suggests that an apparent nitrogen partial pressure of at least the order of 10{sup 4} atm was imposed by the adsorbed nitrogen atoms (N{sub ads}) formed by anodic oxidation of nitride ion (N{sup 3-}) at the iron electrode surface.

  16. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  17. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  18. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto; Takeda, Masayuki; Takehara, Masahiro; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-08-01

    The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{sub 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.

  19. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-05-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  20. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  1. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  2. Electrochemical characterization of liquid resistors

    International Nuclear Information System (INIS)

    Wilson, J.M.; Whiteley, R.V.

    1983-01-01

    During the first two years of operation of Sandia's Particle Beam Fusion Accelerator (PBFA I) the reliability of the CuSO 4 solution resistors in the Marx Generator Energy Storage System has been unsatisfactory. Resistor failure, which is characterized by a large increase in resistance, has been attributed to materials, production techniques, and operating parameters. The problems associated with materials and production techniques have been identified and solutions are proposed. Non-ideal operating parameters are shown to cause polarization of the cathode in the resistor. This initiates electrochemical reactions in the resistor. These reactions often lead to resistance changes and to eventual resistor failure

  3. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  4. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically...... of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify...... some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions....

  5. 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Kesavan, Srinivasan; Baynosa, Marjorie Lara; Shim, Jae-Jin

    2017-01-01

    Highlights: •Triazole film was formed on electrochemically reduced graphene oxide. •pDAT@ERGO/GC was utilized for the electrochemical determination of 4-nitrophenol. •pDAT@ERGO/GC electrode offered wide concentration and nanomolar detection limit. •The fabricated electrode was employed in water sample analyses. -- Abstract: In this study, an eco-friendly benign method for the modification of electrochemically reduced graphene oxide (ERGO) on glassy carbon (GC) surface and electrochemical polymerized 3,5-diamino-1,2,4-triazole (DAT) film composite (pDAT@ERGO/GC) electrode was developed. The surface morphologies of the pDAT@ERGO/GC modified electrode were analyzed by field emission scanning electron microscopy (FESEM). FESEM images indicated that the ERGO supported pDAT has an almost homogeneous morphology structure with a size of 70 to 80 nm. It is due to the water oxidation reaction occurred while pDAT@ERGO/GC fabrication peak at +1.4 V leads to O 2 evolution and oxygen functional group functionalization on ERGO, which confirmed by X-ray photoelectron spectroscopy (XPS). In contrast, the bare GC modified with pDAT showed randomly arranged irregular bulky morphology structure compared to those of pDAT@ERGO/GC. Electrochemical reduction of graphene oxide was confirmed by Raman spectroscopy, XPS, and electrochemical impedance spectroscopy (EIS). The pDAT@ERGO/GC modified electrode was used for the electrochemical determination of 4-nitrophenol (4-NP). The 4-NP oxidation peak was observed at +0.25 V, and the differential pulse voltammetry demonstrated wide concentration range (5–1500 μM), high sensitivity (0.7113 μA μM −1 ), and low limit of detection (37 nM). Moreover, the pDAT@ERGO/GC electrode was applied to real water sample analysis by standard addition method, where in good recoveries (97.8% to 102.4%) were obtained.

  6. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  7. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  8. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...... are presented. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  9. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  10. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  11. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  12. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  13. Nanodevices in nature: Electrochemical aspects

    International Nuclear Information System (INIS)

    Volkov, Alexander G.; Volkova-Gugeshashvili, Maya I.; Brown-McGauley, Courtney L.; Osei, Albert J.

    2007-01-01

    Electrochemical multielectron reactions in photosynthesis and respiration are evaluated by thermodynamic and kinetic analysis. Kharkats and Volkov [Yu.I. Kharkats, A.G. Volkov, Biochim. Biophys. Acta 891 (1987) 56] were the first to present proof that cytochrome c oxidase reduces molecular oxygen by synchronous multielectron mechanism without O 2 - intermediate formation. After this pioneering observation, it became clear that the first step of oxygen reduction is two-electron concerted process. The energy for the H + -pump of cytochrome oxidase is liberated when the third and fourth electrons are added in the last two steps of water formation independent of the reaction pathway. Electrochemical principles govern many biological properties of organisms, such as the generation of electric fields, and the conduction of fast excitation waves. These properties are supported by the function of a variety of natural nanodevices. Ionic channels, as natural nanodevices, control the plasma membrane potential, and the movement of ions across membranes; thereby, regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. In plants, excitation waves are possible mechanisms for intercellular and intracellular communication in response to environmental changes. The role of electrified nanointerface of the plasma membrane in signal transduction is discussed as well

  14. Buffered Electrochemical Polishing of Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tian, Hui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Corcoran, Sean [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  15. Bussing Structure In An Electrochemical Cell

    Science.gov (United States)

    Romero, Antonio L.

    2001-06-12

    A bussing structure for bussing current within an electrochemical cell. The bussing structure includes a first plate and a second plate, each having a central aperture therein. Current collection tabs, extending from an electrode stack in the electrochemical cell, extend through the central aperture in the first plate, and are then sandwiched between the first plate and second plate. The second plate is then connected to a terminal on the outside of the case of the electrochemical cell. Each of the first and second plates includes a second aperture which is positioned beneath a safety vent in the case of the electrochemical cell to promote turbulent flow of gasses through the vent upon its opening. The second plate also includes protrusions for spacing the bussing structure from the case, as well as plateaus for connecting the bussing structure to the terminal on the case of the electrochemical cell.

  16. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  17. Electrochemical processing of carbon dioxide.

    Science.gov (United States)

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.

  18. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  19. Composite Electrodes for Electrochemical Supercapacitors

    Science.gov (United States)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    2010-03-01

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.

  20. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  1. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  2. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag 2+ or Ce +4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  3. Electrochemical Approaches to Renewable Energy

    Science.gov (United States)

    Lobaccaro, Peter

    Renewable energy is becoming an increasingly important component of the world's energy supply as the threat of global warming continues to rise. There is a need to reduce the cost of this renewable energy and a future challenge to deal with the strain intermittent power sources like renewables place on the power grid. In this dissertation, electrochemistry is harnessed to address possible solutions to both of these issues. First, it is used to develop a low cost alternative photovoltaic material. Then, it is used to investigate the production of chemical fuel stocks which can be used for energy storage. In chapter 2, advances are made in the electrochemical deposition of indium (In) on molybdenum foil which enables the deposition of electronic-grade purity, continuous films with thicknesses in the micron range. As an example application, the electrodeposited In films are phosphorized via the thin-film vapor-liquid-solid growth method. The resulting poly-crystalline InP films display excellent optoelectronic quality, comparable to films grown from more standard vacuum deposition techniques. This demonstrates the versatility of the developed electrochemical deposition procedure. In the remaining chapters, renewable fuel production is investigated. First in chapter 3, molybdenum disulfide (MoS2) is examined as a catalyst for the hydrogen evolution reaction (HER). Typically, high-cost synthesized MoS2 is used as the catalyst because the pristine MoS 2 mineral is known to be a poor catalyst. The fundamental challenge with pristine MoS2 is the inert HER activity of the predominant (0001) basal surface plane. Here, we report a general thermal process in which the basal plane is texturized to increase the density of HER-active edge sites. The process generates high HER catalytic performance in pristine MoS 2 across various morphologies such as the bulk mineral, films composed of micron-scale flakes, and even films of a commercially-available spray of nanoflake MoS2. In

  4. Building micro and nanosystems with electrochemical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wuethrich, Rolf, E-mail: wuthrich@encs.concordia.c [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada); Allagui, Anis [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada)

    2010-11-30

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  5. Building micro and nanosystems with electrochemical discharges

    International Nuclear Information System (INIS)

    Wuethrich, Rolf; Allagui, Anis

    2010-01-01

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  6. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  7. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  8. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...... energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen...

  9. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration...... was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels....

  10. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  11. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  12. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yen-Jui Bernie [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Wu, Haoran [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Kherani, Nazir P. [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Lian, Keryn, E-mail: keryn.lian@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada)

    2015-03-15

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N{sub 2} and NH{sub 3}, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N{sub 2}. However, the electrochemical analyses showed that the surface of the N{sub 2}-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH{sub 3}. Cycle life of the resultant N{sub 2}-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N){sub x} was developed by electrodeposition and nitridation in N{sub 2} or NH{sub 3}. • N{sub 2} treated Mo(O,N){sub x} showed a capacitive performance superior to that treated by NH{sub 3}. • The promising electrochemical performance was due to the formation of γ-Mo{sub 2}N.

  13. Electrochemical Sensors Based on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Md. Aminur Rahman

    2009-03-01

    Full Text Available This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs. CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers.

  14. Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

    NARCIS (Netherlands)

    Blankert, B.; Hayen, H.; van Leeuwen, S.M.; Karst, U.; Bodoki, E.; Lotrean, S.; Sandulescu, R.; Mora Diaz, N.; Dominguez, O.; Arcos, J.; Kauffmann, J.-M.

    2005-01-01

    The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was

  15. Significant improvement of electrochemical performance of Cu ...

    Indian Academy of Sciences (India)

    LiVPO4F cathode material for lithium-ion batteries. YU ZHANGa,∗, XIAOLAN BAIb ... and energy dispersive spectroscopy (EDS). ... Analysis of electrochemical impedance spectra (EIS) ... studied with a SEM (JSM-7500F, Japan) equipped with.

  16. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  17. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie

    2007-01-01

    Mixed ion- and electron-conducting composite electrodes consisting of doped ceria and perovskite have been studied by electrochemical impedance spectroscopy (EIS) at different temperatures and oxygen partial pressures. This paper aims to describe the different contributions to the polarisation...

  18. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  19. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  20. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  1. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-01-01

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible

  2. ELECTROCHEMICAL STUDIES OF N'-FERROCENYLMETHYL-N ...

    African Journals Online (AJOL)

    2011-12-31

    Phenylbenzohydrazide. FcX was studied in acetonitrile with tetrabutylammonium hexafluorophosphate as the supporting electrolyte and aqueous ethanol using the electrochemical technique. This study using cyclic (CV) and rotating ...

  3. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts.

    Science.gov (United States)

    Yamazaki, Shin-ichi; Yamada, Yusuke; Takeda, Sahori; Goto, Midori; Ioroi, Tsutomu; Siroma, Zyun; Yasuda, Kazuaki

    2010-08-21

    Electrochemical CO oxidation by several carbon-supported rhodium tetraphenylporphyrins with systematically varied meso-substituents was investigated. A quantitative analysis revealed that the p-substituents on the meso-phenyl groups significantly affected CO oxidation activity. The electrocatalytic reaction was characterized in detail based on the spectroscopic and X-ray structural results as well as electrochemical analyses. The difference in the activity among Rh porphyrins is discussed in terms of the properties of p-substituents along with a proposed reaction mechanism. Rhodium tetrakis(4-carboxyphenyl)porphyrin (Rh(TCPP)), which exhibited the highest activity among the porphyrins tested, oxidized CO at a high rate at much lower potentials (means that CO is electrochemically oxidized by this catalyst when a slight overpotential is applied during the operation of a proton exchange membrane fuel cell. This catalyst exhibited little H(2) oxidation activity, in contrast to Pt-based catalysts.

  4. Studies on direct and indirect electrochemical immunoassays

    OpenAIRE

    Buckley, Eileen

    1989-01-01

    Two approaches to electrochemical immunoassay are reported. The first approach was an indirect method, involving an electroactive, enzyme-catalysed, substrate to product reaction. Conditions were optimised for the amperometric detection of para-aminophenol, the electroactive product of the alkaline phosphatase catalysed hydrolysis of a new substrate, p-aminophenylphosphate, after separation by HPLC. The second approach involved the direct electrochemical detection of an immunoglo...

  5. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  6. Nanomaterials for electrochemical sensing and biosensing

    CERN Document Server

    Pumera, Martin

    2014-01-01

    Part 1: Nanomaterial-Based ElectrodesCarbon Nanotube-Based Electrochemical Sensors and Biosensors, Martin Pumera, National Institute for Materials Science, JapanElectrochemistry on Single Carbon Nanotube, Pat Collier, Caltech, USATheory of Voltammetry at Nanoparticle-Modified Electrodes, Richard G. Compton, Oxford University, UKMetal Oxide Nanoparticle-Modified Electrodes, Frank Marken, University of Bath, UKSemiconductor Quantum Dots for Electrochemical Bioanalysis, Eugenii Katz, Clarkson University, USAN

  7. Science and Technology Text Mining: Electrochemical Power

    Science.gov (United States)

    2003-07-14

    electrodes) and improvements based on component materials (glassy carbon, carbon fibers, aerogels , thin films). A focal point of electrochemical capacitor...performance of carbon aerogels ; and the fabrication and application of Cu-carbon composite (prepared from sawdust) to electrochemical capacitor electrodes. xi...applications require decreases in size and weight, especially for space, aircraft , and individual soldier or small team applications. For large volumes

  8. Experiences on MIC monitoring by electrochemical techniques

    DEFF Research Database (Denmark)

    Cristiani, P.; Perboni, G.; Hilbert, Lisbeth Rischel

    2002-01-01

    Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper.......Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper....

  9. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  10. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  11. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  12. Electrochemically controlled iron isotope fractionation

    Science.gov (United States)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  13. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  14. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  15. Contesting Citizenship: Comparative Analyses

    DEFF Research Database (Denmark)

    Siim, Birte; Squires, Judith

    2007-01-01

    importance of particularized experiences and multiple ineequality agendas). These developments shape the way citizenship is both practiced and analysed. Mapping neat citizenship modles onto distinct nation-states and evaluating these in relation to formal equality is no longer an adequate approach....... Comparative citizenship analyses need to be considered in relation to multipleinequalities and their intersections and to multiple governance and trans-national organisinf. This, in turn, suggests that comparative citizenship analysis needs to consider new spaces in which struggles for equal citizenship occur...

  16. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  17. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  18. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  19. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  20. Electrochemical biosensors in pharmaceutical analysis

    Directory of Open Access Journals (Sweden)

    Eric de Souza Gil

    2010-09-01

    Full Text Available Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.Em virtude do aumento da demanda por técnicas analíticas simples e de baixo custo, os biossensores têm atraído a atenção para a análise de fármacos, medicamentos e outros analitos de interesse em controle de qualidade de medicamentos. Os biossensores permitem a quantificação não somente de princípio ativo em formulações farmacêuticas, mas também de produtos de degradação e metabólitos em fluídos biológicos, bem como análise de amostras de interesse clínico e industrial, além de possibilitar a determinação de enantiômeros. Desta forma, este artigo objetiva fazer uma breve revisão a respeito do emprego de biossensores em análise farmacêutica, com ênfase em sensores eletroquímicos enzimáticos.

  1. Risico-analyse brandstofpontons

    NARCIS (Netherlands)

    Uijt de Haag P; Post J; LSO

    2001-01-01

    Voor het bepalen van de risico's van brandstofpontons in een jachthaven is een generieke risico-analyse uitgevoerd. Er is een referentiesysteem gedefinieerd, bestaande uit een betonnen brandstofponton met een relatief grote inhoud en doorzet. Aangenomen is dat de ponton gelegen is in een

  2. Fast multichannel analyser

    Energy Technology Data Exchange (ETDEWEB)

    Berry, A; Przybylski, M M; Sumner, I [Science Research Council, Daresbury (UK). Daresbury Lab.

    1982-10-01

    A fast multichannel analyser (MCA) capable of sampling at a rate of 10/sup 7/ s/sup -1/ has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format.

  3. A fast multichannel analyser

    International Nuclear Information System (INIS)

    Berry, A.; Przybylski, M.M.; Sumner, I.

    1982-01-01

    A fast multichannel analyser (MCA) capable of sampling at a rate of 10 7 s -1 has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format. (orig.)

  4. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  5. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  6. Electrochemical Implications of Defects in Carbon Nanotubes

    Science.gov (United States)

    Hall, Jonathan Peter

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multi-walled CNT morphologies. The controlled addition of argon, hydrogen, and chlorine ions in addition to atomic hydrogen and magnesium vapor was used for varying the charge and type of extrinsic defects. To quantify changes in the CNTs upon treatment, Raman spectroscopy and electrochemical techniques were employed. It was indicated from Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and chronopotentiometric experiments that the electrochemical response of hollow type CNTs could be tailored more significantly compared to bamboo type CNTs, which have innately high reactive site densities and are less amenable to modification. Total defect density and edge-plane-like defect concentrations monitored through Raman spectroscopy were used to correlate changes in the electrochemical response of the CNT electrodes as a function of treatment. The implementation of CNT electrodes in a prototypical electrolytic capacitor device was then explored and characterized. Dependencies on source current and redox couple concentration were evaluated, as well as changes in the total capacitance as a function of treatment. Cyclability studies were also performed as a function of source current magnitude to evaluate the longevity of the faradaic currents which typically decrease over time in other similar capacitors. This thesis then concludes with an overall summary of the themes and findings of the research presented in this work.

  7. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  8. Effect of ultrasound on electrochemical chloride extraction from mortar

    Science.gov (United States)

    Chen, Yiqun; Yao, Wu; Zuo, Junqing

    2018-03-01

    In this paper, the effect of auxiliary ultrasound on electrochemical chloride extraction (ECE) was studied. The chloride removal efficiency was investigated by examining the chloride content with ultrasound-assisted ECE and changing the introducing time of ultrasound. The experimental results showed that removal of chloride ions was noted to be more effective in ECE treatment assisted with ultrasound treatment (UT). In addition, the lower w/c ratio led to more distinct effect of ultrasonic cavitation on chloride removal. Electrochemical behaviors measured with different treatment revealed that UT treatment was effective on moderating the corrosion condition. Microstructural analyses revealed a significant alteration in composition and morphology of cementitious phases with UT treatment. Pull-out tests indicated that ultrasound had a certain negative impact on the bond strength. Although the effect of introducing ultrasound in the first 2 weeks or the last 2 weeks on the extraction efficiency was not obvious, intermittent ultrasound could not only ensure the chloride extraction efficiency, but also reduce the adverse effect of ultrasound on the bond strength.

  9. Possible future HERA analyses

    International Nuclear Information System (INIS)

    Geiser, Achim

    2015-12-01

    A variety of possible future analyses of HERA data in the context of the HERA data preservation programme is collected, motivated, and commented. The focus is placed on possible future analyses of the existing ep collider data and their physics scope. Comparisons to the original scope of the HERA pro- gramme are made, and cross references to topics also covered by other participants of the workshop are given. This includes topics on QCD, proton structure, diffraction, jets, hadronic final states, heavy flavours, electroweak physics, and the application of related theory and phenomenology topics like NNLO QCD calculations, low-x related models, nonperturbative QCD aspects, and electroweak radiative corrections. Synergies with other collider programmes are also addressed. In summary, the range of physics topics which can still be uniquely covered using the existing data is very broad and of considerable physics interest, often matching the interest of results from colliders currently in operation. Due to well-established data and MC sets, calibrations, and analysis procedures the manpower and expertise needed for a particular analysis is often very much smaller than that needed for an ongoing experiment. Since centrally funded manpower to carry out such analyses is not available any longer, this contribution not only targets experienced self-funded experimentalists, but also theorists and master-level students who might wish to carry out such an analysis.

  10. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  11. Electrical and Electrochemical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Thanh-Hai Le

    2017-04-01

    Full Text Available Conducting polymers (CPs have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.

  12. Magnetic field effects on electrochemical metal depositions

    Directory of Open Access Journals (Sweden)

    Andreas Bund, Adriana Ispas and Gerd Mutschke

    2008-01-01

    Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

  13. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  14. Model calculations for electrochemically etched neutron detectors

    International Nuclear Information System (INIS)

    Pitt, E.; Scharmann, A.; Werner, B.

    1988-01-01

    Electrochemical etching has been established as a common method for visualisation of nuclear tracks in solid state nuclear track detectors. Usually the Mason equation, which describes the amplification of the electrical field strength at the track tip, is used to explain the treeing effect of electrochemical etching. The yield of neutron-induced tracks from electrochemically etched CR-39 track detectors was investigated with respect to the electrical parameters. A linear dependence on the response from the macroscopic field strength was measured which could not be explained by the Mason equation. It was found that the reality of a recoil proton track in the detector does not fit the boundary conditions which are necessary when the Mason equation is used. An alternative model was introduced to describe the track and detector geometry in the case of a neutron track detector. The field strength at the track tip was estimated with this model and compared with the experimental data, yielding good agreement. (author)

  15. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  16. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  17. Electrochemical stability of subnanometer Pt clusters

    DEFF Research Database (Denmark)

    Quinson, Jonathan; Röefzaad, Melanie; Deiana, Davide

    2018-01-01

    In the present work, the degradation of size-selected Pt nanoclusters is studied under electrochemical conditions. This model catalyst mimics carbon supported Pt nanoclusters and nanoparticles typically employed in proton exchange membrane fuel cells (PEMFCs). Insight into the early stage...... of degradation is given by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and confirmed by transmission electron microscopy (TEM). In contrast to common assumptions, it is demonstrated that even extremely small Pt clusters exhibit a remarkable stability under electrochemical...... - is observed. In light of the findings reported, developing highly-dispersed subnanometer Pt clusters as catalyst for PEMFCs is a realistic approach provided the operation conditions are suitably adjusted. Furthermore, mitigation strategies to improve the stability of few-atoms catalyst under electrochemical...

  18. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  19. ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    Directory of Open Access Journals (Sweden)

    DIMITRIOS TSIPLAKIDES

    2008-07-01

    Full Text Available Electrochemical promotion (EP of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990 and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996. Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is surveyed in this paper. The focus is given on the electropromotion of industrial ammonia synthesis catalyst, the bipolar EP and the development of a novel monolithic electropromoted reactor (MEPR in conjunction with the electropromotion of thin sputtered metal films. Future perspectives of electrochemical promotion applications in the field of hydrogen technologies are discussed.

  20. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  1. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  2. Electrochemical applications of CVD diamond

    International Nuclear Information System (INIS)

    Pastor-Moreno, Gustavo

    2002-01-01

    Diamond technology has claimed an important role in industry since non-expensive methods of synthesis such as chemical vapour deposition allow to elaborate cheap polycrystalline diamond. This fact has increased the interest in the scientific community due to the outstanding properties of diamond. Since Pleskov published in 1987 the first paper in electrochemistry, many researchers around the world have studied different aspects of diamond electrochemistry such as reactivity, electrical structure, etc. As part of this worldwide interest these studies reveal new information about diamond electrodes. These studies report investigation of diamond electrodes characterized using structural techniques like scanning electrode microscopy and Raman spectroscopy. A new electrochemical theory based on surface states is presented that explains the metal and the semiconductor behaviour in terms of the doping level of the diamond electrode. In an effort to characterise the properties of diamond electrodes the band edges for hydrogen and oxygen terminated surface are located in organic solvent, hence avoiding possible interference that are present in aqueous solution. The determination of the band edges is performed by Mott-Schottky studies. These allow the calculation of the flat band potential and therefore the band edges. Additional cyclic voltammetric studies are presented for both types of surface termination. Mott-Schottky data and cyclic voltammograms are compared and explained in terms of the band edge localisation. Non-degenerately p-type semiconductor behaviour is presented for hydrogen terminated boron doped diamond. Graphitic surface states on oxidised surface boron doped diamond are responsible for the electrochemistry of redox couples that posses similar energy. Using the simple redox couple 1,4-benzoquinone effect of surface termination on the chemical behaviour of diamond is presented. Hydrogen sublayers in diamond electrodes seem to play an important role for the

  3. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  4. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  5. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  6. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  7. Benchmarks for multicomponent diffusion and electrochemical migration

    DEFF Research Database (Denmark)

    Rasouli, Pejman; Steefel, Carl I.; Mayer, K. Ulrich

    2015-01-01

    In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results in a charge imbalance that is counteracted by the electrostatic coupling between charged species leading to a process called “electrochemical migration” or “electromigration.” Although not commonly...... not been published to date. This contribution provides a set of three benchmark problems that demonstrate the effect of electric coupling during multicomponent diffusion and electrochemical migration and at the same time facilitate the intercomparison of solutions from existing reactive transport codes...

  8. Nanodiamond Films for Applications in Electrochemical Systems

    Directory of Open Access Journals (Sweden)

    A. F. Azevedo

    2012-01-01

    Full Text Available The purpose of the present paper is to give an overview on the current development status of nanocrystalline diamond electrodes for electrochemical applications. Firstly, we describe a brief comparison between the general properties of nanocrystalline diamond (undoped and boron-doped and boron-doped microcrystalline diamond films. This is followed by a summary of the nanodiamond preparation methods. Finally, we present a discussion about the undoped and boron-doped nanocrystalline diamond and their characteristics, electrochemical properties, and practical applications.

  9. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  10. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  11. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    OpenAIRE

    Fengling Zhang; Tianyi Cai; Liang Ma; Liyuan Zhan; Hong Liu

    2017-01-01

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensin...

  12. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  13. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems

    NARCIS (Netherlands)

    Vredenberg, W.J.

    2011-01-01

    In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with

  14. AMS analyses at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, E.M. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Physics Division

    1998-03-01

    The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with {sup 14}C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for {sup 14}C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent`s indigenous Aboriginal peoples. (author)

  15. AMS analyses at ANSTO

    International Nuclear Information System (INIS)

    Lawson, E.M.

    1998-01-01

    The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with 14 C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for 14 C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent's indigenous Aboriginal peoples. (author)

  16. Electrochemical Sensors for Detection of Acetylsalicylic Acid

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2006-11-01

    Full Text Available Acetylsalicylic acid (AcSA, or aspirin, was introduced in the late 1890s and hasbeen used to treat a variety of inflammatory conditions. The aim of this work was to suggestelectrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wavevoltammetry (SWV using both carbon paste electrode (CPE and of graphite pencilelectrode (GPE as working ones to indirect determination of AcSA. The principle ofindirect determination of AcSA bases in its hydrolysis on salicylic acid (SA, which isconsequently detected. Thus, we optimized both determination of SA and conditions forAcSA hydrolysis and found out that the most suitable frequency, amplitude, step potentialand the composition and pH of the supporting electrolyte for the determination of SA was260 Hz, 50 mV, 10 mV and Britton-Robinson buffer (pH 1.81, respectively. The detectionlimit (S/N = 3 of the SA was 1.3 ng/ml. After that, we aimed on indirect determination ofAcSA by SWV CPE. We tested the influence of pH of Britton-Robinson buffer andtemperature on yield of hydrolysis, and found out that 100% hydrolysis of AcSA wasreached after 80 minutes at pH 1.81 and 90°C. The method for indirect determination ofAcSA has been utilized to analyse pharmaceutical drug. The determined amount of AcSA in the pharmaceutical drug was in good agreement with the declared amounts. Moreover, weused GPE for determination of AcSA in a pharmaceutical drug. Base of the results obtainedfrom stationary electrochemical instrument we used flow injection analysis withelectrochemical detection to determine of salicylates (SA, AcSA, thiosalicylic acid, 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid – SuSA. We found out that we are able todetermine all of detected salicylates directly without any pre-treatment, hydrolysis and so onat units of femtomoles per injection (5 μl.

  17. Electrochemical process for the manufacturing of titanium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    V. Soare

    2009-07-01

    Full Text Available The paper presents a new method for precursors’ synthesis of titanium alloys matrix composites through an electrochemical process in molten calcium chloride. The cathode of the cell was made from metallic oxides powders and reinforcement ceramic particles, which were pressed and sintered into disk form and the anode from graphite. The process occurred at 850 °C, in two stages, at 2,7 / 3,2 V: the ionization of the oxygen in oxides and the reduction with calcium formed by electrolysis of calcium oxide fed in the electrolyte. The obtained composite precursors, in a form of metallic sponge, were consolidated by pressing and sintering. Chemical and structural analyses on composites samples were performed.

  18. Electrochemical study in molten sodium fluoroborate at 4200C

    International Nuclear Information System (INIS)

    Wagner, J.F.

    1983-06-01

    By analysing the behavior of the electrochemical system Cu (I)/Cu it was possible to study the acid-base properties of molten sodium fluoroborate. The anion of the solvent BF 4 - is shown to undergo a strong dissociation according to the equilibrium BF 4 - BF 3 (g) + F - , the Ki constant at 420 0 C being evaluated at 1.58 x 10 -2 mol kg -1 atm. The acidity variations of sodium fluoroborate at this temperature are limited to about two pF units (pKi=1.8). A potentiometric study of the copper, silver and nickel systems showed that the corresponding metallic cations are little complexed by fluoride ions in spite of the strong dissociation of the solvent [fr

  19. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  20. Uncertainty Analyses and Strategy

    International Nuclear Information System (INIS)

    Kevin Coppersmith

    2001-01-01

    The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository

  1. Mine Waste Technology Program Electrochemical Tailings Cover

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 40, Electrochemical Tailings Cover, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). MSE Technology A...

  2. Minimizing electrode contamination in an electrochemical cell

    Science.gov (United States)

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  3. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  4. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  5. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants

    Directory of Open Access Journals (Sweden)

    Brandy J. Johnson

    2014-06-01

    Full Text Available This effort evaluated the potential of two prototype devices for enhanced electrochemical detection of 2,4,6-trinitrotoluene (TNT and dinitrotoluene (DNT following preconcentration using an organosilicate sorbent. The bench-scale prototype provides adsorption of the targets from aqueous solution followed by elution in a mixture of methanol and potassium chloride (KCl. Following elution, the eluant is diluted using an aqueous KCl solution to provide sufficient electrolyte for electrochemical analysis. Concentrations of methanol greater than 50% were detrimental to sensor performance and lifetime. Calibration of the electrochemical sensor was completed and results of electrochemical analysis were compared to those of HPLC analysis over a range of concentrations and in varied matrices. TNT detection was found to be consistent and detection limits were improved from 200 ppb to 3 ppb depending on the sample volume utilized. DNT detection showed higher variability and significantly greater false response rates. On the basis of these results, a second, more advanced, prototype was developed and utilized in limited field trials with the intention of moving the technology toward in situ applications.

  6. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous ...

  7. A Course in Electrochemical and Corrosion Engineering.

    Science.gov (United States)

    Van Zee, John

    1985-01-01

    Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)

  8. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  9. Electrochemical Behaviour of Environmentally Friendly Inhibitor of ...

    African Journals Online (AJOL)

    Electrochemical Behaviour of Environmentally Friendly Inhibitor of Aloe Secundiflora Extract in Corrosion Control of Carbon Steel in Soft Water Media. ... The investigation was performed at different inhibitor concentrations under static and dynamic conditions using a Rotating Disk Electrode (RDE). The impedance and ...

  10. Separator-spacer for electrochemical systems

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Newby, Kenneth R.; Bellows, Richard J.

    1983-08-02

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  11. Method of constructing an improved electrochemical cell

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry

    1984-10-09

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  12. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  13. Electrochemical sensors based on polyconjugated conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-09-01

    An overview of the applications of polyconjugated conducting polymers to electrochemical sensors is given. Gas sensors, ion sensors, and biosensors (non-enzyme and enzyme sensors) are presented and discussed. The role of the polymer as enzyme host and mediator of charge transfer is particularly emphasized in the light of recent results. (orig.).

  14. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  15. Gold Cleaning Methods for Electrochemical Detection Applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Tenje, Maria; Heiskanen, Arto

    2009-01-01

    ; hydrochloric acid potential cycling; dimethylamine borane reducing agent solutions at 25 and 65 degrees C; and a dilute form of Aqua Regia. Peak-current potential-differences obtained from cyclic voltammetry and charge transfer resistance obtained from electrochemical impedance spectroscopy, as well as X...

  16. Electrochemical acidification of milk by whey desalination

    NARCIS (Netherlands)

    Balster, J.H.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Lammers, H.; Verver, A.B.; Wessling, Matthias

    2007-01-01

    We describe a process configuration for the electrochemical acidification of milk using the desalination function and the acid/base production function of a bipolar membrane process. First, the milk is acidified by the acid produced in the bipolar membrane stack. The precipitate is removed by a

  17. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  18. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    ... and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of ...

  19. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  20. Laboratory investigation of electrochemical realkalisation of concrete

    NARCIS (Netherlands)

    Hondel, A.W.M. van den; Polder, R.B.

    1998-01-01

    Concrete specimens were cast and subsequently exposed to elevated levels of carbon dioxide and low relative humidity for a period of 70 weeks. After exposure, 32 specimens were treated by electrochemical realkalisation using a 1 molar sodium carbonate solution and a current density of 1 or 4 A/m2

  1. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  2. INFLUENCE OF FLUORIDE ON THE ELECTROCHEMICAL ...

    African Journals Online (AJOL)

    L. Sadi Oufella, A. Benchettara

    2016-09-01

    Sep 1, 2016 ... ABSTRACT. The aim of the present study is to investigate the corrosion resistance of a new synthesized Ti-. 10Ta-2Mo in 0.9%NaCl solution containing different NaF concentrations using electrochemical techniques, including open circuit potential, potentiodynamic polarization, cyclic voltammetry and ...

  3. Efficient electrochemical degradation of multiwall carbon nanotubes.

    Science.gov (United States)

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  4. Electrochemical sensor for detection of carcinoma

    International Nuclear Information System (INIS)

    Thakur, Bhawana; Sawant, Shilpa N.; Jayakumar, S.

    2012-01-01

    Detection of carcinoma in early stage is very important for its effective treatment. Although considerable advancement has been made in its detection and treatment, there is a significant need for rapid, low-cost, sensitive, and selective biosensors for detection of cancer. In recent years, electrochemical detection techniques have received much attention due to their rapid response, high sensitivity, and inherent selectivity. They can provide an inexpensive platform for detection of analytes in clinical diagnostics. Conducting polymers are a versatile material for development of electrochemical biosensors. Due to the conducting nature of these polymers, they act as a transducer to convert the biological signal into electrical signal. These polymers also exhibit good biocompatibility, hence are ideal for immobilisation of biological recognition element during the development of the sensor film. Recently author have demonstrated a whole cell based electrochemical biosensor for detection of the pesticide Lindane at very low concentrations. In the present study, we have tried to develop polyaniline based electrochemical sensor for detection of carcinoma. Polyaniline was deposited on gold interdigitated electrodes by electropolymerization using potentiodynamic method. The polymer film was suitably modified to obtain the sensor film for recognition of the tumour cells. Response of the sensor to various tumour cells such as lung cancer cells, human fibrosarcoma cells, prostate cancer cells, breast cancer cells was studied and was compared to that of normal cells. The sensor electrode could detect tumour cells based on the nature of response obtained

  5. Electrochemical and photoelectrochemical reduction of furfurals

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Roylance, John James; Kubota, Stephen R.

    2018-02-06

    Electrochemical cells and photoelectrochemical cells for the reduction of furfurals are provided. Also provided are methods of using the cells to carry out the reduction reactions. Using the cells and methods, furfurals can be converted into furan alcohols or linear ketones.

  6. High performance liquid chromatography in pharmaceutical analyses

    Directory of Open Access Journals (Sweden)

    Branko Nikolin

    2004-05-01

    Full Text Available In testing the pre-sale procedure the marketing of drugs and their control in the last ten years, high performance liquid chromatographyreplaced numerous spectroscopic methods and gas chromatography in the quantitative and qualitative analysis. In the first period of HPLC application it was thought that it would become a complementary method of gas chromatography, however, today it has nearly completely replaced gas chromatography in pharmaceutical analysis. The application of the liquid mobile phase with the possibility of transformation of mobilized polarity during chromatography and all other modifications of mobile phase depending upon the characteristics of substance which are being tested, is a great advantage in the process of separation in comparison to other methods. The greater choice of stationary phase is the next factor which enables realization of good separation. The separation line is connected to specific and sensitive detector systems, spectrafluorimeter, diode detector, electrochemical detector as other hyphernated systems HPLC-MS and HPLC-NMR, are the basic elements on which is based such wide and effective application of the HPLC method. The purpose high performance liquid chromatography(HPLC analysis of any drugs is to confirm the identity of a drug and provide quantitative results and also to monitor the progress of the therapy of a disease.1 Measuring presented on the Fig. 1. is chromatogram obtained for the plasma of depressed patients 12 h before oral administration of dexamethasone. It may also be used to further our understanding of the normal and disease process in the human body trough biomedical and therapeutically research during investigation before of the drugs registration. The analyses of drugs and metabolites in biological fluids, particularly plasma, serum or urine is one of the most demanding but one of the most common uses of high performance of liquid chromatography. Blood, plasma or

  7. High perfomance liquid chromatography in pharmaceutical analyses.

    Science.gov (United States)

    Nikolin, Branko; Imamović, Belma; Medanhodzić-Vuk, Saira; Sober, Miroslav

    2004-05-01

    In testing the pre-sale procedure the marketing of drugs and their control in the last ten years, high performance liquid chromatography replaced numerous spectroscopic methods and gas chromatography in the quantitative and qualitative analysis. In the first period of HPLC application it was thought that it would become a complementary method of gas chromatography, however, today it has nearly completely replaced gas chromatography in pharmaceutical analysis. The application of the liquid mobile phase with the possibility of transformation of mobilized polarity during chromatography and all other modifications of mobile phase depending upon the characteristics of substance which are being tested, is a great advantage in the process of separation in comparison to other methods. The greater choice of stationary phase is the next factor which enables realization of good separation. The separation line is connected to specific and sensitive detector systems, spectrafluorimeter, diode detector, electrochemical detector as other hyphernated systems HPLC-MS and HPLC-NMR, are the basic elements on which is based such wide and effective application of the HPLC method. The purpose high performance liquid chromatography (HPLC) analysis of any drugs is to confirm the identity of a drug and provide quantitative results and also to monitor the progress of the therapy of a disease.1) Measuring presented on the Fig. 1. is chromatogram obtained for the plasma of depressed patients 12 h before oral administration of dexamethasone. It may also be used to further our understanding of the normal and disease process in the human body trough biomedical and therapeutically research during investigation before of the drugs registration. The analyses of drugs and metabolites in biological fluids, particularly plasma, serum or urine is one of the most demanding but one of the most common uses of high performance of liquid chromatography. Blood, plasma or serum contains numerous endogenous

  8. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  9. A simple beam analyser

    International Nuclear Information System (INIS)

    Lemarchand, G.

    1977-01-01

    (ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis

  10. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  11. Pathway-based analyses.

    Science.gov (United States)

    Kent, Jack W

    2016-02-03

    New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.

  12. Analysing Access Control Specifications

    DEFF Research Database (Denmark)

    Probst, Christian W.; Hansen, René Rydhof

    2009-01-01

    When prosecuting crimes, the main question to answer is often who had a motive and the possibility to commit the crime. When investigating cyber crimes, the question of possibility is often hard to answer, as in a networked system almost any location can be accessed from almost anywhere. The most...... common tool to answer this question, analysis of log files, faces the problem that the amount of logged data may be overwhelming. This problems gets even worse in the case of insider attacks, where the attacker’s actions usually will be logged as permissible, standard actions—if they are logged at all....... Recent events have revealed intimate knowledge of surveillance and control systems on the side of the attacker, making it often impossible to deduce the identity of an inside attacker from logged data. In this work we present an approach that analyses the access control configuration to identify the set...

  13. Network class superposition analyses.

    Directory of Open Access Journals (Sweden)

    Carl A B Pearson

    Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

  14. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    Science.gov (United States)

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  17. Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization

    International Nuclear Information System (INIS)

    Kim, Taegon; Ham, Chulho; Rhee, Choong Kyun; Yoon, Seong-Ho; Tsuji, Masaharu; Mochida, Isao

    2008-01-01

    Enhancement of electrochemical capacitance and morphological variations of various acetylene blacks caused by electrochemical polarization are presented. Acetylene blacks of different mean particle diameters were modified by air-oxidation and heat treatment to diversify the morphologies of the acetylene blacks before electrochemical polarization. The various acetylene blacks were electrochemically oxidized at 1.6 V (vs. Ag/AgCl) for 10 s and the polarization step was repeated until the capacitance values did not change any longer. These polarization steps enhanced the capacitances of the acetylene blacks and the specific enhancement factors range from 2 to 5.5. Such an enhancement is strongly related to morphological modification as revealed by transmission electron microscopic observations. The electrochemical polarization resulted in formation of tiny graphene sheets on the wide graphitic carbon surfaces, which were most responsible for the observed capacitive enhancement. Although the pseudo-capacitance increased after polarization by forming oxygenated species on the surfaces, its contribution to the total capacitance was less than 10%. The mechanism of the formation of the tiny graphene sheets during the electrochemical oxidation is described schematically

  18. Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales

    KAUST Repository

    Ren, Zhiyong

    2011-03-15

    The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant time scales that are insufficient to account for these variable biocatalyst effects. This study investigated the electrochemical performance and the development of anode biofilm architecture under different external loadings, with duplicate acetate-fed singlechamber MFCs stabilized at each resistance for microbially relevant time scales. Power density curves from these steady-state reactors generally showed comparable profiles despite the fact that anode biofilm architectures and communities varied considerably, showing that steady-state biofilm differences had little influence on electrochemical performance until the steady-state external loading was much larger than the reactor internal resistance. Filamentous bacteria were dominant on the anodes under high external resistances (1000 and 5000 Ω), while more diverse rod-shaped cells formed dense biofilms under lower resistances (10, 50, and 265 Ω). Anode charge transfer resistance decreased with decreasing fixed external resistances, but was consistently 2 orders of magnitude higher than the resistance at the cathode. Cell counting showed an inverse exponential correlation between cell numbers and external resistances. This direct link ofMFCanode biofilm evolution with external resistance and electricity production offers several operational strategies for system optimization. © 2011 American Chemical Society.

  19. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2015-01-01

    Highlights: • A coupling model is developed to study the behaviors of Li-ion batteries. • Thick electrode battery (CEB) has high temperature response during discharge. • Thin electrode battery has a relative lower capacity fading rate. • Less heat is generated in thin electrode battery with even heat distribution. • CEBs underutilize active materials and stop discharge early at high rates. - Abstract: Lithium ion (Li-ion) battery, consisting of multiple electrochemical cells, is a complex system whose high electrochemical and thermal stability is often critical to the well-being and functional capabilities of electric devices. Considering any change in the specifications may significantly affect the overall performance and life of a battery, an investigation on the impacts of electrode thickness on the electrochemical and thermal properties of lithium-ion battery cells based on experiments and a coupling model composed of a 1D electrochemical model and a 3D thermal model is conducted in this work. In-depth analyses on the basis of the experimental and simulated results are carried out for one cell of different depths of discharge as well as for a set of cells with different electrode thicknesses. Pertinent results have demonstrated that the electrode thickness can significantly influence the battery from many key aspects such as energy density, temperature response, capacity fading rate, overall heat generation, distribution and proportion of heat sources

  20. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    Science.gov (United States)

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  1. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses

    International Nuclear Information System (INIS)

    Cremasco, Alessandra; Osorio, Wislei R.; Freire, Celia M.A.; Garcia, Amauri; Caram, Rubens

    2008-01-01

    Since the 1980s, the titanium alloys show attractive properties for biomedical applications where the most important factors are, firstly, biocompatibility, corrosion and mechanical resistances, low modulus of elasticity, very good strength to weight ratio, reasonable formability and osseointegration. The aim of this study was to investigate the effects of two different heat treatments; furnace cooling and water quenching, on the general electrochemical corrosion resistance of Ti-35 wt%Nb alloy samples immersed in a 0.9% NaCl (0.15 mol L -1 ) solution at 25 deg. C and neutral pH range. The samples were obtained using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The microstructural pattern was examined by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In order to evaluate the electrochemical corrosion behavior of such Ti-Nb alloy samples, corrosion tests were performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. Analyses of an equivalent circuit have also been used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that water quenching provides a microstructural pattern consisting of an alpha-martensite acicular phase which decreases the material electrochemical performance due to the stress-induced martensitic transformation

  2. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Cremasco, Alessandra [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)], E-mail: wislei@fem.unicamp.br; Freire, Celia M.A.; Garcia, Amauri; Caram, Rubens [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-05-30

    Since the 1980s, the titanium alloys show attractive properties for biomedical applications where the most important factors are, firstly, biocompatibility, corrosion and mechanical resistances, low modulus of elasticity, very good strength to weight ratio, reasonable formability and osseointegration. The aim of this study was to investigate the effects of two different heat treatments; furnace cooling and water quenching, on the general electrochemical corrosion resistance of Ti-35 wt%Nb alloy samples immersed in a 0.9% NaCl (0.15 mol L{sup -1}) solution at 25 deg. C and neutral pH range. The samples were obtained using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The microstructural pattern was examined by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). In order to evaluate the electrochemical corrosion behavior of such Ti-Nb alloy samples, corrosion tests were performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves. Analyses of an equivalent circuit have also been used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that water quenching provides a microstructural pattern consisting of an alpha-martensite acicular phase which decreases the material electrochemical performance due to the stress-induced martensitic transformation.

  3. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    International Nuclear Information System (INIS)

    Raman, V.; Tamilselvi, S.; Rajendran, N.

    2007-01-01

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data

  4. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Raman, V.; Tamilselvi, S. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India); Rajendran, N. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India)], E-mail: nrajendran@annauniv.edu

    2007-09-30

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data.

  5. Electrochemical Biosensors - Sensor Principles and Architectures

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  6. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  7. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  8. Website-analyse

    DEFF Research Database (Denmark)

    Thorlacius, Lisbeth

    2009-01-01

    eller blindgyder, når han/hun besøger sitet. Studier i design og analyse af de visuelle og æstetiske aspekter i planlægning og brug af websites har imidlertid kun i et begrænset omfang været under reflektorisk behandling. Det er baggrunden for dette kapitel, som indleder med en gennemgang af æstetikkens......Websitet er i stigende grad det foretrukne medie inden for informationssøgning,virksomhedspræsentation, e-handel, underholdning, undervisning og social kontakt. I takt med denne voksende mangfoldighed af kommunikationsaktiviteter på nettet, er der kommet mere fokus på at optimere design og...... planlægning af de funktionelle og indholdsmæssige aspekter ved websites. Der findes en stor mængde teori- og metodebøger, som har specialiseret sig i de tekniske problemstillinger i forbindelse med interaktion og navigation, samt det sproglige indhold på websites. Den danske HCI (Human Computer Interaction...

  9. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  10. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  11. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Juliana Sarango de [Universidade Federal de São Paulo (UNIFESP), Diadema, SP (Brazil). Departamento de Ciências Exatas e da Terra; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli, E-mail: renato.antunes@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas; Sayeg, Isaac Jamil [Universidade de São Paulo (USP), SP (Brazil). Instituto de Geociências

    2017-11-15

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  12. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    International Nuclear Information System (INIS)

    Souza, Juliana Sarango de; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli; Sayeg, Isaac Jamil

    2017-01-01

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  13. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

    Directory of Open Access Journals (Sweden)

    Tuğrul Çetinkaya

    2017-06-01

    Full Text Available Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN polymer. Microstructural characterization of amorphous carbon coated silicon powders (Si-C were carried out using scanning electron microscopy (SEM and thickness of carbon coating is defined by transmission electron microscopy (TEM. Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS. Structural and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD and Raman spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.

  14. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  15. Cost-effective and simple solutions for environmental pollution problems by electrochemical methods

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Environmental pollution is a worldwide problem and has increased significantly with industrialization, urbanization and population growth and is effecting quality of our air, land and water resources. Pollutants include heavy metals, organic toxic and reactive compounds and toxic gases. Major problems in environmental pollution are monitoring and remediation. Now pollutants include such wide range of elements, compounds and gases and normally one needs a whole range of costly analytical techniques to analyse all the pollutants which only very few institutes can afford to purchased. Equipment for electro analytical techniques are much cheaper than most of the other analytical techniques and are also sensitive and accurate for the analysis of nearly the whole range of pollutants including heavy metal. organic reactive compounds, inorganic elements and compounds and toxic gases. application of electrochemical methods for the analysis of different pollutants are reviewed. after monitoring, remediation in the most important aspect of environmental pollution control. Best way could be to treat the pollutants from different industries in such a way that either these are removed from the waste or converted in to non-toxic compounds before their release into the environment. Among all the other treatment methods, electrochemical methods of utilizing the electron as a clean chemical regent are very attractive. Electrodes in electrochemical reactors are abundantly use for the removal and recycling of toxic metals like Cd, Cu, Ni, Pb, Cr and Zn from the industrial waste after electrodeposition. Electrochemical reactors are also being used for electro oxidation of cyanides and other toxic organic compounds into non-toxic species. Such reactors can, in principal, be applied to any environmental pollution problem where the pollutant can either be electro-reduced or oxidized. Different types of electrochemical reactors are discussed, with a view, of their envisaged used for

  16. Electrochemical and materials aspects of tribocorrosion systems

    International Nuclear Information System (INIS)

    Landolt, D

    2006-01-01

    Tribocorrosion involves mechanical and chemical/electrochemical interactions between surfaces in relative motion in the presence of a corrosive environment. Tribocorrosion phenomena are encountered in many technological areas where they cause damage to installations, machines and devices. Often tribocorrosion damage is a problem for safety or for human health. In other applications tribocorrosion phenomena are put to good use in manufacturing. The chemo-mechanical mechanisms of tribocorrosion are still incompletely understood, they involve the properties of contacting material surfaces, the mechanics of the contact and the corrosion conditions. Electrochemical methods are widely used for the study of tribocorrosion reactions. To yield information about synergistic and antagonistic mechanisms they must be applied in situ under strictly controlled mechanical conditions, using materials with well-characterized surface properties. Recent progress in modelling and understanding of tribocorrosion systems is discussed and some challenges and opportunities for future research are identified

  17. Electrochemical behaviour of rhenium-graphite electrode

    International Nuclear Information System (INIS)

    Varypaev, V.N.; Krasikov, V.L.

    1980-01-01

    Electrochemical behaviour of combination electrode from graphite with electrodeposited thin coating of electrolytic rhenium is studied. Solution of 0.5 m NaCl+0.04 m AlCl 3 served as an electrolite. Polarization galvanostatic curves of hydrogen evolution upon electrodes with conditional rhenium thickness of 3.5 and 0.35 μm, 35 and 3.5 nm are obtained. Possibility of preparation of rhenium-graphite cathode with extremely low rhenium consume, electro-chemical properties of which are simu-lar to purely rhenium cathode is shown. Such electrode is characterized with stable in time low cathode potential of hydrogen evolution in chloride electrolyte and during cathode polarization it is not affected by corrosion

  18. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  19. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  20. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  1. Solution Processed PEDOT Analogues in Electrochemical Supercapacitors.

    Science.gov (United States)

    Österholm, Anna M; Ponder, James F; Kerszulis, Justin A; Reynolds, John R

    2016-06-01

    We have designed fully soluble ProDOTx-EDOTy copolymers that are electrochemically equivalent to electropolymerized PEDOT without using any surfactants or dispersants. We show that these copolymers can be incorporated as active layers in solution processed thin film supercapacitors to demonstrate capacitance, stability, and voltage similar to the values of those that use electrodeposited PEDOT as the active material with the added advantage of the possibility for large scale, high-throughput processing. These Type I supercapacitors provide exceptional cell voltages (up to 1.6 V), highly symmetrical charge/discharge behavior, promising long-term stability exceeding 50 000 charge/discharge cycles, as well as energy (4-18 Wh/kg) and power densities (0.8-3.3 kW/kg) that are comparable to those of electrochemically synthesized analogues.

  2. Electrochemical aptasensor for detecting tetracycline in milk

    International Nuclear Information System (INIS)

    Le, Thi Hanh; Pham, Van Phuc; La, Thi Huyen; Le, Quang Huan; Phan, Thi Binh

    2016-01-01

    A rapid, simple and sensitive biosensor system for tetracycline detection is very important in food safety. In this paper we developed a label-free aptasensor for electrochemical detection of tetracycline. According to the electrochemical impendence spectroscopy (EIS) analysis, there was a linear relationship between the concentration of tetracycline and the electron transfer resistance from 10 to 3000 ng ml −1 of the tetracycline concentration. The detection limit was 10 ng ml −1 in 15 min detection duration. The prepared aptasensor showed a good reproducibility with an acceptable stability in tetracycline detection. The recoveries of tetracycline in spiked milk samples were in the range of 88.1%–94.2%. The aptasensor has sensitivity 98% and specificity of 100%. (paper)

  3. Electrochemical investigation on an acrylated thiophene

    Energy Technology Data Exchange (ETDEWEB)

    Hogervorst, A.C.R. (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Kock, T.J.J.M. (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Ruiter, B. de (TNO Plastics and Rubber Research Inst., Delft (Netherlands)); Waal, A. van der (TNO Plastics and Rubber Research Inst., Delft (Netherlands))

    1993-03-22

    The electrochemical behaviour of electropolymerized 2-(3-thienyl)ethyl acrylate (PAcrT) has been investigated, and compared to the behaviour of electropolymerized thiophene and 3-n-decylthiophene (PDT). The effect of electron beam irradiation on the electrochemical properties of these three polymers has been studied. It has been found that for PAcrT the oxidation wave shifts to higher potentials upon electron beam irradiation. For PDT a similar but smaller change occurs. We suggest that the shift of the oxidation wave of PAcrT is caused by cross-links, formed between the acrylate substituents, which fixate the main chain parts in twisted states and reduce the conjugation length. (orig.)

  4. Thermal models of pulse electrochemical machining

    International Nuclear Information System (INIS)

    Kozak, J.

    2004-01-01

    Pulse electrochemical machining (PECM) provides an economical and effective method for machining high strength, heat-resistant materials into complex shapes such as turbine blades, die, molds and micro cavities. Pulse Electrochemical Machining involves the application of a voltage pulse at high current density in the anodic dissolution process. Small interelectrode gap, low electrolyte flow rate, gap state recovery during the pulse off-times lead to improved machining accuracy and surface finish when compared with ECM using continuous current. This paper presents a mathematical model for PECM and employs this model in a computer simulation of the PECM process for determination of the thermal limitation and energy consumption in PECM. The experimental results and discussion of the characteristics PECM are presented. (authors)

  5. The behavior of electrochemical cell resistance

    International Nuclear Information System (INIS)

    Ritley, K.A.; Dull, P.M.; Weber, M.H.; Carroll, M.; Hurst, J.J.; Lynn, K.G.

    1990-01-01

    Knowledge of the basic electrochemical behavior found in typical cold fusion experiments is important to understanding and preventing experimental errors. For a Pd/LiOH(D)/Pt electrochemical cell, the applied cell voltage/current relationship (the effective cell resistance) does not obey Ohm's law directly, but instead exhibits a complicated response to the current, voltage, temperature, electrolyte conductance, and other factors. Failure to properly consider this response can possibly result in errors that could affect the heat balance in calorimetry and temperature measurement experiments. Measurements of this response under varying voltage, temperature, and electrolyte conductivity conditions are reported. A plausible scenario in which the temperature dependence of the effective cell resistance can either exaggerate or ameliorate novel exothermic processes is suggested

  6. Electrochemical characteristics of polyacetylene in organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Padula, A.; Scrosati, B.

    1985-01-15

    The characteristics of the electrochemical doping process of polyacetylene have been investigated in lithium cells using lithium perchlorate in propylene carbonate as electrolytic solution. The kinetics of this process are controlled by the diffusion of the dopant species throughout the polymer. Therefore, polyacetylene samples with a highly porous, extended surface should be selected for the development of efficient, rechargeable lithium batteries. In line with this, we have considered foam-type polyacetylene electrodes which have a lower density than the 'classical' Shirakawa-type film electrodes. The electrochemical behaviour of the polyacetylene foam samples has been examined by cyclic voltametry response and constant current, charge-discharge cycles. The results are described in this work.

  7. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  8. Electrochemical reduction of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lund Traulsen, M.

    2012-04-15

    NO and NO{sub 2} (collectively referred to as NO{sub x}) are air pollutants, and the largest single contributor to NO{sub x} pollution is automotive exhaust. This study investigates electrochemical deNO{sub x}, a technology which aims to remove NO{sub x} from automotive diesel exhaust by electrochemical reduction of NO{sub x} to N{sub 2} and O{sub 2}. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNO{sub x} by addition of NO{sub x} storage compounds to the electrodes. Two different composite electrodes, La{sub 0.85}Sr{sub 0.15}MnO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSM15-CGO10) and La{sub 0.85}Sr{sub 0.15}FeO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSF15-CGO10), have been investigated in combination with three different NO{sub x} storage compounds: BaO, K{sub 2}O and MnO{sub x}. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy and cyclic voltammetry. In addition, infrared spectroscopy has been performed to study how NO{sub x} adsorption on the electrodes is affected by the presence of the aforementioned NO{sub x} storage compounds. Furthermore, non-tested and tested electrode microstructures have been thoroughly evaluated by scanning electron microscopy. The studies reveal addition of MnO{sub x} or K{sub 2}O to the electrodes cause severe degradation problems, and addition of these compounds is thus unsuitable for electrode improvement. In contrast, addition of BaO to LSM15-CGO10 electrodes is shown to have a very positive impact on the NO{sub x} conversion. The increased NO{sub x} conversion, following the BaO addition, is attributed to a combination of 1) a decreased electrode polarisation resistance and 2) an altered NO{sub x} adsorption. The NO{sub x} conversion is observed to increase strongly with polarisation, and during 9 V polarisation of an

  9. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  10. Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites

    International Nuclear Information System (INIS)

    Chen, Yan; Xu, Jianhua; Mao, Yunwu; Yang, Yajie; Yang, Wenyao; Li, Shibin

    2013-01-01

    Highlights: • A facile vapor-phase polymerization method is used to deposit PEDOT on graphene. • The graphene-PEDOT composite films exhibit better capacitive retention capability. • This simple technique has been developed to produce highly ordered thin films. -- Abstract: We propose a facile vapor-phase polymerization (VPP) method used to deposit graphene (G)-polyethylene dioxythiophene (PEDOT) nanocomposite film for electrode materials of electrochemical capacitor. This type of conductive polymer nanocomposite improves the performance of electrochemical capacitor. The specific discharge capacitance of G-PEDOT film is higher than that of pure PEDOT electrode. The G-PEDOT electrode also exhibits better capacitive retention capability after 1000 charge–discharge cycles

  11. Electrochemical treatment of mixed and hazardous waste

    International Nuclear Information System (INIS)

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-01-01

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study

  12. Carbon Onions: Synthesis and Electrochemical Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, John K. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering; Gogotsi, Y. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering

    2013-01-01

    Onion-like carbon structures have been synthesized in many ways and large scale production is currently under study. The annealing method can satisfy the need for large scale production, though the ideal spherical shape is unachievable, and the temperature attainable in this method is not sufficient for treating the entire particle. The arc-discharge method provides an alternate pathway toward large scale synthesis. Due to its structure and electrochemical properties, carbon onions can be used as materials for electrochemical double layer capacitors (EDLC) and can be used to store energy across a much wider temperature range, which gives these materials advantages over conventional EDLCs. This and other aspects of carbon onions are discussed in this article.

  13. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Science.gov (United States)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  14. A Review for Aqueous Electrochemical Supercapacitors

    OpenAIRE

    Zhao, Cuimei; Zheng, Weitao

    2015-01-01

    Electrochemical capacitor is the most promising energy-storage device that can meet the demands of high-power supply and long cycle life; however, low-energy density and high-fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper p...

  15. Direct electrochemical synthesis of metal alcoholates

    International Nuclear Information System (INIS)

    Shrejder, V.A.; Turevskaya, E.P.; Kozlova, N.I.; Turova, N.Ya.

    1981-01-01

    Conditions of electrochemical synthesis of Ga, Sc, Y, Ge, Ti, Zr, Nb and Ta alcoholates during anodic metal dissolution in absolute alcohols in the presence of background electrolyte are studied. R 4 NBr and R 4 NBF 4 salts are optimum background electrolytes. Application limits of this synthetical method using different metals as anode are determined. It is supposed that alkoxyhalogenides the nature of which determines further direction of electrode process, are the primary products of anodic oxidation of metals [ru

  16. Controlled synthesis and electrochemical properties of vanadium ...

    Indian Academy of Sciences (India)

    Vanadium oxides (V3O7·H2O and VO2) with different morphologies have been selectively synthesized ... appeared at around 68 ◦C. Furthermore, the electrochemical properties of V3O7·H2O nanobelts, VO2(B) .... morphologies of shape-controlled orthorhombic V3O7·H2O ..... condition, as shown in figures S14i and j.

  17. Electrochemical behaviour of monolayer and bilayer graphene

    OpenAIRE

    Valota, Anna T.; Kinloch, Ian A.; Novoselov, Kostya S.; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W.; Dryfe, Robert A. W.

    2011-01-01

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as masking coating in order to expose a stable, well defined area of graphene. Both multilayer and monolayer graphene microe...

  18. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  19. Electrochemical sensors for detection of acetylsalicylic acid

    OpenAIRE

    Šupálková, Veronika; Petřek, Jiří; Havel, Ladislav; Křížková, Soňa; Petrlová, Jitka; Adam, Vojtěch; Potěšil, David; Babula, Petr; Beklová, Miroslava; Horna, Aleš; Kizek, René

    2006-01-01

    Acetylsalicylic acid ( AcSA), or aspirin, was introduced in the late 1890s and has been used to treat a variety of inflammatory conditions. The aim of this work was to suggest electrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wave voltammetry ( SWV) using both carbon paste electrode ( CPE) and of graphite pencil electrode ( GPE) as working ones to indirect determination of AcSA. The principle of indirect determination of AcSA bases in its hydrolysis on salicy...

  20. Electrochemical Routes towards Sustainable Hydrocarbon Fuels

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2012-01-01

    The potential of renewable energy and possible solution to the intermittency problem of renewable energy sources like sun and wind are explained. The densest storage of energy is in the form of hydrocarbons. The most suitable method of conversion and storage within a foreseeable future is electro...... in the future. In spite of this, it is important to research and develop as many viable sustainable energy technologies as economical possible. © 2012 ECS - The Electrochemical Society  ...

  1. Electrochemical Biosensors - Sensor Principles and Architectures

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2008-03-01

    Full Text Available Quantification of biological or biochemical processes are of utmost importancefor medical, biological and biotechnological applications. However, converting the biologicalinformation to an easily processed electronic signal is challenging due to the complexity ofconnecting an electronic device directly to a biological environment. Electrochemical biosensorsprovide an attractive means to analyze the content of a biological sample due to thedirect conversion of a biological event to an electronic signal. Over the past decades severalsensing concepts and related devices have been developed. In this review, the most commontraditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry,impedance spectroscopy, and various field-effect transistor based methods are presented alongwith selected promising novel approaches, such as nanowire or magnetic nanoparticle-basedbiosensing. Additional measurement techniques, which have been shown useful in combinationwith electrochemical detection, are also summarized, such as the electrochemical versionsof surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry,quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determinedby the surface architectures that connect the sensing element to the biological sampleat the nanometer scale. The most common surface modification techniques, the various electrochemicaltransduction mechanisms, and the choice of the recognition receptor moleculesall influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches,such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymesinto vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities forsignal amplification.In particular, this review highlights the importance of the precise control over the

  2. Electrochemical processing of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions.

  3. Electrochemical processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R.

    2008-01-01

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions

  4. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  5. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  6. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, F. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Neto, M.M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal) and Departamento de Quimica Agricola e Ambiental, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon (Portugal)]. E-mail: mm.neto@netcabo.pt; Rocha, M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Fonseca, I.T.E. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal)

    2006-10-10

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode.

  7. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    International Nuclear Information System (INIS)

    Ribeiro, F.; Neto, M.M.M.; Rocha, M.M.; Fonseca, I.T.E.

    2006-01-01

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode

  8. NOAA's National Snow Analyses

    Science.gov (United States)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  9. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  10. Preparation and characterization of porphyrin-polythiophene stacked films as prepared by electrochemical method under stirring condition

    International Nuclear Information System (INIS)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Yamada, Sunao

    2008-01-01

    Porphyrin-polythiophene (pTh) stacked films consisting of meso-tetrathienylporphyrin (TThP) and bithiophene (BiTh) were prepared on transparent indium-tin-oxide (ITO) electrodes by sequential electrochemical scanning of applied potential between 0 and + 2 V vs Ag wire in the electrolyte solution of BiTh and TThP under stirring condition. First, the pTh films were prepared by electrochemical polymerization and then TThP was incorporated into the as-prepared pTh film by subsequent electrochemical scanning as described above in the TThP solution. The operation of solution stirring during electrochemical scanning achieved the formation of robust stacked films. UV/Vis and fluorescence spectra confirmed that the amount of TThP moiety increased with increasing the number of electrochemical scanning cycles in the TThP solution. In order to evaluate the incorporation profile of TThP, surface analyses and depth profiles of stacked films were carried out by XPS spectroscopy. The results suggested that all films formed porphyrin-polythiophene stacked structure precisely, and that TThP was exclusively incorporated around the outermost region of the pTh film

  11. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  12. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  13. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  14. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  15. Electrochemical aspects of microbiologically influenced corrosion

    International Nuclear Information System (INIS)

    Licina, G.J.

    1989-01-01

    Microbiologically influenced corrosion (MIC) is a topic that has gained considerable interest over the past decade, particularly in the oil production and nuclear power generation industries. Failures of stainless steels and copper-nickel alloys under conditions that would not be expected to be at all demanding such as during lay-up have been observed as a result of MIC. Failures in the time period between system construction and its operation are often associated with biological activity. Finally, MIC is generally associated with normally stagnant systems or systems which experience intermittent flow conditions. The diverse and redundant design philosophy of nuclear plants necessitates that a large number of systems are operated in this manner. Some of these systems are safety related while still others support safety related systems. As a result, the U.S. Nuclear Regulatory Commission and all nuclear utilities have become increasingly concerned with MIC. The purpose of this workshop is to provide a review of the most current technology related to the fundamental aspects of microbiologically influenced corrosion, its diagnosis, and its control. This paper reviews how microbes can influence the electrochemical processes that influence and often control corrosion; ways that these processes (hence, MIC) may be monitored; and electrochemical methods for their control. Examples of the influence of microbiological activity on anodic and cathodic reactions on steels, stainless steels, and copper based alloys in both aerated and dearated environments are provided since the electrochemical effects can be significantly different for each combination. 45 refs

  16. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  17. Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors

    Science.gov (United States)

    Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.

    2018-01-01

    In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).

  18. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  19. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    Directory of Open Access Journals (Sweden)

    Luca ePUJOL

    2014-04-01

    Full Text Available A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic on line monitoring devices are also evoked.

  20. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid......Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  1. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  2. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  3. Synthesis of magnetite nanoparticles using electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Ye. Ya. Levitin

    2014-08-01

    Full Text Available The monodisperse magnetite nanoparticles are promising for use in the biomedical industry for targeted drug delivery, cell separation and biochemical products, Magnetic Resonance Imaging, immunological studies, etc. Classic method for the synthesis of magnetite is the chemical condensation Elmore’s, it is simple and cheap, but it is complicated by the formation of side compounds which impair the magnetic properties of the final product. Biological and medical purposes require high purity magnetite nanoparticles. Electrochemical methods of producing nanoparticles of magnetite acquire significant spread. The kinetics of electrochemical processes are a function of a larger number of parameters than the kinetics of conventional chemical reaction, thus electrochemical reactions can be thinner and more completely adjusted to give a predetermined size nanoparticles. In the kinetics of the electrochemical oxidation and reduction the important role is played by the nature of the electrode. In many industrial processes, it is advisable to use lead dioxide anodes with titanium current lead. Purpose of the work To determine the optimum conditions of electrochemical oxidation of Fe2+ Fe3+to produce magnetite with high purity and improved magnetic characteristics. Materials and methods Electrochemical studies were carried out in a glass cell ЯСЭ-2 using a potentiostat ПИ-50-1.1 and a recording device ПДА1. Reference electrode - silver chloride ЭВЛ1М 3.1, potentials listed on the hydrogen scale. The test solution contained 80 g/ l FeSO4×7H2O and H2SO4(to pH 1. The pH of the solution was measured with a pH–meter « рН–150». Concentration ratio of Fe3+/Fe2+in the solution was measured by permanganometric method. Magnetite particle sizes were measured by an electron microscope computer ЭВМ-100Л, an increasing is 2×105. Saturation magnetization was evaluated by the magnetization curve, for the measured sample in the field with strength

  4. Innovative configurations of electrochemical DNA biosensors (a review)

    OpenAIRE

    Girousi, Stella; Karastogianni, Sofia; Serpi, Constantina

    2011-01-01

    In the field of electrochemical biosensing, transition metal complexes achieved a significant importance as hybridization indicators or electroactive markers of DNA. Their incorporation in electro-chemical DNA biosensors enables to offer a promising perspective in understanding of the biological activity of some chemical compounds. In this context, the development of innovative configurations of electrochemical DNA biosensors applied to life sciences during the last years were reviewed ...

  5. Electrochemical development of particle tracks in CR-39 polymer dosimeter

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.; Yang, C.S.; Groeger, J.; Johnson, J.R.; Huang, S.J.

    1985-09-01

    Electrochemical etching of CR-39 polymeric track etch neutron detectors results in proton-recoil tracks can be distinguished from background tracks much better than tracks developed solely by chemical etching. A newly designed and constructed electrochemical etching apparatus allows large numbers of dosimeters to be processed simultaneously with consistent results. Many processing systems have been developed for chemical and electrochemical etching of the track etch dosimeters. Three systems specifically show great promise and are being studied extensively

  6. Battery Test Facility- Electrochemical Analysis and Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery developers with reliable, independent, and unbiased performance evaluations of their...

  7. Micropatterning on cylindrical surfaces via electrochemical etching using laser masking

    International Nuclear Information System (INIS)

    Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces

  8. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  9. Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, A., E-mail: safavi@chem.susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Nanotechnology Research Institute, Shiraz University, Shiraz (Iran, Islamic Republic of); Kazemi, S.H., E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Kazemi, H. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2011-10-30

    Highlights: > Nanostructured hybrid nickel-cobalt hexacyanoferrate is used in supercapacitors. > A high capacitance (765 F g{sup -1}) is obtained at a specific current of 0.2 A g{sup -1}. > Long cycle-life and excellent stability are demonstrated during 1000 cycles. - Abstract: This study describes the use of electrodeposited nanostructured hybrid nickel-cobalt hexacyanoferrate in electrochemical supercapacitors. Herein, various compositions of nickel and cobalt hexacyanoferrates (Ni/CoHCNFe) nanostructures are electrodeposited on an inexpensive stainless steel substrate using cyclic voltammetric (CV) method. The morphology of the electrodeposited nanostructures is studied using scanning electron microscopy, while their electrochemical characterizations are investigated using CV, galvanostatic charge and discharge and electrochemical impedance spectroscopy. The results show that the nanostructures of hybrid metal cyanoferrate, shows a much higher capacitance (765 F g{sup -1}) than those obtained with just nickel hexacyanoferrate (379 F g{sup -1}) or cobalt hexacyanoferrate (277 F g{sup -1}). Electrochemical impedance spectroscopy results confirm the favorable capacitive behavior of the electrodeposited materials. The columbic efficiency is approximately 95% based on the charge and discharge experiments. Long cycle-life and excellent stability of the nanostructured materials are also demonstrated during 1000 cycles.

  10. Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Safavi, A.; Kazemi, S.H.; Kazemi, H.

    2011-01-01

    Highlights: → Nanostructured hybrid nickel-cobalt hexacyanoferrate is used in supercapacitors. → A high capacitance (765 F g -1 ) is obtained at a specific current of 0.2 A g -1 . → Long cycle-life and excellent stability are demonstrated during 1000 cycles. - Abstract: This study describes the use of electrodeposited nanostructured hybrid nickel-cobalt hexacyanoferrate in electrochemical supercapacitors. Herein, various compositions of nickel and cobalt hexacyanoferrates (Ni/CoHCNFe) nanostructures are electrodeposited on an inexpensive stainless steel substrate using cyclic voltammetric (CV) method. The morphology of the electrodeposited nanostructures is studied using scanning electron microscopy, while their electrochemical characterizations are investigated using CV, galvanostatic charge and discharge and electrochemical impedance spectroscopy. The results show that the nanostructures of hybrid metal cyanoferrate, shows a much higher capacitance (765 F g -1 ) than those obtained with just nickel hexacyanoferrate (379 F g -1 ) or cobalt hexacyanoferrate (277 F g -1 ). Electrochemical impedance spectroscopy results confirm the favorable capacitive behavior of the electrodeposited materials. The columbic efficiency is approximately 95% based on the charge and discharge experiments. Long cycle-life and excellent stability of the nanostructured materials are also demonstrated during 1000 cycles.

  11. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  12. Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Charlas, Benoit; Stamate, Eugen

    2017-01-01

    An electrochemical reactor can be used to purify flue gasses. Such a reactor can be a multilayer structure consisting of alternating layers of porous electrodes and electrolytes (a porous cell stack). In this work optimization of such a unit has been done by changing the pore former composition...

  13. Electrochemical cell assembled in discharged state

    Science.gov (United States)

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  14. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  15. Electrochemical methods for monitoring of environmental carcinogens.

    Science.gov (United States)

    Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J

    2001-04-01

    The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.

  16. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F; Castillo, S; Laberty- Robert, C; Pellizon-Birelli, M [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France); and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  17. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  18. Selective, electrochemical etching of a semiconductor

    Science.gov (United States)

    Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing

    2018-03-20

    Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.

  19. Electrochemical impedance spectroscopy of polynucleotide adsorption

    Czech Academy of Sciences Publication Activity Database

    Strašák, Luděk; Dvořák, Jakub; Hasoň, Stanislav; Vetterl, Vladimír

    2002-01-01

    Roč. 56, 1/2 (2002), s. 37-41 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004002; GA AV ČR IBS5004107; GA ČR GV204/97/K084 Grant - others:GA FRVŠ(XC) G40583; GA FRVŠ(XC) F40564 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical impedance spectroscopy * DNA adsorption * poly A adsorption Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  20. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  1. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  2. MIP sensors--the electrochemical approach.

    Science.gov (United States)

    Malitesta, Cosimino; Mazzotta, Elisabetta; Picca, Rosaria A; Poma, Alessandro; Chianella, Iva; Piletsky, Sergey A

    2012-02-01

    This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.

  3. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  4. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution

    International Nuclear Information System (INIS)

    Marcelin, Sabrina; Pébère, Nadine; Régnier, Sophie

    2013-01-01

    Highlights: ► A better knowledge of the electrochemical behaviour of a martensitic stainless steel in bulk electrolyte was obtained. ► Quantitative parameters were obtained from impedance measurements. ► The study will be used as reference to investigate crevice corrosion using a thin layer cell. - Abstract: This paper focuses on the characterisation of the electrochemical behaviour of a martensitic stainless steel in 0.1 M NaCl + 0.04 M Na 2 SO 4 solution and is a part of a study devoted to crevice corrosion resistance of stainless steels. Polarisation curves and electrochemical impedance measurements were obtained for different experimental conditions in bulk electrolyte. X-ray photoelectron spectroscopy (XPS) was used to analyse the passive films. At the corrosion potential, the stainless steel was in the passive state and the corrosion process was controlled by the properties of the passive film formed during air exposure. During immersion in the deaerated solution, the passive film was only slightly modified, whereas it was altered both in composition and thickness during immersion in the aerated solution. After cathodic polarisation of the stainless steel electrode surface, the oxide film was almost totally removed and the surface appeared to be uniformly active for oxygen reduction. The new passive film, formed at the corrosion potential, was enriched with iron species and less protective. Impedance diagrams allowed the characterisation of both the oxide film (high-frequency range) and the charge transfer process (low-frequency range).

  5. Inert Layered Silicate Improves the Electrochemical Responses of a Metal Complex Polymer.

    Science.gov (United States)

    Eguchi, Miharu; Momotake, Masako; Inoue, Fumie; Oshima, Takayoshi; Maeda, Kazuhiko; Higuchi, Masayoshi

    2017-10-11

    A chemically inert, insulating layered silicate (saponite; SP) and an iron(II)-based metallo-supramolecular complex polymer (polyFe) were combined via electrostatic attraction to improve the electrochromic properties of polyFe. Structural characterization indicated that polyFe was intercalated into the SP nanosheets. Interestingly, the redox potential of polyFe was lowered by combining it with SP, and the current was measurable despite the insulating nature of SP. X-ray photoelectron spectroscopy showed that the decrease in the redox potential observed in the SP-polyFe hybrid was caused by the electrostatic neutralization of the Fe cation in polyFe by the negative charge on SP. Electrochemical analyses indicated that electron transfer occurred through electron hopping across the SP-polyFe hybrid. Control experiments using a metal complex composed of Fe and two 2,2':6',2''-terpyridine ligands (terpyFe) showed that SP contributes to the effective electron hopping. This modulation of the electrochemical properties by the layered silicates could be applied to other electrochemical systems, including hybrids of the redox-active ionic species and ion-exchangeable adsorbents.

  6. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun [Dongguk University, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications.

  7. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    International Nuclear Information System (INIS)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun

    2016-01-01

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications

  8. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.

    Science.gov (United States)

    Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia

    2010-07-01

    A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.

  9. Photoelectric conversion properties of electrochemically codeposited graphene oxide–ZnO nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiming; Wang, Dian; Li, Wenyou [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); He, Yunqiu, E-mail: heyunqiu@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai, 201804 (China)

    2015-11-05

    Graphene oxide (GO)–ZnO nanocomposite films were synthesized on Fluorine doped Tin Oxide (FTO) coated glasses by electrochemical codeposition. The films have a laminated architecture with GO and ZnO alternate layers arranged basically parallel to the substrate. The structures of the composites were characterized using XRD, FE-SEM, FT-IR, XPS, Raman, UV–visible, and electrochemical cyclic voltammetry analyses. The results showed that by increasing Zn:C ratio of the suspensions, there is a series of structural evolutions of the composites, and the percentages of the C–O bonds of GO in the composites decreased. The decreased C–O bonds of GO indicate an increase in the reduction degree of GO, with which its energy gap varies from 1.99 eV to 0.89 eV. Moreover, the energy levels of GO and ZnO in the composites were determined. The results of photoelectrochemical measurements of the films indicated the feasibility of using GO in photoelectric conversion as photoabsorbers. A preliminary study on the relationship between the changes in the photocurrent and the structure of the films has provided clues for further studies on improving the photoelectric conversion properties. - Highlights: • Graphene Oxide–ZnO nanocomposite films were obtained by electrochemical codeposition. • The structure of GO varies with the Zn:C ratio of the depositing suspensions. • The feasibility of using GO as photoabsorbers for photoelectric conversion was verified.

  10. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J. [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Area de Electroquimica, Apartado Postal 55-534, 09340, D.F. (Mexico); Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Tabuleiro do Martins, Maceio, AL, 57072-970 (Brazil); Ribeiro, Rogerio Tavares; Longo, Ricardo L. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Navarro, Marcelo, E-mail: navarro@ufpe.b [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cid. Universitaria, Recife, PE, 50740-540 (Brazil); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. I.P.N. 2508. Col. San Pedro Zacatenco, 07360, D.F. (Mexico)

    2010-11-30

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A{sup 2-} + A {yields} 2A{center_dot}{sup -}). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  11. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes

    International Nuclear Information System (INIS)

    Hernandez-Munoz, Lindsay S.; Gonzalez, Felipe J.; Gonzalez, Ignacio; Goulart, Marilia O.F.; Abreu, Fabiane Caxico de; Ribeiro, Adriana Santos; Ribeiro, Rogerio Tavares; Longo, Ricardo L.; Navarro, Marcelo; Frontana, Carlos

    2010-01-01

    The effects of the position of a second nitroaromatic group (orthovs.paravs.meta) during reduction of nitrobenzenes were analysed. Cyclic voltammetric experiments in acetonitrile solution revealed that ortho-, meta- and para-dinitrobenzenes show two reversible reduction processes. An Electrochemical-Electron Spin Resonance (E-ESR) study showed that the corresponding radical anions of the ortho and para derivatives, electrogenerated during the first electron transfer uptake, remain the same even after the second monoelectronic process, increasing their intensity due to the presence of a comproportionation process (A 2- + A → 2A· - ). For the case of the meta derivative, the electrogenerated radical anion at the first reduction peak is consumed at the second reduction step, forming a secondary radical species. During the electrochemical study of methyl 3,5-dinitrobenzoate, two successive and reversible electron processes were also observed; however, in this case, a very rare biradical dianion structure was found. The use of ESR-spectroelectrochemistry shed some light on controversial aspects of nitroaromatic reduction, especially concerning the second and further waves. These results were corroborated and interpreted with quantum chemical calculations of the molecular and electronic structures, electron affinities and spin densities. As a result, electrochemical mechanisms are presented and discussed.

  12. Metal Oxide Materials and Collector Efficiency in Electrochemical Supercapacitors

    Science.gov (United States)

    2010-12-01

    However, even if thick tita - nium films and/or nanostructured layers were obtained using these methods, they were composed of non-conducting titanium...following electrochemical reduction in LiClO4/acetonitrile. Table 1 reports the electrochemical parameters and the atomic composition of the tita - nium

  13. Electrochemical reduction of NiO in a composite electrode

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2013-01-01

    a lower overpotential. Microstructures of NiO with different reduction degrees are shown. Electrochemical impedance spectroscopy is carried out during the reduction process. Electrochemical reduction of NiO may need an induction period. When NiO is reduced at a constant voltage the current initially...

  14. Electrochemical single-molecule conductivity of duplex and quadruplex DNA

    DEFF Research Database (Denmark)

    Zhang, Ling; Zhang, Jingdong; Ulstrup, Jens

    2017-01-01

    Photoinduced and electrochemical charge transport in DNA (oligonucleotides, OGNs) and the notions “hopping”, superexchange, polaron, and vibrationally gated charge transport have been in focus over more than two decades. In recent years mapping of electrochemical charge transport of pure and redo...

  15. Intrinsic multistate switching of gold clusters through electrochemical gating

    DEFF Research Database (Denmark)

    Albrecht, Tim; Mertens, S.F.L.; Ulstrup, Jens

    2007-01-01

    The electrochemical behavior of small metal nanoparticles is governed by Coulomb-like charging and equally spaced charge-transfer transitions. Using electrochemical gating at constant bias voltage, we show, for the first time, that individual nanoparticles can be operated as multistate switches i...

  16. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  17. Electrochemical Investigation of The Catalytical Processes During Sulfuric Acid Production

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petrushina, Irina; Berg, Rolf W.

    1995-01-01

    The electrochemical behavior of molten K2S2O7 and its mixtures with V2O5 [2–20 mole percent (m/o) V2O5] was studiedat 440°C in argon, by using cyclic voltammetry on a gold electrode. The effect of the addition of sulfate and lithium ions onthe electrochemical processes in the molten potassium...

  18. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  19. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  20. Place and role of electrochemical energy converters in the energetics

    Directory of Open Access Journals (Sweden)

    Andrey Kurbatov

    2012-05-01

    Full Text Available The position of the electrochemical method of energy conversion of a chemical reaction in the overall energy production was considered. The effective ways and tendencies of its implementation were shown. The variants of electrochemical systems for the production, accumulation and storage of energy was also considered.

  1. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    Abstract. Electrochemical oxidation of some catechol derivatives (1a–e) have been studied in water/ acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlled- potential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation ...

  2. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  3. Aptamer-Based Electrochemical Sensing of Lysozyme

    Directory of Open Access Journals (Sweden)

    Alina Vasilescu

    2016-06-01

    Full Text Available Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples.

  4. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  5. Electrochemical preparation of technetium hydroxyethylidene diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Scott, R.B.

    1984-01-01

    This work describes the liquid chromatographic and electrochemical analysis of electrogenerated technetium hydroxyethylidene diphosphonate (HEDP) complexes, and studies the effectiveness of the resulting bone imaging agents. Anion exchange High Performance Liquid Chromatography is used to separate components, and γ emission is used as the detection mode. The reaction mixtures were prepared at a series of reduction potentials and pH values, at both carrier added and no carrier added technetium levels. The results indicate that all three parameters affect the final complex composition to varying degrees. By optimizing the conditions, a preparation was made which results in a high percentage of a Tc-HEDP complex thought to be a very good home imager. This component was isolated chromatographically and injected into female Sprague-Dawley rats. Comparisons were run on the uptake for seven tissue types at two incubation times. Mercury and Reticulated Vitreous Carbon were used as the working electrode materials, and it is shown how reduced technetium will significantly alter the electrode characteristics, where a conditioned electrode will produce different complexes from those produced at fresh electrode material. By employing coulometric analysis as the preparation was reduced, an n value of 4 was calculated for a particular complex. This procedure involved tracking the radioactive technetium species carefully to account for all electrons used in the system. Finally, an electrochemical detection method for HEDP was explored, utilizing the property of mercury complexation. Anodic sweep Differential Pulse Polarography gives an analytical signal for HEDP at +0.250 V vs Ag/AgCl

  6. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  7. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  8. Dual responsive supramolecular hydrogel with electrochemical activity.

    Science.gov (United States)

    Du, Ping; Liu, Jianghua; Chen, Guosong; Jiang, Ming

    2011-08-02

    Supramolecular materials with reversible responsiveness to environmental changes are of particular research interest in recent years. Inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) is well-known and extensively studied because of its reversible association-dissociation controlled by the redox state of Fc. Although there are quite a few reported nanoscale materials incorporating this host-guest pair, polymeric hydrogels with electrochemical activity based on this interactive pair are still rare. Taking advantage of our previous reported hybrid inclusion complex (HIC) hydrogel structure, a new Fc-HIC was designed and obtained with β-CD-modified quantum dots as the core and Fc-ended diblock co-polymer p(DMA-b-NIPAM) as the shell, to achieve an electrochemically active hydrogel at elevated temperatures. Considering the two independent cross-linking strategies in the network structure, i.e., the interchain aggregation of pNIPAM and inclusion complexation between CD and Fc on the surface of the quantum dots, the hydrogel was fully thermo-reversible and its gel-sol transition was achieved after the addition of either an oxidizing agent or a competitive guest to Fc.

  9. Zinc oxide nanostructures for electrochemical cortisol biosensing

    Science.gov (United States)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Tracy, Kathryn; Bhansali, Shekhar; Pala, Nezih

    2014-05-01

    In this paper, we report on fabrication of a label free, highly sensitive and selective electrochemical cortisol immunosensors using one dimensional (1D) ZnO nanorods (ZnO-NRs) and two dimensional nanoflakes (ZnO-NFs) as immobilizing matrix. The synthesized ZnO nanostructures (NSs) were characterized using scanning electron microscopy (SEM), selective area diffraction (SAED) and photoluminescence spectra (PL) which showed that both ZnO-NRs and ZnO-NFs are single crystalline and oriented in [0001] direction. Anti-cortisol antibody (Anti-Cab) are used as primary capture antibodies to detect cortisol using electrochemical impedance spectroscopy (EIS). The charge transfer resistance increases linearly with increase in cortisol concentration and exhibits a sensitivity of 3.078 KΩ. M-1 for ZnO-NRs and 540 Ω. M -1 for ZnO-NFs. The developed ZnO-NSs based immunosensor is capable of detecting cortisol at 1 pM. The observed sensing parameters are in physiological range. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat to detect cortisol at point-of-care.

  10. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  11. Electrical and electrochemical properties of niobium disulphide

    Energy Technology Data Exchange (ETDEWEB)

    Molenda, J.; Bak, T.; Marzec, J. [Academy of Min. and Metall., Cracow (Poland). Dept. of Chem. of Solids

    1996-07-16

    The electrical conductivity and thermoelectric power measurements of NbS{sub 2} pure and electrochemically doped with lithium, Li{sub x}NbS{sub 2}, were done as a function of temperature (77 to 300 K). The high absolute values of conductivity and their dependence on temperature together with low absolute values of thermoelectric power and their linear increase with temperature indicate metallic properties of niobium disulphide. In case of Li{sub x}NbS{sub 2} the obtained values of electrical conductivity are significantly lower as compared with the starting NbS{sub 2}. The temperature dependence of the thermo-electric power of intercalated niobium disulphide also indicates that metallic properties get worse as the concentration of lithium increases. The modification of the electronic structure of NbS{sub 2} due to lithium intercalation was proposed. The character of the discharge curves in the electrochemical Li/Li{sup +}/Li{sub x}NbS{sub 2} systems was correlated with the electronic properties of niobium disulphide. (orig.) 11 refs.

  12. Tracking of electrochemical impedance of batteries

    Science.gov (United States)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  13. Mediated electrochemical oxidation of mixed wastes

    International Nuclear Information System (INIS)

    Chiba, Z.

    1993-04-01

    The Mediated Electrochemical Oxidation (MEO) process was studied for destroying low-level combustible mixed wastes at Rocky Flats Plant. Tests were performed with non-radioactive surrogate materials: Trimsol for contaminated cutting oils, and reagent-grade cellulose for contaminated cellulosic wastes. Extensive testing was carried out on Trimsol in both small laboratory-scale apparatus and on a large-scale system incorporating an industrial-size electrochemical cell. Preliminary tests were also carried out in the small-scale system with cellulose. Operating and system parameters that were studied were: use of a silver-nitric acid versus a cobalt-sulfuric acid system, effect of electrolyte temperature, effect of acid concentration, and effect of current density. Destruction and coulombic efficiencies were calculated using data obtained from continuous carbon dioxide monitors and total organic carbon (TOC) analysis of electrolyte samples. For Trimsol, the best performance was achieved with the silver-nitrate system at high acid concentrations, temperatures, and current densities. Destruction efficiencies of 99% or greater, and coulombic efficiencies up to 70% were obtained. For the cellulose, high destruction efficiencies and reasonable coulombic efficiencies were obtained for both silver-nitrate and cobalt-sulfate systems

  14. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    Directory of Open Access Journals (Sweden)

    Fengling Zhang

    2017-01-01

    Full Text Available We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  15. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.

    Science.gov (United States)

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-31

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  16. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  17. Chemical Production of Graphene Catalysts for Electrochemical Energy Conversion

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko

    by scanning tunneling microscopy (STM), to investigate the nature of L-cysteine bonds on Au. Synthesized electrocatalysts were characterized by spectroscopic, microscopic and electrochemical techniques. Electrocatalysis was examined by electrochemical oxidation of formic acid, methanol and ethanol, and oxygen......Recently developed FC technology is among many approaches aiming at solving the global energy challenges. FCs are electrochemical devices that convert chemical energy from fuel molecules into electrical energy via electrochemical reactions. FCs are, however, limited by the scarce and expensive...... was achieved via L-cysteine linker molecules that provided pathways for fast electron transfers during the electrocatalytic reactions. Electrochemical properties of selfassembled L-cysteine monolayers immobilized on single-crystal Au(111) surfaces were studied in ionic liquids and their structures imaged...

  18. Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review

    Directory of Open Access Journals (Sweden)

    Paloma Yáñez-Sedeño

    2017-01-01

    Full Text Available Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nanomaterials’ large surface area, excellent biological compatibility and ease functionalization and, in some cases, intrinsic electrochemistry. These carbon-based nanomaterials involve well-known carbon nanotubes (CNTs and graphene as well as the more recent use of other carbon nanoforms. This paper briefly discusses the advantages of using carbon nanostructures and their hybrid nanocomposites for amplification through tagging in electrochemical biosensing platforms and provides an updated overview of some selected examples making use of labels involving carbon nanomaterials, acting both as carriers for signal elements and as electrochemical tracers, applied to the electrochemical biosensing of relevant (biomarkers.

  19. Service water electrochemical monitoring development at Ontario Hydro

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.

    1994-01-01

    Ontario Hydro (OH) is currently investigating the feasibility of using electrochemical techniques for the corrosion monitoring of service water systems. To date all evaluations have been carried out in a field simulator. The studies include examining the effects of; system startup after periods of stagnation, sodium hypochlorite injection, and zebra mussel settlement on metallic surfaces. Carbon steel and Type 304L stainless steel have been evaluated. Electrochemical potential noise (EPN), electrochemical current noise (ECN) potential and coupling current were semi-continuously monitored over a period of up to one year. Data obtained from the electrochemical noise monitoring has given OH valuable insights into the mechanisms of degradation in service water systems. The high sensitivity of the electrochemical noise technique, particularly to localized corrosion has proved to be the major attraction of the system

  20. Electrochemical surface plasmon spectroscopy-Recent developments and applications

    International Nuclear Information System (INIS)

    Zhang, Nan; Schweiss, Ruediger; Zong, Yun; Knoll, Wolfgang

    2007-01-01

    A survey is given on recent developments and applications of electrochemical techniques combined with surface plasmon resonance (SPR) spectroscopy. Surface plasmon spectroscopy (SPS) and optical waveguide mode spectroscopy make use of evanescent waves on metal-dielectric interfaces and can be conveniently combined with electrochemical methods. Selected examples of applications of high-pressure surface electrochemical plasmon resonance spectroscopy to study supramolecular architectures such as layer-by-layer films of conducting polymers or thin composite films will be presented. Then a combination of SPS with the electrochemical quartz crystal microbalance (EQCM) will be introduced and illustrated with a study on doping/de-doping process of a conducting polymer. This combination allows for simultaneous electrochemical, optical and microgravimetric characterization of interfaces. Finally, new technical developments including integration of SPS into microfluidic devices using a grating coupler and surface plasmon enhanced diffraction will be discussed

  1. Electrochemical deposition of Cu and Nb from pyrrolidinium based ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mascia, Michele, E-mail: michele.mascia@unica.it [Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Vacca, Annalisa; Mais, Laura; Palmas, Simonetta [Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Laboratorio Telemicroscopia Industriale, Sardegna Ricerche, Polaris, Parco Tecnologico della Sardegna, Edificio 3, Loc. Piscinamanna, 09010 Pula, CA (Italy); Delogu, Francesco [Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy)

    2014-11-28

    A study on the electrochemical deposition of Cu/Nb composites is presented in this work. The electrodeposition tests were performed using 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulphonyl) imide as solvent. The electrochemical behaviour of copper and niobium ions was investigated by cyclic and linear sweep voltammetries, allowing to obtain information on potentials and mechanisms of deposition. Firstly, the electrodeposition of Nb on Cu substrate and of Cu on Nb substrate was investigated; then, the deposition of Cu and Nb in dual bath mode was considered. All the experimental tests were carried out at 125 °C under inert atmosphere, in order to avoid interference of water and oxygen. According to the electrochemistry of the metals considered and based on the experimental results, the possible reaction path for the oxidation/reduction was proposed. Deposition tests were carried out at different potentials and the related samples were analysed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Structural and chemical analyses indicate that the obtained deposits cover uniformly the electrode surface and exhibit individual layers with a characteristic size ranging between 50 and 100 nm. - Highlights: • Cu/Nb composites were obtained by electro-deposition from ionic liquid. • The electrochemical behaviour was studied by cyclic and linear sweep voltammetries. • Anodic dissolution of Cu and cathodic deposition of Cu, Nb and Cu/Nb were studied. • The Cu, Nb and Cu/Nb deposits were characterised through SEM and EDX analyses. • The characteristic length of the deposits ranges between 50 and 100 nm.

  2. Bio-Techniques in Electrochemical Transducers: an Overview

    Directory of Open Access Journals (Sweden)

    VIKAS

    2007-08-01

    Full Text Available Novelty in fabrication & designing of biosensors are being carried out at a high rate as these devices become increasingly popular in fields like environmental monitoring, bioterrorism, food analyses and most importantly in the area of health care and diagnostics. This rapidly expanding field has an annual growth rate of 65%, with major impetus from the health-care industry (30% of the world’s total analytical market supported with other analytical areas of food & environmental monitoring including defense needs. This context aims to highlight trends in practice for electrochemical biosensor design and construction. The availability and application of a vast range of polymers and copolymers associated with new sensing techniques have led to remarkable innovation in the design and construction of biosensors, significant improvements in sensor function and the emergence of new types of biosensor. Nevertheless, in vivo applications remain limited by functional deterioration due to surface fouling by biological components. However, use of new material and novelty in fabrication, raising hopes that the problems related to decreased functional of the bioanalytical layer be solved in time.

  3. Electrochemical and optical characterisation of passive films on stainless steels

    International Nuclear Information System (INIS)

    Wijesighe, T L Sudesh L; Blackwood, D J

    2006-01-01

    The formation and breakdown of the passive film are mainly controlled by ionic and electronic transport processes; processes that are in turn controlled by the electronic properties of the film. Consequently a comprehensive understanding of mechanisms behind passivity and localised corrosion require a detailed perception of the electronic properties of the passive films together with compositional and structural information. As a step towards this goal the passive film on austenitic stainless steel, AISI 316L, formed in borate solution was characterised by in situ Raman spectroscopy and photocurrent spectroscopy coupled with electrochemical measurements. The composition, structure and semiconductivity of the passive films depended on the potential; Fe rich n-type oxide and a Cr rich p-type oxide dominated at more positive potentials and more negative potentials respectively whilst n-type dual layered film formed at intermediate potentials. Analyses of the bandgap determined for these oxides suggested their structures to be Fe 2 O 3 and a Fe-Cr spinel. This hypothesis was supported by the results of in situ Raman spectroscopy

  4. Electrochemical characterization of BSA/11-mercaptoundecanoic acid on Au electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, Teodora, E-mail: teodora.ignat@gmail.com [Laboratory of Nanotechnology, IMT-Bucharest, Erou Iancu Nicolae 126A, 077190 Bucharest (Romania); Miu, Mihaela; Kleps, Irina; Bragaru, Adina; Simion, Monica; Danila, Mihai [Laboratory of Nanotechnology, IMT-Bucharest, Erou Iancu Nicolae 126A, 077190 Bucharest (Romania)

    2010-05-25

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of functionalized thiols and to bind various proteins on gold/silicon substrates for their potential integration in nanoscale sensors/biosensors and optical devices. The biomolecule immobilization on the surfaces by covalent chemistry allows fabrication of reproducible, protein-modified surfaces and became also a model to investigate the electrochemical response induced by protein binding. In this study, we report different nanostructured gold substrates and the adsorption of a protein, bovine serum albumin (BSA) on the 11-mercaptoundecanoic acid (MUA) layer for further biomedical applications. Nanostructured gold layers of 200 nm thickness have been prepared on both, flat and macroporous silicon (macroPS) substrates. The X-ray diffraction analyses emphasized a dominant (1 1 1) crystallographic orientation of nanostructured Au substrates, which is preferred orientation for binding and detection of organic molecules on the gold surface. Impedance spectroscopy measurements performed in specific frequency ranges show that the binding of protein to a single monolayer of MUA can be easily detected. The impedance changes were also corroborated with cyclic voltammetry and Raman spectroscopy analysis for further development of the biosensor transducer for converting of the specific molecular recognition events into either an optical or electrical signal.

  5. Electrochemical degradation of aromatic amines on BDD electrodes

    International Nuclear Information System (INIS)

    Pacheco, M.J.; Santos, V.; Ciriaco, L.; Lopes, A.

    2011-01-01

    The electrochemical oxidation of four aromatic amines, with different substituent groups, 3-amino-4-hydroxy-5-nitrobenzenesulfonic acid (A1), 5-amino-2-methoxybenzenesulfonic acid (A2), 2,4-dihydroxyaniline hydrochloride (A3) and benzene-1,4-diamine (A4), was performed using as anode a boron-doped diamond electrode, commercially available at Adamant Technologies. Tests were run at room temperature with model solutions of the different amines, with concentrations of 200 ppm, using as electrolyte 0.035 M Na 2 SO 4 aqueous solutions, in a batch cell with recirculation, at different current densities (200 and 300 A m -2 ). The following analyses were performed with the samples collected during the assays: UV-Vis spectrophotometry, chemical oxygen demand (COD), total organic carbon (TOC), total Kjeldahl nitrogen, ammonia nitrogen, nitrates and HPLC. Results have shown a good electrodegradation of all the amines tested, with COD removals, after 6 h assays, higher than 90% and TOC removals between 60 and 80%. Combustion efficiency (η C ), which measures the tendency to convert organic carbon to CO 2 , was also determined for all the amines, being η CA1 CA2 CA3 CA4 = 0.99.

  6. Electrochemical Noise Chaotic Analysis of NiCoAg Alloy in Hank Solution

    Directory of Open Access Journals (Sweden)

    D. Bahena

    2011-01-01

    Full Text Available The potential and current oscillations during corrosion of NiCoAg alloy in Hank solution were studied. Detailed nonlinear fractal analyses were used to characterize complex time series clearly showing that the irregularity in these time series corresponds to deterministic chaos rather than to random noise. The chaotic oscillations were characterized by power spectral densities, phase space, and Lyapunov exponents. Electrochemical impedance was also applied the fractal dimensions for the corroded surface was obtained, and a corrosion mechanism was proposed.

  7. Effects of Ce, La and Ba addition on the electrochemical behavior of super duplex stainless steels

    International Nuclear Information System (INIS)

    Yoo, Yun-Ha; Choi, Yoon-Seok; Kim, Jung-Gu; Park, Yong-Soo

    2010-01-01

    The effects of rare earth metal (REM: Ce, La) and Ba addition on aqueous corrosion properties of super duplex stainless steels (SDSS) were investigated by electrochemical tests and surface analyses. The results of potentiodynamic test indicated that the passive range increased by the addition of Ce, La, and Ba, indicating increased relative resistance to localized corrosion. The EIS measurements showed that the Ce-La-Ba-bearing alloys exhibited higher R ct and R p values than the Ce-La-Ba-free alloy at the passive and breakdown states. Furthermore, the additions of REMs and Ba together promoted the formation of dense chromium-enriched passive film.

  8. The determination of fenspiride in human plasma and urine by liquid chromatography with electrochemical or ultraviolet detection.

    Science.gov (United States)

    Sauveur, C; Baune, A; Vergnes, N; Jeanniot, J P

    1989-01-01

    A selective and sensitive method for the determination of fenspiride in biological fluids is described. The method involves liquid-liquid extraction followed by separation on a reversed-phase column with electrochemical detection for low levels of the drug in plasma (less than or equal to 100 ng ml-1) or UV absorption for higher concentrations in plasma or urine. The method is suitable for pharmacokinetic analyses and drug monitoring studies.

  9. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    OpenAIRE

    Bower, Allan F.; Guduru, Pradeep R.; Sethuraman, Vijay A.

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in deta...

  10. Enhancing electrochemical methods for producing and regenerating alane by using electrochemical catalytic additive

    Science.gov (United States)

    Zidan, Ragaiy

    2017-12-26

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) and other high capacity hydrides is provided. The electrolytic cell uses an electro-catalytic-additive within a polar non-salt containing solvent to solubilize an ionic hydride such as NaAlH.sub.4 or LiAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3 adduct. AlH.sub.3 is obtained from the adduct by heating under vacuum. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 or LiAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  11. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    Czech Academy of Sciences Publication Activity Database

    Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vítek, Petr; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kižek, R.

    2016-01-01

    Roč. 9, č. 1 (2016), UNSP 31 ISSN 1996-1944 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : carbon * cyclic voltammetry * electrochemical impedance spectroscopy * electrochemistry * graphene oxide * heavy metal detection * reduced graphene oxide Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals , electrolysis) Impact factor: 2.654, year: 2016

  12. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization.

    Science.gov (United States)

    Xia, Xue; Sun, Yanmei; Liang, Peng; Huang, Xia

    2012-09-01

    The long-term effect of set potential on oxygen reducing biocathodes was investigated in terms of electrochemical and biological characteristics. Three biocathodes were poised at 200, 60 and -100 mV vs. saturated calomel electrode (SCE) for 110 days, including the first 17 days for startup. Electrochemical analyses showed that 60 mV was the optimum potential during long-term operation. The performance of all the biocathodes kept increasing after startup, suggesting a period longer than startup time needed to make potential regulation more effective. The inherent characteristics without oxygen transfer limitation were studied. Different from short-term regulation, the amounts of biomass were similar while the specific electrochemical activity was significantly influenced by potential. Moreover, potential showed a strong selection for cathode bacteria. Clones 98% similar with an uncultured Bacteroidetes bacterium clone CG84 accounted for 75% to 80% of the sequences on the biocathodes that showed higher electrochemical activity (60 and -100 mV). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. SERS- and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions.

    Science.gov (United States)

    Koh, Charlynn Sher Lin; Lee, Hiang Kwee; Phan-Quang, Gia Chuong; Han, Xuemei; Lee, Mian Rong; Yang, Zhe; Ling, Xing Yi

    2017-07-17

    Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter-scale reactor for concurrent spectro- and electrochemical analyses. The three-dimensional Ag shell of PLMs are exploited as a bifunctional surface-enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read-out of transient electrochemical species, and elucidate the potential-dependent and multi-step reaction dynamics. The 3D configuration of our PLM-based EC-SERS system exhibits 2-fold and 10-fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular-level electrochemical insights and excellent EC-SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries

    Science.gov (United States)

    Eguia-Barrio, A.; Castillo-Martínez, E.; Klein, F.; Pinedo, R.; Lezama, L.; Janek, J.; Adelhelm, P.; Rojo, T.

    2017-11-01

    Transition metal carbodiimides (TMNCN) undergo conversion reactions during electrochemical cycling in lithium and sodium ion batteries. Micron sized copper and zinc carbodiimide powders have been prepared as single phase as confirmed by PXRD and IR and their thermal stability has been studied in air and nitrogen atmosphere. CuNCN decomposes at ∼250 °C into CuO or Cu while ZnNCN can be stable until 400 °C and 800 °C in air and nitrogen respectively. Both carbodiimides were electrochemically analysed for sodium and lithium ion batteries. The electrochemical Na+ insertion in CuNCN exhibits a relatively high reversible capacity (300 mAh·g-1) which still indicates an incomplete conversion reaction. This incomplete reaction confirmed by ex-situ EPR analysis, is partly due to kinetic limitations as evidenced in the rate capability experiments and in the constant potential measurements. On the other hand, ZnNCN shows incomplete conversion reaction but with good capacity retention and lower hysteresis as negative electrode for sodium ion batteries. The electrochemical performance of these materials is comparable to that of other materials which operate through displacement reactions and is surprisingly better in sodium ion batteries in comparison with lithium ion batteries.

  15. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electrochemical properties and electrochemical impedance spectroscopy of polypyrrole-coated platinum electrodes

    Directory of Open Access Journals (Sweden)

    M. Fall

    2006-12-01

    Full Text Available Polypyrrole (PPy films of different thickness were characterized by electrochemical impedance spectroscopy (EIS measurements in acetonitrile and aqueous solutions, containing 0.1 M NaClO4 or sodium dodecylsulfate as the dopant. The PPy films were electrochemically deposited on Pt, and their electrochemical properties studied by cyclic voltammetry. Impedance spectra were obtained at potentials ranging from 0 to 0.8 V/SCE. The EIS data were fitted using two different equivalent electrical circuits (depending on the nature of the dopant. They involve a diffusive capacitance, which increased with the passing charge during electrosynthesis (i.e. film thickness for ClO4--doped PPy, but was practically unaffected by the film thickness in the case of SDS-doped PPy. Also, a double-layer capacitance was found only in the circuit of ClO4--doped PPy. It increased with the film thickness, and showed a minimum near the open-circuit potential. Finally the charge-transfer resistance (Rct obtained with SDS is nearly 200-fold higher than that obtained with ClO4- in the same solvent (H2O. With the same dopant (ClO4-, Rct is about five times higher in acetonitrile relative to water. All these EIS results of the different types of PPy suggest a relation with the wettability of the polymer.

  17. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  18. Investigation of rare elements by electrochemical methods

    International Nuclear Information System (INIS)

    Zarinskij, V.A.

    1988-01-01

    The use of electrochemical methods for the study of complexing, separation of rare element mixtures, their preparation in lower oxidation states, and also for the development of highly sensitive methods of the element determination, is considered in the review. Voltammetric methods of Pt, Au, Re determination are considered, as well as Re preparation in oxidation states +5, +3 by electrolytic methods. The possibility to use electrodialysis methods for purification of insoluble compounds of rare earths (RE) from impurities, and for separation of Re and Mo with simultaneous purification of Re from K and other elements is shown. The application of high-frequency conductometry to analytic chemistry and to the study of Th, In, RE complexing and kinetics of the reactions is considered

  19. Electrochemical cell and negative electrode therefor

    Science.gov (United States)

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  20. Electrochemical cell and method of assembly

    Science.gov (United States)

    Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.

    1979-01-01

    A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.

  1. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Turner, A.D.; Pottinger, J.S.; Junkison, A.R.

    1983-08-01

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm -2 ) on stainless steels. The amount of metal dissolved to achieve a DF of 10 2 to 10 3 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO 3 , 1M HNO 3 /0.1M NaF, 5M HNO 3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO 3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  2. Electrochemical characterization of aminated acrylic conducting polymer

    International Nuclear Information System (INIS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-01-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study

  3. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  4. Electrochemical characterization of aminated acrylic conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  5. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  6. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2013-01-01

    Full Text Available The potential of triethylenetetramine (TETA to inhibit the oxidation of pyrite in H2SO4 solution had been investigated by using the open-circuit potential (OCP, cyclic voltammetry (CV, potentiodynamic polarization, and electrochemical impedance (EIS, respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and that the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η% increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%. The information obtained from potentiodynamic polarization also displays that the TETA is a kind of mixed type inhibitor.

  7. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  8. Graphene nanocomposites for electrochemical cell electrodes

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  9. Electrochemical assessment of magnetite anti corrosive paints

    International Nuclear Information System (INIS)

    Escobar, D. M.; Arroyave, C.; Jaramillo, F.; Mattos, O. R.; Margarit, I. c.; Calderon, J.

    2003-01-01

    With the purpose of deepening in the understanding of the mechanisms of protection of anticorrosive pigments based on iron oxides, this work has been carried out on the production of pure magnetite, and copper and chromium doped magnetite, which were evaluated by different characterization techniques. The paints were prepared with a solvent less epoxy resin maintaining the Pigment volume Content near the Practical Critical value (CPVC), established for each pigment. The paints were applied on polished steel and monitored with electrochemical techniques at total immersion conditions. Permeability and impedance measurements of free films were also done. Impedance data were simulated with the Boukamp software. Results show that the paints pigmented with doped magnetite present better behaviour than a paint prepared with commercial hematite. (Author) 8 refs

  10. Electrochemical Behavior of Biologically Important Indole Derivatives

    Directory of Open Access Journals (Sweden)

    Cigdem Karaaslan

    2011-01-01

    Full Text Available Voltammetric techniques are most suitable to investigate the redox properties of a new drug. Use of electrochemistry is an important approach in drug discovery and research as well as quality control, drug stability, and determination of physiological activity. The indole nucleus is an essential element of a number of natural and synthetic products with significant biological activity. Indole derivatives are the well-known electroactive compounds that are readily oxidized at carbon-based electrodes, and thus analytical procedures, such as electrochemical detection and voltammetry, have been developed for the determination of biologically important indoles. This paper explains some of the relevant and recent achievements in the electrochemistry processes and parameters mainly related to biologically important indole derivatives in view of drug discovery and analysis.

  11. Electrochemical properties of poly(2-chloroaniline)

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio, M.; Mengoli, G.; Musiani, M.M.; Paolucci, F. (Ist. di Polarografia ed Elettrochimica Preparativa, CNR, Camin (Italy))

    1991-09-01

    The electrochemical behaviour of poly(2-chloroaniline) was studied by cyclic voltammetry and a.c. impedance as a function of the concentration of H{sub 2}SO{sub 4} solutions. In concentrated solutions polymer oxidation occurs as a two-stage process, thus showing the existence of an 'emeraldine' form not detected in {<=}2 M H{sub 2}SO{sub 4} solutions. Both polyaniline and poly(2-chloroaniline) can mediate the oxidation of SO{sub 2}, the performance of the latter polymer being more stable with time. Mediated oxidation of SO{sub 2} occurs within poly(2-chloroaniline) film under kinetic control, so that current is proportional to film thickness. (orig.).

  12. Studies on mass transfer in electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, L.G.

    1997-10-01

    The first part is of an introductory nature. It contains a description of the methods used, a discussion of the physics of electrochemical cells with a liquid electrolyte, and a summary of the different studies made, including both those which have been reported in papers, and those which have not. Contributions with novel aspects include (* a derivation of the electro-neutrality condition from Maxwell`s equations of electrodynamics, and **) an argument in favour of the use of mass-averaged velocity in ion transport expressions. The second part focuses on specific cases. It consists of seven research papers which give a more detailed presentation of the main studies 40 refs, 6 figs

  13. Corrosion Study Using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  14. A review for aqueous electrochemical supercapacitors

    Directory of Open Access Journals (Sweden)

    Cuimei eZhao

    2015-05-01

    Full Text Available Electrochemical capacitor is the most promising energy storage device that can meet the demands of high power supply and long cycle life, however low energy density and high fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper presents a review of the research in not only electrode material but also redox aqueous electrolyte and together with an important part of supercapacitor device. The advantages and disadvantages for different electrode material and electrolyte are discussed. And the new trends in supercapacitor development are also summarized.

  15. A Review for Aqueous Electrochemical Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cuimei [Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping (China); Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn [Department of Materials Science, Key Laboratory of Mobile Materials, Ministry of Education and State Key Laboratory of Superhard Materials, Jilin University, Changchun (China)

    2015-05-08

    Electrochemical capacitor is the most promising energy-storage device that can meet the demands of high-power supply and long cycle life; however, low-energy density and high-fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper presents a review of the research in not only electrode material but also redox aqueous electrolyte and together with an important part of supercapacitor device. The advantages and disadvantages for different electrode material and electrolyte are discussed. And the new trends in supercapacitor development are also summarized.

  16. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  17. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  18. A Review for Aqueous Electrochemical Supercapacitors

    International Nuclear Information System (INIS)

    Zhao, Cuimei; Zheng, Weitao

    2015-01-01

    Electrochemical capacitor is the most promising energy-storage device that can meet the demands of high-power supply and long cycle life; however, low-energy density and high-fabrication cost limit its further development. Researchers have paid more attention to the development of electrode material in the past, and very few people attach importance to the research of the electrolyte, especially the redox electrolyte, which is important for improving specific capacitance greatly. This paper presents a review of the research in not only electrode material but also redox aqueous electrolyte and together with an important part of supercapacitor device. The advantages and disadvantages for different electrode material and electrolyte are discussed. And the new trends in supercapacitor development are also summarized.

  19. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  1. Thermal regeneration of an electrochemical concentration cell

    Science.gov (United States)

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  2. Synthesis of graphene platelets by chemical and electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  3. Synthesis of graphene platelets by chemical and electrochemical route

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Felix, Sathiyanathan; Joshi, Girish M.; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2013-01-01

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH 4 was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide

  4. Self-Powered Electrochemical Lactate Biosensing

    Directory of Open Access Journals (Sweden)

    Ankit Baingane

    2017-10-01

    Full Text Available This work presents the development and characterization of a self-powered electrochemical lactate biosensor for real-time monitoring of lactic acid. The bioanode and biocathode were modified with D-lactate dehydrogenase (D-LDH and bilirubin oxidase (BOD, respectively, to facilitate the oxidation and reduction of lactic acid and molecular oxygen. The bioelectrodes were arranged in a parallel configuration to construct the biofuel cell. This biofuel cell’s current–voltage characteristic was analyzed in the presence of various lactic acid concentrations over a range of 1–25 mM. An open circuit voltage of 395.3 mV and a short circuit current density of 418.8 µA/cm² were obtained when operating in 25 mM lactic acid. Additionally, a 10 pF capacitor was integrated via a charge pump circuit to the biofuel cell to realize the self-powered lactate biosensor with a footprint of 1.4 cm × 2 cm. The charge pump enabled the boosting of the biofuel cell voltage in bursts of 1.2–1.8 V via the capacitor. By observing the burst frequency of a 10 pF capacitor, the exact concentration of lactic acid was deduced. As a self-powered lactate sensor, a linear dynamic range of 1–100 mM lactic acid was observed under physiologic conditions (37 °C, pH 7.4 and the sensor exhibited an excellent sensitivity of 125.88 Hz/mM-cm2. This electrochemical lactate biosensor has the potential to be used for the real-time monitoring of lactic acid level in biological fluids.

  5. Magnetic field-assisted electrochemical discharge machining

    International Nuclear Information System (INIS)

    Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa

    2010-01-01

    Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.

  6. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  7. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  8. Bio-inspired materials for electrochemical devices

    Science.gov (United States)

    Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.

    2015-10-01

    Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.

  9. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  10. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....... These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter...

  11. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.; Owhadian, Omeed; Monks, Terrence J.

    2004-01-01

    The cytotoxicity of menadione on hepatocytes was studied by using the substrate generation/tip collection mode of scanning electrochemical microscopy by exposing the cells to menadione and detecting the menadione-S-glutathione conjugate (thiodione) that is formed during the cellular detoxication process and is exported from the cell by an ATP-dependent pump. This efflux was electrochemically detected and allowed scanning electrochemical microscopy monitoring and imaging of single cells and groups of highly confluent live cells. Based on a constant flux model, ≈6 × 106 molecules of thiodione per cell per second are exported from monolayer cultures of Hep G2 cells. PMID:15601769

  12. Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Yuncheng Xie

    2015-01-01

    Full Text Available There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application.

  13. Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template

    International Nuclear Information System (INIS)

    Zhao Yanchun; Chen Miao; Liu Xiang; Xu Tao; Liu Weimin

    2005-01-01

    Highly ordered polydiphenylamine (PDPA) nanofibrils arrays have been fabricated within the pores of porous anodic aluminum oxide (AAO) template membrane by electrochemical polymerization. The morphology of PDPA nanofibrils array was observed using transmission electron microscopy (TEM) and its electrochemical behavior and structure were examined by cyclic voltammetry, UV-vis spectroscopy and Fourier transmission infrared spectrum. The result of TEM revealed that the obtained PDPA nanofibrils had uniform and well-aligned array. The UV-vis spectroscopy and electrochemical experimental result indicated that the spatial restraint in the pores of AAO membrane is sufficient to induce the formation of more ordered PDPA chains in the AAO membrane

  14. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  15. Electrochemical Machining – Special Equipment and Applications in Aircraft Industry

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2016-06-01

    Full Text Available Electrochemical machining is an unique method of shaping in which, for optimal parameters tool has no wear, surface layer properties after machining are similar to the core material and surface quality and accuracy increase together with material removal rate increase. Such advantages of electrochemical machining, besides of some ecological problems, create industry interest in the range of manufacturing elements made of materials with special properties (i.e. turbine blades of flow aircrafts engines. In the paper the nowadays possibilities and recent practical application of electrochemical machining in aircraft have been presented.

  16. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  17. Electrochemical Performance of Ni-MOFs for Supercapacitors

    Science.gov (United States)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  18. Electrochemical degradation of the chloramphenicol at flow reactor

    International Nuclear Information System (INIS)

    Rezende, Luis Gustavo P.; Prado, Vania M. do; Rocha, Robson S.; Beati, Andre A.G.F.; Sotomayor, Maria del Pilar T.; Lanza, Marcos R.V.

    2010-01-01

    This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the electrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L -1 ), nitrate ions (6 mg L -1 ) and nitrite ions (4.5 mg L -1 ). (author)

  19. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  20. Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Yanchun, Zhao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Miao, Chen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xiang, Liu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tao, Xu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Weimin, Liu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2005-06-15

    Highly ordered polydiphenylamine (PDPA) nanofibrils arrays have been fabricated within the pores of porous anodic aluminum oxide (AAO) template membrane by electrochemical polymerization. The morphology of PDPA nanofibrils array was observed using transmission electron microscopy (TEM) and its electrochemical behavior and structure were examined by cyclic voltammetry, UV-vis spectroscopy and Fourier transmission infrared spectrum. The result of TEM revealed that the obtained PDPA nanofibrils had uniform and well-aligned array. The UV-vis spectroscopy and electrochemical experimental result indicated that the spatial restraint in the pores of AAO membrane is sufficient to induce the formation of more ordered PDPA chains in the AAO membrane.

  1. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  2. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    galvanic current could be decreased by a CrN coating layer on Inconel 718. Objectives including a deeper knowledge about the corrosion mechanism with its influencing parameters and driving forces by studying Shadow Corrosion with out-of-pile autoclave experiments are listed in chapter 4. A further aim was to test the effectiveness of a possible spacer coating to reduce the corrosion or even to prevent the reactor plant components against Shadow Corrosion. Chapter 5 gives an overview of the experimental part with a description of the materials and chemicals, like Zircaloy and Inconel 718, as well as the specimen preparation techniques, such as etching, pre-oxidation or coating with CrN. Moreover, the three experimental test set-ups used to simulate the different conditions as a function of temperature and water chemistry parameters are depicted. The electrochemical measuring methods including electrochemical corrosion potential (ECP), galvanic corrosion (GC), electrochemical impe-dance spectroscopy (EIS) and conductometry are described. Further methods for surface analyses comprising microscopy, scanning electron microscopy (SEM), focused ion beam (FIB), transmission electron microscopy (TEM), ellipsometry, ion coupled plasma optical emission spectroscopy (ICP-OES) and spectrophotometry are presented. Results and corresponding discussions are summarized in chapter 6, which is divided into three subchapters. Chapter 6.1 deals with electrochemical parameters, like electrochemical corrosion potential, galvanic potential, and galvanic current as well as parameters obtained from electrochemical impedance spectroscopy as a function of different water chemistry parameters. The focus was on the concentration of hydrogen peroxide, the presence of impurities in the form of nitrate, and the exposure to UV-light. Furthermore, surface analyses via the focused ion beam technique and the transmission electron microscopy were gathered to visualize the oxide layer structure, composition

  3. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    International Nuclear Information System (INIS)

    Weber, Nadine

    2017-01-01

    N coating layer on Inconel 718. Objectives including a deeper knowledge about the corrosion mechanism with its influencing parameters and driving forces by studying Shadow Corrosion with out-of-pile autoclave experiments are listed in chapter 4. A further aim was to test the effectiveness of a possible spacer coating to reduce the corrosion or even to prevent the reactor plant components against Shadow Corrosion. Chapter 5 gives an overview of the experimental part with a description of the materials and chemicals, like Zircaloy and Inconel 718, as well as the specimen preparation techniques, such as etching, pre-oxidation or coating with CrN. Moreover, the three experimental test set-ups used to simulate the different conditions as a function of temperature and water chemistry parameters are depicted. The electrochemical measuring methods including electrochemical corrosion potential (ECP), galvanic corrosion (GC), electrochemical impe-dance spectroscopy (EIS) and conductometry are described. Further methods for surface analyses comprising microscopy, scanning electron microscopy (SEM), focused ion beam (FIB), transmission electron microscopy (TEM), ellipsometry, ion coupled plasma optical emission spectroscopy (ICP-OES) and spectrophotometry are presented. Results and corresponding discussions are summarized in chapter 6, which is divided into three subchapters. Chapter 6.1 deals with electrochemical parameters, like electrochemical corrosion potential, galvanic potential, and galvanic current as well as parameters obtained from electrochemical impedance spectroscopy as a function of different water chemistry parameters. The focus was on the concentration of hydrogen peroxide, the presence of impurities in the form of nitrate, and the exposure to UV-light. Furthermore, surface analyses via the focused ion beam technique and the transmission electron microscopy were gathered to visualize the oxide layer structure, composition, and thickness after exposure to oxygenated

  4. Sample preparation in foodomic analyses.

    Science.gov (United States)

    Martinović, Tamara; Šrajer Gajdošik, Martina; Josić, Djuro

    2018-04-16

    Representative sampling and adequate sample preparation are key factors for successful performance of further steps in foodomic analyses, as well as for correct data interpretation. Incorrect sampling and improper sample preparation can be sources of severe bias in foodomic analyses. It is well known that both wrong sampling and sample treatment cannot be corrected anymore. These, in the past frequently neglected facts, are now taken into consideration, and the progress in sampling and sample preparation in foodomics is reviewed here. We report the use of highly sophisticated instruments for both high-performance and high-throughput analyses, as well as miniaturization and the use of laboratory robotics in metabolomics, proteomics, peptidomics and genomics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary; Katuri, Krishna; Werner, Craig; Saikaly, Pascal; Sandoval, Rodrigo Jimenez; Lai, Zhiping; Chen, Wei; Jeon, Sungil

    2015-01-01

    the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable

  6. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  7. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  8. Electrochemical Power Plant for Terrestrial Flight Platforms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical power plant is proposed by MicroCell Technologies to provide power to terrestrial flight platforms. Our power plant is based upon a proton...

  9. Electrochemical Oxidation and Detection of Sodium Urate in ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    3 Delft University of Technology, 2600 GA Delft, The Netherlands. ABSTRACT: ... both sodium urate and mixture of urate and tartrate as a cumulative response, in alkaline media, the target ..... electrochemical oxygen demand (EOD) using a.

  10. Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another

  11. A Comparative Electrochemical-Ozone Treatment for Removal of Phenolphthalein

    Directory of Open Access Journals (Sweden)

    V. M. García-Orozco

    2016-01-01

    Full Text Available The degradation of aqueous solutions containing phenolphthalein was carried out using ozone and electrochemical processes; the two different treatments were performed for 60 min at pH 3, pH 7, and pH 9. The electrochemical oxidation using boron-doped diamond electrodes processes was carried out using three current density values: 3.11 mA·cm−2, 6.22 mA·cm−2, and 9.33 mA·cm−2, whereas the ozone dose was constantly supplied at 5±0.5 mgL−1. An optimal degradation condition for the ozonation treatment is at alkaline pH, while the electrochemical treatment works better at acidic pH. The electrochemical process is twice better compared with ozonation.

  12. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  13. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  14. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... represents the protective barrier moderating the chloride attack which ... inhibitors and their influence on the physical properties of. Portland ...

  15. Electrochemical roles of extracellular polymeric substances in biofilms

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhao, Feng

    2017-01-01

    Most microbial cells in nature are surrounded by extracellular polymeric substances (EPS), which are fundamental components and determine the physiochemical properties of a biofilm. This review highlights the EPS properties of conductivity and redox ability from an electrochemical perspective, em...

  16. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  17. Bio-electrochemical synthesis of commodity chemicals by ...

    Indian Academy of Sciences (India)

    2016-08-02

    Aug 2, 2016 ... be exploited in a bio-electrochemical system for current generation or to provide ..... fiber was desorbed directly to GC injector for 3 min. This ..... The authors are grateful to COMSATS Institute of Information. Technology ...

  18. Magnetic, catalytic, EPR and electrochemical studies on binuclear ...

    Indian Academy of Sciences (India)

    Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes ... to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. ... EPR spectral studies in methanol solvent show welldefined four hyperfine ...

  19. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this ..... each case, a few ml of methanol was added to sample, and then it was ...

  20. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    quinone|hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance ..... hydrogen bond of hydroquinone during oxidation is.

  1. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  2. High Pressure Electrochemical Oxygen Generation for ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced electrochemical static vapor feed oxygen (O2) concentrator (SVFOC) that offers a simple alternative to the use of pressure...

  3. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesú s G.; Bran, Cristina; Vidal, Enrique Vilanova; Kosel, Jü rgen; Morales, Marí a P.; Vazquez, Manuel

    2015-01-01

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential

  4. Synthesis and characterization of electrochemically-reduced graphene

    Indian Academy of Sciences (India)

    Keywords. Graphene; electrochemical deposition; heat treatment; conductivity. 1. Introduction ... solar cells (Wu et al 2008; Sima et al 2011), molecular gas sensors ... solved in deionized (DI) water to obtain 0·01 M of electrolyte solution (Su et ...

  5. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion

    KAUST Repository

    Lee, S. W.; McDowell, M. T.; Berla, L. A.; Nix, W. D.; Cui, Y.

    2012-01-01

    in a solid can result in dramatic structural transformations and associated changes in mechanical behavior: This is particularly evident during electrochemical cycling of novel battery electrodes, such as alloying anodes, conversion oxides, and sulfur

  6. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua; Xie, Xing; Pan, Lijia; Bao, Zhenan; Cui, Yi

    2013-01-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer

  7. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  8. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-01-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication

  9. Redeposition of electrochemically dissolved platinum as nanoparticles on carbon

    DEFF Research Database (Denmark)

    Norgaard, C. F.; Stamatin, S. N.; Skou, E. M.

    2014-01-01

    communication reports a simple chemical method for reprecipitating platinum as nanoparticles of reasonable particle size on a carbon substrate without intermediary separation and handling of solid platinum salt. After electrochemical dissolution, platinum was reprecipitated using a polyol based method. Platinum...

  10. Kinetic study on electrochemical oxidation of catechols in the ...

    Indian Academy of Sciences (India)

    glassy carbon electrode in different experimental conditions. The electrogenerated ... cancer activities.5 Catechols can be easily oxidized electrochemically to ... from unity and approaches to zero in basic solution. This behavior is related to the ...

  11. Electrochemical Remediation of Dredged Material for Beneficial Use

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Two different methods, electrodialytic and electroosmotic remediation, were used to demonstrate the potential of electrochemical methods for remediation of contaminated harbor sediments. In two three-week-long laboratory experiments using electrodialysis and electroosmosis, respectively...

  12. effect of electrochemical oxidation of a viscose rayon based ...

    African Journals Online (AJOL)

    DJFLEX

    KEYWORDS: Viscose rayon based activated carbon cloth; Sorption isotherms; Electrochemical oxidation; Arsenic .... (AAS ) in acetylene-air flame emission mode. 2.9. Quality ..... of the EO ACC thereby restricting the number of binding sites for ...

  13. High Pressure Electrochemical Oxygen Generation for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced high pressure electrochemical oxygen concentrator (EOC) that offers a simple alternative to the use of pressure swing...

  14. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  15. Functional Carbon Materials for Electrochemical Energy Storage

    Science.gov (United States)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  16. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  17. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electrochemical properties of double wall carbon nanotube electrodes

    OpenAIRE

    Pumera, Martin

    2007-01-01

    AbstractElectrochemical properties of double wall carbon nanotubes (DWNT) were assessed and compared to their single wall (SWNT) counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly funct...

  19. Electrochemical cell structure and method of making the same

    Science.gov (United States)

    Schick, Louis Andrew; Libby, Cara Suzanne; Bowen, John Henry; Bourgeois, Richard Scott

    2012-09-25

    An electrochemical cell structure is provided which includes an anode, a cathode spaced apart from said anode, an electrolyte in ionic communication with each of said anode and said cathode and a nonconductive frame. The nonconductive frame includes at least two components that support each of said anode, said cathode and said electrolyte and define at least one flowpath for working fluids and for products of electrochemical reaction.

  20. Electrochemical Characterization of Ni/(Sc)YSZ Electrodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Thydén, Karl Tor Sune; Mogensen, Mogens Bjerg

    2010-01-01

    Investigations of Ni/(Sc)YSZ cermets for solid oxide cells (SOCs) were performed by electrochemical impedance spectroscopy (EIS), under varying experimental conditions and upon redox cycling, using three different designs of symmetric cells. The deconvolution and fitting of the obtained impedance...... parameters. Initial degradation results for both Ni/ScYSZ and Ni/YSZ based anodes under very high steam content are also reported. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  1. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  2. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    Science.gov (United States)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of

  3. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  4. Electrochemical fabrication of Sn nanowires on titania nanotube guide layers

    International Nuclear Information System (INIS)

    Djenizian, Thierry; Hanzu, Ilie; Premchand, Yesudas D; Vacandio, Florence; Knauth, Philippe

    2008-01-01

    We describe a novel approach for the fabrication of tailored nanowires using a two-step electrochemical process. It is demonstrated that self-organized TiO 2 nanotubes can be used to activate and guide the electrochemical growth of Sn crystallites, leading to the formation of vertical features with a high aspect ratio. We show that the dimensions and the density of Sn crystallites depend on the electrodeposition parameters

  5. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Pottinger, J.S.; Lain, M.J.; Dawson, R.K.; Neville, M.D.; Junkison, A.R.

    1988-01-01

    The paper concerns the development and evaluation of remote electrochemical decontamination systems for metal surfaces, in connection with the decommissioning of nuclear installations. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate were investigated: immersion of small items in tanks for electroetching and in situ electropolishing. A description is given of the work programme, the progress of work and the results obtained. (U.K.)

  6. Electrochemical Methodologies for the Detection of Pathogens.

    Science.gov (United States)

    Amiri, Mandana; Bezaatpour, Abolfazl; Jafari, Hamed; Boukherroub, Rabah; Szunerits, Sabine

    2018-05-25

    Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current

  7. Electrochemical modification of carbon electrode with benzylphosphonic groups

    International Nuclear Information System (INIS)

    Benjamin, Ossonon Diby; Weissmann, Martin; Bélanger, Daniel

    2014-01-01

    Electrochemical modification of carbon electrodes by aryl groups bearing a phosphonate terminal functionality was carried out by both electrochemical reduction of diazonium ions (diazobenzylphosphonic acid) and electrochemical oxidation of an amine (aminobenzylphosphonic acid). The grafting by electrochemical reduction of aryl diazonium ions was found to be more efficient. The surface concentration of phosphonate groups, estimated by electrochemical reduction of electrostatically bound Pb(II) ions, was found to be about 25% higher for the layer formed by electrochemical reduction of diazonium ions than for the layer formed by oxidation of the amine. The acid–base properties of the grafted films were slightly influenced by the grafting procedure and the difference in the apparent pK a was most likely related to the presence of the substrate –NH-aryl linkage for the film generated by amine oxidation. X-ray photoelectron spectroscopy was used to get some insight on the chemical species present at the carbon electrode surface. For both procedures, the films consist in mixture of at least two different covalently grafted species

  8. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  9. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  10. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  11. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  12. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  13. Investigation on the Structure and Electrochemical Properties of La-Ce-Mg-Al-Ni Hydrogen Storage Alloy

    Directory of Open Access Journals (Sweden)

    Yuqing Qiao

    2013-01-01

    Full Text Available Structure and electrochemical characteristics of La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy have been investigated. X-ray diffraction analyses reveal that the La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy consisted of a (La, MgNi3 phase with the rhombohedral PuNi3-type structure and a LaNi5 phase with the hexagonal CaCu5-type structure. TEM shows that the alloy is multicrystal with a lattice space 0.187 nm. EDS analyse shows that the content of Mg is 3.48% (atom which coincide well with the designed composition of the electrode alloy. Electrochemical investigations show that the maximum discharge capacity of the alloy electrode is 325 mAh g−1. The alloy electrode has higher discharge capacity within the discharge current density span from 60 mA g−1 to 300 mA g−1. Electrochemical impedance spectroscopy measurements indicate that the charge transfer resistance RT on the alloy electrode surface and the calculated exchange current density I0 are 0.135 Ω and 1298 mA g−1, respectively; the better eletrochemical reaction kinetic of the alloy electrode may be responsible for the better high-rate dischargeability.

  14. A multichannel frequency response analyser for impedance spectroscopy on power sources

    Directory of Open Access Journals (Sweden)

    DANIEL J. L. BRETT

    2013-06-01

    Full Text Available A low-cost multi-channel frequency response analyser (FRA has been developed based on a DAQ (data acquisition/LabVIEW interface. The system has been tested for electric and electrochemical impedance measurements. This novel association of hardware and software demonstrated performance comparable to a commercial potentiostat / FRA for passive electric circuits. The software has multichannel capabilities with minimal phase shift for 5 channels when operated below 3 kHz. When applied in active (galvanostatic mode in conjunction with a commercial electronic load (by discharging a lead acid battery at 1.5 A the performance was fit for purpose, providing electrochemical information to characterize the performance of the power source.

  15. Descriptive Analyses of Mechanical Systems

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Hansen, Claus Thorp

    2003-01-01

    Forord Produktanalyse og teknologianalyse kan gennmføres med et bredt socio-teknisk sigte med henblik på at forstå kulturelle, sociologiske, designmæssige, forretningsmæssige og mange andre forhold. Et delområde heri er systemisk analyse og beskrivelse af produkter og systemer. Nærværende kompend...

  16. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  17. Analysing Children's Drawings: Applied Imagination

    Science.gov (United States)

    Bland, Derek

    2012-01-01

    This article centres on a research project in which freehand drawings provided a richly creative and colourful data source of children's imagined, ideal learning environments. Issues concerning the analysis of the visual data are discussed, in particular, how imaginative content was analysed and how the analytical process was dependent on an…

  18. Impact analyses after pipe rupture

    International Nuclear Information System (INIS)

    Chun, R.C.; Chuang, T.Y.

    1983-01-01

    Two of the French pipe whip experiments are reproduced with the computer code WIPS. The WIPS results are in good agreement with the experimental data and the French computer code TEDEL. This justifies the use of its pipe element in conjunction with its U-bar element in a simplified method of impact analyses

  19. Millifluidic droplet analyser for microbiology

    NARCIS (Netherlands)

    Baraban, L.; Bertholle, F.; Salverda, M.L.M.; Bremond, N.; Panizza, P.; Baudry, J.; Visser, de J.A.G.M.; Bibette, J.

    2011-01-01

    We present a novel millifluidic droplet analyser (MDA) for precisely monitoring the dynamics of microbial populations over multiple generations in numerous (=103) aqueous emulsion droplets (100 nL). As a first application, we measure the growth rate of a bacterial strain and determine the minimal

  20. Analyser of sweeping electron beam

    International Nuclear Information System (INIS)

    Strasser, A.

    1993-01-01

    The electron beam analyser has an array of conductors that can be positioned in the field of the sweeping beam, an electronic signal treatment system for the analysis of the signals generated in the conductors by the incident electrons and a display for the different characteristics of the electron beam

  1. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  2. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.

    Science.gov (United States)

    Kitayama, Miho; Koga, Ryota; Kasai, Takuya; Kouzuma, Atsushi; Watanabe, Kazuya

    2017-09-01

    An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 μm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes. IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis , limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current

  3. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Henquin, E.R.; Bisang, J.M.

    2011-01-01

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  4. Joint with application in electrochemical devices

    Science.gov (United States)

    Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

    2010-09-14

    A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

  5. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2000-01-01

    investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... between 0.1 and 0.3 V. There were no Faradaic reactions in the negative polarization region, and there was an anodic current which was less than 16% of the theoretical value for an exclusively Faradaic SO2 oxidation. Therefore the promotion effects at negative polarization are completely non-Faradaic. All...... the promotion effects have been explained as mainly due to charging of the electric double layer at the gold electrode. The effect at -0.2 V also depends on the V2O5 concentration and is more pronounced at higher V2O5 concentrations. This has been ascribed to a destruction of the vanadium polymeric chains...

  6. Dual kinetic curves in reversible electrochemical systems.

    Directory of Open Access Journals (Sweden)

    Michael J Hankins

    Full Text Available We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information.

  7. BEPLATE emdash simulation of electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Giles, G.E. (Oak Ridge K-25 Site, TN (USA)); Gray, L.J. (Oak Ridge National Lab., TN (USA)); Bullock, J.S. IV (Oak Ridge Y-12 Plant, TN (USA))

    1990-09-01

    BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).

  8. The electrochemical polymerization of indole with thiophene

    International Nuclear Information System (INIS)

    Sarac, S.

    2004-01-01

    Electropolymerization of indole (IN) in the presence of thiophene (Th) was followed by in situ spectrochemical studies. A correlation between absorbance (390 nm) and charge (at 600 mV) values indicated that oligomeric species were formed in solution, and similar results were found with in situ measurements. The copolymer was characterized by FT-IR, UV-Visible Spectroscopy, Cyclic Voltammetry and four-point probe conductymeter. The increase in conductivity by the incorporation of Th into polyindole was about 60 times for a feed ratio n I N/n T H=1:10 and 19 times for n I N/n T H=1:1. Similar effects were also observed during in situ spectroelectrochemical measurements of copolymer formation. It was also found that the cyclic voltametry peak potentials for the electrogrowth of copolymer films were closely correlated to the conductivities of the corresponding films (measured separately by four-point probe method), thereby allowing us to use the peak potential currents to predict the final copolymer film conductivities during the electrochemical growth process. The ex-situ spectroelectrocopolymerization of indole was also obtained in acetonitril medium.The Tg value of the polymer also increased with the incorporation of Th. The results strongly suggest that IN and Th copolymerize on the electrode surface as well as in solution

  9. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  10. Electrochemical binding and wiring in battery materials

    Energy Technology Data Exchange (ETDEWEB)

    Pejovnik, S. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia); Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2008-10-01

    Binders in battery electrodes not only provide mechanical cohesiveness during battery operation but can also affect the electrode properties via the surface modification. Using atomic force microscopy (AFM), we study the surface structuring of three binders: polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC) and gelatin. We try to find correlation between the observed structures and the measured electrochemical charge-discharge characteristics. We further measure the binding ability of gelatin adsorbed from solutions of different pHs. While the best binding ability of gelatin is obtained at pH about 9, the least polarization is observed at pH 12. Both properties are explained based on the observed gelatin structuring as a function of pH. In the second part of this study, gelatin is used as a surface agent that dictates the organization of nanometre-sized carbon black particles around micrometre-sized cathodic active particles. Using microcontact impedance measurements on polished pellets we show that using gelatin-forced carbon black deposition the average electronic resistance around LiMn{sub 2}O{sub 4} particles is decreased by more than two orders of magnitude. We believe that it is this decrease in resistance that improves significantly the rate performance of various cathode materials, such as LiMn{sub 2}O{sub 4} and LiCoO{sub 2}. (author)

  11. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  12. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  13. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  14. Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    The corrosion behaviour of austenitic and ferritic stainless steels (316 L and 430Ti) in the presence of sulfate reducing bacteria, was investigated by several electrochemical techniques which were coupled with corrosion measurements on coupons and chemical analyses. Experiments were performed with 'Desulfovibrio vulgaris' and 'Desulfovibrio gigas' in three growth media containing lactate and sulfate. The decreases in corrosion potentials were correlated to the increase in sulphide content. The polarization curves showed also the major influence of sulphides on the passivity of stainless steels. Electrochemical impedance measurements were used to provide information in understanding the interactions between growth media or bacteria and stainless steels surfaces. The behaviour of the tested stainless steels in these conditions was mainly dependent on sulphide concentrations. (Author). 7 refs., 8 figs., 4 tabs

  15. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    Science.gov (United States)

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  16. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  17. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  18. Workload analyse of assembling process

    Science.gov (United States)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  19. Mitogenomic analyses from ancient DNA

    DEFF Research Database (Denmark)

    Paijmans, Johanna L. A.; Gilbert, Tom; Hofreiter, Michael

    2013-01-01

    The analysis of ancient DNA is playing an increasingly important role in conservation genetic, phylogenetic and population genetic analyses, as it allows incorporating extinct species into DNA sequence trees and adds time depth to population genetics studies. For many years, these types of DNA...... analyses (whether using modern or ancient DNA) were largely restricted to the analysis of short fragments of the mitochondrial genome. However, due to many technological advances during the past decade, a growing number of studies have explored the power of complete mitochondrial genome sequences...... yielded major progress with regard to both the phylogenetic positions of extinct species, as well as resolving population genetics questions in both extinct and extant species....

  20. Recriticality analyses for CAPRA cores

    International Nuclear Information System (INIS)

    Maschek, W.; Thiem, D.

    1995-01-01

    The first scoping calculation performed show that the energetics levels from recriticalities in CAPRA cores are in the same range as in conventional cores. However, considerable uncertainties exist and further analyses are necessary. Additional investigations are performed for the separation scenarios of fuel/steel/inert and matrix material as a large influence of these processes on possible ramp rates and kinetics parameters was detected in the calculations. (orig./HP)