WorldWideScience

Sample records for electrocatalytic sulfite biosensor

  1. Sulfite oxidase biosensors based on tetrathiafulvalene modified screen-printed carbon electrodes for sulfite determination in wine.

    Science.gov (United States)

    Molinero-Abad, Begoña; Alonso-Lomillo, M Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, M Julia

    2014-02-17

    Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM (α=β=0.05) at 60°C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Maleki, Norouz; Momeni, Safieh; Tajabadi, Fariba

    2008-01-01

    The electrocatalytic oxidation of sulfite was investigated at carbon ionic liquid electrode (CILE). This electrode is a very good alternative to previously described electrodes because the electrocatalytic effect is achieved without any electrode modification. Comparative experiments were carried out using carbon paste electrode (CPE) and glassy carbon electrode (GCE). At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for sulfite with a peak potential of 0.55 V vs. Ag/AgCl. Sulfite oxidation at CILE does not result in deactivation of the electrode surface. The kinetic parameters for this irreversible heterogeneous electron transfer process were determined. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 6-1000 μM. The detection limit of the method was 4 μM. The method was applied to the determination of sulfite in mineral water, grape juice and non-alcoholic beer samples

  3. Fabrication of a sulfite biosensor by the use of conducting polymer

    International Nuclear Information System (INIS)

    Hosseini, M.; Bahmani, B; Moztarzadeh, F.; Rabiee, M.

    2008-01-01

    In this research, an enzyme modified electrode has been produced during the electro polymerization of aniline through incorporation of Sulfite oxidase into a conducting polymer. Then the bioelectrochemical response of resulted sulfite biosensor was investigated at different experimental conditions. Study of the stability of the resulted sulfite biosensor revealed that formation of a passive film on the aluminum surface causes improved stability of the electro active films formed on the electrode surface. The bioelectrochemical response of the enzyme-modified electrode as a sulfite biosensor was investigated at different experimental conditions. The optimum p H and temperature were 8.5 and 35 d eg C , respectively. The apparent Michaelis-Menten constant and the activation energy of the enzyme catalyzed reaction were calculated

  4. Potentiometric sulfite biosensor based on entrapment of sulfite oxidase in a polypyrrole film on a platinum electrode modified with platinum nanoparticles

    International Nuclear Information System (INIS)

    Adeloju, Samuel B.; Hussain, Shahid

    2016-01-01

    The surface of a platinum electrode has been modified with platinum nanoparticles (PtNPs) and the enzyme sulfite oxidase (SOx), was entrapped on its surface in an ultrathin polypyrrole (PPy) film. The PtNPs, with a diameter of 30-40 nm, were deposited on the Pt electrode by cycling the electrode potential 20 times from -200 to 200 mV at a sweep rate of 50 mV.s"-"1. Morphological evidence of the successful incorporation of SOx and the presence of PtNPs were obtained by scanning electron microscopy. Also, the electrochemical behavior of the PtNPs/PPy-SOx film was examined by cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy and potentiometry. Under optimized conditions, the biosensor achieved a sensitivity of 57.5 mV.decade"-"1, a linear response that extends from 0.75 to 65 μM of sulfite, a detection limit of 12.4 nM, and a response time of 3-5 s. The biosensor was successfully applied to the determination of sulfite in wine and beer samples. (author)

  5. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator

    International Nuclear Information System (INIS)

    Gao Zhiqiang; Tansil, Natalia

    2009-01-01

    An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N'-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy) 2 Cl (PIND-Ru, bpy = 2,2'-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy) 2 Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution

  6. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors.

    Science.gov (United States)

    Yang, MinHo; Jeong, Jae-Min; Lee, Kyoung G; Kim, Do Hyun; Lee, Seok Jae; Choi, Bong Gill

    2017-03-15

    The integration of organic and inorganic building blocks into hierarchical porous architectures makes potentially desirable electrocatalytic materials in many electrochemical applications due to their combination of attractive qualities of dissimilar components and well-constructed charge transfer pathways. Herein, we demonstrate the preparation of the hierarchical porous Co 3 O 4 @graphene (Co 3 O 4 @G) microspheres by one-step hydrothermal method to achieve high electrocatalytic performance for enzyme-free biosensor applications. The obtained Co 3 O 4 @G microspheres are consisted of the interconnected networks of Co 3 O 4 and graphene sheets, and thus provide large accessible active sites through porous structure, while graphene sheets offer continuous electron pathways for efficient electrocatalytic reaction of Co 3 O 4 . These structural merits with synergy effect of Co 3 O 4 and graphene lead to a high performance of enzyme-free detection for glucose: high sensitivity, good selectivity, and remarkable stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An ultrasensitive hydrogen peroxide biosensor based on electrocatalytic synergy of graphene-gold nanocomposite, CdTe-CdS core-shell quantum dots and gold nanoparticles

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive hydrogen peroxide biosensor in this work, which was fabricated by coating graphene-gold nanocomposite, CdTe-CdS core-shell quantum dots, gold nanoparticles and horseradish peroxidase in sequence on the surface of gold electrode. Since a promising their electrocatalytic synergy towards hydrogen peroxide was achieved, the biosensor displayed very high sensitivity, low detection limit (S/N = 3) (3.2 x 10 -11 M) and good long-term stability (20 weeks). Highlights: · We for the first time integrated novel hydrogen peroxide biosensor based on G-AuNP, CdTe-CdS and AuNPs. · Three nanomaterials show remarkable synergistic electrocatalysis towards hydrogen peroxide. · The biosensor provides the best sensitivity in all biosensors based on graphene for detection of glucose up to now. - Abstract: We first reported an ultrasensitive hydrogen peroxide biosensor in this work. The biosensor was fabricated by coating graphene-gold nanocomposite (G-AuNP), CdTe-CdS core-shell quantum dots (CdTe-CdS), gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) in sequence on the surface of gold electrode (GE). Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical performances of the biosensor. Since promising electrocatalytic synergy of G-AuNP, CdTe-CdS and AuNPs towards hydrogen peroxide was achieved, the biosensor displayed a high sensitivity, low detection limit (S/N = 3) (3.2 x 10 -11 M), wide calibration range (from 1 x 10 -10 M to 1.2 x 10 -8 M) and good long-term stability (20 weeks). Moreover, the effects of omitting G-AuNP, CdTe-CdS and AuNP were also examined. It was found that sensitivity of the biosensor is more 11-fold better if G-AuNP, CdTe-CdS and AuNPs are used. This could be ascribed to improvement of the conductivity between graphene nanosheets in the G-AuNP due to introduction of the AuNPs, ultrafast charge transfer from CdTe-CdS to the graphene sheets and AuNP due to

  8. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  9. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.

    Science.gov (United States)

    Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah

    2012-09-15

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Spent sulfite liquor developments

    Energy Technology Data Exchange (ETDEWEB)

    Black, H H

    1958-01-01

    A review of methods of utilizing spent sulfite liquor, including evaporation and burning, fermentation to produce yeast or alcohol, production of vanillin and lignosulfonates, and use as a roadbinder.

  11. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  12. Utilisation of sulfites by animals

    International Nuclear Information System (INIS)

    Fromageot, P.; Chapeville, F.

    1955-01-01

    It studied the uptake of radioactive sulfates and sulfites in sulfinic cysteine acid, taurine and cystine in animal organism. The experiments are conducted on rabbits. The experimental procedures are described: one experiment is to sterilize intestines of the animal before to inject it radioactive sulfites or sulfates, the rabbit is sacrificed 28 hours after and its organs analysed. The other experiment is to inject radioactive sulfites or sulfates in an eviscerated rabbit and sacrificed it 30 minutes after. Sulfinic cysteine acid is mainly found in liver extracts after 30 minutes and only after injection of radioactive sulfites, whereas cystine is found after 28 hours in a majority of organ extracts. It showed that sulfur used for the synthesis of sulfinic cysteine acid comes from sulfites intake and that sulfinic cysteine acid is a precursor of taurine and cystine. (M.P.)

  13. Inhibition of polyphenoloxidase by sulfite

    International Nuclear Information System (INIS)

    Sayavedra-Soto, L.A.; Montgomery, M.W.

    1986-01-01

    When polyphenoloxidase (PPO) was exposed to sulfite prior to substrate addition, inhibition was irreversible. Trials to regenerate PPO activity, using extensive dialysis, column chromatography, and addition of copper salts were not successful. Increased concentrations of sulfite and pH levels less than 5 enhanced the inhibition of PPO by sulfite. At pH 4, concentrations greater than 0.04 mg/mL completely inhibited 1000 units of PPO activity almost instantaneously. This suggested that the HSO 3 - molecule was the main component in the sulfite system inhibiting PPO. Column chromatography, extensive dialysis, and gel electrophoresis did not demonstrate 35 SO 2 bound to purified pear PPO protein. Formation of extra protein bands of sulfite inhibited purified pear PPO fractions on gel electrophoresis was demonstrated. This and other evidence suggested that the major mode of direct irreversible inhibition of PPO was modification of the protein structure, with retention of its molecular unity

  14. Electrocatalytic Reduction of Hydrogen Peroxide on Palladium-Gold Codeposits on Glassy Carbon: Applications to the Design of Interference-Free Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Elena Horozova

    2011-01-01

    Full Text Available Following our previous studies on the catalytic activity electrochemically codeposited on graphite Pd-Pt electrocatalysts for hydrogen peroxide electroreduction, a series of glassy carbon electrodes were modified with Pd or (Pd+Au deposits aiming at the development of even more efficient electrocatalysts for the same process. The resulting electrodes were found to be very effective at low applied potentials (−100 and −50 mV versus Ag/AgCl, 1 M KCl. The surface topography of the electrode modified with Pd+Au mixed in proportions 90% : 10%, exhibiting optimal combination of sensitivity and linear dynamic range towards hydrogen peroxide electrochemical reduction, was studied with SEM and AFM. The applicability of the same electrode as transducer in an amperometric biosensor for glucose assay was demonstrated. At an applied potential of −50 mV, the following were determined: detection limit (S/N=3 of 6×10−6 M glucose, electrode sensitivity of 0.15 μA μM−1, and strict linearity up to concentration of 3×10−4 M.

  15. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this ..... each case, a few ml of methanol was added to sample, and then it was ...

  16. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    Science.gov (United States)

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sulphite metabolism; Metabolisme du sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Fromageot, P; Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Although the formation of sulphite by micro-organisms was observed as early as 1914 by Neuberg, it was only in 1932 that Nightingale showed it to be present inside cells, in the case of tomato leaf stalks, its formation being due to the reaction: SO{sub 3}H{sup -} + (S{sub 2}O{sub 3}){sub 2}{sup --} {yields} S{sub 2}O{sub 3}{sup --} + O{sub 3}S{sub 2}O{sub 3}{sup --}. The presence of the thiosulphate formed was shown by the high refractive index of its barium salt. Today we have a certain amount of data concerning the formation and use of sulphite in the living cell, even through the knowledge is still incomplete. In this article we will describe and discuss the facts which are known, with particular reference to the oxidation of sulphite. (author) [French] Si la formation de sulfite par des micro-organismes a ete observee des 1914 par Neuberg, sa presence a l'interieur des cellules a ete demontree pour la premiere fois par Nightingale en 1932, dans des tiges et des feuilles de tomates, par la reaction: SO{sub 3}H{sup -} + (S{sub 2}O{sub 3}){sub 2}{sup --} {yields} S{sub 2}O{sub 3}{sup --} + O{sub 3}S{sub 2}O{sub 3}{sup --}. Le thiosulfate forme etait mis en evidence par l'indice de refraction eleve de son sel de baryum. Aujourd'hui on possede un certain nombre de donnees, cependant encore tres incompletes, sur la formation du sulfite et son utilisation par la cellule vivante. Dans cet expose nous decrirons et discuterons quelques-unes de ces acquisitions, tout particulierement celles relatives a l'oxydation du sulfite. (auteur)

  18. Ion chromatographic determination of sulfites in foods.

    Science.gov (United States)

    Anderson, C; Warner, C R; Daniels, D H; Padgett, K L

    1986-01-01

    Ion chromatography (IC) is shown to be a promising technique for the determination of sulfites (SO2, SO2/3-) in foods. Results of a 10 min flash distillation and 10 min IC determination compare favorably with the results from the conventional Monier-Williams method for total sulfite in a variety of food matrices. The IC technique also provides a wealth of additional information, such as (1) sulfite and sulfate (oxidized sulfite) content of the spiking or treatment solution, (2) residual sulfite applied to the food after oxidation losses in the treatment process, (3) free sulfite in foods, and (4) total sulfite in foods. As a further check on the Monier-Williams method, the sulfate content of the trapping solution can be determined by IC. Because the IC technique traps the liberated SO2 in a non-oxidizing rather than an oxidizing medium, it is considered free from interfering sulfides and organic sulfur-containing groups which can give false positives in the Monier-Williams method. IC thus offers a high speed, more sensitive, and cost-effective alternative to conventional techniques for the determination of sulfite in foods.

  19. Utilization of spent sulfite liquor carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, A J; Whitmore, L M; Boggs, Jr, L A

    1959-01-01

    Possible utilization of the sugars in spent sulfite liquor in the manufacture of ethanol, torula food yeast, and other fermentation products, and in the production of sugar derivatives, such as the diacetone derivatives, is discussed.

  20. Genetics Home Reference: isolated sulfite oxidase deficiency

    Science.gov (United States)

    ... and Management Resources (1 link) GeneReview: Isolated Sulfite Oxidase Deficiency General Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and ...

  1. Some effects of sulfite on photosynthesis in lichens

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D J

    1974-01-01

    Details of the effect of sulfite H/sup 14/CO/sub 3//sup -/ fixation in the light were studied. The reduction of fixation by sulfite was rapid, taking place within 30 min of contact with the lichen. Parmelia physodes recovered in 24 h from almost total reduction of fixation caused by I h treatment with 0.4 mM sulfite but Usnea sp. did not. Studies with (/sup -35/S)sulfite indicated that sulfite was taken up nonlinearly with time and that it was bound to protein. Algae isolated from Usnea sp., Parmelia physodes and Lecanora conizaeoides were similar in their response to sulfite, although the intact lichen L. conizaeoides is known to be more resistant L. Conizaeoides did not seem to be resistant to sulfite by causing rapid oxidation of sulfite to sulfate. There was no marked effect of temperature on the concentration of sulfite required to reduce fixation in Usnea sp.

  2. An electrochemical approach: Switching Structures of rare earth metal Praseodymium hexacyanoferrate and its application to sulfite sensor in Red Wine

    International Nuclear Information System (INIS)

    Devadas, Balamurugan; Sivakumar, Mani; Chen, Shen Ming; Cheemalapati, Srikanth

    2015-01-01

    Graphical abstract: Nucleation and growth of PrHCF and its application to sulfite oxidation in wine samples. - Highlights: • Electrochemical synthesis of PrHCF. • Switching structures of PrHCF. • Sulfite electrochemical sensor. • Wide linear range and low limit of detection. • Real sample application. - Abstract: Herein, we report a shape-controlled preparation of Praseodymium hexacyanoferrate (PrHCF) using a simple electrochemical technique. The electrochemically fabricated PrHCF modified glassy carbon electrodes (GCE) shows an excellent electrocatalytic activity towards sulfite oxidation. The morphology of PrHCF particles were controlled by carefully changing various synthesis conditions including electrochemical technique (cyclic voltammetry, amperometry and chemical), cations in the supporting electrolyte (K + , Na + , Li + and H + ), deposition cycles, molar ratio of precursors, and applied potential (-.2,0 and 0.2 V). The morphologies of the PrHCF was elucidated using scanning electron microscopy (SEM). The as-synthesized PrHCF was characterized using X-ray diffraction pattern (XRD), Infra-red (IR) and energy dispersive X-ray spectroscopy (EDX). The electrochemical oxidation of sulfite on PrHCF modified GCE was investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The sensitivity of the as-developed sulfite sensor was determined to be 0.036 μA μM −1 cm −2 . The low limit of detection was determined to be 2.15 μM. The real time application of PrHCF modified GCE was confirmed through the determination of sulfite from red wine and tap water samples

  3. Sulfites and the wine metabolome.

    Science.gov (United States)

    Roullier-Gall, Chloé; Hemmler, Daniel; Gonsior, Michael; Li, Yan; Nikolantonaki, Maria; Aron, Alissa; Coelho, Christian; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2017-12-15

    In a context of societal concern about food preservation, the reduction of sulfite input plays a major role in the wine industry. To improve the understanding of the chemistry involved in the SO 2 protection, a series of bottle aged Chardonnay wines made from the same must, but with different concentrations of SO 2 added at pressing were analyzed by ultrahigh resolution mass spectrometry (FT-ICR-MS) and excitation emission matrix fluorescence (EEMF). Metabolic fingerprints from FT-ICR-MS data could discriminate wines according to the added concentration to the must but they also revealed chemistry-related differences according to the type of stopper, providing a wine metabolomics picture of the impact of distinct stopping strategies. Spearman rank correlation was applied to link the statistically modeled EEMF components (parallel factor analysis (PARAFAC)) and the exact mass information from FT-ICR-MS, and thus revealing the extent of sulfur-containing compounds which could show some correlation with fluorescence fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Utilisation of sulfites by animals; Utilisation des sulfites par l'animal superieur

    Energy Technology Data Exchange (ETDEWEB)

    Fromageot, P; Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    It studied the uptake of radioactive sulfates and sulfites in sulfinic cysteine acid, taurine and cystine in animal organism. The experiments are conducted on rabbits. The experimental procedures are described: one experiment is to sterilize intestines of the animal before to inject it radioactive sulfites or sulfates, the rabbit is sacrificed 28 hours after and its organs analysed. The other experiment is to inject radioactive sulfites or sulfates in an eviscerated rabbit and sacrificed it 30 minutes after. Sulfinic cysteine acid is mainly found in liver extracts after 30 minutes and only after injection of radioactive sulfites, whereas cystine is found after 28 hours in a majority of organ extracts. It showed that sulfur used for the synthesis of sulfinic cysteine acid comes from sulfites intake and that sulfinic cysteine acid is a precursor of taurine and cystine. (M.P.)

  5. Electrocatalytic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U; Luft, G; Mund, K; Preidel, W; Richter, G J

    1983-01-01

    An artificial pancreas consists of an insulin depot, a dosage unit and a glucose sensor. The measurement of the actual glucose concentration in blood is still an unsolved problem. Two methods are described for an electrocatalytic glucose sensor. Under the interfering action of amino acids and urea in-vitro measurements show an error of between 10% and 20%.

  6. Biosensors and environmental health

    National Research Council Canada - National Science Library

    Preedy, Victor R; Patel, Vinood B

    2012-01-01

    ..., bacterial biosensors, antibody-based biosensors, enzymatic, amperometric and electrochemical aspects, quorum sensing, DNA-biosensors, cantilever biosensors, bioluminescence and other methods and applications...

  7. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Sulfite oxidase activity of cytochrome c: Role of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2016-03-01

    Full Text Available In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c in the absence and presence of H2O2. Electron paramagnetic resonance (EPR spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3- was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which

  9. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    Science.gov (United States)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  10. Risk analysis of sulfites used as food additives in China.

    Science.gov (United States)

    Zhang, Jian Bo; Zhang, Hong; Wang, Hua Li; Zhang, Ji Yue; Luo, Peng Jie; Zhu, Lei; Wang, Zhu Tian

    2014-02-01

    This study was to analyze the risk of sulfites in food consumed by the Chinese people and assess the health protection capability of maximum-permitted level (MPL) of sulfites in GB 2760-2011. Sulfites as food additives are overused or abused in many food categories. When the MPL in GB 2760-2011 was used as sulfites content in food, the intake of sulfites in most surveyed populations was lower than the acceptable daily intake (ADI). Excess intake of sulfites was found in all the surveyed groups when a high percentile of sulfites in food was in taken. Moreover, children aged 1-6 years are at a high risk to intake excess sulfites. The primary cause for the excess intake of sulfites in Chinese people is the overuse and abuse of sulfites by the food industry. The current MPL of sulfites in GB 2760-2011 protects the health of most populations. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Reduction of sulfate to sulfite by the tobacco leaf

    International Nuclear Information System (INIS)

    Fromageot, P.; Perez-Milan, H.

    1959-01-01

    It is shown that whole tobacco leaf reduces [ 35 SI] sulfate to [ 35 SI] sulfite. The amount and the specific radioactivity of the labelled sulfite recovered indicate that daylight plays an essential part in this process, which is a rapid one. Its quantitative analysis is, however, rendered difficult by oxidation of sulfite to sulfate, which is catalysed by the tissues utilised. Reprint of a paper published in Biochimica et Biophysica Acta, vol. 32, 1959, p. 457-464 [fr

  12. Electrocatalytic Activity of Electropolymerized Cobalt ...

    African Journals Online (AJOL)

    Mercaptobenzimidazole (MBI) was studied. ... The poly-CoTAPc film exhibited efficiently electrocatalytic activity for 6MP and MBI with relatively high sensitivity, stability and long-life. ... HOW TO USE AJOL.

  13. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    Science.gov (United States)

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium

  14. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid

    International Nuclear Information System (INIS)

    Lidong, Wang; Yongliang, Ma; Wendi, Zhang; Qiangwei, Li; Yi, Zhao; Zhanchao, Zhang

    2013-01-01

    Graphical abstract: Ascorbic acid is used as an inhibitor to retard the oxidation rate of magnesium sulfite. It shows that the oxidation rate would decrease greatly with the rise of initial ascorbic acid concentration, which provides a useful reference for sulfite recovery in magnesia desulfurization. -- Highlights: • We studied the kinetics of magnesium sulfite oxidation inhibited by ascorbic acid. • The oxidation process was simulated by a three-phase model and proved by HPLC–MS. • We calculated the kinetic parameters of intrinsic oxidation of magnesium sulfite. -- Abstract: Magnesia flue gas desulfurization is a promising process for small to medium scale industrial coal-fired boilers in order to reduce sulfur dioxide emissions, in which oxidation control of magnesium sulfite is of great importance for the recycling of products. Effects of four inhibitors were compared by kinetic experiments indicating that ascorbic acid is the best additive, which retards the oxidation process of magnesium sulfite in trace presence. The macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid were studied. Effects of the factors, including ascorbic acid concentration, magnesium sulfite concentration, oxygen partial pressure, pH, and temperature, were investigated in a stirred reactor with bubbling. The results show that the reaction rate is −0.55 order in ascorbic acid, 0.77 in oxygen partial pressure, and zero in magnesium sulfite concentration, respectively. The apparent activation energy is 88.0 kJ mol −1 . Integrated with the kinetic model, it is concluded that the oxidation rate of magnesium sulfite inhibited by ascorbic acid is controlled by the intrinsic chemical reaction. The result provides a useful reference for sulfite recovery in magnesia desulfurization

  15. 21 CFR 130.9 - Sulfites in standardized food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized food...

  16. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  17. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  18. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  19. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    Science.gov (United States)

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  20. Vanillin: Synthetic Flavoring from Spent Sulfite Liquor

    Science.gov (United States)

    Hocking, Martin B.

    1997-09-01

    Separation of the lignin component of wood from the cellulose presents an opportunity to access various interesting products from the lignin fragments. The lignin represents availability of a sizable renewable resource. Vanillin, or 3-methoxy-4-hydroxybenzaldehyde, is one of a series of related substituted aromatic flavor constituents, and represents one of the potentially profitable possibilities. Vanillin production from the lignin-containing waste liquor obtained from acid sulfite pulping of wood began in North America in the mid 1930's. By 1981 one plant at Thorold, Ontario produced 60% of the contemporary world supply of vanillin. The process also simultaneously decreased the organic loading of the aqueous waste streams of the pulping process. Today, however, whilst vanillin production from lignin is still practiced in Norway and a few other areas, all North American facilities using this process have closed, primarily for environmental reasons. New North American vanillin plants use petrochemical raw materials. An innovation is needed to help overcome the environmental problems of this process before vanillin production from lignin is likely to resume here. Current interest in the promotion of chemicals production from renewable raw materials reinforces the incentive to do this.

  1. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide.

    Science.gov (United States)

    Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua

    2016-08-15

    A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sulfite induces release of lipid mediators by alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Beck-Speier, I.; Dayal, N.; Maier, L. [GSF - National Research Center for Environment and Health, Neuherberg (Germany). Inst. for Inhalation Biology; Denzlinger, C. [Tuebingen Univ. (Germany). Dept. II, Medical Clinic; Haberl, C. [Tuebingen Univ. (Germany). Dept. III, Medical Clinic

    1998-03-01

    Air pollutants are supposed to modulate physiological responses of alveolar macrophages (AM). This study was addressed to the question whether at neutral pH sulfur(IV) species in comparison to sulfur(VI) species cause AM to release proinflammatory mediators and which pathways are involved in their generation. Supernatants obtained from canine AM treated with sulfite (0.1 mM to 2 mM) enhanced the respiratory burst of canine neutrophils, measured by lucigenin-dependent chemiluminescence, whereas supernatants derived from AM treated with sulfate (1 mM) did not. The neutrophil-stimulating activity released by sulfite-treated AM consisted of platelet-activating factor (PAF) and leukotriene B{sub 4} (LTB{sub 4}) as shown by desensitization of the platelet-activating factor (PAF) and leukotriene B{sub 4} (LTB{sub 4}) as shown by desensitization of the corresponding receptors. Inhibitors of phospholipase A{sub 2} substantially suppressed release of neutrophil-stimulating activity by sulfite-treated AM. Inhibition of 5-lipoxygenase in sulfite-treated AM also reduced neutrophil-stimulating activity, while inhibition of cyclooxygenase had no effect. In conclusion, sulfite induces AM to release lipid mediators via phospholipase A{sub 2}- and 5-lipoxygenase-dependent pathways. These mediators activate neutrophils via the receptors for PAF and LTB{sub 4}. (orig.)

  3. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  4. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Baby, Rakhi Raghavan; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  5. Chemical composition and utilization of Hungarian spent sulfite liquor

    Energy Technology Data Exchange (ETDEWEB)

    Toth, B

    1968-01-01

    A review on the composition of Hungarian spent sulfite liquor and on its possible utilization, e.g., for the manufacturing of vanillin, yeast protein, or ethanol, as well as its direct utilization as a plasticizer for cement, additive for insecticides, or in adhesives.

  6. Preparation, Characterization, and Selectivity Study of Mixed-Valence Sulfites

    Science.gov (United States)

    Silva, Luciana A.; de Andrade, Jailson B.

    2010-01-01

    A project involving the synthesis of an isomorphic double sulfite series and characterization by classical inorganic chemical analyses is described. The project is performed by upper-level undergraduate students in the laboratory. This compound series is suitable for examining several chemical concepts and analytical techniques in inorganic…

  7. Copper(I) in fogwater: Determination and interactions with sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Hanbin Xue; Reutlinger, M.; Sigg, L.; Stumm, W. (Swiss Federal Inst. of Tech., Duebendorf (Switzerland)); Lurdes S. Goncalves, M. de (Inst. Superior Tecnico, Lisbon (Portugal))

    1991-10-01

    The copper(I)/(II) redox system was examined in fogwater with respect to the occurrence of Cu(I), the role of sulfite as a reductant of Cu(II) and as a complexing ligand, and the speciation of Cu(I) and Cu(II). Copper(I) was measured in fogwater by the bathocuproine method, which was evaluated for the conditions typically encountered in atmospheric water droplets. Concentrations of Cu(I) in the range 0.1-1 {mu}M were found, which represented between 4 and > 90% of the total copper in these samples. In experiments using concentration ranges of copper and S(IV) close to that of fogwater, the reduction of copper(II) to copper(I) by sulfite was shown to be pH-dependent and to occur rapidly at pH > 6. Calculations of the equilibrium complexation of Cu(I) and Cu(II) under fogwater conditions show that complexes of Cu(I) with sulfite predominate, while for Cu(II) oxalato complexes are important. Sulfite plays an important role as a ligand for Cu(I) in fogwater; Cu(I) may be produced by various reduction reactions, e.g., by organic compounds, and appears to be oxidized only slowly in the presence of S(IV).

  8. Biosensors and preparation thereof

    NARCIS (Netherlands)

    2008-01-01

    A low-temp. prepn. method for a biosensor device with a layer of reagent on the sensor surface is disclosed. During manufg. biol. interaction between the biosensor substrate and the reagent layer material is reduced, e.g. by cooling the biosensor substrate and depositing the reagent layer on the

  9. Cholinesterase-based biosensors.

    Science.gov (United States)

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  10. Preparation and electrochemical application of rutin biosensor for differential pulse voltammetric determination of NADH in the presence of acetaminophen

    Directory of Open Access Journals (Sweden)

    HAMID R. ZARE

    2010-10-01

    Full Text Available The electrocatalytic behavior of reduced nicotinamide adenine di-nucleotide (NADH was studied at the surface of a rutin biosensor, using various electrochemical methods. According to the results, the rutin biosensor had a strongly electrocatalytic effect on the oxidation of NADH with the overpotential being decreased by about 450 mV as compared to the process at a bare glassy carbon electrode, GCE. This value is significantly greater than the value of 220 mV that was reported for rutin embedded in a lipid-cast film. The kinetic parameters of the electron transfer coefficient, a, and the heterogeneous charge transfer rate constant, kh, for the electrocatalytic oxidation of NADH at the rutin biosensor were estimated. Furthermore, the linear dynamic range; sensitivity and limit of detection for NADH were evaluated using the differential pulse voltammetry method. The advantages of this biosensor for the determination of NADH are excellent catalytic activity and reproducibility, good detection limit and high exchange current density. The rutin biosensor could separate the oxidation peak potentials of NADH and acetaminophen present in the same solution while at a bare GCE, the peak potentials were indistinguishable.

  11. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Removal of sulfite liquor from digesters with partially diluted liquor

    Energy Technology Data Exchange (ETDEWEB)

    Leshchenko, I G; Sykol, V P

    1957-01-01

    The yield of reducing sugars was raised from 189 to 224 kg/ton of pulp by displacing the cooking liquor with diluted liquor. As the pressure during blow-off dropped to 3.5-3.0 atmosphere, weak sulfite liquor was added at the rate 120 cu m/hr. After 5-10 minutes the liquor was pumped from the digester to the ethanol plant.

  13. Chemical by-products from spent sulfite liquors

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, Jr, L M; Wiley, A J

    1958-01-01

    Current practices for recovering sugars, lignosulfonates, ethanol and feed yeast and product uses are reviewed. A process for separating sugars is described in which the sulfite liquor is spray dried and refluxed with acetone containing a concentrated H/sub 2/SO/sub 4/ catalyst, and the di-acetone sugar derivatives are filtered or centrifuged from the acetone insolubles. Recovery of guaiacyl and syringyl derivatives from the lignosulfonate portion of the liquor is discussed.

  14. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    Science.gov (United States)

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author

  15. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    International Nuclear Information System (INIS)

    You, Jung-Min; Kim, Daekun; Jeon, Seungwon

    2012-01-01

    Highlights: ► Novel thiolated carbon nanostructures – platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. ► The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H 2 O 2 for the first time. ► The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H 2 O 2 . ► The proposed H 2 O 2 biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures – multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H 2 O 2 . The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors’ performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H 2 O 2 analysis.

  16. Fabrication and application of nanostructured materials for sulfite biosensing

    OpenAIRE

    Hussain, Shahid

    2017-01-01

    A biosensor as an integrated miniaturized device, exploits the modern microelectronics with specific sensing probe through signal transduction. The challenge for new generation biosensors is to achieve specific analyte detection at very low concentrations, which is possible by tailoring the materials used for fabrication of these devices based on nanoscience and nanotechnology. The new approach is explored in this thesis for fabrication of novel nanobiosensors for ultrasensitive detection of ...

  17. Biosensors and bioelectronics

    CERN Document Server

    Karunakaran, Chandran; Benjamin, Robson

    2015-01-01

    Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based re

  18. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue

    Directory of Open Access Journals (Sweden)

    Bu Lingxi

    2012-12-01

    Full Text Available Abstract Background Corn cob residue (CCR is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations. Results It was found that the lignin in the CCR (43.2% had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample among the saccharification samples, which was over 10% higher than that of the raw material (70.6%. More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g and weak acid groups (1.85 mmol/g in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments. Conclusions It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield.

  19. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, A., E-mail: ali.hajian@fmf.uni-freiburg.de [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany); Ghodsi, J.; Afraz, A. [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174, Hamedan (Iran, Islamic Republic of); Yurchenko, O. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Urban, G. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany)

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L{sup −1} and detection limit of 25 nmol L{sup −1}. The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  20. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    International Nuclear Information System (INIS)

    Hajian, A.; Ghodsi, J.; Afraz, A.; Yurchenko, O.; Urban, G.

    2016-01-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L −1 and detection limit of 25 nmol L −1 . The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  1. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    Science.gov (United States)

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  2. Lignin and silicate based hydrogels for biosensor applications

    Science.gov (United States)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  3. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  4. Radiation-induced radical ions in calcium sulfite

    Science.gov (United States)

    Bogushevich, S. E.

    2006-07-01

    We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 - (iso) with g = 2.0055 and SO 2 - (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 - respectively, SO 3 - (iso) with g = 2.0031 and SO 3 - (axial) with g⊥ = 2.0040, g∥ = 2.0023, identical to mechanically induced SO 3 - . We have established the participation of radiation-induced radical ions SO 3 - in formation of post-radiation SO 2 - .

  5. Inhibition of tyrosinase-mediated enzymatic browning by sulfite and natural alternatives

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Vincken, J.P.

    2013-01-01

    Although sulfite is widely used to counteract enzymatic browning, its mechanism has remained largely unknown. We describe a double inhibitory mechanism of sulfite on enzymatic browning, affecting both the enzymatic oxidation of phenols into o‑quinones, as well as the non‑enzymatic

  6. Case studies on sugar production from underutilized woody biomass using sulfite chemistry

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Roland Gleisner; William Gilles; Johnway Gao; Gevan Marrs; Dwight Anderson; John Sessions

    2015-01-01

    We examined two case studies to demonstrate the advantages of sulfite chemistry for pretreating underutilized woody biomass to produce sugars through enzymatic saccharification. In the first case study, we evaluated knot rejects from a magnesium-basedsulfite mill for direct enzymatic sugar production.We found that the sulfite mill rejects are an excellent feedstock for...

  7. Electrocatalytic cermet gas detector/sensor

    Science.gov (United States)

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  8. Biosensors for Cell Analysis.

    Science.gov (United States)

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  9. The anti-browning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Gruppen, H.; Sforza, S.; Berkel, van W.J.H.; Vincken, J.P.

    2013-01-01

    Sulfite salts are widely used as antibrowning agents in food processing. Nevertheless, the exact mechanism by which sulfite prevents enzymatic browning has remained unknown. Here, we show that sodium hydrogen sulfite (NaHSO3 ) irreversibly blocks the active site of tyrosinase from the edible

  10. Electrocatalytic reduction of H{sub 2}O{sub 2} by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    You, Jung-Min; Kim, Daekun [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeon, Seungwon [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Novel thiolated carbon nanostructures - platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. Black-Right-Pointing-Pointer The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H{sub 2}O{sub 2} for the first time. Black-Right-Pointing-Pointer The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The proposed H{sub 2}O{sub 2} biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures - multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H{sub 2}O{sub 2}. The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors' performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H{sub 2}O{sub 2} analysis.

  11. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  12. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.

    Science.gov (United States)

    Frederiksen, Trine-Maria; Finster, Kai

    2003-06-01

    The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.

  13. Materials design for electrocatalytic carbon capture

    Directory of Open Access Journals (Sweden)

    Xin Tan

    2016-05-01

    Full Text Available We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X–N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  14. A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Li Yuanting

    2012-09-01

    Full Text Available Abstract Background Biosensors have attracted increasing attention as reliable analytical instruments in in situ monitoring of public health and environmental pollution. For enzyme-based biosensors, the stabilization of enzymatic activity on the biological recognition element is of great importance. It is generally acknowledged that an effective immobilization technique is a key step to achieve the construction quality of biosensors. Results A novel disposable biosensor was constructed by immobilizing laccase (Lac with silica spheres on the surface of multi-walled carbon nanotubes (MWCNTs-doped screen-printed electrode (SPE. Then, it was characterized in morphology and electrochemical properties by scanning electron microscopy (SEM and cyclic voltammetry (CV. The characterization results indicated that a high loading of Lac and a good electrocatalytic activity could be obtained, attributing to the porous structure, large specific area and good biocompatibility of silica spheres and MWCNTs. Furthermore, the electrochemical sensing properties of the constructed biosensor were investigated by choosing dopamine (DA as the typical model of phenolic compounds. It was shown that the biosensor displays a good linearity in the range from 1.3 to 85.5 μM with a detection limit of 0.42 μM (S/N = 3, and the Michaelis-Menten constant (Kmapp was calculated to be 3.78 μM. Conclusion The immobilization of Lac was successfully achieved with silica spheres to construct a disposable biosensor on the MWCNTs-doped SPE (MWCNTs/SPE. This biosensor could determine DA based on a non-oxidative mechanism in a rapid, selective and sensitive way. Besides, the developed biosensor could retain high enzymatic activity and possess good stability without cross-linking reagents. The proposed immobilization approach and the constructed biosensor offer a great potential for the fabrication of the enzyme-based biosensors and the analysis of phenolic compounds.

  15. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    Science.gov (United States)

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  16. Nanochannels Photoelectrochemical Biosensor.

    Science.gov (United States)

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  17. Triggered optical biosensor

    Science.gov (United States)

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  18. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine.

    Science.gov (United States)

    Nardini, Mirella; Garaguso, Ivana

    2018-03-09

    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1-10 μg) in the standard assays resulted in a significant, positive interference in the Folin-Ciocalteu's assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1-20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25-200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine.

  19. Effect of sulfite and fluoride on carbon dioxide uptake by mosses in the light

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, F.; Hill, D.J.

    1974-01-01

    Four mosses, Bryum argenteum, Grimmia pulvinata, Hypnum cupressiforme and Tortula muralis were exposed to sulfite, and their uptake of radioactive bicarbonate measured. About 50% reduction in /sup 14/C uptake was caused by 0.01-0.1 mM sulfite. The effect of pH indicated that SO/sub 2/ (or H/sub 2/SO/sub 3/) was the active molecular species. Fluoride had little effect on /sup 14/C uptake.

  20. Molecular Approaches to Optical Biosensors

    National Research Council Canada - National Science Library

    Fierke, Carol

    1998-01-01

    The goal of this proposal was to develop methodologies for the optimization of field-deployable optical biosensors, in general, and, in particular, to optimize a carbonic anhydrase-based fiber optic zinc biosensor...

  1. Electrocatalytic activity of self-doped polyaniline

    International Nuclear Information System (INIS)

    Shieh, Yeong-Tarng; Jung, Jeng-Ji; Lin, Rong-Hsien; Yang, Chien-Hsin; Wang, Tzong-Liu

    2012-01-01

    Self-doped conducting polyaniline-modified indium tin oxide (ITO) electrodes were prepared by cyclic voltammetry on ITO substrates in aniline (AN) and o-aminobenzene sulfonic acid (OSA) mixed monomer solutions with AN/OSA mole ratios of 25/75, 50/50, and 75/25, followed by investigations on electrocatalytic activities of the copolymers to redox reactions of Fe(CN) 6 3−/4− as a probe in aqueous solutions of different pH using cyclic voltammetry. For a given pH, the P(25AN-co-75OSA)-modified ITO electrode demonstrated the highest current density, followed by the P(50AN-co-50OSA)- and by the P(75AN-co-25OSA)-modified ITO electrodes. It can be concluded that a higher content of OSA (sulfonate) in the copolymer exhibited a higher extent of self-doping in the copolymer, leading to a higher electrocatalytic activity to redox reactions of the probe. The electrocatalytic activities of the copolymers decreased with increasing pH. The P(25AN-co-75OSA)-modified ITO electrode was electroactive for sensing the redox reactions of the probe in aqueous solutions of up to pH 7, the P(50AN-co-50OSA)-modified ITO electrode was electroactive for up to only pH 5, but the P(75AN-co-25OSA)-modified ITO electrode was not electroactive in aqueous solution of pH even as low as 2.

  2. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction

    International Nuclear Information System (INIS)

    Xu Qin; Zhu Junjie; Hu Xiaoya

    2007-01-01

    Ordered mesoporous polyaniline film has been fabricated by electrodepositing from the hexagonal lyotropic liquid crystalline (LCC). Horseradish peroxidase (HRP), as a symbol biomolecule, was successfully immobilized on the film to construct a new kind of hydrogen peroxide biosensor. The biosensor combined the advantages of the good conductivity of polyaniline and the higher surface area of the ordered mesoporous film. Polyaniline could be served as a wire to relay electron between HRP and the electrode. The high surface area of the film supplied more sites for HRP immobilization, therefore increased the catalytic activity of the biosensor. The ordered mesoporous character of the film increased the rate of mass transport, which resulted in the improvement of sensor response and linearity. The biosensor displayed excellent electrocatalytic response to the detection of H 2 O 2 in a concentration range from 1.0 μM to 2.0 mM with a detection limit of 0.63 μM. Good reproducibility, stability, high precision, wide linearity and low detection limit were assessed for the biosensor

  4. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin

    Directory of Open Access Journals (Sweden)

    Raja Zaidatul Akhmar Raja Jamaluddin

    2018-04-01

    Full Text Available A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb covalently immobilized on the succinimide functionalized poly(n-butyl acrylate-graphene [poly(nBA-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE. The immobilized Hb on the poly(nBA-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.

  5. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    Science.gov (United States)

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Introduction to biosensors.

    Science.gov (United States)

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Biosensors in forensic sciences

    Directory of Open Access Journals (Sweden)

    Frederickx, C.

    2011-01-01

    Full Text Available A biosensor is a device that uses biological materials to detect and monitor the presence of specific chemicals in an area. Traditional methods of volatile detection used by law enforcement agencies and rescue teams typically consist of reliance on canine olfaction. This concept of using dogs to detect specific substances is quite old. However, dogs have some limitations such as cost of training and time of conditioning. Thus, the possibility of using other organisms as biosensors including rats, dolphins, honeybees, and parasitic wasps for detecting explosives, narcotics and cadavers has been developed. Insects have several advantages unshared by mammals. Insects are sensitive, cheap to produce and can be conditioned with impressive speed for a specific chemical-detection task. Moreover, insects might be a preferred sensing method in scenarios that are deemed too dangerous to use mammals. The purpose of this review is to provide an overview of the biosensors used in forensic sciences.

  8. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor

    International Nuclear Information System (INIS)

    Zhang Fenfen; Wang Xiaoli; Ai Shiyun; Sun Zhengdong; Wan Qiao; Zhu Ziqiang; Xian Yuezhong; Jin Litong; Yamamoto, Katsunobu

    2004-01-01

    A reagentless uric acid (UA) biosensor based on uricase immobilized on ZnO nanorods was developed. Direct electrochemistry and thermal stability of immobilized uricase were studied. The ZnO nanorods derived electrode retained the enzyme bioactivity and could enhance the electron transfer between the enzyme and the electrode. This sensor showed a high thermal stability up to 85 deg. C and an electrocatalytic activity to the oxidation of uric acid without the presence of an electron mediator. The electrocatalytic response showed a linear dependence on the uric acid concentration ranging from 5.0 x 10 -6 to 1.0 x 10 -3 mol L -1 with a detection limit of 2.0 x 10 -6 mol L -1 at 3σ. The apparent K M app value for the uric acid sensor was estimated to be 0.238 mM, showing a high affinity

  9. Biosensors: Future Analytical Tools

    Directory of Open Access Journals (Sweden)

    Vikas

    2007-02-01

    Full Text Available Biosensors offer considerable promises for attaining the analytic information in a faster, simpler and cheaper manner compared to conventional assays. Biosensing approach is rapidly advancing and applications ranging from metabolite, biological/ chemical warfare agent, food pathogens and adulterant detection to genetic screening and programmed drug delivery have been demonstrated. Innovative efforts, coupling micromachining and nanofabrication may lead to even more powerful devices that would accelerate the realization of large-scale and routine screening. With gradual increase in commercialization a wide range of new biosensors are thus expected to reach the market in the coming years.

  10. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Some aspects of sulphite metabolism in plants; Quelques aspects du metabolisme du sulfite chez les vegetaux

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Milan, Hernan

    1958-05-15

    As sulphite appears to be an intermediate substance in the degradation of sulphur-containing amino acids, and has an important metabolic role, notably for plants, this research thesis aims at comparing transformations which may occur for a same chemical compound (the sulphite) in various organisms belonging to different species or kingdoms. More particularly, the author studied the formation of sulphite in vegetal tissues, and the oxidisation of sulphite into sulfate within these tissues. In vitro experiments have been performed with oat, while in vivo experiments have been performed on tobacco plants [French] Le sulfite apparait comme une substance intermediaire de la degradation des acides amines soufres. Son role dans la biosynthese de certains d'entre eux, problematique chez les mammiferes, est certain chez les oiseaux, qui, a cet egard, se comportent comme des autotrophes partiels, puisqu'ils reduisent le sulfate en sulfite. On s'apercoit ainsi qu'un degre d'evolution moindre confere au sulfite une importance metabolique plus grande. On peut s'attendre a trouver chez les vegetaux un role encore accru pour le sulfite. Le present travail entre dans ce cadre d'etudes comparees des transformations que peut subir un meme type de compose chimique: le sulfite, dans divers organismes appartenant a des especes ou a des regnes differents. Les donnees acquises exposees ici auront trait aux deux points suivants: I - La formation du sulfite dans les tissus vegetaux, II - L'oxydation dans ces tissus, du sulfite en sulfate. L'avoine nous a servi comme materiel de depart pour les experiences faites in vitro. Cette plante presente en effet l'avantage de se bien cultiver en toutes saisons, de se broyer facilement, et d'etre depourvue au maximum de mucilages, de resines, substances genantes pour l'analyse ulterieure. Les essais faits in vivo, ont mis en oeuvre des plants de tabac, qui permettent une nutrition par le petiole ou par la tige particulierement aisee.

  13. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2017-09-01

    Full Text Available Graphene quantum dots (GQDs, derived from functionalized graphene precursors are graphene sheets a few nanometers in the lateral dimension having a several-layer thickness. They are zero-dimensional materials with quantum confinement and edge site effects. Intense research interest in GQDs is attributed to their unique physicochemical phenomena arising from the sp2-bonded carbon nanocore surrounded with edged plane functional moieties. In this work, GQDs are synthesized by both solvothermal and hydrothermal techniques, with the optimal size of 5 nm determined using high-resolution transmission electron microscopy, with additional UV-Vis absorption and fluorescence spectroscopy, revealing electronic band signatures in the blue-violet region. Their potential in fundamental (direct electron transfer and applied (enzyme-based glucose biosensor electrochemistry has been practically realized. Glucose oxidase (GOx was immobilized on glassy carbon (GC electrodes modified with GQDs and functionalized graphene (graphene oxide and reduced form. The cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy are used for characterizing the direct electron transfer kinetics and electrocatalytical biosensing. The well-defined quasi-reversible redox peaks were observed under various electrochemical environment and conditions (pH, concentration, scan rate to determine the diffusion coefficient (D and first-order electron transfer rate (kET. The cyclic voltammetry curves showed homogeneous ion transport behavior for GQD and other graphene-based samples with D ranging between 8.45 × 10−9 m2 s−1 and 3 × 10−8 m2 s−1 following the order of GO < rGO < GQD < GQD (with FcMeOH as redox probe < GOx/rGO < GOx/GO < HRP/GQDs < GOx/GQDs. The developed GOx-GQDs biosensor responds efficiently and linearly to the presence of glucose over concentrations ranging between 10 μM and 3 mM with a limit of detection of 1.35 μM and

  14. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    International Nuclear Information System (INIS)

    Norman, J.C.; Sell, N.J.; Ciriacks, J.C.

    1990-01-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia

  16. Amperometric Determination of Sulfite by Gas Diffusion- Sequential Injection with Boron-Doped Diamond Electrode

    Directory of Open Access Journals (Sweden)

    Orawon Chailapakul

    2008-03-01

    Full Text Available A gas diffusion sequential injection system with amperometric detection using aboron-doped diamond electrode was developed for the determination of sulfite. A gasdiffusion unit (GDU was used to prevent interference from sample matrices for theelectrochemical measurement. The sample was mixed with an acid solution to generategaseous sulfur dioxide prior to its passage through the donor channel of the GDU. Thesulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1 M phosphate buffer (pH 8/0.1% sodium dodecyl sulfate in the acceptor channel of theGDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell anddetected directly by amperometry using the boron-doped diamond electrode at 0.95 V(versus Ag/AgCl. Sodium dodecyl sulfate was added to the carrier solution to preventelectrode fouling. This method was applicable in the concentration range of 0.2-20 mgSO32−/L and a detection limit (S/N = 3 of 0.05 mg SO32−/L was achieved. This method wassuccessfully applied to the determination of sulfite in wines and the analytical resultsagreed well with those obtained by iodimetric titration. The relative standard deviations forthe analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was65 h−1.

  17. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  18. Carbon Nanotubes/Gold Nanoparticles Composite Film for the Construction of a Novel Amperometric Choline Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2011-01-01

    Full Text Available This study develops a facile method to fabricate a novel choline biosensor based on multiwalled carbon nanotubes (MWCNTs and gold nanoparticles (AuNPs. Chitosan, a natural biocompatible polymer, was used to solubilize MWCNTs for constructing the aqueous Chit-MWCNTs solution. Then Chit-MWCNTs were first dropped on the surface of a cleaned platinum electrode. Finally, a thiolated silica sol containing AuNPs and choline oxidase (ChOx was immobilized on the surface of the Chit-MWCNTs-modified electrode. The MWCNTs/AuNPs/Pt electrode showed excellent electrocatalytic activity for choline. The resulting choline biosensor showed high sensitivity of choline (3.56 μA/mM, and wide linear range from 0.05 to 0.8 mM with the detection limit of 15 μM. In addition, good reproducibility and stability were obtained.

  19. Hydrogen peroxide biosensor based on DNA-Hb modified gold electrode

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Fan Yin; Shin, Hoon-Kyu; Kwon, Young-Soo

    2006-01-01

    A hydrogen peroxide (H 2 O 2 ) biosensor based on DNA-hemoglobin (Hb) modified electrode is described in this paper. The sensor was designed by DNA and hemoglobin dropletting onto gold electrode surface layer by layer. The sensor based on the direct electron transfer of iron of hemoglobin showed a well electrocatalytic response to the reduction of the H 2 O 2 . This sensor offered an excellent electrochemical response for H 2 O 2 concentration below micromole level with high sensitivity and selectivity and short response time. Experimental conditions influencing the biosensor performance such as, pH, potential were optimized and assessed. The levels of the RSD's ( 2 O 2 was observed from 10 to 120 μM with the detection limit of 0.4 μM (based on the S/N = 3)

  20. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  1. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  2. Electrochemical biosensors in pharmaceutical analysis

    OpenAIRE

    Gil, Eric de Souza; Melo, Giselle Rodrigues de

    2010-01-01

    Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, fo...

  3. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  4. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  5. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.

    Science.gov (United States)

    Xie, Wenjing; Yuan, Songhu; Mao, Xuhui; Hu, Wei; Liao, Peng; Tong, Man; Alshawabkeh, Akram N

    2013-07-01

    A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  7. Biosensor. Seitai sensa

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1993-06-15

    Present state of the art of biosensors is described by taking taste sensors and odor sensors as examples. Bio-devices that response only to specific chemical substances are made using membranes that recognize particular molecules. Biosensors are constructed in combination of bio-devices with electronics devices that transduce the response of bio-devices to electric signals. Enzymes are used often as bio-devices to recognize molecules. They recognize strictly chemical substances and promote chemical reactions. Devices to measure electrochemically substances consumed or produced in the reactions serve as sensors. For taste sensors, inosinic acid or glutamic acid that is a component of taste, is recognized and measured. Combination of various bio-devices other than enzymes with various transducers makes it possible to produce biosensors based on a variety of principles. Odor sensors recognize odors by measuring frequency change of the electrode of quartz oscillator. The change occurs with weight change due to odorous substances absorbed on the oscillator electrode coated with lipids which exist in olfactory cells. 1 ref., 1 fig.

  8. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  9. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Zhu Zhigang; Burugapalli, Krishna; Moussy, Francis; Song, Wenhui; Li Yali; Zhong Xiaohua

    2010-01-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 μm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 deg. C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 μM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  11. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    Science.gov (United States)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  12. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  13. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  14. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  15. Electrocatalytic process for carbon dioxide conversion

    Science.gov (United States)

    Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert

    2017-11-14

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  16. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Amperometric biosensor for hydrogen peroxide based on Hemoglobin/DNA/Poly-2,6-pyridinediamine modified gold electrode

    International Nuclear Information System (INIS)

    Tong Zhongqiang; Yuan Ruo; Chai Yaqin; Chen Shihong; Xie Yi

    2007-01-01

    An amperometric biosensor for hydrogen peroxide (H 2 O 2 ) was fabricated based on immobilization of hemoglobin (Hb) on DNA/Poly-2,6-pyridinediamine (PPD) modified Au electrode. PPD thin films were firstly electro-deposited on Au electrode surface which provide a template to attach negatively charged DNA molecules by electrostatic attraction. The adsorbed DNA network provides a good microenvironment for the immobilization of biomolecules and promotes electron transfer between the immobilized Hb and the electrode surface. The fabrication process of the biosensor was characterized by electrochemical impedance spectroscopy. Experimental conditions influencing the biosensor performance such as pH, potential and temperature were assessed and optimized. The proposed biosensor displayed a good electrocatalytic response to the reduction of H 2 O 2 , its linear range is 1.7 μM to 3 mM with a detection limit of 1.0 μM based on the signal-to-noise ratio of 3 (S/N = 3) under the optimized conditions. The Michaelis-Menten constant K m app of Hb immobilized on the electrode surface was found to be 0.8 mM. The biosensor shows high sensitivity and stability. Importantly, this deposition methodology could be further developed for the immobilization of other proteins and biocompounds

  18. A novel glucose biosensor based on phosphonic acid-functionalized silica nanoparticles for sensitive detection of glucose in real samples

    International Nuclear Information System (INIS)

    Zhao, Wenbo; Fang, Yi; Zhu, Qinshu; Wang, Kuai; Liu, Min; Huang, Xiaohua; Shen, Jian

    2013-01-01

    An effective strategy for preparation amperometric biosensor by using the phosphonic acid-functionalized silica nanoparticles (PFSi NPs) as special modified materials is proposed. In such a strategy, glucose oxidase (GOD) was selected as model protein to fabricate glucose biosensor in the presence of phosphonic acid-functionalized silica nanoparticles (PFSi NPs). The PFSi NPs were first modified on the surface of glassy carbon (GC) electrode, then, GOD was adsorbed onto the PFSi NPs film by drop-coating. The PFSi NPs were characterized by transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectra. The interaction of PFSi NPs with GOD was investigated by the circular dicroism spectroscopy (CD). The results showed PFSi NPs could essentially maintain the native conformation of GOD. The direct electron transfer of GOD on (PFSi NPs)/GCE electrode exhibited excellent electrocatalytic activity for the oxidation of glucose. The proposed biosensor modified with PFSi NPs displayed a fast amperometric response (5 s) to glucose, a good linear current–time relation over a wide range of glucose concentrations from 5.00 × 10 −4 to 1.87 × 10 −1 M, and a low detection limit of 2.44 × 10 −5 M (S/N = 3). Moreover, the biosensor can be used for assessment of the concentration of glucose in many real samples (relative error < 3%). The GOD biosensor modified with PFSi NPs will have essential meaning and practical application in future that attributed to the simple method of fabrication and good performance

  19. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  20. Intramuscular Cobinamide Sulfite in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    Science.gov (United States)

    Brenner, Matthew; Kim, Jae G.; Mahon, Sari B.; Lee, Jangwoen; Kreuter, Kelly A.; Blackledge, William; Mukai, David; Patterson, Steve; Mohammad, Othman; Sharma, Vijay S.; Boss, Gerry R.

    2009-01-01

    Objective To determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. Background Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B12) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigated the use of intramuscular cobinamide sulfite to reverse cyanide toxicity induced physiologic changes in a sublethal cyanide exposure animal model. Methods New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous wave near infrared spectroscopy monitoring of tissue oxy- and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). Results Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system was in a mean of 1032 minutes in the control group and 9 minutes in the cobinamide group with a difference of 1023 minutes (95% confidence interval [CI] 116, 1874 minutes). In muscle tissue, recovery times were 76 and 24 minutes with a difference of 52 minutes (95% CI 7, 98min). Red blood cell cyanide levels returned towards normal significantly faster in cobinamide sulfite-treated animals than in control animals. Conclusions Intramuscular

  1. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  2. Direct Electrochemistry of Horseradish Peroxidase on NiO Nanoflower Modified Electrode and Its Electrocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Lijun Yan

    2016-09-01

    Full Text Available In this paper nickel oxide (NiO nanoflower was synthesized and used for the realization of direct electrochemistry of horseradish peroxidase (HRP. By using carbon ionic liquid electrode (CILE as the substrate electrode, NiO-HRP composite was casted on the surface of CILE with chitosan (CTS as the film forming material and the modified electrode was denoted as CTS/NiO-HRP/CILE. UV-Vis absorption and FT-IR spectra confirmed that HRP retained its native structure after mixed with NiO nanoflower. Direct electron transfer of HRP on the modified electrode was investigated by cyclic voltammetry with a pair of quasi-reversible redox waves appeared, indicating that the presence of NiO nanoflower on the electrode surface could accelerate the electron transfer rate between the electroactive center of HRP and the substrate electrode. Electrochemical behaviors of HRP on the modified electrode were carefully investigated. The HRP modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid with wider linear range and lower detection limit. Therefore the presence of NiO nanoflower could provide a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated electrochemical biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. This work is licensed under a Creative Commons Attribution 4.0 International License.

  3. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  4. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    Science.gov (United States)

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.

  5. Electro-catalytic degradation of sulfisoxazole by using graphene anode.

    Science.gov (United States)

    Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng

    2016-05-01

    Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.

  6. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  7. Biosensors based on cantilevers.

    Science.gov (United States)

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  8. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    Science.gov (United States)

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  10. Improved glycerol production from cane molasses by the sulfite process with vacuum or continuous carbon dioxide sparging during fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.; Lashkari, B.Z.

    1985-01-01

    The conventional sulfite process for glycerol production from molasses using Saccharomyces cerevisiae var. Hansen was modified to obtain product concentrations of up to 230 g/l and productivity of 15 g/l.d by fermenting under vacuum (80 mm) or with continuous sparging of CO2 (0.4 vvm). Under these conditions the requirement of sulfite for optimum production of glycerol was reduced by two thirds (20 g/l), the ethanol concentration in the medium was kept below 30 g/l and the competence of yeast cells to ferment was conserved throughout the fermentation period for up to 20 days. In addition to the above, the rate of incorporation of sulfite had a significant effect on glucose fermentation and glycerol yields. There was an optimal relationship between glycerol yields and the molar ratio of sulfite to glucose consumed, which for cane molasses was 0.67. This ratio was characteristic of the medium composition.

  11. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    Science.gov (United States)

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Wenwei Tang

    Full Text Available A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1 cm(-2 and a low detection limit of 5 µM (S/N = 3, with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  13. Determination of ammonium ion using a reagentless amperometric biosensor based on immobilized alanine dehydrogenase.

    Science.gov (United States)

    Tan, Ling Ling; Musa, Ahmad; Lee, Yook Heng

    2011-01-01

    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.

  14. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    Science.gov (United States)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  15. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    International Nuclear Information System (INIS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-01-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K 3 [Fe(CN) 6 ]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM −1 cm −2 ) when working at a low working potential (0.15 V). The linear range was 0.5 mM–15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications. (paper)

  16. Detection Limits for Nanoscale Biosensors

    National Research Council Canada - National Science Library

    Sheehan, Paul E; Whitman, Lloyd J

    2005-01-01

    We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales...

  17. Role of pH on the acute toxicity of sulfite in water. [Carassius auratus; Leistes reticulatus

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.

    1976-01-01

    The toxicity of sulfite to fish decreases with increasing pH value, because the HSO/sub 3//sup -/ ion is more toxic than the SO/sub 3//sup 2 -/ ion. An effective sulfite concentration S/sub eff/ which is proportional to the toxicity on fish is expressed by the following equation: S/sub eff/ = (HSO/sub 3//sup -/) + f(SO/sub 3//sup 2 -/), where f is a coefficient which expresses the change of toxicity of sulfite depending on the pH of the water, and varies for each species of fish. For goldfish, owing to the very small toxic contribution of SO/sub 3//sup 2 -/ ion (f = 0.07), the pH dependence of the toxicity of sulfite on pH was so strong that sulfite seemed almost non-toxic in basic solution. However, f for guppy is somewhat larger (f = 0.20) so that the toxicity of sulfite weakly depends on the pH value of water.

  18. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  19. Micro- and nanogap based biosensors

    OpenAIRE

    Hammond, Jules L.

    2017-01-01

    Biosensors are used for the detection of a range of analytes for applications in healthcare, food production, environmental monitoring and biodefence. However, many biosensing platforms are large, expensive, require skilled operators or necessitate the analyte to be labelled. Direct electrochemical detection methods present a particularly attractive platform due to the simplified instrumentation when compared to other techniques such as fluorescence-based biosensors. With modern integrated ci...

  20. A manganese sulfite with extended metal-oxygen-metal bonds exhibiting hydrogen uptake

    International Nuclear Information System (INIS)

    Rao, K. Prabhakara; Govindaraj, A.; Rao, C.N.R.

    2007-01-01

    A manganese sulfite of the formula Mn 5 (OH) 4 (SO 3 ) 3 .2H 2 O, I{a=7.5759(7) A, b=8.4749(8) A, c=10.852(1) A, β=100.732(2) o , Z=2, space group=P2 1 /m (no. 11), R 1 =0.0399 and wR 2 =0.1121 [for R indexes I>2σ(I)]}, comprising Mn 3 O 14 units and extended Mn-O-Mn bonds along the three dimensions has been synthesized under hydrothermal conditions. It has narrow channels along the b-axis and exhibits hydrogen storage of 2.1 wt% at 300 K and 134 bar. - Graphical abstract: A three-dimensional manganese sulfite with one-dimensional channels showing selective hydrogen absorption has been synthesized and characterized

  1. Recycling microcavity optical biosensors.

    Science.gov (United States)

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  2. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    OpenAIRE

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this thesis was to make this biological process more broadly applicable for desulfurization of flue-gases and ground- and wastewaters by using the cheap chemical methanol as electron donor for the reduct...

  4. Efficiency of population-dependent sulfite against Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    Longin, Cédric; Degueurce, Claudine; Julliat, Frédérique; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2016-11-01

    Brettanomyces bruxellensis is considered as a spoilage yeast encountered mainly in red wine. It is able to reduce vinylphenols from phenolic acids to ethylphenols. These volatiles are responsible for the phenolic "Brett character" described as animal, farm, horse sweat and animal leather odors. Other molecules are responsible for organoleptic deviations described as "mousiness taint". SO 2 is the product most often used by winemakers to prevent B. bruxellensis growth. Usually, the recommended molecular dose of SO 2 (active SO 2 , mSO 2 ) is highly variable, from 0.3 to 0.8mg/L. But these doses do not take into account differences of strain resistance to sulfites or population levels. Moreover, SO 2 is known as a chemical stressor inducing a viable but nonculturable (VBNC) state of B. bruxellensis. These cells, which are non-detectable by plate counting, can lead to new contamination when the amount of sulfite decreases over time. Consequently, we first assessed the effect of SO 2 levels in red wine on two strains with phenotypically different sulfite resistances. Then, we studied the relationship between amounts of SO 2 (0, 0.5, 0.9 and 1.1mg/L active SO 2 ) and population levels (10 3 , 10 4 and 10 5 cells/mL) in red wine. Yeasts were enumerated by both plate counting and flow cytometry over time using viability dye. Our results showed different SO 2 resistances according to the strain used. A relationship between yeast population level and SO 2 resistance was demonstrated: the higher the yeast concentration, the lower the efficiency of SO 2 . Under certain conditions, the VBNC state of B. bruxellensis was highlighted in red wine. Yeasts in this VBNC state did not produce 4-EP. Moreover, cells became culturable again over time. All these results provide new information enabling better management of sulfite addition during wine aging. Copyright © 2016. Published by Elsevier Ltd.

  5. Continuous fed-batch vacuum fermentation system for glycerol from molasses by the sulfite process

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.

    1985-01-01

    A continuous fed-batch vacuum fermentation system has been described for the production of glycerol from cane molasses (and juice) by a conventional sulfite process. A glycerol concentration of 80 g/l was achieved with a productivity of 30 g/l/day at a dilution rate of 0.4/day which is twice that from a vacuum batch process (15 g/l/day) or four times that obtained without vacuum (8 g/l/day). 8 references.

  6. Biorefinery lignosulfonates from sulfite-pretreated softwoods as dispersant for graphite

    Science.gov (United States)

    Yanlin Qin; Lixuan Yu; Ruchun Wu; Dongjie Yang; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Two biorefinery lignosulfonates (LSs), Ca-LS-DF and Na-LS-LP were, respectively, isolated from pilot-scale sulfite-pretreated spent liquor of lodgepole pine and fermentation residue of Douglas-fir harvest forest residue. The molecular weights of Na-LS-LP and Ca-LS-DF were approximately 9 000 and 11 000 Da, respectively. The two LSs were applied as dispersant for...

  7. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  8. Preparation and electrocatalytic property of WC/carbon nanotube composite

    International Nuclear Information System (INIS)

    Li Guohua; Ma Chunan; Tang Junyan; Sheng Jiangfeng

    2007-01-01

    Tungsten carbide/carbon nanotube composite was prepared by surface decoration and in situ reduction-carbonization. The samples were characterized by XRD, SEM, EDS, TEM, HRTEM and BET, respectively. The XRD results show that the sample is composed of carbon nanotube, tungsten carbide and tungsten oxide. The EDS results show that the distribution of tungsten oxide is consistent with that of tungsten carbide. SEM, TEM and HRTEM results show that the tungsten carbide nanoparticle with irregular granule grows on the outside surface of carbon nanotube homogenously. The electrocatalytic activity of the sample for p-nitrophenol reduction was tested by a powder microelectrode in a basic solution. The results show that the electrocatalytic activity of the sample is higher than that of granular tungsten carbide, hollow globe tungsten carbide with mesoporosity and carbon nanotube purified. The improvement of the electrocatalytic activity of the sample can be attributed to its components and composite structure. These results indicate that tungsten carbide/carbon nanotube composite is one of the effective ways to improve the electrocatalytic activity of tungsten carbide

  9. Protective role of curcumin against sulfite-induced structural changes in rats' medial prefrontal cortex.

    Science.gov (United States)

    Noorafshan, Ali; Asadi-Golshan, Reza; Abdollahifar, Mohammad-Amin; Karbalay-Doust, Saied

    2015-08-01

    Sodium metabisulfite as a food preservative can affect the central nervous system. Curcumin, the main ingredient of turmeric has neuroprotective activity. This study was designed to evaluate the effects of sulfite and curcumin on the medial prefrontal cortex (mPFC) using stereological methods. Thirty rats were randomly divided into five groups. The rats in groups I-V received distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sulfite + curcumin, respectively, for 8 weeks. The brains were subjected to the stereological methods. Cavalieri and optical disector techniques were used to estimate the total volume of mPFC and the number of neurons and glial cells. Intersections counting were applied on the thick vertical uniform random sections to estimate the dendrites length, and classify the spines. Non-parametric tests were used to analyze the data. The mean mPFC volume, neurons number, glia number, dendritic length, and total spines per neuron were 3.7 mm(3), 365,000, 180,000, 1820 µm, and 1700 in distilled water group, respectively. A reduction was observed in the volume of mPFC (∼8%), number of neurons (∼15%), and number of glia (∼14%) in mPFC of the sulfite group compared to the control groups (P curcumin had a protective role against the changes in the rats.

  10. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    Science.gov (United States)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  11. Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications

    International Nuclear Information System (INIS)

    Yin, Duanduan; Liu, Jian; Bo, Xiangjie; Li, Mian; Guo, Liping

    2017-01-01

    Graphical abstract: Zr-PorMOF/MPC composites were prepared, which used to detect H 2 O 2 and simultaneously detect UA, XA and HX Display Omitted -- Highlights: •Preparing Zr-PorMOF/MPC composites by a simple one-step solvothermal reaction. •Enhanced electrocatalytic activity at Zr-PorMOF/MPC than Zr-PorMOF and MPC. •A low detection limit, short response time and low applied potential towards H 2 O 2 reduction. •Simultaneous determination of UA, XA and HX. -- Abstract: In this work, a novel porphyrinic metal-organic framework-based composite has been successfully synthesized by a simple one-step solvothermal method through growing Zr-PorMOF on macroporous carbon (MPC). Porphyrin-base MOFs combining the structural adjustable of MOFs and the specific catalytic activity of biomimetic catalysts play an important role in electrocatalysis. A series of characterization show that the roles of MPC as follow: (1) MPC could avoid the agglomeration of Zr-PorMOF particles and increase the specific surface area; (2) MPC could improve the electrochemical stability of Zr-PorMOF particles; (3) MPC could reduce the electron transfer resistance. Therefore, MPC plays the role of the conductive bridges to provide facile charge transport. The obtained Zr-PorMOF/MPC composites exhibit much better electrocatalytic activity for the reduction of hydrogen peroxide (H 2 O 2 ) than the pristine Zr-PorMOF due to the synergy of Zr-PorMOF and MPC. This enzyme-free H 2 O 2 sensor shows two linear relationships in the ranges 0.5–137 μM (R 2 = 0.991, sensitivity = 66 μA mM −1 ) and 137–3587 μM (R 2 = 0.993, sensitivity = 16 μA mM −1 ), with a low over-potential at −0.2 V, a fast response time within 1 s and a low limit of detection (LOD) of 0.18 μM. Moreover, Zr-PorMOF/MPC composites were used to simultaneously detect uric acid (UA), xanthine (XA) and hypoxanthine (HX). These three substances are degradation products of purine metabolism. In addition, Zr-PorMOF/MPC composites

  12. Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sabury, Sina [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene–gold nanocomposite (PRGO–AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO–AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV–Vis spectroscopy were used to confirm formation of graphene and graphene–gold composite. Then, the electrochemical behavior of PRGO–AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO–AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06 μM and 15.04 mA mM{sup −1}, respectively. - Highlights: • PGRO–AuNPs modified electrode employed as a reliable scaffold for GODx immobilization. • AuNPs prevent stacking PRGO layers, thus improve the electrochemical behavior of biosensor. • GODx electron transfer was improved because of good interaction with PRGO–AuNP scaffold. • PRGO–AuNP/GODx modified biosensor showed excellent sensitivity towards glucose.

  13. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  14. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin.

    Science.gov (United States)

    Zhao, Changzhi; Wan, Li; Jiang, Li; Wang, Qin; Jiao, Kui

    2008-12-01

    A cholesterol biosensor based on direct electron transfer of a hemoglobin-encapsulated chitosan-modified glassy carbon electrode has been developed for highly sensitive and selective analysis of serum samples. Modified by films containing hemoglobin and cholesterol oxidase, the electrode was prepared by encapsulation of enzyme in chitosan matrix. The hydrogen peroxide produced by the catalytic oxidation of cholesterol by cholesterol oxidase was reduced electrocatalytically by immobilized hemoglobin and used to obtain a sensitive amperometric response to cholesterol. The linear response of cholesterol concentrations ranged from 1.00 x 10(-5) to 6.00 x 10(-4) mol/L, with a correlation coefficient of 0.9969 and estimated detection limit of cholesterol of 9.5 micromol/L at a signal/noise ratio of 3. The cholesterol biosensor can efficiently exclude interference by the commonly coexisting ascorbic acid, uric acid, dopamine, and epinephrine. The sensitivity to the change in the concentration of cholesterol as the slope of the calibration curve was 0.596 A/M. The relative standard deviation was under 4.0% (n=5) for the determination of real samples. The biosensor is satisfactory in the determination of human serum samples.

  15. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  16. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    Science.gov (United States)

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  17. An Amperometric Biosensor Based on Alanine Dehydrogenase for the Determination of Low Level of Ammonium Ion in Water

    Directory of Open Access Journals (Sweden)

    Tan Ling Ling

    2011-01-01

    Full Text Available An amperometric electrochemical biosensor has been developed for ammonium (NH4+ ion detection by immobilising alanine dehydrogenase (AlaDH enzyme in a photocurable methacrylic membrane made up of poly(2-hydroxyethyl methacrylate (pHEMA on a screen-printed carbon paste electrode (SPE. The current detected was based on the electrocatalytic oxidation of nicotinamide adenine dinucleotide reduced (NADH that is proportional to the consumption of NH4+ ion whilst enzymatic amination of AlaDH and pyruvate is taking place. The biosensor was operated amperometrically at a potential of +0.6 V and optimum pH 7. The NH4+ biosensor demonstrated linear response to NH4+ ion concentration in the range of 0.03–1.02 mg/L with a limit of detection (LOD of 8.52 μg/L. The proposed method has been successfully applied to the determination of NH4+ ion in river water samples without any pretreatment. The levels of possible interferents in the waters were negligible to cause any interference on the proposed method. The analytical performance of the biosensor was comparable to the colorimetric method using Nesslerisation but with much lower detection limit and linear response range at ppb level.

  18. Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous

    Directory of Open Access Journals (Sweden)

    Fuzi Mohamed Fartas

    2017-05-01

    Full Text Available In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr nanocomposite-modified screen-printed carbon electrode (SPCE for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV and cyclic voltammetry (CV. Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 μM with sensitivity of 0.624 μA/μM and the limit of detection (LOD of 0.016 μM (S/N = 3. The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.

  19. Biosensor for metal analysis and speciation

    Science.gov (United States)

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  20. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds

    International Nuclear Information System (INIS)

    Fuku, Xolile; Iftikar, Faiza; Hess, Euodia; Iwuoha, Emmanuel; Baker, Priscilla

    2012-01-01

    Highlights: ► Cytochrome c biosensor for detection of KCN, As 2 O 3 and Fe 2 K (CN) was constructed. ► Detection limits in the range of 4.3–9.1 μM for the analytes were obtained using CV, SWV and EIS. ► The detection limits for the biosensor were significantly lower than current EPA and WHO guidelines. - Abstract: An electrochemical method based on a cytochrome c biosensor was developed, for the detection of selected arsenic and cyanide compounds. Boron doped diamond (BDD) electrode was used as a transducer, onto which cytochrome c was immobilised and used for direct determination of Prussian blue, potassium cyanide and arsenic trioxide. The sensitivity as calculated from cyclic voltammetry (CV) and square wave voltammetry (SWV), for each analyte in phosphate buffer (pH = 7) was found to be in the range of (1.1–4.5) × 10 −8 A μM −1 and the detection limits ranged from 4.3 to 9.1 μM. The biosensor is therefore able to measure significantly lower than current Environmental Protection Agency (EPA) and World Health Organisation (WHO) guidelines, for these types of analytes. The protein binding was monitored as a decrease in biosensor peak currents by SWV and as an increase in biosensor charge transfer resistance by electrochemical impedance spectroscopy (EIS). EIS provided evidence that the electrocatalytic advantage of BDD electrode was not lost upon immobilisation of cytochrome c. The interfacial kinetics of the biosensor was modelled as equivalent electrical circuit based on electrochemical impedance spectroscopy data. UV–vis spectroscopy was used to confirm the binding of the protein in solution by monitoring the intensity of the soret bands and the Q bands. FTIR was used to characterise the protein in the immobilised state and to confirm that the protein was not denatured upon binding to the pre-treated bare BDD electrode. SNFTIR of cyt c immobilised at platinum electrode, was used to study the effect of oxidation state on the surface bond

  1. Impedimetric biosensors and immunosensors

    International Nuclear Information System (INIS)

    Prodromidis, M.I.

    2007-01-01

    The development of methods targeting the direct monitoring of antibody-antigen interactions is particularly attractive. The design of label-free affinity-based probing concepts is the objective of much current research, at both academic and industrial levels, towards establishing alternative methods to the already existing ELISA-based immunoassays. Among these, Electrochemical Impedance Spectroscopy (EIS) represents one of the most powerful methods, due to the ability of EIS-based sensors to be more easily integrated into multi-array or microprocessor, controlled diagnostic tools. During the last decade, EIS and the concept of biochemical capacitors have been widely used for probing various types of biomolecular interactions (immunosensors, DNA hybridization, protein-protein interactions). So far, impedimetric or capacitive immunosensors have been successfully applied at the academic level. However, no prototypes have been released into the market, since major fundamental issues still exist. Even though this fact has brought the reliability of impedimetric immunosensors into question, features associated with electrochemical approaches, namely the ability to be miniaturized, remote control of implanted sensors, low cost of electrode mass production and cost effective instrumentation (without need of high-energy sources) keep impedimetric sensors particularly attractive as compared to other approaches based on microbalances, surface plasmon resonance or ellipsometry. This lecture outlines the theoretical background of impedimetric immunosensors and presents different types of impedimetric biosensors as well as the instrumental approaches that have been so far proposed in the literature. (author)

  2. Development of an Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Se-MCM-41 Mesoporous Composite

    Directory of Open Access Journals (Sweden)

    Sabriye Yusan

    2018-01-01

    Full Text Available A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD onto selenium nanoparticle-mesoporous silica composite (MCM-41 matrix and then prepared as a carbon paste electrode (CPE. Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10−5 to 2 × 10−3 M. Under optimal conditions, the biosensor exhibits high sensitivity (0.34 µA·mM−1, low detection limit (1 × 10−4 M, high affinity to glucose (Km = 0.02 mM, and also good reproducibility (R.S.D. 2.8%, n=10 and a stability of about ten days when stored dry at +4°C. Besides, the effects of pH value, scan rate, mediator effects on the glucose current, and electroactive interference of the biosensor were also discussed. As a result, the biosensor exhibited an excellent electrocatalytic response to glucose as well as unique stability and reproducibility.

  3. The electrochemical oxidation of sulfite on gold: UV-Vis reflectance spectroscopy at a rotating disk electrode

    International Nuclear Information System (INIS)

    Tolmachev, Yuriy V.; Scherson, Daniel A.

    2004-01-01

    Certain aspects of the electrochemical oxidation of sulfite in buffered, mildly acidic aqueous solutions (pH 5.23) have been examined using in situ near normal incidence UV-Vis reflectance spectroscopy (NNI-UVRS) at a Au rotating disk electrode (RDE). The dependence of the limiting current, i lim , on the rotation rate of the RDE was found to display classical Levich behavior up to potentials well within the range in which Au forms a surface oxide in the neat (sulfite-free) supporting electrolyte. However, simultaneous in situ NNI-UVRS measurements performed at λ=500 nm during sulfite oxidation failed to show any evidence for the presence of oxide on the Au surface within that entire potential range. Polarization of the Au RDE at more positive potentials led to a sudden drop in i lim , ca. an order of magnitude, which correlated with an abrupt decrease in the intensity of the reflected light, consistent with formation of (one or more forms of) Au oxide on the surface. On the basis of these and other observations a model has been proposed in which sulfite reacts chemically with adsorbed oxygen on the surface (oxygen atom transfer) in the region that precedes partial inhibition. As the potential is increased, adsorbed oxygen undergoes Au-O place exchange forming two-dimensional nuclei on the surface, which undergo rapid (autocatalytic) growth, covering an area large enough to block significantly sulfite oxidation

  4. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Noorbakhsh, Abdollah

    2011-01-01

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis-Menten constant (K M ), of immobilized GOx were 1.50 x 10 -12 mol cm -2 , 9.2 ± 0.5 s -1 and 3.42(±0

  5. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  6. Micro-and nanoelectromechanical biosensors

    CERN Document Server

    Nicu, Liviu

    2014-01-01

    Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr

  7. Selective electrocatalytic oxidation of sorbitol to fructose and sorbose.

    Science.gov (United States)

    Kwon, Youngkook; de Jong, Ed; van der Waal, Jan Kees; Koper, Marc T M

    2015-03-01

    A new electrocatalytic method for the selective electrochemical oxidation of sorbitol to fructose and sorbose is demonstrated by using a platinum electrode promoted by p-block metal atoms. By the studying a range of C4, C5 and C6 polyols, it is found that the promoter interferes with the stereochemistry of the polyol and thereby modifies its reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biosensors in Clinical Practice: Focus on Oncohematology

    Directory of Open Access Journals (Sweden)

    Agostino Cortelezzi

    2013-05-01

    Full Text Available Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.

  9. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  10. Electrodeposition of gold from formaldehyde-sulfite baths: bath stability and deposits characterization

    Directory of Open Access Journals (Sweden)

    Juliana L. Cardoso

    2011-01-01

    Full Text Available It was investigated Au(I-sulfite baths containing formaldehyde. As a result, high stability was achieved for baths containing formaldehyde concentration close to 10 mL L-1 with a lifetime superior to 600 days. On the other hand, cyclic voltammograms indicated that the increase of formaldehyde concentration in the bath promotes decreasing of the maximum cathodic current, so that, if the formaldehyde concentration is high, the surface areal concentration of gold will be low. Also, the lowest surface roughness was obtained for 10 mL L-1 of formaldehyde.

  11. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    OpenAIRE

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-01-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG0, which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG0 conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ molK1, respectively, while the barriers associated with the GG0/GT and GT/GG isomerizations are 1.90 and 9.64 kJ molK1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonst...

  12. Graphene-gold nanoparticle composite: application as a good scaffold for construction of glucose oxidase biosensor.

    Science.gov (United States)

    Sabury, Sina; Kazemi, Sayed Habib; Sharif, Farhad

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene-gold nanocomposite (PRGO-AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO-AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV-Vis spectroscopy were used to confirm formation of graphene and graphene-gold composite. Then, the electrochemical behavior of PRGO-AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO-AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06μM and 15.04mAmM(-1), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Amperometric biosensor based on direct electrochemistry of hemoglobin in poly-allylamine (PAA) film

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Lee, Dong-Yun; Park, Sang-Hyun; Kwon, Young-Soo

    2007-01-01

    Hemoglobin (Hb) was immobilized in poly-allylamine (PAA) film onto the gold electrode by layer by layer (LBL) method. The modified electrode exhibited a pair of well-defined peaks during cyclic voltammetry, which was attributed from the direct electron transfer of heme proteins. The immobilized Hb showed an excellent electrocatalytical response to the reduction of hydrogen peroxide. The sensor exhibited a fast response and high sensitivity. Through the use of optimized conditions, the linear range for H 2 O 2 detection was from 2.5 x 10 -6 M to 5 x 10 -4 M with detection limit of 0.2 μM. The proposed biosensor showed long-lasting stability and excellent reproducibility

  14. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  15. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  16. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  17. An electromagnetic system for biosensors

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to an electromagnetic system for biosensors, in which the system can switch quickly between high magnetic gradients, without the need of movement of mech. elements. This is realized by two independent emu which are sepd. in the region of the pole shoes over a gap, in which a

  18. Development of Biosensors From Graphene

    Institute of Scientific and Technical Information of China (English)

    高瑞红; 孙红; 李霄寒; 于冲

    2017-01-01

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene -like 2D materials, single and few -atom -thick layers of van der Waals materials, which show fascinating and technologically useful properties.This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials.

  19. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  20. Biosensors and multiple mycotoxin analysis

    NARCIS (Netherlands)

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin

  1. Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples

    Directory of Open Access Journals (Sweden)

    Iria Bravo

    2017-01-01

    Full Text Available Lactic acid is a relevant analyte in the food industry, since it affects the flavor, freshness, and storage quality of several products, such as milk and dairy products, juices, or wines. It is the product of lactose or malo-lactic fermentation. In this work, we developed a lactate biosensor based on the immobilization of lactate oxidase (LOx onto N,N′-Bis(3,4-dihydroxybenzylidene -1,2-diaminobenzene Schiff base tetradentate ligand-modified gold nanoparticles (3,4DHS–AuNPs deposited onto screen-printed carbon electrodes, which exhibit a potent electrocatalytic effect towards hydrogen peroxide oxidation/reduction. 3,4DHS–AuNPs were synthesized within a unique reaction step, in which 3,4DHS acts as reducing/capping/modifier agent for the generation of stable colloidal suspensions of Schiff base ligand–AuNPs assemblies of controlled size. The ligand—in addition to its reduction action—provides a robust coating to gold nanoparticles and a catalytic function. Lactate oxidase (LOx catalyzes the conversion of l-lactate to pyruvate in the presence of oxygen, producing hydrogen peroxide, which is catalytically oxidized at 3,4DHS–AuNPs modified screen-printed carbon electrodes at +0.2 V. The measured electrocatalytic current is directly proportional to the concentration of peroxide, which is related to the amount of lactate present in the sample. The developed biosensor shows a detection limit of 2.6 μM lactate and a sensitivity of 5.1 ± 0.1 μA·mM−1. The utility of the device has been demonstrated by the determination of the lactate content in different matrixes (white wine, beer, and yogurt. The obtained results compare well to those obtained using a standard enzymatic-spectrophotometric assay kit.

  2. Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples.

    Science.gov (United States)

    Bravo, Iria; Revenga-Parra, Mónica; Pariente, Félix; Lorenzo, Encarnación

    2017-01-13

    Lactic acid is a relevant analyte in the food industry, since it affects the flavor, freshness, and storage quality of several products, such as milk and dairy products, juices, or wines. It is the product of lactose or malo-lactic fermentation. In this work, we developed a lactate biosensor based on the immobilization of lactate oxidase (LOx) onto N , N '-Bis(3,4-dihydroxybenzylidene) -1,2-diaminobenzene Schiff base tetradentate ligand-modified gold nanoparticles (3,4DHS-AuNPs) deposited onto screen-printed carbon electrodes, which exhibit a potent electrocatalytic effect towards hydrogen peroxide oxidation/reduction. 3,4DHS-AuNPs were synthesized within a unique reaction step, in which 3,4DHS acts as reducing/capping/modifier agent for the generation of stable colloidal suspensions of Schiff base ligand-AuNPs assemblies of controlled size. The ligand-in addition to its reduction action-provides a robust coating to gold nanoparticles and a catalytic function. Lactate oxidase (LOx) catalyzes the conversion of l-lactate to pyruvate in the presence of oxygen, producing hydrogen peroxide, which is catalytically oxidized at 3,4DHS-AuNPs modified screen-printed carbon electrodes at +0.2 V. The measured electrocatalytic current is directly proportional to the concentration of peroxide, which is related to the amount of lactate present in the sample. The developed biosensor shows a detection limit of 2.6 μM lactate and a sensitivity of 5.1 ± 0.1 μA·mM -1 . The utility of the device has been demonstrated by the determination of the lactate content in different matrixes (white wine, beer, and yogurt). The obtained results compare well to those obtained using a standard enzymatic-spectrophotometric assay kit.

  3. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    Science.gov (United States)

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  4. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

    Directory of Open Access Journals (Sweden)

    Celia García-Hernández

    2016-12-01

    Full Text Available The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs, copper phthalocyanine (PEDOT/PSS/CuPc or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2. Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained.

  5. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-10-01

    Full Text Available Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose and the effect of process parameters (pH, temperature and sugar concentration on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w dry matter. Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v dry matter. Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery.

  6. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.

    Science.gov (United States)

    Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun

    2014-10-01

    Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The role of extended Fe4S4 cluster ligands in mediating sulfite reductase hemoprotein activity.

    Science.gov (United States)

    Cepeda, Marisa R; McGarry, Lauren; Pennington, Joseph M; Krzystek, J; Elizabeth Stroupe, M

    2018-05-28

    The siroheme-containing subunit from the multimeric hemoflavoprotein NADPH-dependent sulfite reductase (SiR/SiRHP) catalyzes the six electron-reduction of SO 3 2- to S 2- . Siroheme is an iron-containing isobacteriochlorin that is found in sulfite and homologous siroheme-containing nitrite reductases. Siroheme does not work alone but is covalently coupled to a Fe 4 S 4 cluster through one of the cluster's ligands. One long-standing hypothesis predicted from this observation is that the environment of one iron-containing cofactor influences the properties of the other. We tested this hypothesis by identifying three amino acids (F437, M444, and T477) that interact with the Fe 4 S 4 cluster and probing the effect of altering them to alanine on the function and structure of the resulting enzymes by use of activity assays, X-ray crystallographic analysis, and EPR spectroscopy. We showed that F437 and M444 gate access for electron transfer to the siroheme-cluster assembly and the direct hydrogen bond between T477 and one of the cluster sulfides is important for determining the geometry of the siroheme active site. Copyright © 2018. Published by Elsevier B.V.

  8. Nanorods of a new metal-biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing.

    Science.gov (United States)

    Yang, Jiao; Zhou, Bo; Yao, Jie; Jiang, Xiao-Qing

    2015-05-15

    Metal organic coordination polymers (CPs), as most attractive multifunctional materials, have been studied extensively in many fields. However, metal-biomolecule CPs and CPs' electrochemical properties and applications were studied much less. We focus on this topic aiming at electrochemical biosensors with excellent performance and high biocompatibility. A new nanoscaled metal-biomolecule CP, Mn-tyr, containing manganese and tyrosine, was synthesized hydrothermally and characterized by various techniques, including XRD, TEM, EDS, EDX mapping, elemental analysis, XPS, and IR. Electrode modified with Mn-tyr showed novel bidirectional electrocatalytic ability toward both reduction and oxidation of H2O2, which might be due to Mn. With the assistance of CNTs, the sensing performance of Mn-tyr/CNTs/GCE was improved to a much higher level, with high sensitivity of 543 mA mol(-1) L cm(-2) in linear range of 1.00×10(-6)-1.02×10(-4) mol L(-1), and detection limit of 3.8×10(-7) mol L(-1). Mn-tyr/CNTs/GCE also showed fast response, high selectivity, high steadiness and reproducibility. The excellent performance implies that the metal-biomolecule CPs are promising candidates for using in enzyme-free electrochemical biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles

    International Nuclear Information System (INIS)

    Su, Shao; Sun, Haofan; Xu, Fei; Yuwen, Lihui; Wang, Lianhui; Fan, Chunhai

    2014-01-01

    An electrochemical glucose biosensor was developed by immobilizing glucose oxidase (GOx) on a glass carbon electrode that was modified with molybdenum disulfide (MoS 2 ) nanosheets that were decorated with gold nanoparticles (AuNPs). The electrochemical performance of the modified electrode was investigated by cyclic voltammetry, and it is found that use of the AuNPs-decorated MoS 2 nanocomposite accelerates the electron transfer from electrode to the immobilized enzyme. This enables the direct electrochemistry of GOx without any electron mediator. The synergistic effect the MoS 2 nanosheets and the AuNPs result in excellent electrocatalytic activity. Glucose can be detected in the concentration range from 10 to 300 μM, and down to levels as low as 2.8 μM. The biosensor also displays good reproducibility and long-term stability, suggesting that it represents a promising tool for biological assays. (author)

  10. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  11. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  12. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  13. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  14. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, Majid; Basirun, W.J.; Alias, Y.

    2016-01-01

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H_2O_2). The behaviors of the hybrid electrodes towards H_2O_2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml"−"1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H_2O_2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  15. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.

    Science.gov (United States)

    Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano

    2016-01-01

    Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Improved glycerol production from cane molasses by the sulfite process with vacuum or continuous carbon dioxide sparging during fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.; Lashkari, B.Z.

    1985-01-01

    The conventional sulfite process for glycerol production from molasses using Saccharomyces cerevisiae var. Hansen was modified to obtain product concentrations of up to 230 g/l and productivity of 15 g/l x d by fermenting under vacuum (80 mm) or with continuous sparging of CO/sub 2/ (0.4 vvm). Under these conditions the requirement of sulfite for optimum production of glycerol was reduced by two thirds (20 g/l), the ethanol concentration in the medium was kept below 30 g/l and the competence of yeast cells to ferment was conserved throughout the fermentation period for up to 20 days. In addition to the above, the rate of incorporation of sulfite had a significant effect on glucose fermentation and glycerol yields. There was an optimal relationship between glycerol yields and the molar ratio of sulfite to glucose consumed, which for cane molasses was 0.67. This ratio was characteristic of the medium composition. 10 references, 4 figures, 3 tables.

  17. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading

    Science.gov (United States)

    Jinlan Cheng; Shao-Yuan Leu; J.Y. Zhu; Thomas W. Jeffries

    2014-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a...

  18. Thiosulfate and Sulfite Distributions in Porewater of Marine-Sediments Related to Manganese, Iron, and Sulfur Geochemistry

    DEFF Research Database (Denmark)

    Thamdrup, B; Finster, Kai; Fossing, Henrik

    1994-01-01

    Depth distributions of thiosulfate (S2O32-) and sulfite (SO32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicate...

  19. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    Science.gov (United States)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  20. Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataficum sp nov

    NARCIS (Netherlands)

    Goorissen, H.P.; Boschker, H.T.S.; Stams, A.J.M.; Hansen, T.A.

    2003-01-01

    Four strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from hot solfataric fields in the Krafla area of north-east Iceland, using methanol and sulfite as substrates. Morphologically, these strains resembled thermophilic Desulfotomaculum species. The

  1. Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataficum sp nov

    NARCIS (Netherlands)

    Goorissen, HP; Boschker, HTS; Stams, AJM; Hansen, TA

    Four strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from hot solfataric fields in the Krafla area of north-east Iceland, using methanol and sulfite as substrates. Morphologically, these strains resembled thermophilic Desulfotomaculum species. The

  2. Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite.

    Science.gov (United States)

    Dereven'kov, Ilia A; Salnikov, Denis S; Makarov, Sergei V; Boss, Gerry R; Koifman, Oskar I

    2013-11-21

    We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)-SO2(-) complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3(-) (for oxidation by thiosulfate), S2O5(2-), HSO3(-), and aquated SO2 (for oxidation by sulfite), and S2O4(2-) and SO2(-) (for oxidation by dithionite). No difference was observed in kinetics with cob(i)alamin or cob(i)inamide as reductants.

  3. Sulfite liquor components as a starting raw material in the production of single-cell protein. [Paecilomyces varioti

    Energy Technology Data Exchange (ETDEWEB)

    Smailagic, M; Nadazdin, M; Dzinic, M; Pavlovic, D

    1980-01-01

    Sulfite liquor from beech cellulose manufacture was steam- treated, adjusted to 8.5% solids, and fermented by Paecilomyces varioti. At a residence time of approximately 4 hours, 9.7 g protein feed/kg was obtained. The condensate after dehydration of the feed could be reused for fermentation because of a low BOD value and the absence of acetic and formic acids.

  4. Inhibition of phosphorylation and incorporation of thymidine in Duckweed (Lemna minor L. ) by sulfur dioxide and sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Braendle, R; Stoeckli, B; Erismann, K H

    1975-05-15

    As there appears to be no thymidine kinase in duckweed (Lemna minor L.), thymidine seems to be phosphorylated by a nucleoside phosphotransferase. Phosphorylation and incorporation are inhibited by sulfur compounds such as sulfur dioxide and sulfite. The data are discussed in relation to the physiological effect of the air pollutant (SO2) on plant life. 12 references, 2 tables.

  5. Fermentation kinetics for xylitol production by a Pichia stipitis D-xylulokinase mutant previously grown in spent sulfite liquor

    Science.gov (United States)

    Rita C.L.B. Rodrigues; Chenfeng Lu; Bernice Liu; Thomas W. Jeffries

    2008-01-01

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3[delta]) to convert these sugars into useful products. FPL-YS30 produces a...

  6. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  7. Electrocatalytic Activity and Selectivity - a Density Functional Theory Study

    DEFF Research Database (Denmark)

    Karamad, Mohammadreza

    -catalysts towards two appealing electrochemical reactions: 1)electroreduction of CO2 to hydrocarbons and alcohols, and 2) electrochemical production of hydrogen peroxide, i.e. H2O2, from its elements i.e. H2 and O2. The thesis is divided into three parts: In the first part, electro-catalytic activity of different...... metallic and functionalized graphene catalysts. Secondly, we considered CO2 reduction on RuO2, which has a distinctive catalytic activity and selectivity compared to Cu to get insight into mechanistic pathway of the CO2 reduction. Finally, in the last part, we have taken advantage of the isolated active...

  8. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Science.gov (United States)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-07-18

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  9. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-11-07

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  10. ENHANCING DIRECT ELECTRON TRANSFER OF GLUCOSE OXIDASE USING A GOLD NANOPARTICLE |TITANATE NANOTUBE NANOCOMPOSITE ON A BIOSENSOR

    International Nuclear Information System (INIS)

    Zhao, Ruoxia; Liu, Xiaoqiang; Zhang, Jiamei; Zhu, Jie; Wong, Danny K.Y.

    2015-01-01

    ABSTRACT: In this paper, we have developed a gold nanoparticle (GNP) decorated titanate nanotubes (TNT) nanocomposite that aids in the direct electron transfer of a large enzyme, such as glucose oxidase (GOD), in which the electroactive site of flavin adenine dinucleotide is deeply buried within the enzyme. The ionic liquid, brominated 1-decyl-3-methyl imidazole, was used to immobilise the nanocomposite and the enzyme on a glassy carbon electrode to further aid in the electron transfer between GOD and the electrode surface. Nafion was also added to anchor the biosensor scaffold. Initially, the tubiform geometry of titanate nanomaterials and the GNP-TNT nanocomposite was confirmed by microscopic and spectroscopic techniques before glucose oxidase was entrapped in the nanocomposite. Based on voltammetric results, this biosensor showed a strong electrocatalytic capability towards glucose (with a heterogeneous electron transfer rate constant of 7.1 s −1 at 180 mV s −1 ) and the calibration for glucose exhibited a high sensitivity (5.1 μA mM −1 ) and a wide linear range (0.01–1.2 mM). These results demonstrated superior analytical performance of our biosensor over others fabricated using bulkier TiO 2 nanoparticles or nanobundles, which could be attributed to a high degree of biocompatibility to glucose oxidase and electrical conductivity of the nanocomposite

  11. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  12. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  13. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  14. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    Science.gov (United States)

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    Science.gov (United States)

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  16. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  17. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  18. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    Science.gov (United States)

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  19. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    Science.gov (United States)

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  1. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antibody orientation on biosensor surfaces: a minireview

    NARCIS (Netherlands)

    Trilling, A.K.; Beekwilder, M.J.; Zuilhof, H.

    2013-01-01

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains – the immobilization

  3. A New Laccase Based Biosensor for Tartrazine

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-12-01

    Full Text Available Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979 and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  4. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  5. A New Laccase Based Biosensor for Tartrazine.

    Science.gov (United States)

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  6. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  7. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  8. Electrochemical biosensors in pharmaceutical analysis

    Directory of Open Access Journals (Sweden)

    Eric de Souza Gil

    2010-09-01

    Full Text Available Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, focusing on enzymatic electrochemical sensors.Em virtude do aumento da demanda por técnicas analíticas simples e de baixo custo, os biossensores têm atraído a atenção para a análise de fármacos, medicamentos e outros analitos de interesse em controle de qualidade de medicamentos. Os biossensores permitem a quantificação não somente de princípio ativo em formulações farmacêuticas, mas também de produtos de degradação e metabólitos em fluídos biológicos, bem como análise de amostras de interesse clínico e industrial, além de possibilitar a determinação de enantiômeros. Desta forma, este artigo objetiva fazer uma breve revisão a respeito do emprego de biossensores em análise farmacêutica, com ênfase em sensores eletroquímicos enzimáticos.

  9. Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.

    Directory of Open Access Journals (Sweden)

    Bénédicte Bastiat

    Full Text Available Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4 belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine, ii display overlapping regulatory activities, iii govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.

  10. Fabrication of miniaturised Si-based electrocatalytic membranes

    International Nuclear Information System (INIS)

    D'Arrigo, G.; Spinella, C.; Arena, G.; Lorenti, S.

    2003-01-01

    The increasing interest for light and movable electronic systems, cell phones and small digital devices, drives the technological research toward integrated regenerating power sources with small dimensions and great autonomy. Conventional batteries are already unable to deliver power in more and more shrunk volumes maintaining the requirements of long duration and light weight. A possible solution to overcome these limits is the use of miniaturised fuel cell. The fuel cell offers a greater gravimetric energy density compared to conventional batteries. The micromachining technology of silicon is an important tool to reduce the fuel cell structure to micrometer sizes. The use of silicon also gives the opportunity to integrate the power source and the electronic circuits controlling the fuel cell on the same structure. This paper reports preliminary results concerning the micromachining procedure for fabricating a Si-based electrocatalytic membrane for miniaturised Si-based proton exchange membrane fuel cells (PEMFC)

  11. Electrocatalytic aerobic epoxidation of alkenes: Experimental and DFT investigation

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Borisova, Nataliya E.; Dolganov, Alexander V.; Ustynyuk, Yuri A.

    2012-01-01

    A new method for electrocatalytic aerobic epoxidation of alkenes catalyzed by binuclear Cu(II) complexes with azomethine ligands based on 2,6-diformyl-4-tert-butylphenol is described. In acetonitrile–water (5%), at the potential of Cu II /Cu I redox couple (–0.8 V vs. Ag/AgCl/KCl) at room temperature the epoxide is obtained in an average yield of around 50%. Contrary to the majority of known epoxidations, no strong oxidants are involved and no free hydrogen peroxide is formed in the reaction, thus making it ecologically friendly. The DFT quantum-chemical modeling of the reaction mechanism revealed that a copper hydroperoxo-complex rather than hydrogen peroxide or a copper oxo-complex oxidizes alkene. The process is very selective since neither products of hydroxylation of benzene ring in styrene nor of allylic oxidation of cyclohexene were detected.

  12. Electrocatalytic hydrogenation of organic molecules on conductive new catalytic material

    Energy Technology Data Exchange (ETDEWEB)

    Tountian, D. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide; Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Brisach-Wittmeyer, A.; Menard, H. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Nkeng, P.; Poillerat, G. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide

    2008-07-01

    Electrocatalytic hydrogenation (ECH) of organic molecules is a process where chemisorbed hydrogen is produced by electroreduction of water which reacts with the species in bulk. Greater emphasis is being placed on improving the nature of the building material of the electrodes in order to increase ECH efficiency. The effectiveness of the ECH is known to be linked to the nature of electrode materials used and their adsorption properties. This work presented the effect of conductive support material on ECH. The conductive catalysts were obtained from tin dioxide which is chemically stable. Palladium was the catalytic metal used in this study. The production of chemisorbed hydrogen was shown to depend on the quantity of metallic nanoaggregates in electrical contact with the reticulated vitreous carbon use as electrode. The conductive support, F-doped tin dioxide, was obtained by the sol-gel method. The electrocatalysts were characterized by different methods as resistivity measurements, linear sweep voltammetry, XRD, SEM, TGA/DSC, and FTIR analysis. The effects of temperature and time of calcination were also investigated. The study showed that the F-doped SnO2 electrocatalyst appeared to increase the rate of phenol electrohydrogenation. It was concluded that the improved electrocatalytic activity of Pd/F-doped SnO2 can be attributed to the simultaneous polarization of all the metallic Pd nanoaggregates present on the surface as well as in the pores of the matrix by contact with RVC. This results in a better production of chemisorbed atomic hydrogen with a large number of adlienation points. 9 refs., 3 figs.

  13. KINETICS OF POLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COPPER POLYPROPYLENE-BASED POLYAMIDOXIME-SODIUM SULFITE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinyuan; YANG Yiguang; YANG Chaoxiong

    1992-01-01

    The aqueous polymerization of methyl methacrylate initiated by copper polypropylene-based polyamidoxime ( PPAO - Cu ) - sodium sulfite system was investigated . The overall rate of polymerization (Rp) is Rp=9.7 × 1012 e-21, 200/RT [MMA]0.88 [ Na2 SO 3 ]0.50 The length of the induction period (τ) is inversely proportional to the concentration of sodium sulfite and independent of the amount of polymer supported copper and the concentration of monomer. It could be expressed as follows:1τ=1.2× 1012e-15,600/RT[ Na2SO3] =KτRi The polymerization is initiated by a primary radical generated from the redox reaction rather than induced by "coordination-proton transfer" mechanism.

  14. Comparative advantages of mechanical biosensors.

    Science.gov (United States)

    Arlett, J L; Myers, E B; Roukes, M L

    2011-04-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.

  15. Biosensor approach to psychopathology classification.

    Directory of Open Access Journals (Sweden)

    Misha Koshelev

    2010-10-01

    Full Text Available We used a multi-round, two-party exchange game in which a healthy subject played a subject diagnosed with a DSM-IV (Diagnostic and Statistics Manual-IV disorder, and applied a Bayesian clustering approach to the behavior exhibited by the healthy subject. The goal was to characterize quantitatively the style of play elicited in the healthy subject (the proposer by their DSM-diagnosed partner (the responder. The approach exploits the dynamics of the behavior elicited in the healthy proposer as a biosensor for cognitive features that characterize the psychopathology group at the other side of the interaction. Using a large cohort of subjects (n = 574, we found statistically significant clustering of proposers' behavior overlapping with a range of DSM-IV disorders including autism spectrum disorder, borderline personality disorder, attention deficit hyperactivity disorder, and major depressive disorder. To further validate these results, we developed a computer agent to replace the human subject in the proposer role (the biosensor and show that it can also detect these same four DSM-defined disorders. These results suggest that the highly developed social sensitivities that humans bring to a two-party social exchange can be exploited and automated to detect important psychopathologies, using an interpersonal behavioral probe not directly related to the defining diagnostic criteria.

  16. Simulation of Biosensor using FEM

    International Nuclear Information System (INIS)

    Sheeparamatti, B G; Hebbal, M S; Sheeparamatti, R B; Math, V B; Kadadevaramath, J S

    2006-01-01

    Bio-Micro Electro Mechanical Systems/Nano Electro Mechanical Systems include a wide variety of sensors, actuators, and complex micro/nano devices for biomedical applications. Recent advances in biosensors have shown that sensors based on bending of microfabricated cantilevers have potential advantages over earlier used detection methods. Thus, a simple cantilever beam can be used as a sensor for biomedical, chemical and environmental applications. Here, microfabricated multilayered cantilever beam is exposed to sensing environment. Lower layer being pure structural silicon or polymer and upper layer is of polymer with antigen/antibody immobilized in it. Obviously, it has an affinity towards its counterpart i.e. antibody/antigen. In the sensing environment, if counter elements exists, they get captured by this sensing beam head, and the cantilever beam deflects. This deflection can be sensed and the presence of counter elements in the environment can be predicted. In this work, a finite element model of a biosensor for sensing antibody/antigen reaction is developed and simulated using ANSYS/Multiphysics. The optimal dimensions of the microcantilever beam are selected based on permissible deflection range with the aid of MATLAB. In the model analysis, both weight and surface stress effects on the cantilever are considered. Approximate weights are taken into account because of counter elements, considering their molecular weight and possible number of elements required for sensing. The results obtained in terms of lateral deflection are presented

  17. Electroacoustic miniaturized DNA-biosensor.

    Science.gov (United States)

    Gamby, Jean; Lazerges, Mathieu; Pernelle, Christine; Perrot, Hubert; Girault, Hubert H; Tribollet, Bernard

    2007-11-01

    A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.

  18. Inhibition of light modulation of chloroplast enzyme activity by sulfite. One of the lethal effects of SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L E; Duggan, J X

    1977-01-01

    The capacity of a particulate pea (Pisum sativum L.) leaf chloroplast system for light-modulation of enzyme activity is diminished by brief exposure to sodium sulfite and, when intact seedlings are exposed to atmospheric SO/sub 2/, the same system is inactivated. The destructive effect of this pollutant on green plants may therefore be due to disruption of the mechanism for control of carbon dioxide fixation.

  19. KINETICS OF POLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COPPER POLYPROPYLENE—BASED POLY(OXIME—IMIDODIACETATE)—SODIUM SULFITE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WUJinyuan; YANGChaoxiong; 等

    1992-01-01

    The aqueous polymerization of methyl methacrylate intiated by copper polypropylene-based poly(oxime-imidodiacetate)(P-Cu)-sodium sulfite system has been investigated.The overall rate of polymerization(Rp) was found to be Rp=5.8×1012e-84.1KJ/RT[MMA]1.4[P-Cu]0[Na2SO3]0.50 A mechanism of “coordination-proton transfer”for the production of initiating species was proposed and discussed.

  20. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  1. Electro-catalytic properties of tri-(Fe, Co and Ni shungite composites

    Directory of Open Access Journals (Sweden)

    Bazarbay Serikbayev

    2012-03-01

    Full Text Available The article presents the results of electrochemical investigations obtained on carbon paste electrodes (CPE of shungite from the land Koksu. Electrochemical and electro-catalytic properties of shungite modified with iron, cobalt and nickel were compared.

  2. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela; Shinagawa, Tatsuya; Qureshi, Muhammad; Dhawale, Dattatray Sadashiv; Takanabe, Kazuhiro

    2016-01-01

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER

  3. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers

    CSIR Research Space (South Africa)

    Nkosi, D

    2010-01-01

    Full Text Available The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time...

  4. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-08-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG', which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG' conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ mol -1, respectively, while the barriers associated with the GG'→GT and GT→GG isomerizations are 1.90 and 9.64 kJ mol -1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonstrated that the GG'→GT energy barrier is low enough to allow an extensive conversion of the GG' form into the GT conformer during deposition of the matrices, the extent of the conversion increasing along the series Arsulfite exhibits conformation selective aggregation, with the most stable form, which has the highest dipole moment, aggregating more easily than the remaining experimentally relevant conformers (GT and GG').

  5. Prospects of conducting polymers in biosensors

    International Nuclear Information System (INIS)

    Malhotra, Bansi D.; Chaubey, Asha; Singh, S.P.

    2006-01-01

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  6. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  7. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  8. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: Evaluation of the diabetes-accelerated atherosclerosis risk

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qilin; An Yarui; Tang Linlin; Jiang Xiaoli; Chen Hua; Bi Wenji [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Wang Zhongchuan [Department of Anorectal Surgery, Xinhua Hospital, Affiliated to School of Medicine of Shanghai Jiaotong University, Shanghai 200092 (China); Zhang Wen, E-mail: wzhang@chem.ecnu.edu.cn [Department of Chemistry, East China Normal University, Shanghai 200062 (China)

    2011-11-30

    Graphical abstract: In this paper, we reported a novel dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the diabetes-accelerated atherosclerosis risk. The biosensor was firstly modified with a poly-thionine (PTH) film as electron transfer mediator (ETM), then the gold nanoparticles (GNPs) were covered on the surface of PTH to act as tiny conduction centers for facilitating the electron transfer between enzymes and electrode. The schematic of the dual biosensor is shown in figure. The developed dual biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibited a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 {mu}M, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 {mu}M. The results of the diabetic mice demonstrated that the cholesterol level was not changed obviously with the increase of glucose level in serum, while the cholesterol level was enhanced together with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, the hallmark of early atherosclerosis. These findings indicated the possibility that high glucose induced by diabetes might increase the macrophage cholesterol level to further accelerate atherosclerosis development. Highlights: Black-Right-Pointing-Pointer A novel biosensor was developed to determine glucose and cholesterol simultaneously. Black-Right-Pointing-Pointer The dual enzymatic-biosensor has good selectivity and high sensitivity. Black-Right-Pointing-Pointer We determined glucose and cholesterol in the real samples of diabetic mice. Black-Right-Pointing-Pointer The results showed that high glucose might increase the macrophage cholesterol level. Black-Right-Pointing-Pointer It provided useful experimental

  9. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: Evaluation of the diabetes-accelerated atherosclerosis risk

    International Nuclear Information System (INIS)

    Huang Qilin; An Yarui; Tang Linlin; Jiang Xiaoli; Chen Hua; Bi Wenji; Wang Zhongchuan; Zhang Wen

    2011-01-01

    Graphical abstract: In this paper, we reported a novel dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the diabetes-accelerated atherosclerosis risk. The biosensor was firstly modified with a poly-thionine (PTH) film as electron transfer mediator (ETM), then the gold nanoparticles (GNPs) were covered on the surface of PTH to act as tiny conduction centers for facilitating the electron transfer between enzymes and electrode. The schematic of the dual biosensor is shown in figure. The developed dual biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibited a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 μM, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 μM. The results of the diabetic mice demonstrated that the cholesterol level was not changed obviously with the increase of glucose level in serum, while the cholesterol level was enhanced together with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, the hallmark of early atherosclerosis. These findings indicated the possibility that high glucose induced by diabetes might increase the macrophage cholesterol level to further accelerate atherosclerosis development. Highlights: ► A novel biosensor was developed to determine glucose and cholesterol simultaneously. ► The dual enzymatic-biosensor has good selectivity and high sensitivity. ► We determined glucose and cholesterol in the real samples of diabetic mice. ► The results showed that high glucose might increase the macrophage cholesterol level. ► It provided useful experimental evidences for diabetes-accelerate atherosclerosis. - Abstract: In this paper, a novel dual enzymatic-biosensor is described for

  10. Immobilization of hydrogenase on carbon nanotube polyelectrolytes as heterogeneous catalysts for electrocatalytic interconversion of protons and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang; Wu, Wen-Jie; Fang, Fang [Fudan University, Department of Chemistry (China); Zorin, Nikolay A. [Russian Academy of Sciences, Institute of Basic Biological Problems (Russian Federation); Chen, Meng; Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Fudan University, Department of Chemistry (China)

    2016-08-15

    Immobilization of active enzymes on the surfaces of electrodes and nanomaterials is important in the fields of bioscience, and biotechnology. In this study, we investigated electrocatalytic properties of the interconversion of protons and hydrogen by means of hydrogenase (H{sub 2}ase)-functionalized carbon nanotube polyelectrolyte composites. Multiwalled carbon nanotube polyelectrolytes (MWNT-PEs) were synthesized through a diazonium and an addition reaction with poly(4-vinylpyridine) (P4VP), followed by another addition reaction with either methyl iodide (CH{sub 3}I) or N-methyl-N′-benzyl bromide bipyridinium (VBenBr) to produce MWNT-P4VPMe or MWNT-P4VPBenV polyelectrolytes, respectively. The MWNT-PE@H{sub 2}ase bio-nanocomposites were then prepared by means of MWNT-PEs as substrates to bind with H{sub 2}ase. The redox current density of the MWNT-PE@H{sub 2}ase-modified electrodes increased with a decrease in pH values of the Ar-saturated electrolyte solution owing to the catalytic reduction of protons (H{sub 2} production); further, it increased with the increasing pH values of the H{sub 2}-saturated solution owing to the catalytic oxidation of hydrogen. The reversible color change between blue-colored and colorless viologen (catalyzed by the MWNT-PE@H{sub 2}ase bio-nanocomposites) suggested that they may be developed as nano-biosensors for molecular H{sub 2}. The as-synthesized bio-nanocomposites showed strong long-term stability and high bioactivity.Graphical Abstract.

  11. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    Science.gov (United States)

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  13. Simulation of spent sulfite liquor fermentation using the object oriented knowledge based shell G2

    Energy Technology Data Exchange (ETDEWEB)

    Polakovic, M; Hoernsten, E G; Mandenius, C F

    1992-10-01

    This report demonstrates that simulation is a valuable tool, which can provide useful information for industrial fermentor operation and design. The key to good simulation is reliable fermentation kinetics. Starting point is the kinetics found in literature or obtained in laboratory experiments. This need not necessarily give a correct description of full-scale plant behaviour for several reasons, like population distribution (different characteristics of recycled biomass), natural selection of microorganism and metabolic behaviour modification during long-term operation, etc. Therefore, it is highly recommended to verify the kinetics on real plant data obtained either from permanent monitoring or especially designed plant measurements. We wanted to use the unique design of the MoDo ethanol plant in order to obtain sufficient information concerning the fermentation kinetics formulation based on normal steady-state operation. Unfortunately, this was not possible from the data obtained, because we could only estimate the fermentation rates in the first fermentor. The rest of the cascades was only flown through by the mash. A solution worth to try is to increase the flow rate of spent sulfite liquor, or to decrease the fermentor medium volume and then make new measurements. If this would help to formulate the process kinetics, simulation could then be used more efficiently for improving the current process or in design of the new one. (21 refs., 2 figs., 5 tabs.).

  14. Purification of Polymer-Grade Fumaric Acid from Fermented Spent Sulfite Liquor

    Directory of Open Access Journals (Sweden)

    Diogo Figueira

    2017-04-01

    Full Text Available Fumaric acid is a chemical building block with many applications, namely in the polymer industry. The fermentative production of fumaric acid from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. The use of existing industrial side-streams as raw-materials within biorefineries potentially enables production costs competitive against current chemical processes, while preventing the use of refined sugars competing with food and feed uses and avoiding purposely grown crops requiring large areas of arable land. However, most industrial side streams contain a diversity of molecules that will add complexity to the purification of fumaric acid from the fermentation broth. A process for the recovery and purification of fumaric acid from a complex fermentation medium containing spent sulfite liquor (SSL as a carbon source was developed and is herein described. A simple two-stage precipitation procedure, involving separation unit operations, pH and temperature manipulation and polishing through the removal of contaminants with activated carbon, allowed for the recovery of fumaric acid with 68.3% recovery yield with specifications meeting the requirements of the polymer industry. Further, process integration opportunities were implemented that allowed minimizing the generation of waste streams containing fumaric acid, which enabled increasing the yield to 81.4% while keeping the product specifications.

  15. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  16. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    Energy Technology Data Exchange (ETDEWEB)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  17. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry

    Science.gov (United States)

    Thamdrup, Bo; Finster, Kai; Fossing, Henrik; Hansen, Jens Würgler; Jørgensen, Bo Barker

    1994-01-01

    Depth distributions of thiosulfate (S 2O 32-) and sulfite (SO 32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicated by Eh and Mn 2+, Fe 2+ and H 2S distributions. Concentrations of S 2O 32- varied from below detection (<50 nM) to 600 nM while SO 32- concentrations generally were 2-3 times higher, 100-1500 nM. Depth distributions of the two species were roughly similar. Lowest concentrations were found in the oxidized zone, including both the oxic surface layer and the suboxic zone of intense manganese and iron reduction, and concentrations tended to increase through the suboxic and into the reduced, sulfidic zone. The similarity of SO 32- and S 2O 32- profiles suggested a close coupling of the cycling of the two species. Rates of consumption were suggested as the main factor governing their distribution. Rapid turnover times for S 2O 32- and H 2S of 4 and 1.1 h, respectively, were estimated for the upper 0-1 cm of a subtidal sediment.

  18. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2001-01-01

    ...). An epidermal biosensor is a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  19. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2003-01-01

    ...) An epidermal biosensor was conceived as a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  20. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Science.gov (United States)

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  1. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    , environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part......The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...

  2. Biosensors in immunology: the story so far

    NARCIS (Netherlands)

    Pathak, S.S.; Savelkoul, H.F.J.

    1997-01-01

    Optical biosensors are finding a range of applications in immunology. They enable biomolecular interactions to be characterized in real time without the need to label reactants, and, because individual binding steps can be visualized, are particularly suited to complex assays

  3. Biosensors a promising future in measurements

    International Nuclear Information System (INIS)

    Saleem, Muhammad

    2013-01-01

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors

  4. Enhancement of the Electrocatalytic Activity of Gold Nanoparticles via Anodic Treatment and the Decrease of the Enhanced Activity with Aging

    International Nuclear Information System (INIS)

    Jo, Kyung Min; Kang, Hyun Ju; Yang, Hae Sik

    2011-01-01

    We have recently shown that the electrocatalytic activity of Au nanoparticles (AuNPs) can be enhanced via NaBH 4 treatment and cathodic treatment and that the enhanced activity slowly decreases with aging. We have also demonstrated that the electrocatalytic activity of the AuNPs freshly prepared by electrochemical or chemical reduction slowly decreases with aging in both air and solution. Likewise, the electrocatalytic activity of anodically treated Au electrodes or AuNPs might change with aging. Herein, we report that the electrocatalytic activity of long-aged AuNPs can be enhanced via anodic treatment and that the enhanced electrocatalytic activity decreases with aging in air. The change in the electrocatalytic activity of AuNPs was evaluated by comparing cyclic voltammograms for the electrooxi-dation of hydrogen peroxide (H 2 O 2 ) and formic acid

  5. Biosensors for cardiac biomarkers detection: a review

    OpenAIRE

    Qureshi, Anjum; Gürbüz, Yaşar; Gurbuz, Yasar; Kolkar Mohammed, Javed Hussain Niazi

    2012-01-01

    The cardiovascular disease (CVD) is considered as a major threat to global health. Therefore, there is a growing demand for a range of portable, rapid and low cost biosensing devices for the detection of CVD. Biosensors can play an important role in the early diagnosis of CVD without having to rely on hospital visits where expensive and time-consuming laboratory tests are recommended. Over the last decade, many biosensors have been developed to detect a wide range of cardiac marker to reduce ...

  6. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  7. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  8. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  9. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  10. Biosensors-on-chip: a topical review

    International Nuclear Information System (INIS)

    Chen, Sensen; Shamsi, Mohtashim H

    2017-01-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices. (topical review)

  11. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  12. Biosensor

    DEFF Research Database (Denmark)

    2002-01-01

    The invention relates to a biochemical assay for wide class of hydrophobic Coenzyme A esters wherein the analyte is caused to react with a specifically binding, modified protein, and thereby causing a detectable signal. A one step assay for hydrophobic carboxylic acid esters in whole blood, serum...

  13. Biosensors

    Indian Academy of Sciences (India)

    and an electronic component to transduce and detect the signal. A variety of .... aliphatic aldehyde as fol- lows: FMNH2 + .... microorganisms by the use of high temperature. ... ISFET. The oxidation of hypoxanthine to uric acid by xanthine.

  14. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDsascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.

  15. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  16. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi Zhang

    2016-01-01

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  17. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Science.gov (United States)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  18. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  19. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  20. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  1. Electrocatalytic oxidation of cellulose at a gold electrode.

    Science.gov (United States)

    Sugano, Yasuhito; Latonen, Rose-Marie; Akieh-Pirkanniemi, Marceline; Bobacka, Johan; Ivaska, Ari

    2014-08-01

    The electrochemical properties of cellulose dissolved in NaOH solution at a Au surface were investigated by cyclic voltammetry, FTIR spectroscopy, the electrochemical quartz crystal microbalance technique, and electrochemical impedance spectroscopy. The reaction products were characterized by SEM, TEM, and FTIR and NMR spectroscopy. The results imply that cellulose is irreversibly oxidized. Adsorption and desorption of hydroxide ions at the Au surface during potential cycling have an important catalytic role in the reaction (e.g., approach of cellulose to the electrode surface, electron transfer, adsorption/desorption of the reaction species at the electrode surface). Moreover, two types of cellulose derivatives were obtained as products. One is a water-soluble cellulose derivative in which some hydroxyl groups are oxidized to carboxylic groups. The other derivative is a water-insoluble hybrid material composed of cellulose and Au nanoparticles (≈4 nm). Furthermore, a reaction scheme of the electrocatalytic oxidation of cellulose at a gold electrode in a basic medium is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao

    2016-04-01

    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  3. Design of Novel Biosensors for Determination of Phenolic Compounds using Catalyst-Loaded Reduced Graphene Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Kathleen Morrisey

    2014-06-01

    Full Text Available Facile and inexpensive method for designing high performance sensors for H2O2 and polyphenols has been developed. The proposed sensors are based on high electrocatalytic activity of Prussian Blue (PB nanoparticles deposited in situ on high surface area graphene nanosheet-based thin films on a graphite electrode. The exfoliated graphene nanosheets were formed by attaching graphene oxide to the electrode surface followed by their electrochemical reduction to obtain the reduced graphene oxide (rGO, providing high surface area and excellent current-carrying capabilities to the sensory film. The PB catalyst nanoparticles were deposited electrochemically on rGO. This procedure is very time efficient as it reduces the time of sensor preparation from 3 days (according to recent literature to several hours. The proposed method provides simple means to obtain highly reliable and stable sensory films. The sensor shows a dynamic range of 1–500 µM H2O2 and a rapid response of 5 s to reach 95% of a steady-state response. When combined with immobilized enzymes (horseradish peroxidase or laccase oxidase, it can serve as a biosensor for polyphenols. As the proof of concept, the response of the enzymatic biosensors to polyphenol catechin has been presented delineating different mechanisms of horseradish peroxidase and laccase operation. The proposed sensors are low cost, reliable, and scalable.

  4. Fabrication of a novel hydrogen peroxide biosensor based on Au-(PEO106PPO70PEO106) hairy nanospheres

    International Nuclear Information System (INIS)

    Ni Yalong; Wang Yan; Zhang Guohui; Shen Jian; Zhao Wenbo; Huang Xiaohua

    2012-01-01

    In this case, the Au-F127 (triblock copolymer PEO 106 PPO 70 PEO 106 , PEO is short for polyethylene oxide and PPO is the abbreviation of polypropene oxide) hybrid hairy nanospheres were obtained by the redox reaction using pluronic F127 and HAuCl 4 as precursor. A novel hemoglobin (Hb) biosensor was fabricated by immobilizing the Hb onto the Au-F127 film on the surface of glassy carbon electrode (GCE). The Au-F127 nanocomposites and Hb were characterized by transmission electron microscopy (TEM), polycrystalline electron diffraction ring pattern and ultra-violet visible spectra (UV–vis). UV–vis spectra suggested that Hb in the film could keep its native secondary structure. The performances of Hb/(Au-F127) on GCE were characterized with cyclic voltammetry (CV) and typical amperometric response (i–t) measurements. The immobilized Hb maintained its bioactivity and displayed an excellent electrochemical behavior with a formal potential of −339 mV. The resulting electrode showed an electrocatalytic activity to hydrogen peroxide (H 2 O 2 ). The linear response range of the H 2 O 2 biosensor was from 3.0 × 10 −7 to 5.7 × 10 −4 M with a low detection limit of 4.0 × 10 −8 M.

  5. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2016-11-01

    Full Text Available Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy, reduced graphene oxide (RGO, and gold nanoparticles (nanoAu biocomposite on a glassy carbon electrode (GCE. The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+ in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3 with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  6. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.

    Science.gov (United States)

    Liu, X Z; Sang, M; Zhang, X A; Zhang, T K; Zhang, H Y; He, X; Li, S X; Sun, X D; Zhang, Z M

    2017-05-01

    Saccharomyces uvarum is a good wine yeast species that may have great potential for the future. However, sulfur tolerance of most S. uvarum strains is very poor. In addition there is still little information about the SSU1 gene of S. uvarum, which encodes a putative transporter conferring sulfite tolerance. In order to analyze the function of the SSU1 gene, two expression vectors that contained different SSU1 genes were constructed and transferred into a sulfite-tolerant S. uvarum strain, A9. Then sulfite tolerance, SO2 production, and PCR, sequencing, RT-qPCR and transcriptome analyses were used to access the function of the S. uvarum SSU1 gene. Our results illustrated that enhancing expression of the SSU1 gene can promote sulfite resistance in S. uvarum, and an insertion fragment ahead of the additional SSU1 gene, as seen in some alleles, could affect the expression of other genes and the sulfite tolerance level of S. uvarum. This is the first report on enhancing the expression of the SSU1 gene of S. uvarum. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products.

    Science.gov (United States)

    Lamas, Alexandre; Miranda, José Manuel; Vázquez, Beatriz; Cepeda, Alberto; Franco, Carlos Manuel

    2016-10-31

    In recent years, the use of nitrites and sulfites as food preservatives has been a cause for concern due to the health problems that these additives can cause in humans. Natural products have been studied as an alternative, but most of them have hardly been applied in the food industry for technological and economic reasons. In this sense, organic salts such as sodium acetate are a good alternative due to their affordability. Thus, this study evaluated the capacity of sodium nitrite, sodium sulfite, a sodium acetate product (TQI C-6000), and chitosan to inhibit two important foodborne pathogens, Salmonella enterica and Listeria monocytogenes . The MIC of each chemical was in vitro evaluated and their antibacterial action was subsequently checked in situ using minced meat as a food model. MIC values of sodium nitrite (10,000 mg/L) and sodium sulfite (50,000 mg/L) for Salmonella enterica were higher than the values allowed by legislation (450 mg/L for sulfites and 150 mg/L for nitrites). Additionally, the sodium acetate product caused the inhibition of Salmonella enterica and Listeria at a relative low quantity. The two foodborne pathogens were inhibited in the food model with 1% of the sodium acetate product. Additionally, there were no significant differences between sodium nitrite, sodium sulfite, and sodium acetate products in the inhibition of Salmonella enterica and Listeria monocytogenes in the food model. Thus, products based on sodium acetate can be an alternative to traditional preservatives in food products.

  8. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products

    Directory of Open Access Journals (Sweden)

    Alexandre Lamas

    2016-10-01

    Full Text Available In recent years, the use of nitrites and sulfites as food preservatives has been a cause for concern due to the health problems that these additives can cause in humans. Natural products have been studied as an alternative, but most of them have hardly been applied in the food industry for technological and economic reasons. In this sense, organic salts such as sodium acetate are a good alternative due to their affordability. Thus, this study evaluated the capacity of sodium nitrite, sodium sulfite, a sodium acetate product (TQI C-6000, and chitosan to inhibit two important foodborne pathogens, Salmonella enterica and Listeria monocytogenes. The MIC of each chemical was in vitro evaluated and their antibacterial action was subsequently checked in situ using minced meat as a food model. MIC values of sodium nitrite (10,000 mg/L and sodium sulfite (50,000 mg/L for Salmonella enterica were higher than the values allowed by legislation (450 mg/L for sulfites and 150 mg/L for nitrites. Additionally, the sodium acetate product caused the inhibition of Salmonella enterica and Listeria at a relative low quantity. The two foodborne pathogens were inhibited in the food model with 1% of the sodium acetate product. Additionally, there were no significant differences between sodium nitrite, sodium sulfite, and sodium acetate products in the inhibition of Salmonella enterica and Listeria monocytogenes in the food model. Thus, products based on sodium acetate can be an alternative to traditional preservatives in food products.

  9. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors

    NARCIS (Netherlands)

    Kros, A.; Hövell, W.F.M. van; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Amperometric biosensors for the recognition of glucose oxidase (GOx) based on poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated for the first time. The resulting biosensor has potential applications for long-term glucose measurements.

  10. Nanopore biosensors for detection of proteins and nucleic acids

    NARCIS (Netherlands)

    Maglia, Giovanni; Soskine, Mikhael

    2014-01-01

    Described herein are nanopore biosensors based on a modified cytolysin protein. The nanopore biosensors accommodate macromoiecules including proteins and nucleic acids, and may additionally comprise ligands with selective binding properties.

  11. Optimization of Xenon Biosensors for Detection of Protein Interactions

    International Nuclear Information System (INIS)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  12. Attenuation of Sulfite-Induced Testicular Injury in Rats by Zingiber officinale Roscoe.

    Science.gov (United States)

    Afkhami Fathabad, Akbar; Shekarforoush, Shahnaz; Hoseini, Maryam; Ebrahimi, Zahra

    2017-08-18

    Sulfite salts, including sodium metabisulfte, are widely used as preservatives in foods and pharmaceutical agents. Previous studies suggest that oxidative stress may be an important mediator of testicular injury. The present study was designed to elucidate the effect of exposure to sodium metabisulfite by gavage without or with Zingiber officinale (ginger) extract on the rat testes. Thirty-two male Wistar rats were randomly divided into control, ginger-treated (500 mg/kg/day), sodium metabisulfite- (SMB-) treated (260 mg/kg/day), and SMB + ginger- (SZ-) treated groups. After 28 days, the rats were anesthetized by ether and, after laparotomy, blood was collected from the heart to determine testosterone level by the enzyme-linked immunosorbent assay (ELISA) kit. Then left testes and cauda epididymis of all animals were removed for histological examination and sperm analysis, and right testes were removed for assessing lipid peroxidation (indexed by malondialdehyde [MDA]) and antioxidant enzymes. The results showed that spermatogenesis, epididymal morphometry, and sperm parameters were affected by SMB. There was a significant increase in MDA level and a significant reduction in the activities of glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) in the SMB-treated rats compared to the control. Ginger treatment of SMB-exposed rats significantly increased testosterone level and the number of different spermatogenic cells. The level of MDA reversed to the control levels and the activities of GPx and GR were significantly increased when SMB was coadministered with ginger extract. It is concluded that coadministration of ginger, through its antioxidant and androgenic properties, exerts a protective effect against SMB-induced testicular oxidative stress.

  13. Hydrothermal Conversion of Neutral Sulfite Semi-Chemical Red Liquor into Hydrochar

    Directory of Open Access Journals (Sweden)

    Ramy Gamgoum

    2016-06-01

    Full Text Available Hydrochar was produced from neutral sulfite semi-chemical (NSSC red liquor as a possible bio-based solid fuel for use in power generation facilities. Hydrothermal conversion (HTC experiments were conducted using a fixed liquor-to-water volume ratio of 1:8 and reaction time of 3 h. Solutions were processed using different chemical additives, pH and temperature conditions to determine the optimum conditions required for producing a high energy content solid fuel. The hydrochar samples produced were analyzed by ultimate, thermogravimetric (TGA and Fourier transform infrared spectroscopy (FTIR analyses to determine physicochemical properties that are important for utilization as a fuel. The residual process liquids were also analyzed to better understand the effect of HTC process conditions on their properties. It was determined that the optimum conditions for producing a solid fuel was at a reaction temperature of 250 °C, in the presence of acetic acid at pH 3. The maximum energy content (HHV of the hydrochar produced from red liquor at this condition was 29.87 MJ/kg, and its ash content was 1.12 wt.%. This result reflects the effect of increasing reaction temperature on the physicochemical characteristics of the hydrochar. The increase of HTC temperature significantly reduces the ash content of the hydrochar, leads to a significant increase in the carbon content of the hydrochar, and a reduction in both the oxygen and hydrogen content. These effects suggests an increase in the degree of condensation of the hydrochar products, and consequently the formation of a high energy content material. Based on TGA and FTIR analyses, hydrochars prepared at high HTC temperature showed lower adsorbed moisture, hemicellulose and cellulose contents, with enrichment in content of higher temperature volatiles, such as lignin.

  14. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  15. Overexpression of the Maize Sulfite Oxidase Increases Sulfate and GSH Levels and Enhances Drought Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Zongliang Xia

    2018-03-01

    Full Text Available Sulfite oxidase (SO plays a pivotal role in sulfite metabolism. In our previous study, sulfite-oxidizing function of the SO from Zea mays (ZmSO was characterized. To date, the knowledge of ZmSO’s involvement in abiotic stress response is scarce. In this study, we aimed to investigate the role of ZmSO in drought stress. The transcript levels of ZmSO were relatively high in leaves and immature embryos of maize plants, and were up-regulated markedly by PEG-induced water stress. Overexpression of ZmSO improved drought tolerance in tobacco. ZmSO-overexpressing transgenic plants showed higher sulfate and glutathione (GSH levels but lower hydrogen peroxide (H2O2 and malondialdehyde (MDA contents under drought stress, indicating that ZmSO confers drought tolerance by enhancing GSH-dependent antioxidant system that scavenged ROS and reduced membrane injury. In addition, the transgenic plants exhibited more increased stomatal response than the wild-type (WT to water deficit. Interestingly, application of exogenous GSH effectively alleviated growth inhibition in both WT and transgenic plants under drought conditions. qPCR analysis revealed that the expression of several sulfur metabolism-related genes was significantly elevated in the ZmSO-overexpressing lines. Taken together, these results imply that ZmSO confers enhanced drought tolerance in transgenic tobacco plants possibly through affecting stomatal regulation, GSH-dependent antioxidant system, and sulfur metabolism-related gene expression. ZmSO could be exploited for developing drought-tolerant maize varieties in molecular breeding.

  16. Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6. The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

  17. Utilization of Candida berkhout strains in the production of yeasts and ethyl alcohol from sulfite waste liquor and molasses

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, H

    1962-01-01

    A single strain of Candida tropicalis was used to produce EtOH and fodder yeast from pasteurized, neutralized sulfite liquor containing 3.5% reducing substances and supplemented with NH/sub 3/ and P salts, or from molasses containing 150 g sucrose per l. After 48 hours sugar utilization by Candida was 87.7% and EtOH yield 56.1%; Saccharomyces cerevisiae gave 94.8 and 64.6 to 65.2%, respectively. After 72 hours sugar utilization and EtOH yield by Candida was 94.9 and 60.4% respectively.

  18. Recent Progress in Lectin-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  19. S-Layer Protein-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Bernhard Schuster

    2018-04-01

    Full Text Available The present paper highlights the application of bacterial surface (S- layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  20. S-Layer Protein-Based Biosensors.

    Science.gov (United States)

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  1. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.

    Science.gov (United States)

    Enemark, John H

    2017-10-10

    Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.

  2. Functional design of electrolytic biosensor

    Science.gov (United States)

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.

  3. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  4. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  5. Uranium-mediated electrocatalytic dihydrogen production from water

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  6. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    International Nuclear Information System (INIS)

    Du, Z.; Boyer, P.D.

    1990-01-01

    Washed chloroplast thylakoid membranes upon exposure to [ 3 H]ADP retain in tightly bound [ 3 H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg 2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [ 3 H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg 2+ - and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degree C and of about 15 s at 37 degree C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg 2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [ 3 H]ADP parallels the onset of ATPase activity, although some [ 3 H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [ 3 H]ADP being at a catalytic site and being replaced as this Mg 2+ - and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P i binding site of the enzyme-ADP-Mg 2+ complex to give a form more readily activated by ATP binding at an alternative site

  7. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  8. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2016-01-01

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  9. Hydrogen peroxide biosensor based on titanium oxide

    Science.gov (United States)

    Halim, Nur Hamidah Abdul; Heng, Lee Yook; Hashim, Uda

    2015-09-01

    In this work, a biosensor utilizing modified titania, TiO2 particles using aminopropyl-triethoxy-silane, (APTS) for developing hydrogen peroxide biosensor is presented. The surface of Ti-APTS particles is used as a support for hemoglobin immobilization via covalent bonding. The performance of the biosensor is determined by differential pulse voltammetry. The linear response was observed at the reduction current of redox mediator probe [FeCN6]3-/4- at potential between 0.22 V to 0.24 V. The preliminary result for electrochemistry study on this modified electrode is reported. The preliminary linear range is obtained from 1×10-2 M to 1×10-8 M.

  10. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  11. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  12. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes......, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors....

  13. Biosensor technology for pesticides--a review.

    Science.gov (United States)

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  14. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  15. Building up an electrocatalytic activity scale of cathode materials for organic halide reductions

    International Nuclear Information System (INIS)

    Bellomunno, C.; Bonanomi, D.; Falciola, L.; Longhi, M.; Mussini, P.R.; Doubova, L.M.; Di Silvestro, G.

    2005-01-01

    A wide investigation on the electrochemical activity of four model organic bromides has been carried out in acetonitrile on nine cathodes of widely different affinity for halide anions (Pt, Zn, Hg, Sn, Bi, Pb, Au, Cu, Ag), and the electrocatalytic activities of the latter have been evaluated with respect to three possible inert reference cathode materials, i.e. glassy carbon, boron-doped diamond, and fluorinated boron-doped diamond. A general electrocatalytic activity scale for the process is proposed, with a discussion on its modulation by the configuration of the reacting molecule, and its connection with thermodynamic parameters accounting for halide adsorption

  16. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy.

    Science.gov (United States)

    Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M

    2008-12-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.

  17. Impact of SO(2) on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing.

    Science.gov (United States)

    Hamisch, Domenica; Randewig, Dörte; Schliesky, Simon; Bräutigam, Andrea; Weber, Andreas P M; Geffers, Robert; Herschbach, Cornelia; Rennenberg, Heinz; Mendel, Ralf R; Hänsch, Robert

    2012-12-01

    High concentrations of sulfur dioxide (SO(2) ) as an air pollutant, and its derivative sulfite, cause abiotic stress that can lead to cell death. It is currently unknown to what extent plant fumigation triggers specific transcriptional responses. To address this question, and to test the hypothesis that sulfite oxidase (SO) is acting in SO(2) detoxification, we compared Arabidopsis wildtype (WT) and SO knockout lines (SO-KO) facing the impact of 600 nl l(-1) SO(2) , using RNAseq to quantify absolute transcript abundances. These transcriptome data were correlated to sulfur metabolism-related enzyme activities and metabolites obtained from identical samples in a previous study. SO-KO plants exhibited remarkable and broad regulative responses at the mRNA level, especially in transcripts related to sulfur metabolism enzymes, but also in those related to stress response and senescence. Focusing on SO regulation, no alterations were detectable in the WT, whereas in SO-KO plants we found up-regulation of two splice variants of the SO gene, although this gene is not functional in this line. Our data provide evidence for the highly specific coregulation between SO and sulfur-related enzymes like APS reductase, and suggest two novel candidates for involvement in SO(2) detoxification: an apoplastic peroxidase, and defensins as putative cysteine mass storages. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Development of electrochemical biosensors with various types of zeolites

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  19. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    Science.gov (United States)

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  20. Spreeta-based biosensor for endocrine disruptors

    NARCIS (Netherlands)

    Marchesini, G.R.; Koopal, K.; Meulenberg, E.; Haasnoot, W.; Irth, H.

    2007-01-01

    The construction and performance of an automated low-cost Spreeta¿-based prototype biosensor system for the detection of endocrine disrupting chemicals (EDCs) is described. The system consists primarily of a Spreeta miniature liquid sensor incorporated into an aluminum flow cell holder, dedicated to

  1. Amperometric biosensors based on conducting nanotubes

    NARCIS (Netherlands)

    Kros, Alexander

    2000-01-01

    This thesis describes a multidisciplinary study towards the development of a glucose biosensor that in the future can be used for in vivo implantations. The research focuses on three major topics, viz. the construction of the glucose sensor, the development of a biocompatible coating and a study of

  2. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  3. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson,Vânia da Silva; Duran,Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  4. Microbial Biosensors for Selective Detection of Disaccharides

    Science.gov (United States)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  5. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  6. Boar taint detection using parasitoid biosensors

    Science.gov (United States)

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  7. Clinical Assessment Applications of Ambulatory Biosensors

    Science.gov (United States)

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  8. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  9. Development and Applications of Portable Biosensors.

    Science.gov (United States)

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.

  10. Biosensor discovery of thyroxine transport disrupting chemicals

    NARCIS (Netherlands)

    Marchesini, G.R.; Meimaridou, A.; Haasnoot, W.; Meulenberg, E.; Albertus, F.; Mizuguchi, M.; Takeuchi, M.; Irth, H.; Murk, A.J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two

  11. Fiber optic-based regenerable biosensor

    Science.gov (United States)

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  12. Disposable electrochemical DNA biosensor for environmental ...

    Indian Academy of Sciences (India)

    been used due to its rapid, easy handling and cost effective responses for the toxicity assessment in real water ... in the application of DNA as biosensors as it is found ... used as a preclinical safety assessment tool to screen ... out the work.

  13. Nano technologies for Biosensor and Bio chip

    International Nuclear Information System (INIS)

    Kim, I.M.; Park, T.J.; Paskaleva, E.E.; Sun, F.; Seo, J.W.; Mehta, K.K.

    2015-01-01

    The bio sensing devices are characterized by their biological receptors, which have specificity to their corresponding analytes. These analytes are a vast and diverse group of biological molecules, DNAs, proteins (such as antibodies), fatty acids, or entire biological systems, such as pathogenic bacteria, viruses, cancerous cells, or other living organisms. A main challenge in the development of biosensor applications is the efficient recognition of a biological signal in a low signal-to-noise ratio environment, and its transduction into an electrochemical, optical, or other signals. The advent of nano material technology greatly increased the potential for achieving exquisite sensitivity of such devises, due to the innate high surface-to-volume ratio and high reactivity of the nano material. The second major challenge facing the biosensor application, that of sca lability, is addressed by multiplexing and miniaturizing of the biosensor devises into a bio chip. In recent years, biosensor and bio chip technologies have made significant progress by taking advantages of diverse kinds of nano materials that are derived from nano technology

  14. Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase.

    Science.gov (United States)

    Gilmartin, M A; Hart, J P

    1994-05-01

    Amperometry in stirred solution has been used for the systematic evaluation of modified screen-printed carbon electrodes (SPCEs) with a view to developing a reagentless biosensor for uric acid. The developed system consists of a base cobalt phthalocyanine (CoPC) electrode tailored to the electrocatalytic oxidation of H2O2 by means of a cellulose acetate (CA)-uricase bilayer. Uricase was immobilized by drop-coating the enzyme onto the CA membrane covering the CoPC-SPCE. The device exploits the near-universal H2O2-generating propensity of oxidases, the permselectivity of the CA film towards H2O2 and the electrocatalytic oxidation of this product at the CoPC-SPCE. The electrochemical oxidation of the resulting Co+ species was used as the analytical signal, facilitating the application of a greatly reduced operating potential when compared with that required for direct oxidation of H2O2 at unmodified electrodes. The time required to achieve 95% of the steady-state current (t95i(ss)) was 44 s [relative standard deviation = 7.5% (n = 10)]. Amperometric calibrations were linear over the range from 13 x 10(-6) to 1 x 10(-3) mol dm-3, with the former representing the limit of detection. The CA membrane extended the linear range of the biosensor by over two orders of magnitude, when apparent Michaelis-Menten constants (Km') of immobilized and free enzymes are compared. This suggests that the process is diffusion-controlled and not governed by the kinetics of the enzyme. The precision of electrode fabrication was determined by cyclic voltammetry to be 4.9% (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Sulfite induced autoxidation of Cu(II/tetra/ penta and hexaglycine complexes: spectrophotometric and rotating-ring-disk glassy carbon electrode studies and analytical potentialities

    Directory of Open Access Journals (Sweden)

    Alipázaga Maria V.

    2003-01-01

    Full Text Available The oxidation of Cu(II complexes with tetra, penta and hexaglycine in borate buffer aqueous solution, by dissolved oxygen is strongly accelerated by sulfite. The formation of Cu(III complexes with maximum absorbances at 250 nm (e = 9000 mol-1 L cm-1 and 365 nm (e = 7120 mol-1 L cm-1 was also characterized by using rotating ring-disk voltammetry, whose anodic and cathodic components were observed in voltammograms recorded in solutions containing Cu(II. Voltammograms, obtained at various rotation speeds, showed that the Cu(III species electrochemically generated is not stable over the entire time window of the experiment and in solutions containing tetraglycine the overall limiting current is controlled by the kinetics of an equilibrium involving Cu(II species.The calculated first order rate constant of the decomposition was 4.37x10-3 s-1. Electrochemical experiments carried out in Cu(II solutions after the addition of relatively small amounts of sulfite demonstrated that the Cu(III species formed in the chemical reaction is the same as the one collected at the ring electrode when Cu(II is oxidized at the disk electrode in ring-disk voltammetry. The concentration of Cu(III complexes is proportional to the amount of added sulfite and the results indicated that indirect analytical methods for sulfite may be developed by means of spectrophotometric or amperometric detection of the chemically generated product.

  16. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    Science.gov (United States)

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.

    2008-03-20

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  18. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-10-15

    A facile method for fabrication of raspberry-like Au nanostructures (Au NRBs)-modified electrode by electrodeposition and its applications toward the electrocatalytic oxidation of methanol (MOR) in alkaline medium and oxygen reduction reaction (ORR) in both alkaline and acidic media are demonstrated. The Au NRBs are characterized by UV-Vis absorption spectra, SEM, X-ray diffraction, and electrochemical measurements. The growth of Au NRBs was monitored by recording the in-situ absorption spectral changes during electrodeposition using spectroelectrochemical technique. Here we systematically studied the MOR by varying several reaction parameters such as potential scan rate and methanol concentration. The electrocatalytic poisoning effect due to the MOR products are not observed at the Au NRBs-modified electrode. At the alkaline medium the Au NRBs-modified electrode shows the better catalytic activities toward the MOR and ORR when compared to the poly crystalline gold and bare glassy carbon electrodes. The Au NRBs-modified electrode is a promising and inexpensive electrode material for other electrocatalytic applications.Graphical AbstractRaspberry-like Au nanostructures modified electrode is prepared and used for electrocatalytic applications.

  19. The influence of nitrate concentrations and acidity on the electrocatalytic reduction of nitrate on platinum

    NARCIS (Netherlands)

    Groot, de M.T.; Koper, M.T.M.

    2004-01-01

    A study was performed to determine the influence of nitrate concentration and acidity on the reaction rate and selectivity of the electrocatalytic nitrate reduction on platinum. There are two different nitrate reduction mechanisms on platinum: a direct mechanism (0.4–0.1 V vs. SHE) and an indirect

  20. Electron transport and electrocatalytic properties of MWCNT/nickel nanocomposites: hydrazine and diethylaminoethanethiol as analytical probes

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-06-01

    Full Text Available of the electrodes with the Ni and NiO nanoparticles was confirmed by techniques such as FTIR, FESEM, HRSEM, TEM, XRD, EDX and cyclic voltammetry (CV). The electrocatalytic oxidation of DEAET and hydrazine on the modified electrodes was investigated using CV...

  1. Future of biosensors: a personal view.

    Science.gov (United States)

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  2. Amine-controlled assembly of metal-sulfite architecture from 1D chains to 3D framework.

    Science.gov (United States)

    Austria, Cristina; Zhang, Jian; Valle, Henry; Zhang, Qichun; Chew, Emily; Nguyen, Dan-Tam; Gu, J Y; Feng, Pingyun; Bu, Xianhui

    2007-08-06

    Whereas open-framework materials have been made in a variety of chemical compositions, few are known in which 3-connected SO3(2)- anions serve as basic building units. Here, we report four new metal-sulfite polymeric structures, (ZnSO3)Py (1, py = pyridine), (ZnSO3)2(2,2'-bipy)H2O (2, 2,2'-bipy = 2,2'-bipyridine), (ZnSO3)2(TMDPy) (3, TMDPy = 4,4'-trimethylenedipyridine), and (MnSO3)2en (4, en = ethylenediamine) that have been synthesized hydrothermally and structurally characterized. In these compounds, low-dimensional 1D and 2D inorganic subunits are assembled into higher 2D or 3D covalent frameworks by organic ligands. In addition to the structure-directing effect of organic ligands, the flexible coordination chemistry of Zn2+ and SO3(2)- also contributes to the observed structural diversity. In compounds 1-3, Zn2+ sites alternate with trigonal pyramidal SO3(2)- anions to form three types of [ZnSO3]n chains, whereas in compound 4, a 2D-corrugated [MnSO3]n layer is present. Compound 1 features a rail-like chain with pendant pyridine rings. The pi-pi interaction between 2,2'-bipy ligands is found between adjacent chains in compound 2, resulting in 2D sheets that are further stacked through interlayer hydrogen bonds. Compound 3 exhibits a very interesting inorganic [(ZnSO3)2]n chain constructed from two chairlike subunits, and such chains are bridged by TMDPy ligands into a 2D sheet. In compound 4, side-by-side helical chains permeate through 2D-corrugated [MnSO3]n layers, which are pillared by neutral ethylenediamine molecules into a 3D framework that can be topologically represented as a (3,6)-connected net. The results presented here illustrate the rich structural chemistry of metal-sulfites and the potential of sulfite anions as a unique structural building block for the construction of novel open-framework materials, in particular, those containing polymeric inorganic subunits that may have interesting physical properties such as low-dimensional magnetism or

  3. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO2 polluted model environment

    International Nuclear Information System (INIS)

    Carmona-Quiroga, Paula Maria; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, Maria Teresa; Martinez-Ramirez, Sagrario

    2010-01-01

    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ('Protectosil Antigraffiti' marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur

  4. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  5. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    International Nuclear Information System (INIS)

    Hallaj, Rahman; Akhtari, Keivan; Salimi, Abdollah; Soltanian, Saied

    2013-01-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO 3 ) 2 , (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H 2 O 2 and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic activity decreased

  6. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Jahangeer [Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539 (United States); Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu [Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539 (United States)

    2016-10-15

    Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.

  7. Identification of the bovine Arachnomelia mutation by massively parallel sequencing implicates sulfite oxidase (SUOX in bone development.

    Directory of Open Access Journals (Sweden)

    Cord Drögemüller

    2010-08-01

    Full Text Available Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development.

  8. Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

    Science.gov (United States)

    Drögemüller, Cord; Tetens, Jens; Sigurdsson, Snaevar; Gentile, Arcangelo; Testoni, Stefania; Lindblad-Toh, Kerstin; Leeb, Tosso

    2010-01-01

    Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development. PMID:20865119

  9. Biosensors in the small scale: methods and technology trends.

    Science.gov (United States)

    Senveli, Sukru U; Tigli, Onur

    2013-03-01

    This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.

  10. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  11. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  12. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    Science.gov (United States)

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  13. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  14. Genome shuffling of Saccharomyces cerevisiae through recursive population mating to evolve tolerance to inhibitors of Spent Sulfite Liquor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.J.J.; Pinel, D.J.; D' aoust, F. [Concordia Univ., Montreal, PQ (Canada). Dept. of Biological Sciences; Bajwa, P.K.; Trevors, J.T.; Lee, H. [Guelph Univ., ON (Canada). Dept. of Environmental Biology

    2009-07-01

    The biochemical steps in the conversion of cellulosics to biofuels include the pretreatment, hydrolysis and fermentation of substrates into a final product. Fermentation of lignocellulosic substrates derived from waste biomass requires metabolic engineering. A biochemical flow chart from the Tembec Biorefinery plant was presented in which Spent Sulfite Liquor (SSL) was used to add value to the pulp and paper industry. The sugars contained in this carbohydrate-rich effluent from sulfite pulping were used to produce ethanol. A robust, ethanologenic microorganism that can withstand the substrate toxicity was needed. Saccharomyces cerevisiae is currently used for the production of ethanol from SSL. This yeast will succumb to toxicity and inhibition, particularly in the most inhibitor rich forms of SSL such as hardwood SSL (HWSSL). A genome shuffling method was therefore developed to create a better SSL fermenting strain. This method was designed to improve polygenic traits by generating pools of mutants with improved phenotypes, followed by iterative recombination between their genomes. Through 5 rounds of recursive mating and screening, 3 strains that could survive and grow in undiluted HWSSL were obtained. The study demonstrated that the tolerance of these strains to SSL translates into an increased capacity to produce ethanol over time using this substrate, due to continued viability of the yeast population. Phenotypic analysis of the three strains revealed that the genome shuffling approach successfully co-evolved tolerance to acetic acid, NaCl (osmotic) and HMF. A systems biology analysis of strain R57 was initiated in order to establish the genetic basis for HWSSL tolerance. tabs., figs.

  15. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    OpenAIRE

    Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensor...

  16. A global benchmark study using affinity-based biosensors

    DEFF Research Database (Denmark)

    Rich, Rebecca L; Papalia, Giuseppe A; Flynn, Peter J

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users...... the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used....

  17. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    Science.gov (United States)

    2015-07-21

    Hybrid Biosensor Jieun Lee1,2, Jaeman Jang1, Bongsik Choi1, Jinsu Yoon1, Jee-Yeon Kim3, Yang-Kyu Choi3, Dong Myong Kim1, Dae Hwan Kim1 & Sung-Jin Choi1...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response...of field-effect-transistor (FET)-based biosensors . The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential

  18. Stepped piezoresistive microcantilever designs for biosensors

    International Nuclear Information System (INIS)

    Ansari, Mohd Zahid; Cho, Chongdu; Urban, Gerald

    2012-01-01

    The sensitivity of a piezoresistive microcantilever biosensor strongly depends on its ability to convert the surface stress-induced deflections into large resistance change. To improve the sensitivity, we present stepped microcantilever biosensor designs that show significant resistance change compared with commonly used rectangular designs. The cantilever is made of silicon dioxide with a u-shaped silicon piezoresistor. The surface stress-induced deflections, bimorph deflection, fundamental resonant frequency and self-heating properties of the cantilever are studied using the FEM software. The surface stress-induced deflections are compared against the analytical model derived in this work. Results show that stepped designs have better signal-to-noise ratio than the rectangular ones and cantilevers with l/L between 0.5 and 0.75 are better designs for improving sensitivity. (paper)

  19. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  20. Biosensors for security and bioterrorism applications

    CERN Document Server

    Nikoleli, Georgia-Paraskevi

    2016-01-01

    This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed. There is a particular focus on electrochemical and optical det...

  1. Biosensor discovery of thyroxine transport disrupting chemicals

    International Nuclear Information System (INIS)

    Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds

  2. Biosensor discovery of thyroxine transport disrupting chemicals.

    Science.gov (United States)

    Marchesini, Gerardo R; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  3. Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2012-01-01

    We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0. 3 V and pH 6. 8, the sensor displays a sensitivity of 57. 0 μA mM -1 cm -2 , a response time of <5 s, a linear dynamic range from 0. 01 to 15. 2 mM, a correlation coefficient of 0. 9985, and a detection limit of 2 μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples. (author)

  4. Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Xiaohan; Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Mao, Chun, E-mail: maochun127@yahoo.cn [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhu, Qinshu [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Shen, Jian, E-mail: jshen@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China)

    2013-05-07

    Highlight: •A novel method for detection of glucose in whole blood has been developed. •The method based on antibiofouling and self-assembly technology was investigated. •The antibiofouling technique utilized for sensor is significant for diagnostics. -- Abstract: Acknowledging the benefits of hyperbranched polymers and their nanoparticles, herein we report the design and synthesis of sulfonic acid group functionalized hydroxyl-terminated hyperbranched polyester (H30-SO{sub 3}H) nanoparticles and their biomedical application. The H30-SO{sub 3}H nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance spectroscopy ({sup 1}H NMR). The good hemocompatibility of H30-SO{sub 3}H nanoparticles was also investigated by coagulation tests, complement activation and platelet activation. The novel glucose biosensor was fabricated by immobilizing the positively charged Au nanoparticles, H30-SO{sub 3}H nanoparticles and glucose oxidase (GOx) onto the surface of glassy carbon electrode (GCE). It can be applied in whole blood directly, which was based on the good hemocompatibility and antibiofouling property of H30-SO{sub 3}H nanoparticles. The biosensor had good electrocatalytic activity toward glucose with a wide linear range (0.2–20 mM), a low detection limit 1.2 × 10{sup −5} M in whole blood and good anti-interference property. The development of materials science will offer a novel platform for application to substance detection in whole blood.

  5. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica-chitosan nanospheres and multiwall carbon nanotubes composite

    International Nuclear Information System (INIS)

    Chen Shihong; Yuan Ruo; Chai Yaqin; Yin Bin; Li Wenjun; Min Ligen

    2009-01-01

    The application of the composites of multiwall carbon nanotubes (MWNTs) and core-shell organosilica-chitosan crosslinked nanospheres as an immobilization matrix for the construction of an amperometric hydrogen peroxide (H 2 O 2 ) biosensor was described. MWNTs and positively charged organosilica-chitosan nanospheres were dispersed in acetic acid solution (0.6 wt%) to achieve organosilica-chitosan/MWNTs composites, which were cast onto a glass carbon electrode (GCE) surface directly. And then, horseradish peroxidase (HRP), as a model enzyme, was immobilized onto it through electrostatic interaction between oppositely charged organosilica-chitosan nanospheres and HRP. The direct electron transfer of HRP was achieved at HRP/organosilica-chitosan/MWNTs/GCE, which exhibited excellent electrocatalytic activity for the reduction of H 2 O 2 . The catalysis currents increased linearly to H 2 O 2 concentration in a wide range of 7.0 x 10 -7 to 2.8 x 10 -3 M, with a sensitivity of 49.8 μA mM -1 cm -2 and with a detection limit of 2.5 x 10 -7 M at 3σ. A Michaelies-Menten constant K M app value was estimated to be 0.32 mM, indicating a high-catalytic activity of HRP. Moreover, the proposed biosensor displayed a rapid response to H 2 O 2 and possessed good stability and reproducibility. When used to detect H 2 O 2 concentration in disinfector samples and sterilized milks, respectively, it showed satisfactory results

  6. Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique

    International Nuclear Information System (INIS)

    Sun, Chong; Chen, Xiaohan; Han, Qiaorong; Zhou, Min; Mao, Chun; Zhu, Qinshu; Shen, Jian

    2013-01-01

    Highlight: •A novel method for detection of glucose in whole blood has been developed. •The method based on antibiofouling and self-assembly technology was investigated. •The antibiofouling technique utilized for sensor is significant for diagnostics. -- Abstract: Acknowledging the benefits of hyperbranched polymers and their nanoparticles, herein we report the design and synthesis of sulfonic acid group functionalized hydroxyl-terminated hyperbranched polyester (H30-SO 3 H) nanoparticles and their biomedical application. The H30-SO 3 H nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance spectroscopy ( 1 H NMR). The good hemocompatibility of H30-SO 3 H nanoparticles was also investigated by coagulation tests, complement activation and platelet activation. The novel glucose biosensor was fabricated by immobilizing the positively charged Au nanoparticles, H30-SO 3 H nanoparticles and glucose oxidase (GOx) onto the surface of glassy carbon electrode (GCE). It can be applied in whole blood directly, which was based on the good hemocompatibility and antibiofouling property of H30-SO 3 H nanoparticles. The biosensor had good electrocatalytic activity toward glucose with a wide linear range (0.2–20 mM), a low detection limit 1.2 × 10 −5 M in whole blood and good anti-interference property. The development of materials science will offer a novel platform for application to substance detection in whole blood

  7. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  8. A New Laccase Biosensor For Polyphenols Determination

    Directory of Open Access Journals (Sweden)

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  9. L-arginine biosensors: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Neelam Verma

    2017-12-01

    Full Text Available Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.

  10. Design of nanostructured-based glucose biosensors

    Science.gov (United States)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  11. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Boyer, P.D. (Univ. of California, Los Angeles (USA))

    1990-01-16

    Washed chloroplast thylakoid membranes upon exposure to ({sup 3}H)ADP retain in tightly bound ({sup 3}H)ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg{sup 2+} results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound ({sup 3}H)ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg{sup 2+}- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22{degree}C and of about 15 s at 37{degree}C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg{sup 2+} and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound ({sup 3}H)ADP parallels the onset of ATPase activity, although some ({sup 3}H)ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound ({sup 3}H)ADP being at a catalytic site and being replaced as this Mg{sup 2+}- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P{sub i} binding site of the enzyme-ADP-Mg{sup 2+} complex to give a form more readily activated by ATP binding at an alternative site.

  12. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    Science.gov (United States)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Da-Ming Feng

    2017-12-01

    Full Text Available Global climate change and increasing demands for clean energy have brought intensive interest in the search for proper electrocatalysts in order to reduce carbon dioxide (CO2 to higher value carbon products such as hydrocarbons. Recently, transition-metal-centered molecules or organic frameworks have been reported to show outstanding electrocatalytic activity in the liquid phase. Their d-orbital electrons are believed to be one of the key factors to capture and convert CO2 molecules to value-added low-carbon fuels. In this review, recent advances in electrocatalytic CO2 reduction have been summarized based on the targeted products, ranging from homogeneous reactions to heterogeneous ones. Their advantages and fallbacks have been pointed out and the existing challenges, especially with respect to the practical and industrial application are addressed.

  14. Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems

    KAUST Repository

    Feng, Da-Ming

    2017-12-01

    Global climate change and increasing demands for clean energy have brought intensive interest in the search for proper electrocatalysts in order to reduce carbon dioxide (CO2) to higher value carbon products such as hydrocarbons. Recently, transition-metal-centered molecules or organic frameworks have been reported to show outstanding electrocatalytic activity in the liquid phase. Their d-orbital electrons are believed to be one of the key factors to capture and convert CO2 molecules to value-added low-carbon fuels. In this review, recent advances in electrocatalytic CO2 reduction have been summarized based on the targeted products, ranging from homogeneous reactions to heterogeneous ones. Their advantages and fallbacks have been pointed out and the existing challenges, especially with respect to the practical and industrial application are addressed.

  15. Electrocatalytic carboxylation of chloroacetonitrile at a silver cathode for the synthesis of cyanoacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Scialdone, Onofrio [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)], E-mail: scialdone@dicpm.unipa.it; Galia, Alessandro; Filardo, Giuseppe [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Isse, Abdirisak Ahmed [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy)], E-mail: Abdirisak.ahmedisse@unipd.it; Gennaro, Armando [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy)

    2008-12-30

    The electrocatalytic carboxylation of chloroacetonitrile to cyanoacetic acid performed at silver cathodes was investigated both theoretically and experimentally. Silver exhibits powerful electrocatalytic activities towards the reduction of chloroacetonitrile. In CO{sub 2}-saturated CH{sub 3}CN, reduction of NCCH{sub 2}Cl occurs at potentials that are about 0.7 V more positive than those observed at glassy carbon and gives cyanoacetic acid in good yields. Theoretical considerations on the effect of operative parameters on the performances of the process were confirmed by electrocarboxylation experiments performed in undivided cells equipped with sacrificial anodes both in a bench-scale electrochemical batch reactor and in a continuous batch recirculation reaction system equipped with a parallel plate electrochemical cell. Selectivities and Faradic efficiencies higher than 80% were obtained by working under anhydrous conditions both under amperostatic and potentiostatic alimentation at proper values of either current density or applied potential.

  16. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com [Department of Chemistry, National Institute of Technology, Warangal - 506004, Telangana (India)

    2016-04-13

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  17. Multistage electrodeposition of supported platinum-based nanostructured systems for electrocatalytic applications

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2011-05-01

    Full Text Available .R. Modibedi and Mkhulu K. Mathe* *kmathe@csir.co.za 219th ECS Meeting, 1 ? 6 May, 2011, Montreal, Canada Multistage Electrodeposition of Supported Platinum-based Nanostructured Systems for Electrocatalytic Applications Overview ? Acknowledgements... of constituent elements of the given electrode surface. ? Applications areas: Fuel cells, electrochemical sensors, electrolyzers Introduction e- A B 5 Introduction Atomic-level processes during electrocatalysis www...

  18. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  19. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    OpenAIRE

    Oyunbileg G; Batnyagt G; Enkhsaruul B; T Takeguchi

    2018-01-01

    The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the ...

  20. Quantifying the Electrocatalytic Turnover of Vitamin B12-Mediated Dehalogenation on Single Soft Nanoparticles.

    Science.gov (United States)

    Cheng, Wei; Compton, Richard G

    2016-02-12

    We report the electrocatalytic dehalogenation of trichloroethylene (TCE) by single soft nanoparticles in the form of Vitamin B12 -containing droplets. We quantify the turnover number of the catalytic reaction at the single soft nanoparticle level. The kinetic data shows that the binding of TCE with the electro-reduced vitamin in the Co(I) oxidation state is chemically reversible. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of reactivities of electro-catalytic oxidation of organic substrates with Ru(IV) complex

    International Nuclear Information System (INIS)

    Madurro, J.M.; Oliveira, S.M. de; Campos, J.L.

    1988-01-01

    An electrocatalytic procedure for the oxidation of olefines, ketones, heterocycles and ethers using the Ru IV oxidant RuO (bpy) (trpy) 2+ (bpy is 2,2 - bipyridine; trpy is 2,2', 2''' - terpyridine), is described. The relative reactivities of the substrates are determined by analysis of the exponential i x t curves, using simple linear and exponential least-square programme. Mechanistics considerations based on the observed relative reactivities are discussed. (M.J.C.) [pt

  2. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM -1 cm -2 ), low detection limit (S/N = 3) (3 x 10 -12 M), fast response time (0.045 s), wide calibration range (from 1 x 10 -11 M to 1 x 10 -8 M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10 -6 mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose biosensors based on graphene nanomaterials up to

  3. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhiguo; Yang Shuping [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.net [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Sun Xiulan [School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Guangli [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Fang Yinjun [Zhejiang Zanyu Technology Co., Ltd., Hangzhou 310009 (China); Liu Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2011-10-30

    Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M), fast response time (0.045 s), wide calibration range (from 1 x 10{sup -11} M to 1 x 10{sup -8} M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10{sup -6} mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose

  4. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  5. Impact of the spatial distribution of morphological pattern on the efficiency of electrocatalytic gas evolving reactions

    Directory of Open Access Journals (Sweden)

    Žerađanin Aleksandar R.

    2014-01-01

    Full Text Available The efficiency of electrocatalytic gas evolving reactions (hydrogen, chlorine and oxygen evolution is a key challenge for the important industrial processes, such as chlor-alkali electrolysis or water electrolysis. Central issue for the aforementioned electrocatalytic processes is huge power consumption. Experimental results accumulated in the past, as well as some predictive models ("volcano" plots indicate that altering the nature of the electrode material cannot significantly increase the activity of mentioned reactions. Consequently, it is necessary to find a qualitatively different strategy for improving the energy efficiency of electrocatalytic gas evolving reactions. Usually disregarded fact is that the gas evolution is an oscillatory phenomenon. Given the oscillatory behavior, a key parameter of macrokinetics of gas electrode is the frequency of gas-bubble detachment. Bearing in mind that the gas evolution greatly depends on the surface morphology, a methodology is proposed that establishes a rational link between the morphological pattern of electrode with electrode activity and stability. Characterization was performed using advanced analytical tools. Frequency of gas-bubble detachment is obtained in the configuration of scanning electrochemical microscopy (SECM while the corrosion stability is analyzed using miniaturized scanning flow electrochemical cell connected to the mass spectrometer (SFC-ICPMS.

  6. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals.

    Science.gov (United States)

    Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan; Jin, Zhong

    2018-01-01

    The worldwide unrestrained emission of carbon dioxide (CO 2 ) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO 2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO 2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO 2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal-organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO - ), monoxide carbon (CO), formaldehyde (HCHO), methane (CH 4 ), ethylene (C 2 H 4 ), methanol (CH 3 OH), ethanol (CH 3 CH 2 OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO 2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO 2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO 2 electroreduction.

  7. Electrocatalytic reduction of nitrite using ferricyanide; Application for its simple and selective determination

    International Nuclear Information System (INIS)

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zarei, Ebrahim

    2006-01-01

    The electrocatalytic reduction of nitrite has been studied by ferricyanide at the surface of carbon paste electrode. Cyclic voltammetry and chronoamperometry techniques were used to investigate the suitability of ferricyanide as a mediator for the electrocatalytic nitrite reduction in aqueous solution with various pH. Results showed that pH 0.00 is the most suitable for this purpose. In the optimum pH, the electrocatalytic ability about 700 mV can be seen and the homogeneous second-order rate constant (k s ) for nitrite coupled catalytically to ferricyanide was calculated 2.75 x 10 3 M -1 s -1 by Nicholson-Shain method. Also, electron transfer coefficients (α) for ferricyanide was determined by using various electrochemical approaches such as Tafel plot in the absence and presence of nitrite 0.556 and 0.760, respectively. The catalytic reduction peak current was linearly dependent on the nitrite concentration and the linearity range obtained was 5.00 x 10 -5 to 1.00 x 10 -3 M. Detection limit has been found to be 2.63 x 10 -5 M (2σ). This method has been applied as a selective, simple and precise method for determination of nitrite in real sample

  8. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution

    International Nuclear Information System (INIS)

    Abbaspour, Abdolkarim; Norouz-sarvestani, Fatemeh; Mirahmadi, Ehsan

    2012-01-01

    Highlights: ► The new construction of a carbon paste electrode impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). ► The decrease overpotential and higher current value obtained in nano ZnPc and nano NiPc compared to bulky ZnPc and bulky NiPc, respectively. ► Types of the catalyst and pH of the solution affect the electro catalytic proton reduction reaction considerably. - Abstract: This paper describes the construction of a carbon paste electrode (CPE) impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). These new electrodes (nano ZnPc-CPE and nano NiPc-CPE) reveal interesting electrocatalytic behavior toward hydrogen evolution reaction (HER). Voltammetric characteristics indicated that the proposed electrodes display better electrocatalytic activity compared to their corresponding bulky modified metal phthalocyanines (MPcs) in minimizing overpotential and increasing the reduction current of HER. Electrocatalytic activities irregularly change with the pH of the solution. However by increasing the pH while nano MPcs are still active, bulky MPcs are almost inactive, and their corresponding ΔE increase by increasing the pH.

  9. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

    Science.gov (United States)

    Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S

    2014-01-14

    Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.

  10. Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites

    International Nuclear Information System (INIS)

    Liao, Chien-Shiun; Liao, Chien-Tsao; Tso, Ching-Yu; Shy, Hsiou-Jeng

    2011-01-01

    Highlights: · One-pot microwave-polyol synthesis of Pt/graphene electrocatalyst. · Simultaneous formation of Pt nanoparticles and reduction of graphene oxide. · Electrocatalytic activities depend on the morphology of the deposited Pt particles. · Dense dispersion of isolated Pt particles with high electrochemical active surface. · Few particle clusters of Pt have large number of active sites for methanol oxidation. - Abstract: Graphene oxide (GO) prepared by the modified Hummers method is used as a support in the formation of a Pt/GO nanocomposite electrocatalyst by microwave-polyol synthesis. The effects of microwave reaction times on particle size, dispersion, and electrocatalytic performance of Pt nanoparticles are studied using wide-angle X-ray diffractometery, Raman spectroscopy, transmission electron microscopy and three-electrode electrochemical measurements. The results indicate that Pt nanoparticles nucleation and growth occur, and the particles are uniformly deposited on the GO nanosheets within a short time. The maximum electrochemical active surface area 85.71 m 2 g -1 for a Pt/GO reaction time of 5 min, is a result of the deposition of a dense dispersion of small Pt particles. The highest methanol oxidation peak current density, I f , of 0.59 A mg -1 occurs for a Pt/GO reaction time of 10 min and is due to the formation of interconnecting Pt particles clusters. This novel Pt/GO nanocomposite electrocatalyst with high electrocatalytic activities has the potential for use as an anode material in fuel cells.

  11. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.

    Science.gov (United States)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2017-04-10

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates.

    Science.gov (United States)

    Liu, Subiao; Tao, Hongbiao; Zeng, Li; Liu, Qi; Xu, Zhenghe; Liu, Qingxia; Luo, Jing-Li

    2017-02-15

    Electrochemical reduction of CO 2 (CO 2 RR) provides great potential for intermittent renewable energy storage. This study demonstrates a predominant shape-dependent electrocatalytic reduction of CO 2 to CO on triangular silver nanoplates (Tri-Ag-NPs) in 0.1 M KHCO 3 . Compared with similarly sized Ag nanoparticles (SS-Ag-NPs) and bulk Ag, Tri-Ag-NPs exhibited an enhanced current density and significantly improved Faradaic efficiency (96.8%) and energy efficiency (61.7%), together with a considerable durability (7 days). Additionally, CO starts to be observed at an ultralow overpotential of 96 mV, further confirming the superiority of Tri-Ag-NPs as a catalyst for CO 2 RR toward CO formation. Density functional theory calculations reveal that the significantly enhanced electrocatalytic activity and selectivity at lowered overpotential originate from the shape-controlled structure. This not only provides the optimum edge-to-corner ratio but also dominates at the facet of Ag(100) where it requires lower energy to initiate the rate-determining step. This study demonstrates a promising approach to tune electrocatalytic activity and selectivity of metal catalysts for CO 2 RR by creating optimal facet and edge site through shape-control synthesis.

  13. Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-M. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)]. E-mail: smchen78@ms15.hinet.net; Liao, C.-J. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)

    2004-11-15

    Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films' electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os{sup 3+} and Fe(CN){sub 6}{sup 3-} ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included 'electron transfer' and 'proton transfer' with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S{sub 2}O{sub 3}{sup 2-}, and SO{sub 5}{sup 2-} by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.

  14. Oxidation of sulphite to sulphate in presence of protohematin - 1. general characteristics (1961); Oxydation du sulfite en sulfate en presence de protohematine - 1. caracteristiques generales (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Fromageot, P; Chapeville, F [Commissariat a l' Energie Atomique, Dept. de Biologie, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Protohematin catalyzes the oxidation of sulphite. The optimum pH of the reaction is approximately 7 in the presence of a 0.05 M phosphate buffer. The oxidation of sulphite is not coupled to the reduction of protohematin to protohaem. Reagents able to form complexes with the iron of protohematin are inhibitors of its catalytic function. (authors) [French] La protohematine possede la propriete de catalyser l'oxydation du sulfite. Le pH optimum de cette reaction est voisin de 7 en presence d'un tampon phosphate 0,05 M. L'oxydation du sulfite n'est pas liee a la reduction de la protohematine en protoheme et les substances susceptibles de former des complexes avec le fer de la protohematine sont des inhibiteurs de son action catalytique. (auteurs)

  15. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  16. A global benchmark study using affinity-based biosensors

    NARCIS (Netherlands)

    Rich, Rebecca L.; Papalia, Giusseppe A.; Krishnamoorthy, G.; Beusink, J.B.; Pak, Brian J.; Myszka, David G.; more, more

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users

  17. In vitro evaluation of fluorescence glucose biosensor response.

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-07-08

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  18. Silicon-on-Insulator Nanowire Based Optical Waveguide Biosensors

    International Nuclear Information System (INIS)

    Li, Mingyu; Liu, Yong; Chen, Yangqing; He, Jian-Jun

    2016-01-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) nanowire have been developed for label free molecular detection. This paper reviews our work on the design, fabrication and measurement of SOI nanowire based high-sensitivity biosensors employing Vernier effect. Biosensing experiments using cascaded double-ring sensor and Mach-Zehnder- ring sensor integrated with microfluidic channels are demonstrated (paper)

  19. Biosensors engineered from conditionally stable ligand-binding domains

    Science.gov (United States)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  20. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    Directory of Open Access Journals (Sweden)

    Mamdouh Aloraefy

    2014-07-01

    Full Text Available Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  1. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    OpenAIRE

    Nazruddin Nazaruddin

    2007-01-01

    Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. H...

  2. A biosensor device and a method of manufacturing the same

    NARCIS (Netherlands)

    2017-01-01

    A biosensor device (100) for detecting biological particles, the biosensor device (100) comprising a substrate (102), a regular pattern of pores (104) formed in the substrate (102), and a plurality of sensor active structures (106) each of which being arranged on a surface of a corresponding one of

  3. Translating University Biosensor Research to a High School Laboratory Experience

    Science.gov (United States)

    Heldt, Caryn L.; Bank, Alex; Turpeinen, Dylan; King, Julia A.

    2016-01-01

    The need to increase science, technology, engineering, and mathematics (STEM) graduates is great. To interest more students into STEM degrees, we made our graphene biosensor research portable, inexpensive, and safe to demonstrate technology development to high school students. The students increased their knowledge of biosensors and proteins, and…

  4. A biosensor device and a method of manufacturing the same

    NARCIS (Netherlands)

    2009-01-01

    A biosensor device (100) for detecting biological particles, the biosensor device (100) comprising a substrate (102), a regular pattern of pores (104) formed in the substrate (102), and a plurality of sensor active structures (106) each of which being arranged on a surface of a corresponding one of

  5. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  6. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  7. Android integrated urea biosensor for public health awareness

    Directory of Open Access Journals (Sweden)

    Pranali P. Naik

    2015-03-01

    Full Text Available Integration of a biosensor with a wireless network on the Android 4.2.1 (Jelly Bean platform has been demonstrated. The present study reports an android integrated user friendly Flow injection analysis-Enzyme thermistor (FIA-ET urea biosensor system. This android-integrated biosensor system will facilitate enhanced consumer health and awareness alongside abridging the gap between the food testing laboratory and the concerned higher authorities. Data received from a flow injection mode urea biosensor has been exploited as an integration point among the analyst, the food consumer and the responsible higher authorities. Using the urea biosensor as an example, an alarm system has also been demonstrated both graphically and through text message on a mobile handset. The presented sensor integrated android system will also facilitate decision making support system in various fields of food quality monitoring and clinical analysis.

  8. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  9. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    Science.gov (United States)

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  10. Introduction to biosensors from electric circuits to immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  11. Emerging synergy between nanotechnology and implantable biosensors: a review.

    Science.gov (United States)

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  12. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  13. Review of Micro/Nanotechnologies for Microbial Biosensors

    Directory of Open Access Journals (Sweden)

    Ji Won eLim

    2015-05-01

    Full Text Available A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory-regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.

  14. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.

    Science.gov (United States)

    Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A novel H(2)O(2) amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers.

    Science.gov (United States)

    Chen, Xiaojun; Chen, Zixuan; Zhu, Jinwei; Xu, Chenbin; Yan, Wei; Yao, Cheng

    2011-10-01

    A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H(2)O(2) in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H(2)O(2) were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N=3) under the optimum conditions. The response showed Michaelis-Menten behavior at larger H(2)O(2) concentrations, and the apparent Michaelis-Menten constant K(m) was estimated to be 2.21 mM. The detection of H(2)O(2) concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    Science.gov (United States)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  17. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  18. Bioluminescent bacteria: lux genes as environmental biosensors

    Directory of Open Access Journals (Sweden)

    Nunes-Halldorson Vânia da Silva

    2003-01-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  19. Biosensors and invasive monitoring in clinical applications

    CERN Document Server

    Córcoles, Emma P

    2013-01-01

    This volume examines the advances of invasive monitoring by means of biosensors and microdialysis. Physical and physiological parameters are commonly monitored in clinical settings using invasive techniques due to their positive outcome in patients’ diagnosis and treatment. Biochemical parameters, however, still rely on off-line measurements and require large pieces of equipment. Biosensing and sampling devices present excellent capabilities for their use in continuous monitoring of patients’ biochemical parameters. However, certain issues remain to be solved in order to ensure a more widespread use of these techniques in today’s medical practices.

  20. More About Thin-Membrane Biosensor

    Science.gov (United States)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  1. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    their capability to work in biosensor devices. For example, Raman spectroscopy can be non-invasive and can provide 1 μm of spatial resolution in 1 second of collection time, well suited for sensing. Moreover, it may give information at the single cell and even approaching the single molecule scale. Here we present...... protein may be used as an efficient sensor in an organic environment via a biomimetic membrane model. The combination of both biomimetic membranes and protein membranes as a signal transduction medium has interesting applications in biology and medicine. It is crucial that the matrix where a protein...

  2. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe{sub 2}O{sub 4} nanocatalyst surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zizheng [School of Civil Engineering, Wuhan University, Wuhan, 430072 (China); Yang, Shaojie; Yuan, Yanan; Xu, Jing; Zhu, Yifan [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079 (China); Li, Jinjun, E-mail: ljj0410@163.com [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079 (China); Wu, Feng, E-mail: fengwu@whu.edu.cn [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079 (China)

    2017-02-15

    Highlights: • CoFe{sub 2}O{sub 4}−S(IV)−O{sub 2} system is proposed as a new system of sulfate radical based AOPs. • Alkaline pH favors the activation of sulfite on CoFe{sub 2}O{sub 4} surface to produce oxysulfur radicals. • Generation of Co−OH complexes on the surface of CoFe{sub 2}O{sub 4} is the main factor for sulfite activation. • Degradation of organic contaminants by CoFe{sub 2}O{sub 4}−S(IV)−O{sub 2} system were achieved. • Main intermediates and pathways for the degradation of metoprolol were identified. - Abstract: Heterogeneous catalytic activation is important for potential application of new sulfate-radical-based advanced oxidation process using sulfite as source of sulfate radical. We report herein a heterogeneous system for sulfite activation by CoFe{sub 2}O{sub 4} nanocatalyst for metoprolol removal. Factors that influence metoprolol removal were investigated, including pH and initial concentrations of components. The CoFe{sub 2}O{sub 4} nanocatalyst was characterized by X-ray diffractometry (XRD) and transmission electron microscopy (TEM), and the catalytic stability was tested by consecutive runs. Radicals generated in the CoFe{sub 2}O{sub 4}−S(IV)−O{sub 2} system were identified through radical quenching experiments and by electron spin resonance (ESR). The catalytic mechanism was elucidated further by X-ray photoelectron spectroscopy (XPS). The catalytic process was dependent on initial pH, and more than 80% of the metoprolol can be removed at pH 10.0 following the Langmubir-Hinshelwood equation. The generation of Co-OH complexes on the CoFe{sub 2}O{sub 4} surface was crucial for sulfite activation. SO{sub 4}{sup ·−} was verified to be the main oxidative species responsible for metoprolol degradation. Other organic pollutants, such as sulfanilamide, sulfasalazine, 2-nitroaniline, sulfapyridine, aniline, azo dye X-3B and 4-chloroaniline, could also be removed in this CoFe{sub 2}O{sub 4}−S(IV)−O{sub 2} system. The

  3. Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution:. ionic strength effects and temperature dependence

    Science.gov (United States)

    Maaß, Frank; Elias, Horst; Wannowius, Klaus J.

    Conductometry was used to study the kinetics of the oxidation of hydrogen sulfite, HSO -3, by hydrogen peroxide in aqueous non-buffered solution at the low concentration level of 10 -5-10 -6 M, typically found in cloud water. The kinetic data confirm that the rate law reported for the pH range 3-6 at higher concentration levels, rate= kH·[H +]·[HSO -3]·[H 2O 2], is valid at the low concentration level and at low ionic strength Ic. At 298 K and Ic=1.5×10 -4 M, third-order rate constant kH was found to be kH=(9.1±0.5)×10 7 M -2 s -1. The temperature dependence of kH led to an activation energy of Ea=29.7±0.9 kJ mol -1. The effect of the ionic strength (adjusted with NaCl) on rate constant kH was studied in the range Ic=2×10 -4-5.0 M at pH=4.5-5.2 by conductometry and stopped-flow spectrophotometry. The dependence of kH on Ic can be described with a semi-empirical relationship, which is useful for the purpose of comparison and extrapolation. The kinetic data obtained are critically compared with those reported earlier.

  4. Evolution of Lignocellulosic Macrocomponents in the Wastewater Streams of a Sulfite Pulp Mill: A Preliminary Biorefining Approach

    Directory of Open Access Journals (Sweden)

    Tamara Llano

    2015-01-01

    Full Text Available The evolution of lignin, five- and six-carbon sugars, and other decomposition products derived from hemicelluloses and cellulose was monitored in a sulfite pulp mill. The wastewater streams were characterized and the mass balances throughout digestion and total chlorine free bleaching stages were determined. Summative analysis in conjunction with pulp parameters highlights some process guidelines and valorization alternatives towards the transformation of the traditional factory into a lignocellulosic biorefinery. The results showed a good separation of cellulose (99.64% during wood digestion, with 87.23% of hemicellulose and 98.47% lignin dissolved into the waste streams. The following steps should be carried out to increase the sugar content into the waste streams: (i optimization of the digestion conditions increasing hemicellulose depolymerization; (ii improvement of the ozonation and peroxide bleaching stages, avoiding deconstruction of the cellulose chains but maintaining impurity removal; (iii fractionation of the waste water streams, separating sugars from the rest of toxic inhibitors for 2nd generation biofuel production. A total of 0.173 L of second-generation ethanol can be obtained in the spent liquor per gram of dry wood. The proposed methodology can be usefully incorporated into other related industrial sectors.

  5. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós, E-mail: orbanm@chem.elte.hu [Department of Analytical Chemistry, Institute of Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Rábai, Gyula [Institute of Physical Chemistry, University of Debrecen, P.O. Box 7, H-4010 Debrecen (Hungary)

    2015-06-15

    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  6. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  7. Fabrication of Biosensors Based on Nanostructured Conducting Polyaniline (NSPANI

    Directory of Open Access Journals (Sweden)

    Deepshikha SAINI

    2011-11-01

    Full Text Available In this study, glucose and hydrogen peroxide (H2O2 biosensors based on nanostructured conducting polyaniline (NSPANI (synthesized using sodiumdodecyl sulphate (SDS as structure directing agent were developed. Because of the large specific surface area, excellent conductivity of NSPANI, horseradish peroxidase (HRP and glucose oxidase (GOx could be easily immobilized with high loading and activity. In addition the small dimensions and the high surface-to-volume ratio of the NSCP allow the rapid transmission of electron and enhance current response. The linear dynamic range of optical glucose and H2O2 biosensors is 5–40 mM for glucose and 1–50 mM for H2O2, respectively where as the bulk PANI exhibits linearity between 5-20 mM/l. The miniature optical glucose biosensor also exhibits good reproducibility. The storage stability of optical glucose and H2O2 biosensors is two weeks for glucose and five days for H2O2. The high response value of NSPANI based biosensors as compared to bulk PANI based biosensor reflects higher enzymatic affinity of GOx/NSPANI and HRP/NSPANI with glucose and H2O2 due to biocompatibility, active surface area and high electron communication capability of nanobiopolymer film. In conclusion, the NSPANI based biosensors proposed herein have many advantages such as a low response time, high reproducibility, high sensitivity, stable and wide dynamic range.

  8. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Science.gov (United States)

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  9. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  10. A biosensor system using nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com [NIIT University, Neemrana, NH-8, Alwar, Rajasthan, India, 301705 (India)

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  11. Innovations in biomedical nanoengineering: nanowell array biosensor

    Science.gov (United States)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  12. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  13. Diabetes mellitus: biosensors for research and management.

    Science.gov (United States)

    Turner, A P; Pickup, J C

    1985-01-01

    The condition of diabetes mellitus is described with particular reference to the parameters that it would be desirable to monitor in order to improve management and understanding of the disease. Previous attention has largely focused on analysis of glucose, but many other intermediates of carbohydrate, fat and protein metabolism are deranged in diabetes and may be alternative measures of control. The need for laboratory analysers, self-monitoring, closed-loop devices and alarms are detailed and the problems associated with implantable sensors discussed. Progress in the development of biosensors is reviewed using glucose sensors as the main example. Electrochemical, optoelectronic and calorimetric approaches to sensing are considered and it is concluded that configurations based either on hydrogen peroxide detection or on mediated electron transfer are most likely to provide a raid route to in vivo monitoring. The extension of biosensor technology to tackle other important substrates is discussed, the principal hurdle to success being seen as the lack of long-term stability of the biological component.

  14. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  15. Development of a Pseudomonas aeruginosa Agmatine Biosensor

    Directory of Open Access Journals (Sweden)

    Adam Gilbertsen

    2014-10-01

    Full Text Available Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice.

  16. Construction and characterization of novel stress-responsive Deinococcal biosensors

    International Nuclear Information System (INIS)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-01

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR 0 161, DR 0 589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection

  17. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-15

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR{sub 0}161, DR{sub 0}589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection.

  18. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  19. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    Liu, XiaoLong; Zhang, Yun; Yue, JiaChang; Jiang, PeiDong; Zhang, ZhenXi

    2006-01-01

    F F 1 -ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F 1 -ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  20. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  1. Development of biosensors and their application in metabolic engineering

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation...... for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding...

  2. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    Science.gov (United States)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d

  3. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2014-05-01

    Full Text Available ) were explored, and compared with those of the Pd/C alone. FeCo@Fe@Pd/C exhibited a remarkable performance in all three alcohols but its best electrocatalytic activity was found in the oxidation of EG where the electrocatalytic rate constant (K...

  4. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  5. Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene Catalyst

    International Nuclear Information System (INIS)

    Shi, Qin; Wang, Hui; Liu, Shaolei; Pang, Lei; Bian, Zhaoyong

    2015-01-01

    A Pd-Fe modified graphene (Pd-Fe/G) catalyst was prepared by the Hummers oxidation method and bimetallic co-deposition method. The catalyst was then characterized by various characterization techniques and its electrochemical property toward the electrocatalytic reduction-oxidation of chlorinated phenols was investigated by using cyclic voltammetry and differential pulse voltammetry. The results of the characterization show that the Pd-Fe/G catalyst in which the weight proportion of Pd and Fe is 1:1 has an optimal surface performance. The diameter of the Pd-Fe particles is approximately 5.2 ± 0.3 nm, with a uniform distribution on the supporting graphene. This is smaller than the Pd particles of a Pd-modified graphene (Pd/G) catalyst. The Pd-Fe/G catalyst shows a higher electrocatalytic activity than the Pd/G catalyst for reductive dechlorination when feeding with hydrogen gas. The reductive peak potentials of −0.188 V, −0.836 V and −0.956 V in the DPV curves are attributed to the dechlorination of ortho-Cl, meta-Cl, and para-Cl in 2-chlorophenol, 3-chlorophenol and 4-chlorophenol, respectively. In accordance with an analysis of the frontier orbital theory, the order of ease of dechlorination with Pd-Fe/G catalyst is 2-chlorophenol > 3-chlorophenol > 4-chlorophenol. The Pd-Fe/G catalyst has a greater activity than the Pd/G catalyst in accelerating the two-electron reduction of O_2 to H_2O_2, which is attributed to the higher current of the reduction peak at approximately −0.40 V when feeding with oxygen gas. Therefore, the Pd-Fe/G catalyst exhibits a higher electrocatalytic activity than the Pd/G catalyst for the reductive dechlorination and acceleration of the two-electron reduction of O_2 to H_2O_2.

  6. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    Elahi, M. Yousef; Mousavi, M.F.; Ghasemi, S.

    2008-01-01

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH - . Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  7. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  8. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    Science.gov (United States)

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fabrication of La-doped TiO2 Film Electrode and investigation of its electrocatalytic activity for furfural reduction

    International Nuclear Information System (INIS)

    Wang, Fengwu; Xu, Mai; Wei, Lin; Wei, Yijun; Hu, Yunhu; Fang, Wenyan; Zhu, Chuan Gao

    2015-01-01

    Lanthanum trivalent ions (La 3+ ) doped nano-TiO 2 film electrode was prepared by the sol–gel method. The prepared electrode was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The electrocatalytic properties of the roughened TiO 2 film electrode towards the electrocatalytic reduction of furfural to furfural alcohol were evaluated by CV and preparative electrolysis experiments. The results of the optimum molar ratio of La: Ti was 0.005:1. Experimental evidence was presented that the La nano-TiO 2 electrode exhibited higher electrocatalytic activity for the reduction of furfural than the undoped nano-TiO 2 electrode in N,N-dimethylformamide medium. Bulk electrolysis studies were also carried out for the reduction of furfural and the product was confirmed by NMR

  10. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  11. Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Suresh; Raju, Prabu; Arunachalam, Vijayaraj; Krishnamoorty, Giribabu; Ramadoss, Manigandan; Arumainathan, Stephen; Vengidusamy, Narayanan [University of Madras, Guindy Maraimalai Campus, Chennai (India)

    2012-06-15

    Poly(anthranilic acid) was synthesized by rapid mixing method using 5-sulphosalicylic acid as a dopant. The synthesized polymer was characterized by various techniques like FT-IR, UV-Visible, and X-ray diffraction etc., The FT-IR studies reveal that the 5-sulphosalicylic acid is well doped within the polymer. The morphological property was characterized by field emission scanning electron microscopic technique. The electrochemical properties of the polymer were studied by cyclic voltammetric method. The synthesized polymer was used to modify glassy carbon electrode (GCE) and the modified electrode was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA)

  12. Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties

    International Nuclear Information System (INIS)

    Ranganathan, Suresh; Raju, Prabu; Arunachalam, Vijayaraj; Krishnamoorty, Giribabu; Ramadoss, Manigandan; Arumainathan, Stephen; Vengidusamy, Narayanan

    2012-01-01

    Poly(anthranilic acid) was synthesized by rapid mixing method using 5-sulphosalicylic acid as a dopant. The synthesized polymer was characterized by various techniques like FT-IR, UV-Visible, and X-ray diffraction etc., The FT-IR studies reveal that the 5-sulphosalicylic acid is well doped within the polymer. The morphological property was characterized by field emission scanning electron microscopic technique. The electrochemical properties of the polymer were studied by cyclic voltammetric method. The synthesized polymer was used to modify glassy carbon electrode (GCE) and the modified electrode was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA)

  13. Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.

    Science.gov (United States)

    Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J

    2016-04-21

    The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.

  14. Investigating radical cation chain processes in the electrocatalytic Diels-Alder reaction.

    Science.gov (United States)

    Imada, Yasushi; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Single electron transfer (SET)-triggered radical ion-based reactions have proven to be powerful options in synthetic organic chemistry. Although unique chain processes have been proposed in various photo- and electrochemical radical ion-based transformations, the turnover number, also referred to as catalytic efficiency, remains unclear in most cases. Herein, we disclose our investigations of radical cation chain processes in the electrocatalytic Diels-Alder reaction, leading to a scalable synthesis. A gram-scale synthesis was achieved with high current efficiency of up to 8000%. The reaction monitoring profiles showed sigmoidal curves with induction periods, suggesting the involvement of intermediate(s) in the rate determining step.

  15. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunjoo; Habas, Susan; Somorjai, Gabor; Yang, Peidong

    2007-12-14

    Single crystalline surface such as (100), (111), (110) has been studied as an idealized platform for electrocatalytic reactions since the atomic arrangement affects a catalytic property. The secondary metal deposition on these surfaces also alters the catalytic property often showing improvement such as poisoning decrease. On the other hand, electrocatalysts used for practical purpose usually have a size on the order of nanometers. Therefore, linking the knowledge from single crystalline studies to nanoparticle catalysts is of enormous importance. Recently, the Pt nanoparticles which surface structure was preferentially oriented was synthesized and used as electrocatalysts. Here, we demonstrate a rational design of a binary metallic nanocatalyst based on the single crystalline study.

  16. Electrocatalytic oxidation of methanol: study with Pt:Mo dispersed catalysts

    Directory of Open Access Journals (Sweden)

    Oliveira Neto Almir

    2000-01-01

    Full Text Available The electrocatalytic oxidation of methanol on Pt:Mo dispersed on carbon prepared using an alternative method recently developed in this laboratory was investigated. The EDX analysis confirmed that the simultaneous reduction of the precursor salts of Pt and Mo leads to the presence of these materials at the nominal composition initially calculated. The addition of Mo to Pt causes an increase of the oxidation currents, but does not improve the catalytic effect for methanol oxidation. Tafel plots for various methanol concentrations showed the presence of two slopes. On line differential electrochemical mass spectrometry (DEMS was used to investigate the distribution of products and intermediates in methanol oxidation.

  17. Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation

    Science.gov (United States)

    Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman

    2018-02-01

    In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.

  18. Electrocatalytic properties of graphite nanofibers-supported platinum catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang

    2009-09-01

    Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.

  19. Electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine film modified electrode towards 6-mercaptopurine and 2-mercaptobenzimidazole

    OpenAIRE

    Fan, Jie-Ping; Zhang, Xiao-Min; Ying, Min

    2010-01-01

    The electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine (poly-CoTAPc) film modified on the glassy carbon electrode (GCE) towards 6-mercaptopurine (6MP) and 2-Mercaptobenzimidazole (MBI) was studied. Comparing with the case at the unmodified GCE, the poly-CoTAPc film decreased the overpotential of oxidation of 6MP (1.0 x 10-3 mol L-1) and MBI (1.0 x 10-3 mol L-1) by 335 and 189 mV, respectively, and increased the peak current by about 3 and 2 times, respectively, wh...

  20. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    National Research Council Canada - National Science Library

    Kerman, Kagan

    2001-01-01

    The utility and advantages of an indicator free and MB based sequence specific DNA hybridization biosensor based on guanine and adenine oxidation signals and MB reduction signals have been demonstrated...

  1. Modelling of Amperometric Biosensor Used for Synergistic Substrates Determination

    Directory of Open Access Journals (Sweden)

    Dainius Simelevicius

    2012-04-01

    Full Text Available In this paper the operation of an amperometric biosensor producing a chemically amplified signal is modelled numerically. The chemical amplification is achieved by using synergistic substrates. The model is based on non-stationary reaction-diffusion equations. The model involves three layers (compartments: a layer of enzyme solution entrapped on the electrode surface, a dialysis membrane covering the enzyme layer and an outer diffusion layer which is modelled by the Nernst approach. The equation system is solved numerically by using the finite difference technique. The biosensor response and sensitivity are investigated by altering the model parameters influencing the enzyme kinetics as well as the mass transport by diffusion. The biosensor action was analyzed with a special emphasis to the effect of the chemical amplification. The simulation results qualitatively explain and confirm the experimentally observed effect of the synergistic substrates conversion on the biosensor response.

  2. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof; Sivashankar, Shilpa; Buttner, Ulrich; Salama, Khaled N.

    2016-01-01

    fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF

  3. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  4. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  5. Development of FRET biosensors for mammalian and plant systems

    NARCIS (Netherlands)

    Hamers, D.; van Voorst Vader, L.; Borst, J.W.; Goedhart, J.

    2014-01-01

    Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Forster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic

  6. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  7. Plasmon based biosensor for distinguishing different peptides mutation states

    KAUST Repository

    Das, Gobind; Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Zaccaria, Remo Proietti; Alabastri, Alessandro; Leoncini, Marco; Di Fabrizio, Enzo M.

    2013-01-01

    of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild

  8. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    Directory of Open Access Journals (Sweden)

    Nazruddin Nazaruddin

    2007-06-01

    Full Text Available Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. Hasil pengukuran menunjukkan sensitivitas biosensor urea berbasis membran khitin adalah 19,11 mV/dekade, trayek pengukuran 10-4 – 10-8 M, limit deteksi 10-8 M, waktu respon 3,10–6,02 menit, dengan urutan kekuatan ion penggangu: NH4Cl > NaCl > CH3COONa > campuran garam > KCl > CaCl2 > asam askorbat. Kata kunci: biosensor, immobilisasi, khitin, urea

  9. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  10. Sodium sulfite promotes the assembly and secretion of very low-density lipoprotein in HL-7702 hepatocytes

    Directory of Open Access Journals (Sweden)

    Jianying Bai

    Full Text Available This study investigated the effects of Na2SO3 on the fat metabolism in human normal diploid HL-7702 (referred as L-02 hepatocytes. After 24 h and 48 h, treatment with different concentrations of Na2SO3, the intra and extra-hepatocellular triglyceride (TG contents of L-02 were determined using chemical-enzymatic method. The contents of very low-density lipoprotein (VLDL and apolipoprotein B100 (apoB100 in the culture supernatants were determined using enzyme-linked immunosorbent assay (ELISA. Western blot was applied to detect the expressions of fatty acid oxidation and fat synthesis related proteins, VLDL assembly and secretion in L-02 cells. Results: Na2SO3 treatment (10 mM, 24 h/48 h significantly increased the intra TG level in the hepatocytes. Different concentrations of Na2SO3 increased the extra-hepatocellular TG content. After 24 h exposure, the extracellular VLDL levels and secretions of apoB100 in 0.1–10 mM Na2SO3 groups were significantly higher than that of the negative control (P < 0.05. Meanwhile, the expression of CPT1 and SREBP1 protein were significantly reduced by Na2SO3. MTP and TGH protein expressions were significantly elevated in each Na2SO3 treatment group. The expression level of LDLR in hepatocytes was reduced by Na2SO3. Conclusion: Na2SO3 exposure may promote the hepatocellular VLDL assembly and secretion, through increasing of MTP and TGH expressions and inhibiting the uptake of extracelluar VLDL. Keywords: Sodium sulfite, Hepatocytes, VLDL, Fatty acid oxidation, Fat synthesis, VLDL uptake

  11. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

    Science.gov (United States)

    Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

  12. Innovative configurations of electrochemical DNA biosensors (a review)

    OpenAIRE

    Girousi, Stella; Karastogianni, Sofia; Serpi, Constantina

    2011-01-01

    In the field of electrochemical biosensing, transition metal complexes achieved a significant importance as hybridization indicators or electroactive markers of DNA. Their incorporation in electro-chemical DNA biosensors enables to offer a promising perspective in understanding of the biological activity of some chemical compounds. In this context, the development of innovative configurations of electrochemical DNA biosensors applied to life sciences during the last years were reviewed ...

  13. Last Advances in Silicon-Based Optical Biosensors.

    Science.gov (United States)

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  14. Ring-Interferometric Sol-Gel Bio-Sensor

    Science.gov (United States)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  15. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise; Snoek, Tim; Kildegaard, Kanchana Rueksomtawin

    2016-01-01

    ,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications....... real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily...

  16. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  17. Biosensor Regeneration: A Review of Common Techniques and Outcomes.

    Science.gov (United States)

    Goode, J A; Rushworth, J V H; Millner, P A

    2015-06-16

    Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.

  18. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  19. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  20. The Scanning TMR Microscope for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Kunal N. Vyas

    2015-04-01

    Full Text Available We present a novel tunnel magnetoresistance (TMR scanning microscopeset-up capable of quantitatively imaging the magnetic stray field patterns of micron-sizedelements in 3D. By incorporating an Anderson loop measurement circuit for impedancematching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3Drastering a mounted TMR sensor over our magnetic barcodes, we are able to characterisethe complex domain structures by displaying the real component, the amplitude and thephase of the sensor’s impedance. The modular design, incorporating a TMR sensor withan optical microscope, renders this set-up a versatile platform for studying and imagingimmobilised magnetic carriers and barcodes currently employed in biosensor platforms,magnetotactic bacteria and other complex magnetic domain structures of micron-sizedentities. The quantitative nature of the instrument and its ability to produce vector maps ofmagnetic stray fields has the potential to provide significant advantages over other commonlyused scanning magnetometry techniques.

  1. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  2. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  3. Miniature Biosensor with Health Risk Assessment Feedback

    Science.gov (United States)

    Hanson, Andrea; Downs, Meghan; Kalogera, Kent; Buxton, Roxanne; Cooper, Tommy; Cooper, Alan; Cooper, Ross

    2016-01-01

    Heart rate (HR) monitoring is a medical requirement during exercise on the International Space Station (ISS), fitness tests, and extravehicular activity (EVA); however, NASA does not currently have the technology to consistently and accurately monitor HR and other physiological data during these activities. Performance of currently available HR monitor technologies is dependent on uninterrupted contact with the torso and are prone to data drop-out and motion artifact. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a high performance, robust earbud based biosensor with focused efforts on improved HR data quality during exercise or EVA. A health risk assessment algorithm will further advance the goals of autonomous crew health care for exploration missions.

  4. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...... charge prediction, we show how ligand induced changes in conformation of two model proteins, both being ligand binding domains from glutamate receptors, can lead to changes in electrostatic potential predicted to be sufficient for NW sensing. Finally we, demonstrate how InAs nanowires can....... In part I - “Surface Patterning” - glass and gold surfaces serve as spatially encoded immobilization supports for patterning of recombinant proteins and organic monolayers. First, we combine micro-contact printing with a reactive SNAP-tag protein to establish a general platform for templated protein...

  5. Roughness effect on the efficiency of dimer antenna based biosensor

    Directory of Open Access Journals (Sweden)

    D. Barchiesi

    2012-09-01

    Full Text Available The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered. Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

  6. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  7. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface.

    Science.gov (United States)

    Liu, Zizheng; Yang, Shaojie; Yuan, Yanan; Xu, Jing; Zhu, Yifan; Li, Jinjun; Wu, Feng

    2017-02-15

    Heterogeneous catalytic activation is important for potential application of new sulfate-radical-based advanced oxidation process using sulfite as source of sulfate radical. We report herein a heterogeneous system for sulfite activation by CoFe 2 O 4 nanocatalyst for metoprolol removal. Factors that influence metoprolol removal were investigated, including pH and initial concentrations of components. The CoFe 2 O 4 nanocatalyst was characterized by X-ray diffractometry (XRD) and transmission electron microscopy (TEM), and the catalytic stability was tested by consecutive runs. Radicals generated in the CoFe 2 O 4 S(IV)O 2 system were identified through radical quenching experiments and by electron spin resonance (ESR). The catalytic mechanism was elucidated further by X-ray photoelectron spectroscopy (XPS). The catalytic process was dependent on initial pH, and more than 80% of the metoprolol can be removed at pH 10.0 following the Langmubir-Hinshelwood equation. The generation of Co-OH complexes on the CoFe 2 O 4 surface was crucial for sulfite activation. SO 4 - was verified to be the main oxidative species responsible for metoprolol degradation. Other organic pollutants, such as sulfanilamide, sulfasalazine, 2-nitroaniline, sulfapyridine, aniline, azo dye X-3B and 4-chloroaniline, could also be removed in this CoFe 2 O 4 S(IV)O 2 system. The results suggest that the CoFe 2 O 4 S(IV)O 2 system has good application prospects in alkaline organic wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate.

    Science.gov (United States)

    Han, Na; Wang, Yu; Yang, Hui; Deng, Jun; Wu, Jinghua; Li, Yafei; Li, Yanguang

    2018-04-03

    Electrocatalytic carbon dioxide reduction to formate is desirable but challenging. Current attention is mostly focused on tin-based materials, which, unfortunately, often suffer from limited Faradaic efficiency. The potential of bismuth in carbon dioxide reduction has been suggested but remained understudied. Here, we report that ultrathin bismuth nanosheets are prepared from the in situ topotactic transformation of bismuth oxyiodide nanosheets. They process single crystallinity and enlarged surface areas. Such an advantageous nanostructure affords the material with excellent electrocatalytic performance for carbon dioxide reduction to formate. High selectivity (~100%) and large current density are measured over a broad potential, as well as excellent durability for >10 h. Its selectivity for formate is also understood by density functional theory calculations. In addition, bismuth nanosheets were coupled with an iridium-based oxygen evolution electrocatalyst to achieve efficient full-cell electrolysis. When powered by two AA-size alkaline batteries, the full cell exhibits impressive Faradaic efficiency and electricity-to-formate conversion efficiency.

  9. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    Science.gov (United States)

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  10. Controllable synthesis of palladium nanocubes/reduced graphene oxide composites and their enhanced electrocatalytic performance

    Science.gov (United States)

    Zhang, Yuting; Huang, Qiwei; Chang, Gang; Zhang, Zaoli; Xia, Tiantian; Shu, Honghui; He, Yunbin

    2015-04-01

    Homogeneous distribution of cube-shaped Pd nanocrystals on the surface of reduced graphene oxide is obtained via a facile one-step method by employing AA and KBr as the reductant and capping agent, respectively. The experimental factors affecting the morphology and structure of Pd nanoparticles have been systematically investigated to explore the formation mechanism of Pd nanocubes (PdNCs). It is revealed that PdNCs enclosed by active {100} facets with an average side length of 15 nm were successfully synthesized on the surface of reduced graphene oxide. KBr plays the role for facet selection by surface passivation and AA controls the reduction speed of Pd precursors, both of which govern the morphology changes of palladium nanoparticles. In the further electrochemical evaluations, the Pd nanocubes/reduced graphene oxide composites show better electrocatalytic activity and stability towards the electro-oxidation of ethanol than both reduced graphene oxide supported Pd nanoparticles and free-standing PdNCs. It could be attributed to the high electrocatalytic activity of the dominated active {100} crystal facets of Pd nanocubes and the enhanced electron transfer of graphene. The developed approach provide a versatile way for shape-controlled preparation of noble metal nanoparticles, which can work as novel electrocatalysts in the application of direct alcohols fuel cells.

  11. Facile synthesis of bacitracin-templated palladium nanoparticles with superior electrocatalytic activity

    Science.gov (United States)

    Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei

    2017-02-01

    Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.

  12. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun; Zhang, Chenhui; Wang, Zhenyu; Zhu, Jian; Wen, Zhiwei; Zhao, Xingzhong; Zhang, Xixiang; Xu, Jun; Lu, Zhouguang

    2017-01-01

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  13. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  14. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun

    2017-12-27

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  15. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Directory of Open Access Journals (Sweden)

    Oyunbileg G

    2018-02-01

    Full Text Available The oxygen reduction reaction (ORR is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM and a transmission electron microscope (TEM analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction.

  16. Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes

    International Nuclear Information System (INIS)

    Lv, Jiangwei; Feng, Yujie; Liu, Junfeng; Qu, Youpeng; Cui, Fuyi

    2013-01-01

    Boron-doped diamond (BDD) and SnO 2 electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) and sol–gel method, respectively. Electrochemical characterization of the two electrodes were investigated by phenol electrochemical degradation, accelerated service life test, cyclic voltammetry (CV) in phenol solution, polarization curves in H 2 SO 4 . The surface morphology and crystal structure of two electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed a considerable difference between the two electrodes in their electrocatalytic activity, electrochemical stability and surface properties. Phenol was readily mineralized to CO 2 at BDD electrode, favoring electrochemical combustion, but its degradation was much slower at SnO 2 electrode. The service life of BDD electrode was 10 times longer than that of SnO 2 . Higher electrocatalytic activity and electrochemical stability of BDD electrode arise from its high oxygen evolution potential and the physically absorbed hydroxyl radicals (·OH) on electrode surface.

  17. Ruthenium(III) diphenyldithiocarbamate as mediator for the electrocatalytic oxidation of sulfhydryl compounds at graphite electrode

    International Nuclear Information System (INIS)

    Nalini, B.; Sriman Narayanan, S.

    1998-01-01

    Ruthenium(III) diphenyldithiocarbamate was used as mediator to modify graphite electrode by abrasive method. The modified electrode was characterized electrochemically by cyclic voltammetry. The electrode was scanned between 0.0 V to +0.8 V. An anodic peak at + 0.39 V and a cathodic peak at +0.24 V have been observed for a scan rate of 100 mV/s. The electrode has been characterized at various scan rate and pHs in 0.1 M KNO 3 solution. Sulfhydryl compounds, cysteine and glutathione, were electro catalytically oxidised at the modified electrode. pH variation was studied to optimize the conditions for their estimation. Linear response for cysteine is in the range of 0.00-15.20 ppm, with a correlation coefficient (r), of 0.9993. The linear range for glutathione is 0.00-30.40 ppm, with a value of 0.999 for r. The electrocatalytic oxidation of both cysteine and glutathione gave reproducible current values with a standard deviation of 0.1686 for 10 repetitive determinations. The stability and reproducibility of the electrode for the determination of cysteine and glutathione were also discussed. The electrocatalytic oxidation of the sulfhydryl compounds were also studied in hydrodynamic environment. (author)

  18. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hajjizadeh, M. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghgoo, S. [Center of Quality Control of Drug, Tehran (Iran, Islamic Republic of)

    2007-12-31

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode.

  19. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    International Nuclear Information System (INIS)

    Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A.A.; Haghgoo, S.

    2007-01-01

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode

  20. Hydroxyacetone: A Glycerol-Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes.

    Science.gov (United States)

    Sauter, Waldemar; Bergmann, Olaf L; Schröder, Uwe

    2017-08-10

    Here, we propose the use of hydroxyacetone, a dehydration product of glycerol, as a platform for the electrocatalytic synthesis of acetone, 1,2-propanediol, and 2-propanol. 11 non-noble metals were investigated as electrode materials in combination with three different electrolyte compositions toward the selectivity, Coulombic efficiency (CE), and reaction rates of the electrocatalytic hydrogenation (formation of 1,2-propanediol) and hydrodeoxygenation (formation of acetone and propanol) of hydroxyacetone. With a selectivity of 84.5 %, a reaction rate of 782 mmol h -1  m -2 and a CE of 32 % (for 0.09 m hydroxyacetone), iron electrodes, in a chloride electrolyte, yielded the best 1,2 propanediol formation. A further enhancement of the performance can be achieved upon increasing the educt concentration to 0.5 m, yielding a reaction rate of 2248.1 mmol h -1  m -2 and a CE of 64.5 %. Acetone formation was optimal at copper and lead electrodes in chloride solution, with lead showing the lowest tendency of side product formation. 2-propanol formation can be achieved using a consecutive oxidation of the formed acetone (at iron electrodes). 1-propanol formation was observed only in traces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.