WorldWideScience

Sample records for electroactive controlled release

  1. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.

  2. Control of neural stem cell survival by electroactive polymer substrates.

    Directory of Open Access Journals (Sweden)

    Vanessa Lundin

    Full Text Available Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy, a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs. NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS, tosylate (TsO, perchlorate (ClO(4 and chloride (Cl, showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS but low on PPy containing TsO, ClO(4 and Cl. On PPy(DBS, NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  3. Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions

    Directory of Open Access Journals (Sweden)

    S. Sunjai Nakshatharan

    2018-02-01

    Full Text Available In this work, we address the problem of position control of ionic electroactive polymer soft actuators under varying relative humidity conditions. The impact of humidity on the actuation performance of ionic actuators is studied through frequency response and impedance spectroscopy analysis. Considering the uncertain performance of the actuator under varying humidity conditions, an adaptable model using the neural network method is developed. The model uses relative humidity magnitude as one of the model parameters, making it robust to different environmental conditions. Utilizing the model, a closed-loop controller based on the model predictive controller is developed for position control of the actuator. The developed model and controller are experimentally verified and found to be capable of predicting and controlling the actuators with excellent tracking accuracy under relative humidity conditions varying in the range of 10–90%.

  4. Coated electroactive materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  5. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  6. Workload Control with Continuous Release

    NARCIS (Netherlands)

    Phan, B. S. Nguyen; Land, M. J.; Gaalman, G. J. C.

    2009-01-01

    Workload Control (WLC) is a production planning and control concept which is suitable for the needs of make-to-order job shops. Release decisions based on the workload norms form the core of the concept. This paper develops continuous time WLC release variants and investigates their due date

  7. Birth control - slow release methods

    Science.gov (United States)

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  8. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  9. Controlled-release tablet formulation of isoniazid.

    Science.gov (United States)

    Jain, N K; Kulkarni, K; Talwar, N

    1992-04-01

    Guar (GG) and Karaya gums (KG) alone and in combination with hydroxy-propylmethylcellulose (HPMC) were evaluated as release retarding materials to formulate a controlled-release tablet dosage form of isoniazid (1). In vitro release of 1 from tablets followed non-Fickian release profile with rapid initial release. Urinary excretion studies in normal subjects showed steady-state levels of 1 for 13 h. In vitro and in vivo data correlated (r = 0.9794). The studies suggested the potentiality of GG and KG as release retarding materials in formulating controlled-release tablet dosage forms of 1.

  10. EDITORIAL: Electroactive polymer materials

    Science.gov (United States)

    Bar-Cohen, Yoseph; Kim, Kwang J.; Ryeol Choi, Hyouk; Madden, John D. W.

    2007-04-01

    Imitating nature's mechanisms offers enormous potential for the improvement of our lives and the tools we use. This field of the study and imitation of, and inspiration from, nature's methods, designs and processes is known as biomimetics. Artificial muscles, i.e. electroactive polymers (EAPs), are one of the emerging technologies enabling biomimetics. Polymers that can be stimulated to change shape or size have been known for many years. The activation mechanisms of such polymers include electrical, chemical, pneumatic, optical and magnetic. Electrical excitation is one of the most attractive stimulators able to produce elastic deformation in polymers. The convenience and practicality of electrical stimulation and the continual improvement in capabilities make EAP materials some of the most attractive among activatable polymers (Bar-Cohen Y (ed) 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges 2nd edn, vol PM136 (Bellingham, WA: SPIE Press) pp 1-765). As polymers, EAP materials offer many appealing characteristics that include low weight, fracture tolerance and pliability. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored to suit a broad range of requirements. These capabilities and the significant change of shape or size under electrical stimulation while being able to endure many cycles of actuation are inspiring many potential possibilities for EAP materials among engineers and scientists in many different disciplines. Practitioners in biomimetics are particularly excited about these materials since they can be used to mimic the movements of animals and insects. Potentially, mechanisms actuated by EAPs will enable engineers to create devices previously imaginable only in science fiction. For many years EAP materials received relatively little attention due to their poor actuation capability and the small number of available materials. In the last fifteen

  11. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  12. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  13. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    Science.gov (United States)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  14. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  15. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  16. Controlled Release from Zein Matrices

    NARCIS (Netherlands)

    Bouman, Jacob; Belton, Peter; Venema, Paul; Linden, Van Der Erik; Vries, De Renko; Qi, Sheng

    2016-01-01

    Purpose: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin,

  17. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2012-11-01

    Preparing for a nuclear accident implies understanding potential consequences. While many specialized experts have been working on different particular aspects, surprisingly little effort has been dedicated to establishing the big picture and providing a global and balanced image of all major consequences. IRSN has been working on the cost of nuclear accidents, an exercise which must strive to be as comprehensive as possible since any omission obviously underestimates the cost. It therefore provides (ideally) an estimate of all cost components, thus revealing the structure of accident costs, and hence sketching a global picture. On a French PWR, it appears that controlled releases would cause an 'economical' accident with limited radiological consequences when compared to other costs; in contrast, massive releases would trigger a major crisis with strong radiological consequences. The two types of crises would confront managers with different types of challenges. (authors)

  19. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  20. Controlled release studies of calcium alginate hydrogels

    International Nuclear Information System (INIS)

    Rendevski, S.; Andonovski, A.; Mahmudi, N.

    2012-01-01

    Controlled release of substances in many cases may be achieved from calcium alginate hydrogels. In this research, the time dependence of the mass of released model substance bovine serum albumin (BSA) from calcium alginate spherical hydrogels of three different types (G/M ratio) have been investigated. The hydrogels were prepared with the drop-wise method of sodium alginate aqueous solutions with concentration of 0.02 g/cm 3 with 0.01 g/cm 3 BSA and a gelling water bath of chitosan in 0.2 M CH 3 COOH/0.4 M CH 3 COONa with added 0.2 M CaCl 2 .The hydrogel structures were characterized by dynamic light scattering and scanning electron microscopy. The controlled release studies were conducted by UV-Vis spectrophotometry of the released medium with p H=7 at 37 °C. The results showed that the model of osmotic pumping is the dominant mechanism of the release. Also, large dependences of the release profile on the homogeneity of the hydrogels were found. (Author)

  1. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  2. Massive radiological releases profoundly differ from controlled releases

    International Nuclear Information System (INIS)

    Pascucci-Cahen, Ludivine; Patrick, Momal

    2013-01-01

    In this article, the authors report identification and assessment of different types of costs associated with nuclear accidents. They first outline that these cost assessments must be as exhaustive or comprehensive as possible. While referring to past accidents, they define the different categories of costs: on-site costs (decontamination and dismantling, electricity not produced on the site), off-site costs (health costs, psychological costs, farming losses), image-related costs (impact on food and farm product exports, decrease of other exports), costs related to energy production, costs related to contaminated areas (refugees, lands). They give an assessment of a severe nuclear accident (i.e. an accident with important but controlled radiological releases) in France and outline that it would be a national catastrophe which could be however managed. They discuss the possible variations of the estimated costs. Then, they show that a major accident (i.e. an accident with massive radiological releases) in France would be an unmanageable European catastrophe because of the radiological consequences, of high economic costs, and of huge losses

  3. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  4. Bioadhesive Controlled Release Clotrimazole Vaginal Tablets | Bhat ...

    African Journals Online (AJOL)

    Conclusion: This study indicates the possible use of suitable mixtures of natural and semi-synthetic cellulosic polymers for the preparation of clotrimazole mucoadhesive tablets for application as a vaginal controlled delivery system. Keywords: Clotrimazole, Swelling, Cellulosic polymers, Guar gum, Bioadhesion, Release ...

  5. EPICS application source/release control

    International Nuclear Information System (INIS)

    Zieman, B.; Anderson, J.; Kraimer, M.

    1995-01-01

    This manual describes a set of Application Source/Release Control tools (appSR) that can be used to develop software for EPICS based control systems. The Application Source/Release Control System (appSR) has been unbundled from base EPICS and is now available as an EPICS extension. Due to this unbundling, two new directories must be added to a user's path (see section ''Environment'' on page 3 for more information) and a new command getapp must be issued after the getrel command to get a specific version of appSR (see section ''Creating The Initial Application System Area'' on page 7 for more information). It is now required that GNU make version 3.71 or later be used for makes instead of SUN make. Users should now type gmake instead of make

  6. Meltable magnetic biocomposites for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Müller, R., E-mail: robert.mueller@ipht-jena.de [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Zhou, M. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany); Dellith, A. [Leibniz Institute of Photonic Technology (IPHT), P.O.B. 100239, Jena, D-07702 Germany (Germany); Liebert, T.; Heinze, T. [Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, D-07743 Germany (Germany)

    2017-06-01

    New biocompatible composites with adjustable melting point in the range of 30–140 °C, consisting of magnetite nanoparticles embedded into a matrix of meltable dextran fatty acid ester are presented which can be softened under an induced alternating magnetic field (AMF). The chosen thermoplastic magnetic composites have a melting range close to human body temperature and can be easily shaped into disk or coating film under melting. The composite disks were loaded with green fluorescent protein (GFP) as a model protein. Controlled release of the protein was realized with high frequent alternating magnetic field of 20 kA/m at 400 kHz. These results showed that under an AMF the release of GFP from magnetic composite was accelerated compared to the control sample without exposure to AMF. Furthermore a texturing of particles in the polymer matrix by a static magnetic field was investigated. - Highlights: • Thermoplastic biocomposite are prepared from dextran ester and magnetite particles. • The composite can be heated by an AC magnetic field above the melting temperature. • In molten state texturing of particles is possible and improves the heating ability. • The biopolymer could be used as a remote controlled matrix for protein release.

  7. Controlled drug release from bifunctionalized mesoporous silica

    Science.gov (United States)

    Xu, Wujun; Gao, Qiang; Xu, Yao; Wu, Dong; Sun, Yuhan; Shen, Wanling; Deng, Feng

    2008-10-01

    Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.

  8. Meticulous Overview on the Controlled Release Fertilizers

    Directory of Open Access Journals (Sweden)

    Siafu Ibahati Sempeho

    2014-01-01

    Full Text Available Owing to the high demand for fertilizer formulations that will exhaust the possibilities of nutrient use efficiency (NUE, regulate fertilizer consumption, and lessen agrophysicochemical properties and environmental adverse effects instigated by conventional nutrient supply to crops, this review recapitulates controlled release fertilizers (CRFs as a cutting-edge and safe way to supply crops’ nutrients over the conventional ways. Essentially, CRFs entail fertilizer particles intercalated within excipients aiming at reducing the frequency of fertilizer application thereby abating potential adverse effects linked with conventional fertilizer use. Application of nanotechnology and materials engineering in agriculture particularly in the design of CRFs, the distinctions and classification of CRFs, and the economical, agronomical, and environmental aspects of CRFs has been revised putting into account the development and synthesis of CRFs, laboratory CRFs syntheses and testing, and both linear and sigmoid release features of CRF formulations. Methodical account on the mechanism of nutrient release centring on the empirical and mechanistic approaches of predicting nutrient release is given in view of selected mathematical models. Compositions and laboratory preparations of CRFs basing on in situ and graft polymerization are provided alongside the physical methods used in CRFs encapsulation, with an emphasis on the natural polymers, modified clays, and superabsorbent nanocomposite excipients.

  9. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications.

    Science.gov (United States)

    Guo, Yi; Li, Mengyan; Mylonakis, Andreas; Han, Jingjia; MacDiarmid, Alan G; Chen, Xuesi; Lelkes, Peter I; Wei, Yen

    2007-10-01

    A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-N'-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was approximately 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces. Importantly, electroactive surfaces stimulated spontaneous neuritogenesis in PC12 cells, in the absence of neurotrophic growth factors, such as nerve growth factor (NGF). As expected, NGF significantly enhanced neurite extension on both control and electroactive surfaces. Taken together, our results suggest that the newly electroactive SAMs grafted with bioactive peptides, such as RGD, could be promising biomaterials for tissue engineering.

  10. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Controlled Release Formulations of Auxinic Herbicides

    Science.gov (United States)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active

  12. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  13. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    Science.gov (United States)

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  14. 28 CFR 541.50 - Release from a control unit.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Release from a control unit. 541.50... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.50 Release from a control unit. (a) Only the Executive Panel may release an inmate from a control unit. The following factors are...

  15. 96X Screen-Printed Gold Electrode Platform to Evaluate Electroactive Polymers as Marine Antifouling Coatings.

    Science.gov (United States)

    Brisset, Hugues; Briand, Jean-François; Barry-Martinet, Raphaëlle; Duong, The Hy; Frère, Pierre; Gohier, Frédéric; Leriche, Philippe; Bressy, Christine

    2018-04-17

    Several alternatives are currently investigated to prevent and control the natural process of colonization of any seawater submerged surfaces by marine organisms. Since few years we develop an approach based on addressable electroactive coatings containing conducting polymers or polymers with lateral redox groups. In this article we describe the use of a screen-printed plate formed by 96 three-electrode electrochemical cells to assess the potential of these electroactive coatings to prevent the adhesion of marine bacteria. This novel platform is intended to control and record the redox properties of the electroactive coating in each well during the bioassay (15 h) and to allow screening its antiadhesion activity with enough replicates to support significant conclusions. Validation of this platform was carried out with poly(ethylenedioxythiophene) (PEDOT) as electroactive coating obtained by electropolymerization of EDOT monomer in artificial seawater electrolyte on the working electrode of each electrochemical cell of the 96-well microplate.

  16. Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO₃.

    Science.gov (United States)

    Jia, Nan; Xing, Qian; Liu, Xu; Sun, Jing; Xia, Guangmei; Huang, Wei; Song, Rui

    2015-09-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer and the polar β-phase of PVDF shows superb electroactive properties. In order to enhance the β-phase of PVDF, extreme low content of BaTiO3 nanoparticles (BT-NPs) coated with polydopamine (Pdop) were incorporated into PVDF matrix by solution casting. The β-phase of the resulting PVDF nanocomposites film was dramatically increased and the d33 value reached 34.3±0.4 pCN(-1). It is found that the Pdop layer could improve the dispersibility and stability of the BT NPs in solution and endow the BT NPs good dispersity in the PVDF matrix. Moreover, the interfacial interaction between PVDF chains and the surface of BT-Pdop nanoparticles (BT-Pdop NPs) were revealed, in which the CF2 groups on PVDF could interact with the electron-rich plane of aromatic ring of Pdop moiety. This interaction, led to the increase of the crystallization activation energy as derived from the DSC nonisothermal crystallization measurement. The α-β crystal transformation, organization of interfacial interactions as well as the prevention of agglomeration of BT-NPs confer the improvement of mechanical and thermal properties of PVDF, such as toughness, tensile strength, elongation at break, and thermal conductivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Absorption of controlled-release iron

    International Nuclear Information System (INIS)

    Cook, J.D.; Lipschitz, D.A.; Skikne, B.S.

    1982-01-01

    A multiple-dose double radioiron technic was used to compare absorption of iron administered as a controlled release (CR) capsule and as an elixir; both formulations contained 50 mg elemental iron as ferrous sulfate. When taken by normal subjects in the fasting state, mean absorption from the elixir and CR capsule averaged 4.92% and 4.38%, which gave a CR capsule:elixir ratio of 0.89. This difference was not significant, but when taken with meals that inhibit absorption of dietary iron by different degrees, absorption of the CR formulation was superior. CR capsule:elixir absorption ratios averaged 1.70 from a meal that is mildly inhibitory and 3.13 from a meal that causes more marked inhibition. It is concluded that CR iron formulations may offer a therapeutic advantage to patients who take oral iron with meals to avoid gastrointestinal side effects

  18. Electroactive monolithic μchip for electrochemically-responsive chromatography

    OpenAIRE

    Power, Aoife

    2013-01-01

    The EMμ project’s focus is ultimately, the development of an electroactive monolith that can be incorporated into a microfluidic system for electroanalytical applications such as sensing and electrochemically-controlled extractions and separations. To date our have made several significant advances to achieving this end goal. Firstly a facile fabrication method which allows for the production of fully disposable, gasket–free thin–layer cells suitable for EMμ was developed. A polydimethylsilox...

  19. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor

    Science.gov (United States)

    Mehebub Alam, Md; Sultana, Ayesha; Sarkar, Debabrata; Mandal, Dipankar

    2017-09-01

    The electroactive β-phase is most desirable due to its highest piezo-, pyro- and ferroelectric properties in poly(vinylidene fluoride) (PVDF). Induction of the β-phase is successfully accomplished in titanium dioxide (TiO2) nanoparticles (NPs) doped spin-coated PVDF nanocomposite (PNC) films. The optimized yields of β-phase and homogeneous ultra-smooth free-standing PNC film is utilized in a mechanical-energy harvesting application by fabricating a nanogenerator (NG) where the typical electrical poling step is not undertaken. Under a repeated human finger touch and release process, it delivers an open-circuit voltage of 5 V. Moreover, the physical sensing capabilities of the NG are examined through harvesting mechanical energy from mouse clicking of a laptop and wrist pulse detection, which indicates that it can also be used as a nanosensor. The blue photoluminescence centred at 444 nm, which was also observed in PNC films, makes us anticipate a new type of photonic application where the design feasibility of hybrid sensors, i.e. electromechanical and photonic combination, is also possible.

  20. Pull-in and wrinkling instabilities of electroactive dielectric actuators

    International Nuclear Information System (INIS)

    De Tommasi, D; Puglisi, G; Zurlo, G; Saccomandi, G

    2010-01-01

    We propose a model to analyse the insurgence of pull-in and wrinkling failures in electroactive thin films. We take into consideration both cases of voltage and charge control, the role of pre-stretch and the size of activated regions, which are all crucial factors in technological applications of electroactive polymers (EAPs). Based on simple geometrical and material assumptions we deduce an explicit analytical description of these phenomena, allowing a clear physical interpretation of different failure mechanisms such as the occurrence of pull-in and wrinkling. Despite our simple assumptions, the comparison with experiments shows a good qualitative and, interestingly, quantitative agreement. In particular our model shows, in accordance with experiments, the existence of different optimal pre-stretch values, depending on the choice of the actuating parameter of the EAP.

  1. Pull-in and wrinkling instabilities of electroactive dielectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, D; Puglisi, G; Zurlo, G [Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Bari, 70125 Bari (Italy); Saccomandi, G [Dipartimento di Ingegneria Industriale, Universita degli Studi di Perugia, 06125 Perugia (Italy)

    2010-08-18

    We propose a model to analyse the insurgence of pull-in and wrinkling failures in electroactive thin films. We take into consideration both cases of voltage and charge control, the role of pre-stretch and the size of activated regions, which are all crucial factors in technological applications of electroactive polymers (EAPs). Based on simple geometrical and material assumptions we deduce an explicit analytical description of these phenomena, allowing a clear physical interpretation of different failure mechanisms such as the occurrence of pull-in and wrinkling. Despite our simple assumptions, the comparison with experiments shows a good qualitative and, interestingly, quantitative agreement. In particular our model shows, in accordance with experiments, the existence of different optimal pre-stretch values, depending on the choice of the actuating parameter of the EAP.

  2. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  3. Controlled Release Formulation of Indomethacin Prepared With Bee ...

    African Journals Online (AJOL)

    Erah

    2010-12-27

    Dec 27, 2010 ... Results: The results show that, although the release rate of formulations F1 - F7 did not show any ... Keywords: Propolis (bee glue), Indomethacin, Controlled release, Zero order kinetics, Waxy materials ... focus of interest.

  4. Effluent release limits, sources and control

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1977-01-01

    Objectives of radiation protection in relation to releases. Environmental transfer models for radionuclides. Relationship between releases, environmental levels and doses to persons. Establishment of release limits: Limits based on critical population group concept critical pathway analysis and identification of critical group. Limits based on optimization of radiation protection individual dose limits, collective doses and dose commitments 1) differential cost benefit analysis 2) authorized and operational limits taking account of future exposures. Monitoring of releases to the environment: Objectives of effluent monitoring. Typical sources and composition of effluents; design and operation of monitoring programmes; recording and reporting of monitoring results; complementary environmental monitoring. (orig.) [de

  5. Controlled-release oxycodone-induced seizures.

    Science.gov (United States)

    Klein, Moti; Rudich, Zvia; Gurevich, Boris; Lifshitz, Matityahu; Brill, Silviu; Lottan, Michael; Weksler, Natan

    2005-11-01

    The use of the opioid oxycodone hydrochloride in the management of chronic pain is gaining popularity principally because of its tolerability. However, opioid-related seizure in patients with epilepsy or other conditions that may decrease seizure threshold has been described in the literature; in particular, oxycodone has been associated with seizure in a patient with acute renal failure. The aim of this article was to report a patient with a history of seizures but normal renal and hepatic function who developed seizure on 2 occasions after oxycodone ingestion. A 54-year-old male patient presented with a history of tonic-clonic seizures that developed immediately after intracranial surgery. Long-term treatment with carbamazepine 400 mg QD was started, and the patient was free of convulsions for approximately 7 years. The patient presented to us with severe headache that was nonresponsive to an NSAID and the opiate agonist tramadol. Treatment with controlled-release (CR) oxycodone and tramadol drops (50 mg QID if necessary) was started, and tonic-clonic seizures developed 3 days later. Based on laboratory analysis, the patient had normal renal and hepatic function. On discontinuation of oxycodone treatment, the seizures resolved. However, due to effective pain relief with oxycodone, the patient decided to continue treatment, and seizures recurred. Carbamazepine was then administered 4 hours before oxycodone dosing, which allowed continuation of treatment without seizure. A patient with a history of seizures controlled with long-term carbamazepine therapy developed seizures when he started treatment with oxycodone CR at recommended doses. Oxycodone CR should be used with extreme caution in patients with epilepsy or other conditions that may decrease seizure threshold.

  6. An electro-conductive fluid as a responsive implant for the controlled stimuli-release of diclofenac sodium.

    Science.gov (United States)

    Bijukumar, Divya; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-01

    The purpose of this study was to develop an electro-responsive co-polymeric (ERP) implantable gel from polyethylene glycol (PEG), sodium polystyrene sulphonate (NaPss), polyvinyl alcohol (PVA), and diethyl acetomidomalonate (DAA) for electro-liberation of the model drug diclofenac sodium. Various physicochemical and physicomechanical characterization tests were undertaken on the synthesized drug-free gel (ERP G1) and drug-loaded gel (ERP G2). The ability of the gel to release diclofenac sodium following electrical stimulation was evaluated using a galvanostat while Molecular Mechanics (MM) simulations were performed to elucidate the experimental mechanisms. A stable electro-active gel exhibiting superior cycling stability was produced with desirable rheological properties, rigidity (BHN = 35.4 N ± 0.33 N/mm 2 ; resilience = 10.91 ± 0.11%), thermal properties (T g  ≈ 70 °C; T c  ≈ 200 °C) and homogeneous morphology. "ON-OFF" pursatile gradual drug release (37-94% from t 30 min -t 180   min ) kinetics was observed upon applying electric stimulation intermittently, indicating that drug release from the gel was electrically controlled. Overall, the galvanometric and MM evaluation ascertained the suitability of the PEG/NaPss/PVA ERP-Gel for application as a subcutaneously injectable drug delivery implant.

  7. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Environmental Release Prevention and Control Plan

    International Nuclear Information System (INIS)

    Mamatey, A.; Arnett, M.

    1997-01-01

    During the history of SRS, continual improvements in facilities, process, and operations, and changes in the site''s mission have reduced the amount of radioactive liquid releases. In the early years of SRS (1958 to 1965), the amount of tritium discharged to the Savannah River averaged approximately 61,000 curies a year. During the mid-1980''s (1983 to 1988), liquid releases of tritium averaged 27,000 curies a year. By 1996, liquid releases of tritium are projected to be just 3000 curies for the year. This large projected decrease is the result of the planned shut-down of all reactors and the anticipated significant decline in the amount of tritium migrating from the site seepage basins and the Solid Waste Disposal Facility

  9. Nanocomposites for controlled release of nitrogen fertilizer

    International Nuclear Information System (INIS)

    Silva, Viviane J.M. da; Visconte, Leila L.Y.; Nascimento, Regina Sandra V.

    2009-01-01

    The study aimed at the development of nano structured materials capable of reducing the rate of release of nitrogen in the soil from an agricultural nitrogen fertilizer. Four different systems of polymer composites were prepared: (1) montmorillonite clay/fertilizer, (2) montmorillonite clay/thermoplastic starch and fertilizer, (3) montmorillonite clay/fertilizer, thermoplastic starch and low-density polyethylene (LDPE) and also (4) montmorillonite clay/fertilizer, thermoplastic starch and polycaprolactone. It was confirmed the formation of nano structured materials by elemental analysis (CHN) and X-ray diffraction (XRD). The kinetics of nitrogen release was detected by enzymatic colorimetric analysis and spectroscopy in the ultraviolet/visible. The results showed that all materials evaluated were able to reduce the rate of release of nitrogen in the fertilizers. (author)

  10. Overview study of LNG release prevention and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  11. Considerations for Contractile Electroactive Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, Lenore; Schramm, David; Meixler, Lewis D.; Gentile, Charles A.; Ascione, George; Tilson, Carl; Pagdon, Kelsey

    2010-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and now contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input. These recent developments are important attributes in the field of electroactivity because of the ability of contraction and contraction-expansion to produce biomimetric motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to determine the mechanisms during contraction of these EAPs.

  12. Electroactive polymer (EAP) actuators for planetary applications

    Science.gov (United States)

    Bar-Cohen, Yoseph; Leary, Sean P.; Shahinpoor, Mohsen; Harrison, Joycelyn S.; Smith, J.

    1999-05-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper.

  13. Large scale processing of dielectric electroactive polymers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu

    Efficient processing techniques are vital to the success of any manufacturing industry. The processing techniques determine the quality of the products and thus to a large extent the performance and reliability of the products that are manufactured. The dielectric electroactive polymer (DEAP...

  14. Development and Optimization of controlled drug release ...

    African Journals Online (AJOL)

    The aim of this study is to develop and optimize an osmotically controlled drug delivery system of diclofenac sodium. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active drugs. Drug delivery from these systems, to a large extent, is independent of the physiological factors ...

  15. How controlled release technology can aid gene delivery.

    Science.gov (United States)

    Jo, Jun-Ichiro; Tabata, Yasuhiko

    2015-01-01

    Many types of gene delivery systems have been developed to enhance the level of gene expression. Controlled release technology is a feasible gene delivery system which enables genes to extend the expression duration by maintaining and releasing them at the injection site in a controlled manner. This technology can reduce the adverse effects by the bolus dose administration and avoid the repeated administration. Biodegradable biomaterials are useful as materials for the controlled release-based gene delivery technology and various biodegradable biomaterials have been developed. Controlled release-based gene delivery plays a critical role in a conventional gene therapy and genetic engineering. In the gene therapy, the therapeutic gene is released from biodegradable biomaterial matrices around the tissue to be treated. On the other hand, the intracellular controlled release of gene from the sub-micro-sized matrices is required for genetic engineering. Genetic engineering is feasible for cell transplantation as well as research of stem cells biology and medicine. DNA hydrogel containing a sequence of therapeutic gene and the exosome including the individual specific nucleic acids may become candidates for controlled release carriers. Technologies to deliver genes to cell aggregates will play an important role in the promotion of regenerative research and therapy.

  16. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    Science.gov (United States)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP

  17. Antimicrobial beeswax coated polylactide films with silver control release capacity.

    Science.gov (United States)

    Martínez-Abad, Antonio; Lagarón, Jose Maria; Ocio, María Jose

    2014-03-17

    Although the application of silver based antimicrobial systems is a widespread technology, its implementation in areas such as food packaging is still challenging. The present paper describes the fabrication of poly(lactic acid) (PLA) coated with beeswax with controlled release properties for sustained antimicrobial performance. Release of silver ions from the polymers was monitored voltammetrically under various conditions (surface contact, immersion in various liquid media and at different pH values) throughout at least 7days. A higher release was noted with decreasing pH while surface release was much slower than the release when immersed in liquid medium. While uncoated films demonstrated a high burst release which in some instances implied surpassing some current migration restrictions (food), the addition of a beeswax layer allowed a sustained release of the antimicrobial compound. Increasing the thickness of the beeswax layer resulted in an increase in the water barrier properties of the films while reducing the relatively constant values of sustained release. Antimicrobial performance was correlated with the release of silver ions, indicating threshold concentrations for biocide action of films displayed a strong bactericidal effect against Salmonella enterica. The application of this functional barrier thus offers the possibility of tuning the release profiles of the films to suit a specific application and puts forth the possible suitability of these materials for food packaging or other migration sensitive applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  19. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued

  20. Biodegradable electroactive materials for tissue engineering applications

    Science.gov (United States)

    Guimard, Nathalie Kathryn

    This dissertation focuses on the development of biomaterials that could be used to enhance the regeneration of severed peripheral nerves. These materials were designed to be electroactive, biodegradable, and biocompatible. To render the materials electroactive the author chose to incorporate conducting polymer (CP) units into the materials. Because CPs are inherently non-degradable, the key challenge was to create a CP-based material that was also biodegradable. Two strategies were explored to generate a biodegradable CP-based material. The first strategy centered around the incorporation of both electroactive and biodegradable subunits into a copolymer system. In the context of this approach, two bis(methoxyquaterthiophene)-co-adipic acid polyester (QAPE) analogues were successfully synthesized, one through polycondensation (giving undoped QAPE) and the second through oxidative polymerization (giving doped QAPE-2). QAPE was found to be electroactive by cyclic voltammetry, bioerodible, and cytocompatible with Schwann cells. QAPE was doped with ferric perchlorate, although only a low doping percentage was realized (˜8%). Oxidative polymerization of a bis(bithiophene) adipate permitted the direct synthesis of doped QAPE-2, which was found to have a higher doping level (˜24%). The second strategy pursued with the goal of generating an electroactive biodegradable material involved covalently immobilizing low molecular weight polythiophene chains onto the surface of crosslinked hyaluronic acid (HA) films. HA films are not only biodegradable and biocompatible, but they also provide mechanical integrity to bilayer systems. Dicyclocarbodiimide coupling of carboxylic acids to HA alcohol groups was used to functionalize HA films. The HA-polythiophene composite is still in the early stages of development. However, to date, thiophene has been successfully immobilized at the surface of HA films with a high degree of substitution. The author has also shown that thiophene

  1. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-04-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  2. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  3. Microchips and controlled-release drug reservoirs.

    Science.gov (United States)

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  4. Controlled release of curcumin from poly(HEMA-MAPA) membrane.

    Science.gov (United States)

    Caka, Müşerref; Türkcan, Ceren; Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2017-05-01

    In this work, poly(HEMA-MAPA) membranes were prepared by UV-polymerization technique. These membranes were characterized by SEM, FTIR, and swelling studies. Synthesized membranes had high porous structure. These membranes were used for controlled release of curcumin which is already used as folk remedy and used as drug for some certain diseases and cancers. Curcumin release was investigated for various pHs and temperatures. Optimum drug release yield was found to be as 70% at pH 7.4 and 37 °C within 2 h period. Time-depended release of curcumin was also investigated and its slow release from the membrane demonstrated within 48 h.

  5. Electroactive and Optoelectronically Active Graphene Nanofilms

    DEFF Research Database (Denmark)

    Chi, Qijin

    As an atomic-scale-thick two-dimensional material, graphene has emerged as one of the most miracle materials and has generated intensive interest in physics, chemistry and even biology in the last decade [1, 2]. Nanoscale engineering and functionalization of graphene is a crucial step for many...... applications ranging from catalysis, electronic devices, sensors to advanced energy conversion and storage [3]. This talk highlights our recent studies on electroactive and optoelectronically active graphene ultrathin films for chemical sensors and energy technology. The presentation includes a general theme...... for functionalization of graphene nanosheets, followed by showing several case studies. Our systems cover redox-active nanoparticles, electroactive supramolecular ensembles and redox enzymes which are integrated with graphene nanosheets as building blocks for the construction of functional thin films or graphene papers....

  6. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1.95Al0.05O4 cathode for lithium ion batteries. Results show that LiMn1.95Al0.05O4 possesses stable structure and good performance. Percolation theory is used to optimize the content of conductive additive ...

  7. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie [State Key Laboratory of Coordination Chemistry, MOE Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)], E-mail: wangzl@nju.edu.cn, E-mail: jjzhu@nju.edu.cn

    2009-04-22

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe{sub 3}O{sub 4} nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  8. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    International Nuclear Information System (INIS)

    Kan Xianwen; Geng Zhirong; Zhao Yao; Wang Zhilin; Zhu Junjie

    2009-01-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe 3 O 4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  9. Design and characterization of controlled release tablet of metoprolol

    Directory of Open Access Journals (Sweden)

    Gautam Singhvi

    2012-01-01

    Full Text Available Metoprolol succinate is a selective beta-adrenergic receptor blocker useful in treatment of hypertension, angina and heart failure. The purpose of the present work was to design and evaluate controlled release matrix type tablet of Metoprolo succinate using HPMC K15M and Eudragit (RLPO and RSPO as a matrix forming agents. Effect of various polymer alone and combinations were studied in pH 1.2 buffer using USP type II paddle at 50 rpm. HPMC was used to form firm gel with Eudragit polymer. Formulation with Equal proportion (1:1 of Eudragit RSPO and RLPO showed optimum drug release t50 =7 hrs and t100 =16 hrs indicate optimum permeability for drug release from matrix. The drug release mechanism was predominantly found to be Non-Fickian diffusion controlled.

  10. Sintering of wax for controlling release from pellets

    OpenAIRE

    Singh, Reena; Poddar, S. S.; Chivate, Amit

    2007-01-01

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%–20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusio...

  11. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films.

    Science.gov (United States)

    Chen, Xi; Lee, Dong Sun; Zhu, Xuntao; Yam, Kit L

    2012-04-04

    This paper investigated the feasibility of manipulating packaging polymers with various degrees of hydrophobicity to release two antioxidants, tocopherol and quercetin, at rates suitable for long-term inhibition of lipid oxidation in food. For example, one antioxidant can be released at a fast rate to provide short-term/intermediate protection, whereas the other antioxidant can be released at a slower rate to provide intermediate/long-term protection of lipid oxidation. Controlled-release packaging films containing tocopherol and quercetin were produced using ethylene vinyl alcohol (EVOH), ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), and polypropylene (PP) polymers; the release of these antioxidants to 95% ethanol (a fatty food simulant) was measured using UV-vis spectrophotometry, and Fickian diffusion models with appropriate initial and boundary conditions were used to fit the data. For films containing only quercetin, the results show that the release of quercetin was much faster but lasted for a much shorter time for hydrophilic polymers (EVOH and EVA) than for hydrophobic polymers (LDPE and PP). For binary antioxidant films containing tocopherol and quercetin, the results show that tocopherol released more rapidly but for a shorter period of time than quercetin in LDPE and EVOH films, and the difference is more pronounced for LDPE films than EVOH films. The results also show the presence of tocopherol can accelerate the release of quercetin. Although none of the films produced is acceptable for long-term lipid oxidation inhibition, the study provides encouraging results suggesting that acceptable films may be produced in the future using polymer blend films.

  12. HABIT, Toxic and Radioactive Release Hazards in Reactor Control Room

    International Nuclear Information System (INIS)

    Stage, S.A.

    2005-01-01

    1 - Description of program or function: HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. 2 - Methods: Given information about the design of a nuclear power plant, a scenario for the release of toxic or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel

  13. FERLENT - a controlled release fertilizer produced from a polymer material

    International Nuclear Information System (INIS)

    Gonzalez, Mayra; Arces, Milagros; Cuesta, Ernesto; Corredera, Pilar; Sardina, Carmen; Rieumont, Jacques; Quintana, Patricia; Bartolo, Pascual; Guenther, Bluma

    2011-01-01

    The possibility to use release controlled fertilizers in the agriculture of the tropical countries is more important than in the agriculture of the countries of the template regions. In this context, this work purpose the development of a new Fertilizer of Controlled Release named FERLENT, which was obtained starting from a polymeric material, under controlled conditions which allowed to corroborate the adjustment of the synthesis parameters under the modulate of nutrients liberation. It was characterized by, Scanning Microscopy Electron (SEM), Thermogravimetric analysis (TGA), Nuclear Magnetic Resonance (NMR) and infrared spectroscopy (FTIR). (author)

  14. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.

    Science.gov (United States)

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo

    2017-06-01

    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Designing components using smartMOVE electroactive polymer technology

    Science.gov (United States)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  16. Self-assembling electroactive hydrogels for flexible display technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois [School of Electrical Engineering and Telecommunications, University of NSW, Sydney, NSW, 2052 (Australia); Thordarson, Pall, E-mail: f.ladouceur@unsw.edu.a [School of Chemistry, University of NSW, Sydney, NSW, 2052 (Australia)

    2010-12-15

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  17. Self-assembling electroactive hydrogels for flexible display technology

    International Nuclear Information System (INIS)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois; Thordarson, Pall

    2010-01-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  18. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  19. Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices

    Science.gov (United States)

    Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.

    1999-01-01

    Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.

  20. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  1. Electrochemically controlled release of anticancer drug methotrexate using nanostructured polypyrrole modified with cetylpyridinium: Release kinetics investigation

    International Nuclear Information System (INIS)

    Alizadeh, Naader; Shamaeli, Ehsan

    2014-01-01

    A new simple strategy for direct electrochemical incorporation of chemotherapeutic methotrexate (MTX) into conductive polypyrrole (PPy) has been suggested for an electrochemically controlled loading and release system. Electropolymerization of MTX doped polypyrrole yielded poor quality with low efficiency of doping, but a well-doped, nanostructure and increased capacity of drug loading (24.5 mg g −1 ) has been obtained in the presence of cetylpyridinium (CP) as a modifier. When CP was preloaded onto PPy, the hydrophobic surface of the PPy serves as a backbone to which the hydrophobic chain of the CP can be attached. Electrostatic interaction between cationic CP with anionic MTX and aromatic interaction between pyridinium head of CP with pyrimidine and pyrazine rings of MTX increases drug doping. Then release kinetics were investigated at various applied potentials and temperatures. Kinetics analysis based on Avrami's equation showed that the drug release was controlled and accelerated by increasing temperature and negative potential and sustained by increasing positive potential. At open circuit condition, the release parameter (n) represented a diffusive mechanism and at applying electrochemical potentials, a first-order mode. Activation energy parameters (E a , ΔG ≠ , ΔH ≠ and ΔS ≠ ) and half-life time (t 1/2 ) of drug release are also analyzed as a function of applied potential. The nanostructured polymer films (PPy/CP/MTX) were characterized by several techniques: scanning electron microscopy, Furrier transforms Infrared, UV-vis spectroscopy. Overall, our results demonstrate that the PPy/CP/MTX films, combined with electrical stimulation, permit a programmable release of MTX by altering the interaction strength between the PPy/CP and MTX

  2. Method and apparatus for controlling accidental releases of tritium

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1980-01-01

    An improvement in a tritium control system based on a catalytic oxidation reactor is provided wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release

  3. Method and apparatus for controlling accidental releases of tritium

    Science.gov (United States)

    Galloway, Terry R. [Berkeley, CA

    1980-04-01

    An improvement in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release.

  4. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  5. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  6. CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING

    Science.gov (United States)

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pileisolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPLremediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...

  7. Rectal absorption of morphine from controlled release suppositories

    NARCIS (Netherlands)

    Moolenaar, Frits; Meyler, Pim; Frijlink, Erik; Jauw, Tjoe Hang; Visser, Jan; Proost, Johannes

    1995-01-01

    The absorption profiles and bioavailability of morphine in human volunteers (n = 13) were described after oral administration of MS Contin tablets and rectal administration of a newly developed controlled release suppository. By manipulating the viscosity of fatty suppository base an entirely

  8. Controlled antiseptic release by alginate polymer films and beads.

    Science.gov (United States)

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Improvement of waste release control in French NPP

    International Nuclear Information System (INIS)

    Samson, T.; Lucquin, E.; Dupin, M.; Florence, D.; Grisot, M.

    2002-01-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  10. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  11. Improvement of waste release control in French NPP

    Energy Technology Data Exchange (ETDEWEB)

    Samson, T.; Lucquin, E.; Dupin, M. [EDF/GDL (France); Florence, D. [EDF/GENV (France); Grisot, M. [EDF/CNPE Saint Laurent (France)

    2002-07-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  12. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  13. Methodology for performing measurements to release material from radiological control

    International Nuclear Information System (INIS)

    Durham, J.S.; Gardner, D.L.

    1993-09-01

    This report describes the existing and proposed methodologies for performing measurements of contamination prior to releasing material for uncontrolled use at the Hanford Site. The technical basis for the proposed methodology, a modification to the existing contamination survey protocol, is also described. The modified methodology, which includes a large-area swipe followed by a statistical survey, can be used to survey material that is unlikely to be contaminated for release to controlled and uncontrolled areas. The material evaluation procedure that is used to determine the likelihood of contamination is also described

  14. The present status of rare gas release control

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1974-01-01

    Of the rare gases Ar, Kr and Xe released from nuclear facilities, the problem of release control can be confined to 41 Ar, 85 Kr and 133 Xe. The cases of the latter two are described, as 41 Ar is not much significant. 133 Xe, having relatively short half-life, can be dealt sufficiently by holding-up in case of light water reactors. 85 Kr of long half-life must be removed : the methods are low temperature adsorption, liquefaction distillation, absorption and diaphragm method. As for future problem, there is disposal of concentrated rare gas. (Mori, K.)

  15. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications.

    Science.gov (United States)

    Zarrintaj, Payam; Urbanska, Aleksandra M; Gholizadeh, Saman Seyed; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Mozafari, Masoud

    2018-04-15

    An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10 -5  S/cm which appeared suitable for cellular activities. Cyclic voltammetry was used for electroactivity determination, in which 2 redox states were observed, suggesting that the short chain length and steric hindrance prevented the gel from achieving a fully oxidized state. Rheological data depicted the modulus decreasing with aniline dimer increment due to limited hydrogen bonds accessibility. Though the swelling ratio of pristine gelatin (600%) decreased by the introduction and increasing the concentration of aniline dimer because of its hydrophobic nature, it took the value of 300% at worst, which still seems promising for drug delivery uses. Degradation rate of hydrogel was similarly decreased by adding aniline dimer. Drug release was evaluated in passive and stimulated patterns demonstrating tendency of aniline dimer to form a vesicle that controls the drug release behavior. The optimal cell viability, proper cell attachment and neurite extension was achieved in the case of hydrogel containing 10 wt% aniline dimer. Based on tissue/organ behavior, it was promisingly possible to adjust the characteristics of the hydrogels for an optimal drug release. The outcome of this simple and effective approach can potentially offer additional tunable characteristics for recording and stimulating purposes in neural interfaces. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Evaluation of olibanum and its resin as rate controlling matrix for controlled release of diclofenac

    OpenAIRE

    Chowdary KPR; Mohapatra P; Murali Krishna M

    2006-01-01

    Olibanum and its resin and carbohydrate fractions were evaluated as rate controlling matrix materials in tablets for controlled release of diclofenac. Diclofenac matrix tablets were formulated employing olibanum and its resin and carbohydrate fractions in different concentrations and the tablets were evaluated for various tablet characters including drug release kinetics and mechanism. Olibanum and its resin component exhibited excellent retarding effect on drug release from the matrix tablet...

  18. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  19. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  20. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jü rgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  1. Controlled release systems containing solid dispersions: strategies and mechanisms.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin

    2011-10-01

    In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

  2. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    Science.gov (United States)

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  3. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  4. Controlling Object Heat Release Rate using Geometrical Features

    OpenAIRE

    Kraft, Stefan Marc

    2017-01-01

    An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for obj...

  5. Encapsulation of ionic electroactive polymers: reducing the interaction with environment

    Science.gov (United States)

    Jaakson, P.; Aabloo, A.; Tamm, T.

    2016-04-01

    Ionic electro-active polymer (iEAP) actuators are composite materials that change their mechanical properties in response to external electrical stimulus. The interest in these devices is mainly driven by their capability to generate biomimetic movements, and their potential use in soft robotics. The driving voltage of an iEAP-actuator (0.5… 3 V) is at least an order of magnitude lower than that needed for other types of electroactive polymers. To apply iEAP-actuators in potential real-world applications, the capability of operating in different environments (open air, different solvents) must be available. In their natural form, the iEAP-actuators are capable of interacting with the surrounding environment (evaporation of solvent from the electrolyte solution, ion or solvent exchange, humidity effects), therefore, for prevention of unpredictable behavior of the actuator and the contamination of the environment, encapsulation of the actuator is needed. The environmental contamination aspect of the encapsulation material is substantial when selecting an applicable encapsulant. The suitable encapsulant should form thin films, be light in weight, elastic, fit tightly, low cost, and easily reproducible. The main goal of the present study is to identify and evaluate the best potential encapsulation techniques for iEAPactuators. Various techniques like thin film on liquid coating, dip coating, hot pressing, hot rolling; and several materials like polydimethylsiloxane, polyurethane, nitrocellulose, paraffin-composite-films were investigated. The advantages and disadvantages of the combinations of the above mentioned techniques and materials are discussed. Successfully encapsulated iEAP-actuators gained durability and were stably operable for long periods of time under ambient conditions. The encapsulation process also increased the stability of the iEAP-actuator by minimizing the environment effects. This makes controlling iEAP-actuators more straight-forward and

  6. SOL-Gel microspheres and nanospheres for controlled release applications

    International Nuclear Information System (INIS)

    Barbe, C.; Beyer, R.; Kong, L.; Blackford, M.; Trautman, R.; Bartlett, J.

    2002-01-01

    We present a novel approach to the synthesis of inorganic sol-gel microspheres for encapsulating organic and bioactive molecules, and controlling their subsequent release kinetics. The bioactive species are incorporated, at ambient temperature, into the inorganic particles using an emulsion gelation process. Independent control of the release rate (by adapting the nanostructure of the internal pore network to the physico-chemical properties of the bioactive molecules) and particle size (by tailoring the emulsion chemistry) is demonstrated. Sol-gel chemistry has been shown to be a flexible technique for producing inorganic silica matrices with tailored microstructures, which can be used for the encapsulation and controlled release of organic and bioactive molecules. The present paper extends this concept by combining sol-gel chemistry with an emulsion approach for producing inorganic particles with controlled dimensions, and demonstrates how the particle size and microstructure can be independently controlled. Sol-Gel Chemistry and Encapsulation of Model Compounds. A stock solution of 4-(2-hydroxy-l-naphthylazo) benzene sulfonic acid (Orange II) was produced by dissolving Orange II in water (0.1 wt%), and adjusting the pH to the required value. Sol-gel solutions were subsequently prepared by mixing the aqueous solution with tetramethylorthosilicate (TMOS) and methanol (MeOH), to achieve H 2 O:TMOS (W] and MeOH:TMOS mole ratios (D) of four. The resulting solution was stirred and left to age at ambient temperature for one day. A transparent emulsion was prepared by mixing selected surfactants and organic solvents. The surfactants used included sorbitan monooleate, sorbitan monolaurate and bis-2-ethylhexylsulfo-succinate (AOT), while the organic phase was typically chosen from the group consisting of kerosene, hexane, heptane, octane, decane, dodecane and cyclohexane. The sol-gel solution was added to the emulsion, and the resulting mixture was stirred at 500 rpm for

  7. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  8. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.

    Science.gov (United States)

    Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D

    2010-06-22

    Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.

  9. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  10. Haptic interfaces using dielectric electroactive polymers

    Science.gov (United States)

    Ozsecen, Muzaffer Y.; Sivak, Mark; Mavroidis, Constantinos

    2010-04-01

    Quality, amplitude and frequency of the interaction forces between a human and an actuator are essential traits for haptic applications. A variety of Electro-Active Polymer (EAP) based actuators can provide these characteristics simultaneously with quiet operation, low weight, high power density and fast response. This paper demonstrates a rolled Dielectric Elastomer Actuator (DEA) being used as a telepresence device in a heart beat measurement application. In the this testing, heart signals were acquired from a remote location using a wireless heart rate sensor, sent through a network and DEA was used to haptically reproduce the heart beats at the medical expert's location. A series of preliminary human subject tests were conducted that demonstrated that a) DE based haptic feeling can be used in heart beat measurement tests and b) through subjective testing the stiffness and actuator properties of the EAP can be tuned for a variety of applications.

  11. Biologically Inspired Technology Using Electroactive Polymers (EAP)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution allowed nature to introduce highly effective biological mechanisms that are incredible inspiration for innovation. Humans have always made efforts to imitate nature's inventions and we are increasingly making advances that it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. This brought us to the ability to create technology that is far beyond the simple mimicking of nature. Having better tools to understand and to implement nature's principles we are now equipped like never before to be inspired by nature and to employ our tools in far superior ways. Effectively, by bio-inspiration we can have a better view and value of nature capability while studying its models to learn what can be extracted, copied or adapted. Using electroactive polymers (EAP) as artificial muscles is adding an important element to the development of biologically inspired technologies.

  12. Controlled release of ibuprofen by meso-macroporous silica

    Science.gov (United States)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.

    2014-02-01

    Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.

  13. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  14. Design of a controlled release liquid formulation of lamotrigine

    Directory of Open Access Journals (Sweden)

    V Kumar

    2011-05-01

    Full Text Available "n  "n  Background and the purpose of the study: Lamotrigine is a broad spectrum anticonvulsant drug widely used as mono- or adjunct- therapy in adults and children. The aim of this study was to develop controlled release liquid formulation of lamotrigine to improve bioavailability and compliance of pediatric and geriatric epileptic patients. "n  Methods: Multiple (w/o/w emulsion was prepared using one step emulsification technique. It was evaluated for entrapment efficiency (EE, morphology, zeta potential (ZP, polydispersity index (PI, rheology, thermal property, in vitro drug release behavior and stability. In vivo studies in albino mice were carried out using maximal electroshock seizure (MES test and strychnine induced seizure (SIS pattern test and results were compared with marketed formulation. "n  Results: The EE of the formulations varied from 84.37% to 98.11%. The ZP and PI values of the prepared batches were in the range of +23.46 to +28.07 and 0.256 and 0.365, respectively. Microscopic observation clearly indicated the stability of the emulsions during the storage period. All batches exhibited controlled in vitro drug release up to 12 hrs. Batch C11 exhibited significantly longer duration of protection of seizure in mice against MES and exhibited comparable efficacy in SIS as compared to the marketed formulation. "n  Major Conclusion: Multiple emulsion of lamotrigine compared to the marketed tablet showed plasma drug concentration within therapeutic range for longer time and comparable efficacy.

  15. Newly developed controlled release subcutaneous formulation for tramadol hydrochloride

    Directory of Open Access Journals (Sweden)

    Mostafa Mabrouk

    2018-05-01

    Full Text Available This study presents a drug delivery system of poly (Ɛ-caprolactone (PCL ribbons to optimize the pharmaceutical action of tramadol for the first time according to our knowledge. PCL ribbons were fabricated and loaded with tramadol HCl. Ribbons were prepared by slip casting technique and coated with dipping technique with β-cyclodextrin. The chemical integrity and surface morphology of the ribbons were confirmed using FTIR and SEM coupled with EDX. In addition, thermodynamic behavior of the fabricated ribbons was investigated using DSC/TGA. Tramadol loading into PCL ribbons, biodegradation of ribbons and tramadol release kinetics were studied in PBS.The results revealed that the formulated composition did not affect the chemical integrity of the drug. Furthermore, SEM/EDX confirmed the inclusion of tramadol into the PCL matrix in homogenous distribution pattern without any observation of porous structure. The particle size of loaded tramadol was found to be in the range of (2–4 nm. The formulated composition did not affect the chemical integrity of the drug and should be further investigated for bioavailability. Tramadol exhibited controlled release behavior from PCL ribbons up to 45 days governed mainly by diffusion mechanism. The fabricated ribbons have a great potentiality to be implemented in the long term subcutaneous delivery of tramadol. Keywords: Tramadol, Polycaprolcatone, Subcutaneous membrane, Ribbons, β-Cyclodextrin, Controlled release

  16. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1992-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks mission from 2 to 15 April 1991, and continued it from the 9 to 22 November 1991 at the Center for Application of Isotopes and Radiation (CAIR) of the National Atomic Energy Agency, BATAN in Jakarta. Expert discussed the project and carried out experiments together with the staff of the center, introducing shellac (description in part II) as a candidate for controlled release formulations. Formulations of carbofuran, butachlor, 2,4-D and diazinon were carried out, using sand and cocconut shells as carriers. Release rates of a.i. into water have been checked and further work has been discussed. Expert assessed further needs for supply of instruments, accessories and chemicals. (author)

  17. Controlled release of ibuprofen by meso–macroporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Santamaría, E., E-mail: esthersantamaria@ub.edu; Maestro, A.; Porras, M.; Gutiérrez, J.M.; González, C.

    2014-02-15

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO{sub 19}PO{sub 39}EO{sub 19}) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84{sub m}eso (black diamonds), P84{sub 2}0% (white squares), P84{sub 5

  18. Controlled release of ibuprofen by meso–macroporous silica

    International Nuclear Information System (INIS)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J.M.; González, C.

    2014-01-01

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO 19 PO 39 EO 19 ) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84 m eso (black diamonds), P84 2 0% (white squares), P84 5 0% (black triangles), P84 7

  19. A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release

    Directory of Open Access Journals (Sweden)

    Xiling Li

    2018-05-01

    Full Text Available Summary: We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ. We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment. : Homeostatic mechanisms stabilize synaptic strength, but the signaling systems remain enigmatic. Li et al. suggest the existence of a homeostat operating at the Drosophila neuromuscular junction that responds to excess glutamate through an autocrine mechanism to adaptively inhibit presynaptic neurotransmitter release. This system parallels forms of plasticity at central synapses. Keywords: homeostatic synaptic plasticity, glutamate homeostasis, synaptic depression, Drosophila neuromuscular junction

  20. Tunable controlled release of molecular species from Halloysite nanotubes

    Science.gov (United States)

    Elumalai, Divya Narayan

    Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, drugs, or proteins, allowing for a sustained release of these agents for hours. The release times can be further tuned for days and months by the addition of tube end-stoppers. In this work a three-dimensional, time-quantified Monte Carlo model that efficiently describes diffusion through and from nanotubes is implemented. Controlled delivery from Halloysite Nanotubes (HNT) is modeled based on interactions between the HNT's inner wall and the nanoparticles (NP) and among NPs themselves. The model was validated using experimental data published in the literature. The validated model is then used to study the effect of multiple parameters like HNT diameter and length, particle charge, ambient temperature and the creation of smart caps at the tube ends on the release of encapsulated NPs. The results show that release profiles depend on the size distribution of the HNT batch used for the experiment, as delivery is sensitive to HNT lumen and length. The effect of the addition of end-caps to the HNTs, on the rate of release of encapsulated NPs is also studied here. The results show that the release profiles are significantly affected by the addition of end caps to the HNTs and is sensitive to the end-cap pore lumen. A very good agreement with the experiment is observed when a weight

  1. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J

    2011-01-01

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s -1 . Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  3. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Science.gov (United States)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J.

    2011-02-01

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s - 1. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  4. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J, E-mail: Thomas_Webster@Brown.edu [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2011-02-25

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s{sup -1}. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  5. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  6. Effect of solution chemistry on the characteristics of hydrothermally grown WO_3 for electroactive applications

    International Nuclear Information System (INIS)

    Christou, K.; Louloudakis, D.; Vernardou, D.; Savvakis, C.; Katsarakis, N.; Koudoumas, E.; Kiriakidis, G.

    2015-01-01

    Hydrothermally grown tungsten trioxide coatings were prepared at 95 °C using different metal sulfates. Morphology of the oxides was altered from grains to flower- and urchin-like structures using potassium sulfate, sodium sulfate and lithium sulfate, respectively. The flower-like structures presented the highest deintercalated charge, 35 mC cm"−"2 with time response of 96 s. In addition, they indicated a charge transfer resistance across the tungsten trioxide–electrolyte interface of 752 Ω. These outcomes imply that they are promising candidates for electroactive applications. - Highlights: • Hydrothermally grown WO_3 coatings with controlled properties. • The choice of metal sulfate is important in determining their properties. • Flower-like hexagonal WO_3 structures for electroactive applications.

  7. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Parot, Sandrine

    2007-01-01

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author) [fr

  8. Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns.

    Science.gov (United States)

    Shah, Shefaat Ullah; Shah, Kifayat Ullah; Rehman, Asimur; Khan, Gul Majid

    2011-04-01

    The objective of the study was to formulate and evaluate controlled release polymeric tablets of Diclofenac Potassium for the release rate, release patterns and the mechanism involved in the release process of the drug. Formulations with different types and grades of Ethyl Cellulose Ether derivatives in several drug-to-polymer ratios (D:P) were compressed into tablets using the direct compression method. In vitro drug release studies were performed in phosphate buffer (pH 7.4) as dissolution medium by using USP Method-1 (Rotating Basket Method). Similarity factor f2 and dissimilarity factor f1 were applied for checking the similarities and dissimilarities of the release profiles of different formulations. For the determination of the release mechanism and drug release kinetics various mathematical/kinetic models were employed. It was found that all of the Ethocel polymers could significantly slow down the drug release rate with Ethocel FP polymers being the most efficient, especially at D:P ratios of 10:03 which lead towards the achievement of zero or near zero order release kinetics.

  9. Contact lenses as drug controlled release systems: a narrative review

    Directory of Open Access Journals (Sweden)

    Helena Prior Filipe

    2016-06-01

    Full Text Available ABSTRACT Topically applied therapy is the most common way to treat ocular diseases, however given the anatomical and physiological constraints of the eye, frequent dosing is required with possible repercussions in terms of patient compliance. Beyond refractive error correction, contact lenses (CLs have, in the last few decades emerged as a potential ophthalmic drug controlled release system (DCRS. Extensive research is underway to understand how to best modify CLs to increase residence time and bioavailability of drugs within therapeutic levels on the ocular surface.These devices may simultaneously correct ametropia and have a role in managing ophthalmic disorders that can hinder CL wear such as dry eye, glaucoma, ocular allergy and cornea infection and injury. In this narrative review the authors explain how the ocular surface structures determine drug diffusion in the eye and summarize the strategies to enhance drug residence time and bioavailability. They synthesize findings and clinical applications of drug soaked CLs as DCRS combined with delivery diffusion barriers, incorporation of functional monomers, ion related controlled release, molecular imprinting, nanoparticles and layering. The authors draw conclusions about the impact of these novel ophthalmic agents delivery systems in improving drug transport in the target tissue and patient compliance, in reducing systemic absorption and undesired side effects, and discuss future perspectives.

  10. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Wang QM

    2016-01-01

    . When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative robustness, and biocompatibility, these eGels may have a huge potential as scaffolds for tissue regeneration and matrix for stimuli responsive drug release. Keywords: injectability, electroactivity, nanocomposite hydrogels, reinforcement, tetraaniline, alginate, gelatin

  11. A concise review on smart polymers for controlled drug release.

    Science.gov (United States)

    Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali

    2016-06-01

    Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.

  12. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The release behaviour of a drug from flat circular capsules obtained by radiation-induced polymerization at low temperatures and with different hydrophilic properties has been studied. The effect of various factors on release property was investigated. The release process could be divided into three parts, an initial quick release stage, stationary state release stage and a retarded release stage. Release behaviour in the stationary state was examined using Noyes-Whitney and Higuchi equations. It was shown that the hydrophilic property of polymer matrix expressed by water content was the most important effect on diffusion and release rate. Rigidity of the polymer may also affect diffusivity. The first quick release step could be attributed to rapid dissolution of drug in the matrix surface due to polymer swelling. (author)

  13. Considerations for Contractile Electroactive Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  14. Considerations for Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  15. Chemical physics of electroactive materials: concluding remarks.

    Science.gov (United States)

    Rutland, Mark W

    2017-07-01

    It is an honour to be charged with providing the concluding remarks for a Faraday Discussion. As many have remarked before, it is nonetheless a prodigious task, and what follows is necessarily a personal, and probably perverse, view of a watershed event in the Chemical Physics of Electroactive materials. The spirit of the conference was captured in a single sentence during the meeting itself."It is the nexus between rheology, electrochemistry, colloid science and energy storage". The current scientific climate is increasingly dominated by a limited number of global challenges, and there is thus a tendency for research to resemble a football match played by 6 year olds, where everyone on the field chases the (funding) ball instead of playing to their "discipline". It is thus reassuring to see how the application of rigorous chemical physics is leading to ingenious new solutions for both energy storage and harvesting, via, for example, nanoactuation, electrowetting, ionic materials and nanoplasmonics. In fact, the same language of chemical physics allows seamless transition between applications as diverse as mechano-electric energy generation, active moisture transport and plasmonic shutters - even the origins of life were addressed in the context of electro-autocatalysis!

  16. The Jellyfish: smart electro-active polymers for an autonomous distributed sensing node

    Science.gov (United States)

    Blottman, John B.; Richards, Roger T.

    2006-05-01

    The US Navy has recently placed emphasis on deployable, distributed sensors for Force Protection, Anti-Terrorism and Homeland Defense missions. The Naval Undersea Warfare Center has embarked on the development of a self-contained deployable node that is composed of electro-active polymers (EAP) for use in a covert persistent distributed surveillance system. Electro-Active Polymers (EAP) have matured to a level that permits their application in energy harvesting, hydrophones, electro-elastic actuation and electroluminescence. The problem to resolve is combining each of these functions into an autonomous sensing platform. The concept presented here promises an operational life several orders of magnitude beyond what is expected of a Sonobuoy due to energy conservation and harvesting, and at a reasonable cost. The embodiment envisioned is that of a deployed device resembling a jellyfish, made in most part of polymers, with the body encapsulating the necessary electronic processing and communications package and the tentacles of the jellyfish housing the sonar sensors. It will be small, neutrally buoyant, and will survey the water column much in the manner of a Cartesian Diver. By using the Electro-Active Polymers as artificial muscles, the motion of the jellyfish can be finely controlled. An increased range of detection and true node autonomy is achieved through volumetric array beamforming to focus the direction of interrogation and to null-out extraneous ambient noise.

  17. Halloysite Nanotubes: Controlled Access and Release by Smart Gates.

    Science.gov (United States)

    Cavallaro, Giuseppe; Danilushkina, Anna A; Evtugyn, Vladimir G; Lazzara, Giuseppe; Milioto, Stefana; Parisi, Filippo; Rozhina, Elvira V; Fakhrullin, Rawil F

    2017-07-28

    Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH)₂ into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO₂ gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We prove that adding halloysite filled with Ca(OH)₂ to paper can reduce the impact of acid exposure on both the mechanical performance and pH alteration. The end-stoppers have a double effect: they preserve the calcium hydroxide from carbonation, and they prevent from the formation of highly basic pH and trigger the response to acid exposure minimizing the pH drop-down. These features are promising for a composite nanoadditive in the smart protection of cellulose-based materials.

  18. Agricultural production - Phase 2. Indonesia. Controlled release pesticide formulations

    International Nuclear Information System (INIS)

    Vollner, L.

    1991-01-01

    At the request of the Government of Indonesia, an IAEA expert undertook a two weeks (of one month) mission from 2 to 15 April 1991 to the Center for Application of Isotopes and Radiation (CAIR) of BATAN in Jakarta. Expert held a seminar, discussed and carried out experiments on Controlled Release Formulations (CRF). Discussed further experiments, cleaned and reinstalled an ECD of the Shimadzu gas chromatograph and optimized the analytical conditions for chlorinated pesticides. He also developed a project for possible submission to the Government of Germany, to allow the staff of CAIR to undertake a more intensive research and to be able to set up training facilities in his research center in Munich/Germany. He furthermore assessed needs for supply of instruments, accessories and radiolabelled pesticides. An agreement for continuing the scientific and technical mission was obtained with the staff of CAIR, in connection with the DDT-RCM at the end of November 1991, provided approval by IAEA

  19. Controlled Pesticide Release from Porous Composite Hydrogels Based on Lignin and Polyacrylic Acid

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2016-01-01

    Full Text Available For the controlled release of pesticides, a novel composite porous hydrogel (LBPAA was prepared based on lignin and polyacrylic acid for use as the support frame of a pore structure for water delivery. The LBPAA was analyzed to determine its water-swelling and slow release properties. The controlled release properties of LBPAA were evaluated through experiments in relation to the cumulative release of pesticides, with particular emphasis on environmental effects and release models. The porous LBPAA hydrogel showed improved properties compared to polyacrylic acid, and could therefore be considered an efficient material for application in controlled release systems in agriculture.

  20. Critical review of controlled release packaging to improve food safety and quality.

    Science.gov (United States)

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  1. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xin Hua

    Full Text Available Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF. An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  2. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Science.gov (United States)

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  3. Factors controlling alkalisalt deposition in recovery boiler- release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P.; Kylloenen, H.; Kurkela, M. [VTT Energy, Espoo (Finland). Process Technology Group

    1996-12-01

    As part of a cooperative effort to develop a model to describe the behaviour of inorganic compounds in kraft recovery boilers, an experimental investigation of the release of sulphur during black liquor pyrolysis has been undertaken. Previous to these studies, the mechanisms of sulphur release and the reasons for the observed effects of process conditions on sulphur release were very poorly understood. On the basis of the experimental results, the main reactions leading to sulphur release have been elucidated with a fair degree of certainty. Logical explanations for the variations of sulphur release with temperature and with liquor solids content have been proposed. The influence of pressure has been investigated in order to gain insights into the effects of mass transfer on the sulphur-release rate. In the near future, the research will be aimed at generating the kinetic data necessary for modelling the release of sulphur in the recovery furnace. (author)

  4. Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water

    International Nuclear Information System (INIS)

    Grillo, Renato; Pereira, Anderson do Espirito Santo; Ferreira Silva de Melo, Nathalie; Porto, Raquel Martins; Feitosa, Leandro Oliveira; Tonello, Paulo Sergio; Dias Filho, Newton L.; Rosa, Andre Henrique; Lima, Renata; Fraceto, Leonardo Fernandes

    2011-01-01

    The purpose of this work was to develop a modified release system for the herbicide ametryn by encapsulating the active substance in biodegradable polymer microparticles produced using the polymers poly(hydroxybutyrate) (PHB) or poly(hydroxybutyrate-valerate) (PHBV), in order to both improve the herbicidal action and reduce environmental toxicity. PHB or PHBV microparticles containing ametryn were prepared and the efficiencies of herbicide association and loading were evaluated, presenting similar values of approximately 40%. The microparticles were characterized by scanning electron microscopy (SEM), which showed that the average sizes of the PHB and PHBV microparticles were 5.92 ± 0.74 μm and 5.63 ± 0.68 μm, respectively. The ametryn release profile was modified when it was encapsulated in the microparticles, with slower and more sustained release compared to the release profile of pure ametryn. When ametryn was associated with the PHB and PHBV microparticles, the amount of herbicide released in the same period of time was significantly reduced, declining to 75% and 87%, respectively. For both types of microparticle (PHB and PHBV) the release of ametryn was by diffusion processes due to anomalous transport (governed by diffusion and relaxation of the polymer chains), which did not follow Fick's laws of diffusion. The results presented in this paper are promising, in view of the successful encapsulation of ametryn in PHB or PHBV polymer microparticles, and indications that this system may help reduce the impacts caused by the herbicide, making it an environmentally safer alternative.

  5. A REVIEW ON CONTROLLED DRUG RELEASE FORMULATION: SPANSULES

    OpenAIRE

    Rinky Maurya; Dr. Pramod Kumar Sharma; Rishabha Malviya

    2014-01-01

    Spansules are a dosage form which was considered as one of the Advanced Drug Delivery System. Multidrug preparations can be delivered easily by spansules or granules in capsule technology. This type of delivery system designed to release a drug or a medicament at two or more different rates or in different span of time. A quick/slow release system provides an initial release of drug followed by a constant rate of drug release over a extended period or a defined period of time and in slow/quic...

  6. Controlled release of diuron from an alginate-bentonite formulation: water release kinetics and soil mobility study.

    Science.gov (United States)

    Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E; Flores-Céspedes, F

    1999-02-01

    The herbicide diuron was incorporated in alginate-based granules to obtain controlled release (CR) properties. The standard formulation (alginate-herbicide-water) was modified by the addition of different sorbents. The effect on diuron release rate caused by incorporation of natural and acid-treated bentonites in alginate formulation was studied by immersion of the granules in water under static conditions. The release of diuron was diffusion-controlled. The time taken for 50% release of active ingredient to be released into water, T(50), was calculated for the comparison of formulations. The addition of bentonite to the alginate-based formulation produced the higher T(50) values, indicating slower release of the diuron. The mobility of technical and formulated diuron was compared by using soil columns. The use of alginate-based CR formulations containing bentonite produced a less vertical distribution of the active ingredient as compared to the technical product and commercial formulation. Sorption capacities of the various soil constituents for diuron were also determined using batch experiments.

  7. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    Directory of Open Access Journals (Sweden)

    Zafar eAbas

    2014-09-01

    Full Text Available Cellulose electro-active paper (EAPap is an attractive material of electro-active polymers (EAPs family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  8. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    Science.gov (United States)

    Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2014-09-01

    Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  9. Radiation curing of intelligent coating for controlled release and permeation

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao; Sakata, Shoei; Tougou, Kazuhide; Hara, Takamichi; Matsubara, Yoshio

    2002-01-01

    Intelligent membranes for pH and temperature-responsive drug releases were developed by coating and curing of polymer-drug composite film with electrolyte or N-isopropyl acrylamide curable mixture. It was proved that those intelligent membranes showed the stimule-sensitive and responsive release functions and could be produced efficiently by radiation curing processing with a conveyer system

  10. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    A coating layer was then applied with a mixture of HPMC, ethylcellulose, shellac, and HPMC phthalate. The effect of several formulation variables on in vitro drug release was studied; furthermore, the drug release kinetics of the optimized formulation was evaluated. The in vivo pharmacokinetics of the optimized formulation ...

  11. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    The effect of several formulation variables on in ... The in vivo pharmacokinetics of the optimized formulation was compared ... Results: The core tablets exhibited extended release consisting of drug release from the embedded ... important factor in medical treatment with respect ... The solvents for high-performance liquid.

  12. Controlled release of free-falling test models

    Science.gov (United States)

    Fife, W. J.; Holway, H. P.

    1970-01-01

    Releasing device, powered by a drill motor through an adjustable speed reducer, has a spinning release head with three retractable spring-loaded fingers. The fingers are retracted by manual triggering of a cable at the motor end of the unit.

  13. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  14. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications.

    Science.gov (United States)

    Wang, Qinmei; Wang, Qiong; Teng, Wei

    2016-01-01

    Injectable electroactive hydrogels (eGels) are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA) crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs), where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, (1)H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation), but it improves mechanical strength up to ~8 kPa and conductivity up to ~10(-6) S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation. When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative

  15. Control of anoplophora glabripennis by releasing sterile insects

    International Nuclear Information System (INIS)

    Liu Xiaohui; Li Yongjun; Zhang Shuyong; Wang Endong; Lu Daguang

    2003-01-01

    An experiment to evaluate the effect of released sterile insects on reproduction of natural A. glabripennis population was conducted at a 30-hectare poplar tree forest in Ying County of Shanxi Province from July 10 to August 29, 2001. Though the releasing ratio was only about 2-5, results from different methods showed that the reproduction of natural A. glabripennis population was suppressed effectively by releasing sterile insects, and that hatch ratio of eggs laid by parent generation was about 20% and survival ratio of F1 progeny about 27%. (authors)

  16. Predictive property models for use in design of controlled release of pesticides

    DEFF Research Database (Denmark)

    Suné, Nuria Muro; Gani, Rafiqul; Bell, G.

    2005-01-01

    A model capable of predicting the release of an Active Ingredient (AI) from a specific device would be very useful in the field of pesticide controlled release technology for design purposes. For the release of an AI from a microcapsule a mathematical model is briefly presented here, as an introd...

  17. CONTROLLED-RELEASE OF PARACETAMOL FROM AMYLODEXTRIN TABLETS - IN-VITRO AND IN-VIVO RESULTS

    NARCIS (Netherlands)

    VANDERVEEN, J; EISSENS, AC; LERK, CF

    Amylodextrin is a suitable excipient for the design of solid controlled-release systems. The release of paracetamol from tablets containing 30% drug and 70% amylodextrin was studied in vitro and in vivo. In vitro dissolution profiles showed almost-constant drug release rates during 8 hr, when

  18. Development of controlled release spheroids using Buchananiacochinchinesis gum

    Directory of Open Access Journals (Sweden)

    Narayan Babulal Gaikwad

    2013-03-01

    Full Text Available Chirauli nut gum was isolated from the bark of Buchanania cochinchinesis (fam. Anacadiacea and was used as a release modifier for the preparation of Diclofenac sodium spheroids using the extrusion spheronization technique. The process was studied for the effects on variables when making spheroids with satisfactory particle shape, size and size distribution. The prepared spheroids were characterized for surface morphology, qualitative surface porosity, friability, bulk density and flow properties. In vitro studies demonstrated that the release exhibited Fickian diffusion kinetics which was confirmed by the Higuchi and the Korsmeyer-Peppas models. The physico-chemical parameters of the gum could be correlated to the in vitro dissolution profile of the spheroids. The spheroids were not able to sustain the drug releases over 12 hours. A greater concentration of Chirauli nut gum and a process that can accommodate such greater concentrations may produce a formulation capable of significant sustained release.

  19. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  20. Factors controlling alkali salt deposition in recovery boilers. Release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P; Kurkela, M; Kylloenen, H; Tapola, E [VTT Energy, Espoo (Finland). Process Technology Group

    1997-10-01

    The research was part of an ongoing cooperative research effort aimed at developing a model to describe the behaviour of inorganic compounds in kraft recovery boilers. During 1996 experimental investigations of sulphur release were continued. Experiments at elevated pressures and employing larger particle sizes were performed in order to gain information about mass transfer effects. The first experiments yielding data on the rates of the sulphur-release reactions were performed. This data will be used as the basis of a drop model for sulphur release being developed in cooperation with another research group. The other part of the work during 1996 explored the possibility of using chemical equilibrium calculations to predict the release of sodium, potassium and chlorine in the recovery furnace. The approach is essentially different from that employed in earlier studies in that the effects of fume formation are taken into account. So far, the predictions of the chemical equilibrium release model have, in no way, conflicted with field measurements. (orig.)

  1. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    Science.gov (United States)

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe

    International Nuclear Information System (INIS)

    Dong, Jing; Hou, Juying; Jiang, Jianxia; Ai, Shiyun

    2015-01-01

    Highlights: • Novel approach for electrochemical detection of non-electroactive OPs was proposed. • PAM was used as electroactive probe for the first time. • The detection system displayed high sensitivity and promptness. • The developed sensor was used in real samples with satisfactory results. - Abstract: An innovative approach for sensitive and simple electrochemical detection of non-electroactive organophosphorus pesticides (OPs) was described in this report. The novel strategy emphasized the fabrication of an oxime-based sensor via attaching pralidoxime (PAM) on graphene quantum dots (GQDs) modified glassy carbon electrode. The introduction of GQDs significantly increased the effective electrode area, and then enlarged the immobilization quantity of PAM. Thus, the oxidation current of PAM was obviously increased. Relying on the nucleophilic substitution reaction between oxime and OPs, fenthion was detected using PAM as the electroactive probe. Under optimum conditions, the difference of oxidation current of PAM was proportional to fenthion concentration over the range from 1.0 × 10 −11 M to 5.0 × 10 −7 M with a detection limit of 6.8 × 10 −12 M (S/N = 3). Moreover, the favorable detection performance in water and soil samples heralded the promising applications in on-site OPs detection

  3. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.

    2010-01-01

    in both serum and microdialysate. Food intake induced a 2- to 3-fold increase in serum gastrin, while gastrin in antral microdialysate increased 10- to 15-fold. In unilaterally vagotomized rats (fasted, 3 days post-op.), food evoked a prompt peak gastrin release followed by a gradual decline on the intact......We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... in serum regardless of the prandial state. The rats were conscious during microdialysis except when subjected to electrical vagal stimulation. Acid blockade (omeprazole treatment of freely fed rats for 4 days), or bilateral sectioning of the abdominal vagal trunks (fasted, 3 days post-op.), raised...

  4. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Elbarbary, Ahmed M.; Ghobashy, Mohamed Mohamady [Atomic Energy Authority, Nasr City (Egypt). National Center for Radiation Research and Technology (NCRTT)

    2017-07-01

    Superabsorbent hydrogels (PVP/CMC) based on polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose (CMC) of different copolymer compositions were prepared by gamma radiation. Factors affecting the gel content (%) and the swelling ratio (g/g) of hydrogel such as irradiation dose as well as copolymer composition were investigated. With increasing the CMC content in PVP/CMC hydrogels, increases the swelling and improves the water retention capability. The high swelling ratio was observed at copolymer composition of PVP/CMC (60/40). Fast swelling of the hydrogels was obtained after 20 min. The effect of different fertilizers and buffers of different pH's on equilibrium swelling of hydrogels was investigated. Fertilizers such as urea, monopotassium-phosphate (MPK), and nitrogen-phosphate-potassium (NPK) were loaded onto the hydrogel to supply nitrogen, potassium and phosphorous nutrients. PVP/CMC hydrogels retained 28-36% after 72 h and slow retention was noticed up to 9 days. The swelling of hydrogel in fertilizer solutions is lower than that in water. The hydrogels showed adsorption desorption of fertilizers which governs by slow release property. The release rate of urea is much higher 10 times than that of phosphate. After 3 days, urea released 60%, while phosphate released 10-12%. The applicability of PVP/CMC hydrogels in the agricultural fields shows greater growth effect on zea maize plants. The growth of zea maize plant in soil mixed with PVP/CMC hydrogels loaded fertilizers is greater than untreated soil. The slow release fertilize, the high swelling and the slow water retention behaviors of PVP/CMC hydrogels encourage their use as safer release systems for fertilizers and as soil conditioner in agricultural applications.

  5. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation

    International Nuclear Information System (INIS)

    Elbarbary, Ahmed M.; Ghobashy, Mohamed Mohamady

    2017-01-01

    Superabsorbent hydrogels (PVP/CMC) based on polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose (CMC) of different copolymer compositions were prepared by gamma radiation. Factors affecting the gel content (%) and the swelling ratio (g/g) of hydrogel such as irradiation dose as well as copolymer composition were investigated. With increasing the CMC content in PVP/CMC hydrogels, increases the swelling and improves the water retention capability. The high swelling ratio was observed at copolymer composition of PVP/CMC (60/40). Fast swelling of the hydrogels was obtained after 20 min. The effect of different fertilizers and buffers of different pH's on equilibrium swelling of hydrogels was investigated. Fertilizers such as urea, monopotassium-phosphate (MPK), and nitrogen-phosphate-potassium (NPK) were loaded onto the hydrogel to supply nitrogen, potassium and phosphorous nutrients. PVP/CMC hydrogels retained 28-36% after 72 h and slow retention was noticed up to 9 days. The swelling of hydrogel in fertilizer solutions is lower than that in water. The hydrogels showed adsorption desorption of fertilizers which governs by slow release property. The release rate of urea is much higher 10 times than that of phosphate. After 3 days, urea released 60%, while phosphate released 10-12%. The applicability of PVP/CMC hydrogels in the agricultural fields shows greater growth effect on zea maize plants. The growth of zea maize plant in soil mixed with PVP/CMC hydrogels loaded fertilizers is greater than untreated soil. The slow release fertilize, the high swelling and the slow water retention behaviors of PVP/CMC hydrogels encourage their use as safer release systems for fertilizers and as soil conditioner in agricultural applications.

  6. Model-based computer-aided design for controlled release of pesticides

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Gani, Rafiqul; Bell, G.

    2005-01-01

    In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available, ...... extended models have been developed and implemented into a computer-aided system. The total model consisting of the property models embedded into the release models are then employed to study the release of different combinations of AIs and polymer-based microcapsules.......In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available...

  7. Controlled Release Formulation of Indomethacin Prepared With Bee ...

    African Journals Online (AJOL)

    Abstract. Purpose: To prepare and evaluate new sustained release formulations of indomethacin based on extracts of propolis (bee glue). Methods: Standardization of propolis (bee glue) extracts was performed by high performance liquid chromatography (HPLC) and determination of the values of fat and fixed oils. Several ...

  8. Controlling benthic release of phosphorus in different Baltic Sea scales

    DEFF Research Database (Denmark)

    Pitkänen, Heikki; Bendtsen, Jørgen; Hansen, Jørgen L. S.

    The general aim of the PROPPEN project was to study whether it is possible to counteract near-bottom anoxia and excess benthic nutrient release ("internal loading") in the Baltic Sea by artificial oxygenation in cost-efficient and socio-economically beneficial ways. Two pilot sites were selected ...

  9. Biodegradable hollow fibres for the controlled release of drugs

    NARCIS (Netherlands)

    Schakenraad, J.M.; Oosterbaan, J.A.; Nieuwenhuis, P.; Molenaar, I.; Olijslager, J.; Potman, W.; Eenink, M.J.D.; Feijen, Jan

    1988-01-01

    Biodegradable hollow fibres of poly-l-lactic acid (PLLA) filled with a suspension of the contraceptive hormone levonorgestrel in castor oil were implanted subcutaneously in rats to study the rate of drug release, rate of biodegradation and tissue reaction caused by the implant. The in vivo drug

  10. Electroactive subwavelength gratings (ESWGs) from conjugated polymers for color and intensity modulation

    Science.gov (United States)

    Bhuvana, Thiruvelu; Kim, Byeonggwan; Yang, Xu; Shin, Haijin; Kim, Eunkyoung

    2012-05-01

    Subwavelength gratings with electroactive polymers such as poly(3-hexylthiophene) (P3HT) and poly(3,4-propylenedioxythiophene-phenylene) (P(ProDOT-Ph)) controlled the color intensity for various visible colors of diffracted light in a single device. Under the illumination of a white light, at a fixed angle of incidence, the color intensity of the diffracted light was reversibly switched from the maximum value down to 15% (85% decrease) by applying -2 to 2 V due to electrochemical (EC) reaction. All spectral colors including red, green, and blue were generated by changing the angle of incidence, and the intensity of each color was modulated electrochemically at a single EC device. With electroactive subwavelength gratings (ESWGs) of P3HT, the maximum modulation of the color intensity was observed in the red-yellow quadrant in the CIE color plot, whereas for the ESWGs of P(ProDOT-Ph), the maximum modulation of the color intensity was observed in the yellow-green and green-blue quadrants. Both ESWGs showed a memory effect, keeping their color and intensity even after power was turned off for longer than 40 hours.Subwavelength gratings with electroactive polymers such as poly(3-hexylthiophene) (P3HT) and poly(3,4-propylenedioxythiophene-phenylene) (P(ProDOT-Ph)) controlled the color intensity for various visible colors of diffracted light in a single device. Under the illumination of a white light, at a fixed angle of incidence, the color intensity of the diffracted light was reversibly switched from the maximum value down to 15% (85% decrease) by applying -2 to 2 V due to electrochemical (EC) reaction. All spectral colors including red, green, and blue were generated by changing the angle of incidence, and the intensity of each color was modulated electrochemically at a single EC device. With electroactive subwavelength gratings (ESWGs) of P3HT, the maximum modulation of the color intensity was observed in the red-yellow quadrant in the CIE color plot, whereas for the

  11. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    Science.gov (United States)

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  12. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  13. Acoustically Triggered Disassembly of Multilayered Polyelectrolyte Thin Films through Gigahertz Resonators for Controlled Drug Release Applications

    Directory of Open Access Journals (Sweden)

    Zhixin Zhang

    2016-11-01

    Full Text Available Controlled drug release has a high priority for the development of modern medicine and biochemistry. To develop a versatile method for controlled release, a miniaturized acoustic gigahertz (GHz resonator is designed and fabricated which can transfer electric supply to mechanical vibrations. By contacting with liquid, the GHz resonator directly excites streaming flows and induces physical shear stress to tear the multilayered polyelectrolyte (PET thin films. Due to the ultra-high working frequency, the shear stress is greatly intensified, which results in a controlled disassembling of the PET thin films. This technique is demonstrated as an effective method to trigger and control the drug release. Both theory analysis and controlled release experiments prove the thin film destruction and the drug release.

  14. Gastrin release: Antrum microdialysis reveals a complex neural control

    DEFF Research Database (Denmark)

    Ericsson, P; Håkanson, R; Rehfeld, Jens F.

    2010-01-01

    We used microdialysis to monitor local gastrin release in response to food, acid blockade and acute vagal excitation. For the first time, gastrin release has been monitored continuously in intact conscious rats in a physiologically relevant experimental setting in a fashion that minimizes...... in serum regardless of the prandial state. The rats were conscious during microdialysis except when subjected to electrical vagal stimulation. Acid blockade (omeprazole treatment of freely fed rats for 4 days), or bilateral sectioning of the abdominal vagal trunks (fasted, 3 days post-op.), raised...... the gastrin concentration in blood as well as microdialysate. The high gastrin concentration following omeprazole treatment was not affected by vagotomy. Vagal excitation stimulated the G cells: electrical vagal stimulation and pylorus ligation (fasted rats) raised the gastrin concentration transiently...

  15. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  16. Clearance and release from control - An international perspective

    International Nuclear Information System (INIS)

    Thierfeldt, S.

    2005-01-01

    This paper tries to give an overview of the clearance, or release from regulatory control, on an international scale, including some of those countries where clearance has become or is about to become vital for D and D. The emphasis lies on the impact of clearance, and in particular of differences between clearance levels of various countries, on D and D. Relevance of clearance for D and D of nuclear installations Clearance is an essential part of waste management (or more general, material management) in nuclear installations, and in particular during the decommissioning phase where waste streams continues to arise. Of course, the relevance of clearance in a particular country depends on a number of factors, like: availability of a final repository and its price; prevailing decommissioning strategy; number of nuclear installations reaching decommissioning phase. This small selection of reasons why clearance may be of varying importance for different countries may already suffice to illustrate why up to now clearance has been developed and implemented in quite different ways. If one thinks of additional reasons that may influence clearance, like politics, the public opinion, availability of funds etc., the situation becomes even more complex. It is, however safe to draw the conclusion that countries with a certain number of nuclear installations which have been or will soon be shut down or which are already in the decommissioning phase will need to implement provisions for clearance. This has indeed been the case with countries like the UK, Germany, the USA, Sweden, and a number of others. It is not essential for clearance levels to be exactly equal between various countries. They may differ as long as the difference is not too large, e.g. the values fall into the same order of magnitude. This is the reason why for example Germany has no problems with clearance levels which differ from the EU recommendation RP 122 partially adopted in a number of EU countries

  17. Polyoxometalate coordination induced controllable release of quinolone in hybrid film

    Science.gov (United States)

    Yang, Fan; Li, Yang; Lv, Yu-Guang; Zhou, Shu-Jing; Li, Si; Gao, Guang-Gang; Liu, Hong

    2018-05-01

    Due to some side effects of quinolones in vivo, it is an urgent issue to extend their new applications in vitro. In this paper, structure-determined vanadium-quinolone functionalized polymolybdates of (NH4)2 [(γ-Mo8O26){VO(CF)2}2] (1) and (NH4)2 [(γ-Mo8O26){VO(NF)2}2] (2) (CF = ciprofloxacin; NF = norfloxacin) have been designed and synthesized. Complex 1 or 2 features a γ-type [Mo8O26]4- polyanion functionalized by two monocapped vanadium-quinolone complexes. Different H-bonds and π···π interactions allow 1 or 2 to form a 2D layered structure at solid state. When complex 1 or 2 is transferred into polyvinyl alcohol (PVA) film, its release rate in solution is lower than that of CF- or NF-PVA film and thus forming a novel quinolone delivery system. This is the first time that slow release effect of quinolone is achieved by polyoxometalate coordination effect. The slow release of 1 or 2 in PVA film is mainly ascribed to the coordination of quinolone with polyoxometalate anions.

  18. Phenobarbital loaded microemulsion: development, kinetic release and quality control

    Directory of Open Access Journals (Sweden)

    Kayo Alves Figueiredo

    Full Text Available ABSTRACT This study aimed to obtain and characterize a microemulsion (ME containing phenobarbital (PB. The PB was incorporated in the proportion of 5% and 10% in a microemulsion system containing Labrasol(r, ethanol, isopropyl myristate and purified water. The physicochemical characterization was performed and the primary stability of the ME was evaluated. An analytical method was developed using spectrophotometry in UV = 242 nm. The kinetics of the in vitro release (Franz model of the ME and the emulsion (EM containing PB was evaluated. The incorporation of PB into ME at concentrations of 5 and 10% did not change pH and resistance to centrifugation. There was an increase in particle size, a decrease of conductivity and a change in the refractive index in relation to placebo ME. The ME remained stable in preliminary stability tests. The analytical method proved to be specific, linear, precise, accurate and robust. Regarding the kinetics of the in vitro release, ME obtained an in vitro release profile greater than the EM containing PB. Thus, the obtained ME has a potential for future transdermal application, being able to compose a drug delivery system for the treatment of epilepsy.

  19. Controlled drug release on amine functionalized spherical MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Szegedi, Agnes, E-mail: szegedi@chemres.hu [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67 (Hungary); Popova, Margarita; Goshev, Ivan [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Klebert, Szilvia [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67 (Hungary); Mihaly, Judit [Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67 (Hungary)

    2012-10-15

    MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin method and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: Black-Right-Pointing-Pointer Spherical MCM-41 modified by different amounts of APTES was studied. Black-Right-Pointing-Pointer Ibuprofen (IBU) adsorption and release characteristics was tested. Black-Right-Pointing-Pointer The ninhydrin reaction was used for the quantitative determination of amino groups. Black-Right-Pointing-Pointer Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. Black-Right-Pointing-Pointer Good correlation was found between the amino content and IBU adsorption capacity.

  20. Controlled drug release on amine functionalized spherical MCM-41

    International Nuclear Information System (INIS)

    Szegedi, Agnes; Popova, Margarita; Goshev, Ivan; Klébert, Szilvia; Mihály, Judit

    2012-01-01

    MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N 2 physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin method and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: ► Spherical MCM-41 modified by different amounts of APTES was studied. ► Ibuprofen (IBU) adsorption and release characteristics was tested. ► The ninhydrin reaction was used for the quantitative determination of amino groups. ► Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. ► Good correlation was found between the amino content and IBU adsorption capacity.

  1. Controlled release of ibuprofen using Mg Al LDH nano carrier

    Science.gov (United States)

    Dasgupta, Sudip

    2017-08-01

    In the present study, NSAID (non-steroidal anti-inflammatory drugs) such as ibuprofen in anionic form has been intercalated in-situ into the interlayer space of Mg Al LDH nanoparticle during co-precipitation of hydroxides. LDH nanohybrids are characterized by XRD, FTIR and UV spectroscopy. Mg1-xAlx(NO3)x(OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Ibuprofen was intercalated in inter layer space of Mg-Al LDH during coprecipitation of drug LDH conjugate in nitrogen atmosphere. The nanopowders synthesised were in the size range between 25 to 90 nm with an average particle size of 55 nm. XRD analysis proved that there is an increase in d003 spacing from 7.89 Å for pristine LDH to 14.71 Å for ibuprofen intercalated LDH due to the intercalation of bigger ibuprofen molecule in the interlayer space of LDH. FTIR analysis showed hydroxyl and carbonyl stretching of ibuprofen in LDH-IBU sample confirming the intercalation of ibuprofen in the interlayer structure of LDH. The drug release study in phosphate buffer solution at pH 7.4 using UV-Vis spectroscopy demonstrated that 50 % drug molecules were released in 15 hours and more than 85 % release was achieved after 36 hours.

  2. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  3. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  4. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Directory of Open Access Journals (Sweden)

    Stephen Majoni

    2014-01-01

    Full Text Available Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs and hydroxy double salts (HDSs can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.

  5. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  6. Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders

    International Nuclear Information System (INIS)

    Leng, Jinsong; Lan, Xin; Liu, Yanju; Du, Shanyi

    2009-01-01

    This paper concerns an electroactive thermoset styrene-based shape memory polymer (SMP) nanocomposite filled with nanosized (30 nm) carbon powders. With an increase of the incorporated nanocarbon powders of the SMP composite, its glass transition temperature (T g ) decreases and storage modulus increases. Due to the high micro-porosity and homogeneous distributions of nanocarbon powders in the SMP matrix, the SMP composite shows good electrical conductivity with a percolation of about 3.8%. This percolation threshold is slightly lower than that of many other carbon-based conductive polymer composites. Consequently, due to the relatively high electrical conductivity, a sample filled with 10 vol% nanocarbon powders shows a good electroactive shape recovery performance heating by a voltage of 30 V above a transition temperature of 56–69 °C

  7. Surface-confined electroactive molecules for multistate charge storage information.

    Science.gov (United States)

    Mas-Torrent, M; Rovira, C; Veciana, J

    2013-01-18

    Bi-stable molecular systems with potential for applications in binary memory devices are raising great interest for device miniaturization. Particular appealing are those systems that operate with electrical inputs since they are compatible with existing electronic technologies. The processing of higher memory densities in these devices could be accomplished by increasing the number of memory states in each cell, although this strategy has not been much explored yet. Here we highlight the recent advances devoted to the fabrication of charge-storage molecular surface-confined devices exhibiting multiple states. Mainly, this goal has been realized immobilizing a variety (or a combination) of electroactive molecules on a surface, although alternative approaches employing non-electroactive systems have also been described. Undoubtedly, the use of molecules with chemically tunable properties and nanoscale dimensions are raising great hopes for the devices of the future in which molecules can bring new perspectives such as multistability.

  8. Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-01-01

    The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.

  9. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  10. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  11. Application of controlled release technology to uranium mill tailings stabilization

    International Nuclear Information System (INIS)

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.

    1981-01-01

    A trifluralin (herbicide) releasing device was developed with a theoretical effective lifetime in excess of 100 years. When placed in a layer in soil, the PCD system will prevent root penetration through that layer without harming the overlying vegetation. Equilibrium concentrations of trifluralin in soil can be adjusted (along with the theoretical life of the device) to suit specific needs. The present system was designed specifically to protect the asphalt layer or clay/aggregate barriers on uranium mill tailings piles; PCD devices composed of pellets could also be implanted over burial sites for radioactive and/or toxic materials, preventing translocation of those materials to plant shoots, and thence into the biosphere

  12. An electroactive polymer energy harvester for wireless sensor networks

    International Nuclear Information System (INIS)

    McKay, T G; Rosset, S; Shea, H; Anderson, I A

    2013-01-01

    This paper reports the design, fabrication, and testing of a soft electroactive polymer power generator that has a volume of 1cm 3 . The generator provides an opportunity to harvest energy from environmental sources to power wireless sensor networks because it can harvest from low frequency motions, is compact, and lightweight. Electroactive polymers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged electroactive polymer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. Although electroactive polymers have impressively displayed energy densities as high as 550 mJ/g, they have been based on films with thicknesses of tens to hundreds of micrometers, thus a generator covering a large area would be required to provide useful power. Energy harvesters covering large areas are inconvenient to deploy in a wireless sensor network with a large number of nodes, so a generator that is compact in all three dimensions is required. In this work we fabricated a generator that can fit within a 11×11×9 mm envelope by stacking 42, 11mm diameter generator films on top of each other. When compressed cyclically at a rate of 0.5 Hz our generator produced 300 uW of power which is a sufficient amount of power for a low power wireless sensor node. The combination of our generator's small form factor and ability to harvest useful energy from low frequency motions provides an opportunity to deploy large numbers of wireless sensor nodes without the need for periodic, costly battery replacement

  13. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said ...... compounds are able to undergo Lewis acid-base reactions. The interpenetrating polymer network may be used as dielectric electroactive polymers (DEAPs) having a high dielectric permittivity....

  14. Application of Electrostatic Extrusion - Flavour Encapsulation and Controlled Release.

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-03-03

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  15. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  16. Use of fibrin sealants for the localized, controlled release of cefazolin

    Science.gov (United States)

    Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.

    2006-01-01

    Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573

  17. Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation.

    Science.gov (United States)

    Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F Begum; Topal, Ahmet E; Urel, Mustafa; Dana, Aykutlu; Tekinay, Ayse B; Guler, Mustafa O

    2018-01-10

    Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.

  18. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased.

    Science.gov (United States)

    Ikegawa, Yusuke; Himuro, Chihiro

    2017-05-21

    The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Production and Investigation of Controlled Drug Release Properties of Tamoxifen Loaded Alginate-Gum Arabic Microbeads

    Directory of Open Access Journals (Sweden)

    Rukiye Yavaşer

    2016-08-01

    Full Text Available The entrapment of tamoxifen onto alginate-gum arabic beads and the production of controlled drug release was investigated in this study. The polymeric system that would provide the controlled release of tamoxifen was formed using alginate and gum arabic. In the first phase of the study, the optimization of the alginate-gum arabic beads production was conducted; then the study continued with drug entrapment experiments. Tamoxifen entrapment yield was found to be approximately 90% of initial tamoxifen concentration. In vitro drug release experiments were performed in simulated gastric juice and intestinal fluid where the tamoxifen release was 20% and 53% of the initial drug present, respectively. As a result of this study, it is expected that a valuable contribution to the field of controlled drug release system production is realized.

  20. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  1. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    OpenAIRE

    Asif Khan; Zafar Abas; Heung Soo Kim; Jaehwan Kim

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active pa...

  2. Fabrication of ketoprofen controlled-release tablets using biopolymeric hydrophilic matrices: in-vitro studies

    International Nuclear Information System (INIS)

    Rashid, S.; Khan, B.A.; Khan, G.M.

    2017-01-01

    Ketoprofen is propionic acid derivative and belongs to the Non-Steroidal anti-inflammatory group of drugs. Due to the short half-life, dosage frequency, patient non-compliance and side effects such as gastrointestinal disturbance, peptic ulceration and gastro intest inal bleeding, it is considered to be good candidate for formulation into controlled release dosage forms. Directly compressed controlled released ( CR) tablets using Acrylic acid derivatives were prepared and evaluated. In-Vitro Physicochemical assessment of the formulated tablets were performed using different physicochemical, dimensional and quality control tests such as weight variation, thickness and diameter, hardness test, friability test, content uniformity, disintegration and dissolution testing. Results of all these tests were formed within acceptable range. The effect of carbomer polymers on the tablet characteristics, drug release rates, release patterns and release kinetics were investigated. The F2-metric technique was applied to compare dissolution profiles of ketoprofen and carbopol tablets with ketoprofen SR - tablets taken as standard preparation. Acrylic acid derivatives when used as polymers resulted in an extended release profile of about 12 h. Using Higuchi's model and the Korsmeyer equation, the drug release mechanism from the tablets was found to be an anomalous type involving diffusion and erosion. Controlled- release Ketoprofen tablets appear to be a good choice for the symptomatic treatment of rheumatoid arthritis and osteoarthritis. Convenient once-daily administration may help improve patient's compliance. (author)

  3. Releases of natural enemies in Hawaii since 1980 for classical biological control of weeds

    Science.gov (United States)

    P. Conant; J. N. Garcia; M. T. Johnson; W. T. Nagamine; C. K. Hirayama; G. P. Markin; R. L. Hill

    2013-01-01

    A comprehensive review of biological control of weeds in Hawaii was last published in 1992, covering 74 natural enemy species released from 1902 through 1980. The present review summarizes releases of 21 natural enemies targeting seven invasive weeds from 1981 to 2010. These projects were carried out by Hawaii Department of Agriculture (HDOA), USDA Forest Service (USFS...

  4. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    Science.gov (United States)

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  5. Using polymer-coated controlled-release fertilizers in the nursery and after outplanting

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese

    2009-01-01

    Controlled-release fertilizers (CRF) are the newest and most technically advanced way of supplying mineral nutrients to nursery crops. Compared to conventional fertilizers, their gradual pattern of nutrient release better meets plant needs, minimizes leaching, and therefore improves fertilizer use efficiency. In our review of the literature, we found many terms used...

  6. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    Science.gov (United States)

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  7. Control Room Habitability for Accidental Sulfuric Acid Release

    International Nuclear Information System (INIS)

    Cho, Sungmin; Lee, Heedo; Song, Dongsoo

    2006-01-01

    The 10 CFR 50 Appendix A Criterion 19, 'Control Room', requires that a control room be provided from which actions can be taken to operate the nuclear power unit safely under normal conditions and to maintain it in a safe condition under accident conditions. For compliance with the requirement, the control room of a nuclear power plant should be appropriately protected from hazardous chemicals that may be discharged as a result of equipment failures, operator errors, or events and conditions outside the control of the nuclear power plant. We have excluded sulfuric acid from a target of estimation for control room habitability merely because its boiling point is too high; qualitative analysis in this paper shows that we can exclude sulfuric acid from the target of habitability estimation

  8. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  9. Nanocomposite/Hybrid Materials of Electroactive Polymers With Inorganic Oxides for Biosensor Applications

    National Research Council Canada - National Science Library

    Wei, Yen

    2001-01-01

    As proposed, we have successfully synthesized new electroactive and electronically conductive polyaniline polymethacrylate-silica nanocomposites and fabricated biosensor devices, aimed for detecting...

  10. Munc13 controls the location and efficiency of dense-core vesicle release in neurons.

    Science.gov (United States)

    van de Bospoort, Rhea; Farina, Margherita; Schmitz, Sabine K; de Jong, Arthur; de Wit, Heidi; Verhage, Matthijs; Toonen, Ruud F

    2012-12-10

    Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2-null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.

  11. Immobilization and controlled release of drug using plasma polymerized thin film

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Sung-Woon [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Sunchon 540-742 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of)

    2015-06-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release.

  12. Immobilization and controlled release of drug using plasma polymerized thin film

    International Nuclear Information System (INIS)

    Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    In this study, plasma polymerization of acrylic acid was employed to immobilize drug and control its release. Doxorubicin (DOX) was immobilized covalently on the glass surface deposited with plasma polymerized acrylic acid (PPAAc) thin film containing the carboxylic group. At first, the PPAAc thin film was coated on a glass surface at a pressure of 1.33 Pa and radio frequency (RF) discharge power of 20 W for 10 min. DOX was immobilized on the PPAAc deposition in a two environment of phosphate buffer saline (PBS) and dimethyl sulfoxide (DMSO) solutions. The DOX immobilized surface was characterized by scanning electron microscope, atomic force microscope and attenuated total reflection Fourier transform infrared spectroscopy. The DOX molecules were more immobilized in PBS than DMSO solution. The different immobilization and release profiles of DOX result from the solubility of hydrophobic DOX in aqueous and organic solutions. Second, in order to control the release of the drug, PPAAc thin film was covered over DOX dispersed layer. Different thicknesses and cross-linked PPAAc thin films by adjusting deposition time and RF discharge power were covered on the DOX layer dispersed. PPAAc thin film coated DOX layer reduced the release rate of DOX. The thickness control of plasma deposition allows controlling the release rate of drug. - Highlights: • Doxorubicin was immobilized on the surface of plasma polymerized acrylic acid thin film. • Release profile of doxorubicin was affected by aqueous and organic solutions. • Plasma polymerized acrylic acid thin film can be used to achieve controlled release

  13. EMERGENCY RESPONSE PROCEDURES FOR CONTROL OF HAZARDOUS SUBSTANCE RELEASES

    Science.gov (United States)

    Information is provided for selecting the best spill stabilization controls for hazardous substances regulated by the Comprehensive Enviromental Response, Compensation and Liability Act of 1980 (CERCLA). Information is also provided on the onsite assessment of spill severity, app...

  14. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    Science.gov (United States)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  15. Order release strategies to control outsourced operations in a supply chain

    NARCIS (Netherlands)

    Boulaksil, Y.; Fransoo, J.C.

    2007-01-01

    In this paper, we propose and compare three different order release strategies to plan and control outsourced operations in a supply chian where the contract manfacturer is producing different variants of a certain product.

  16. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release

    International Nuclear Information System (INIS)

    Yuan Peng; Southon, Peter D; Kepert, Cameron J; Liu Zongwen

    2012-01-01

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release. (paper)

  17. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release.

    Science.gov (United States)

    Yuan, Peng; Southon, Peter D; Liu, Zongwen; Kepert, Cameron J

    2012-09-21

    The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release.

  18. Nanocapsule@xerogel microparticles containing sodium diclofenac: a new strategy to control the release of drugs.

    Science.gov (United States)

    da Fonseca, Letícia Sias; Silveira, Rodrigo Paulo; Deboni, Alberto Marçal; Benvenutti, Edilson Valmir; Costa, Tânia M H; Guterres, Sílvia S; Pohlmann, Adriana R

    2008-06-24

    The aim of this work was to evaluate the potentiality to control the drug release of a new architecture of microparticles organized at the nanoscopic scale by assembling polymeric nanocapsules at the surface of drug-loaded xerogels. Xerogel was prepared by sol-gel method using sodium diclofenac, as hydrophilic drug model, and coated by spray-drying. After coating, the surface areas decreased from 82 to 28 m(2)/g, the encapsulation efficiency was 71% and SEM analysis showed irregular microparticles coated by the nanocapsules. Formulation showed satisfactory gastro-resistance presenting drug release lower than 3% (60 min) in acid medium. In water, the pure drug dissolved 92% after 5 min, uncoated drug-loaded xerogel released 60% and nanocapsule coated drug-loaded xerogel 36%. After 60 min, uncoated drug-loaded xerogel released 82% and nanocapsule coated drug-loaded xerogel 62%. In conclusion, the new system was able to control the release of the hydrophilic drug model.

  19. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    Science.gov (United States)

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  20. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  1. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions....... The proposed scheme adjusts the two loop gains in a DFIG controller depending on its rotor speed so that a DFIG operating at a higher rotor speed releases more KE. The performance of the proposed scheme was investigated under various wind conditions. The results clearly indicate that the proposed scheme...

  2. Controlled-release approaches towards the chemotherapy of tuberculosis

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2012-10-01

    Full Text Available Bullo Saifullah,1 Mohd Zobir B Hussein,1,2 Samer Hasan Hussein Al Ali11Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: Tuberculosis (TB, caused by the bacteria Mycobacterium tuberculosis, is notorious for its lethality to humans. Despite technological advances, the tubercle bacillus continues to threaten humans. According to the World Health Organization's 2011 global report on TB, 8.8 million cases of TB were reported in 2010, with a loss of 1.7 million human lives. As drug-susceptible TB requires long-term treatment of between 6 and 9 months, patient noncompliance remains the most important reason for treatment failure. For multidrug-resistant TB, patients must take second-line anti-TB drugs for 18–24 months and many adverse effects are associated with these drugs. Drug-delivery systems (DDSs seem to be the most promising option for advancement in the treatment of TB. DDSs reduce the adverse effects of drugs and their dosing frequency as well as shorten the treatment period, and hence improve patient compliance. Further advantages of these systems are that they target the disease area, release the drugs in a sustained manner, and are biocompatible. In addition, targeted delivery systems may be useful in dealing with extensively drug-resistant TB because many side effects are associated with the drugs used to cure the disease. In this paper, we discuss the DDSs developed for the targeted and slow delivery of anti-TB drugs and their possible advantages and disadvantages.Keywords: Mycobacterium tuberculosis, drug-delivery system, targeted delivery, anti-TB drug, TB, patient compliance

  3. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang; Moosa, Basem; Deng, Lin; Zhao, Lan; Khashab, Niveen M.

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and

  4. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    International Nuclear Information System (INIS)

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-01-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and 1 H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  5. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jalvandi, Javid, E-mail: Javid.jlv@gmail.com [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); White, Max, E-mail: tamrak@bigpond.com [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Gao, Yuan, E-mail: Yuan.Gao@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Truong, Yen Bach, E-mail: Yen.truong@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia); Padhye, Rajiv, E-mail: rajiv.padhye@rmit.edu.au [School of Fashion and Textiles, College of Design and Social Context, RMIT University, 25 Dawson Street, Brunswick, Victoria 3056 (Australia); Kyratzis, Ilias Louis, E-mail: Louis.kyratzis@csiro.au [CSIRO, Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168 (Australia)

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and {sup 1}H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8 h in phosphate buffer at 37 °C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. - Highlights: • A novel drug delivery system for controlled release of drug was designed. • Composite PVA/conjugated CS-LVF nanofibres was fabricated by electrospinning. • Conjugated chitosan and composite nanofibres were characterized by various techniques. • Release profiles of drug were significantly improved in composite nanofibres containing drug conjugated chitosan.

  6. The performance of workload control concepts in job shops : Improving the release method

    NARCIS (Netherlands)

    Land, MJ; Gaalman, GJC

    1998-01-01

    A specific class of production control concepts for jobs shops is based on the principles of workload control. Practitioners emphasise the importance of workload control. However, order release methods that reduce the workload on the shop floor show poor due date performance in job shop simulations.

  7. A review of mathematical modeling and simulation of controlled-release fertilizers.

    Science.gov (United States)

    Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N

    2018-02-10

    Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Control of accidental releases of hydrogen selenide in vented storage cabinets

    Science.gov (United States)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  9. Monensin controlled-release intraruminal capsule for control of bloat in pastured dairy cows.

    Science.gov (United States)

    Lowe, L B; Ball, G J; Carruthers, V R; Dobos, R C; Lynch, G A; Moate, P J; Poole, P R; Valentine, S C

    1991-01-01

    Monensin, a polyether ionophore antibiotic, is potentially an important agent for bloat relief in dairy cows grazing temperate legume-based pasture. A series of studies was undertaken to determine the effect of monensin, when delivered continuously in the rumen of lactating dairy cows by means of controlled-release capsules (monensin CRC). Such devices release approximately 300 mg/head/day for 100 d. A short-term pilot study made at Ruakura, New Zealand, tested monensin CRC in cows selected for high susceptibility to bloat and grazing lucerne (Medicago sativa) or red clover (Trifolium pratense). Treatment significantly reduced the incidence of bloat, while milk yield and protein yield were increased. There was no effect on fat yield. Following the pilot study, 6 large-scale field experiments involving a total of 368 lactating dairy cows, were made in Australia and New Zealand to confirm the effectiveness of monensin CRC for bloat control and to measure the effect of such treatment on milk production and composition. A severe bloat problem occurred in 2 experiments, mild bloat occurred in 2 others, while no visual signs of bloat were observed in the remaining 2 experiments. Bloat was significantly (P less than 0.05) reduced by monensin CRC treatment when data was pooled over the 4 experiments in which bloat occurred. Daily milk yield was increased in all experiments from a mean of 17.7 in untreated groups to 18.8 kg/head/day (P less than 0.05) in monensin CRC-treated cows. Protein percentage was not affected by treatment, while there was a decrease from 4.29 to 4.10% fat, although total fat yield was not affected.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  11. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  12. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  13. Controlled Release of Lysozyme from Double-Walled Poly(Lactide-Co-Glycolide (PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Rezaul H. Ansary

    2017-10-01

    Full Text Available Double-walled microspheres based on poly(lactide-co-glycolide (PLGA are potential delivery systems for reducing a very high initial burst release of encapsulated protein and peptide drugs. In this study, double-walled microspheres made of glucose core, hydroxyl-terminated poly(lactide-co-glycolide (Glu-PLGA, and carboxyl-terminated PLGA were fabricated using a modified water-in-oil-in-oil-in-water (w1/o/o/w2 emulsion solvent evaporation technique for the controlled release of a model protein, lysozyme. Microspheres size, morphology, encapsulation efficiency, lysozyme in vitro release profiles, bioactivity, and structural integrity, were evaluated. Scanning electron microscopy (SEM images revealed that double-walled microspheres comprising of Glu-PLGA and PLGA with a mass ratio of 1:1 have a spherical shape and smooth surfaces. A statistically significant increase in the encapsulation efficiency (82.52% ± 3.28% was achieved when 1% (w/v polyvinyl alcohol (PVA and 2.5% (w/v trehalose were incorporated in the internal and external aqueous phase, respectively, during emulsification. Double-walled microspheres prepared together with excipients (PVA and trehalose showed a better control release of lysozyme. The released lysozyme was fully bioactive, and its structural integrity was slightly affected during microspheres fabrication and in vitro release studies. Therefore, double-walled microspheres made of Glu-PLGA and PLGA together with excipients (PVA and trehalose provide a controlled and sustained release for lysozyme.

  14. Multi-unit dosage formulations of theophylline for controlled release applications.

    Science.gov (United States)

    Uhumwangho, Michael U; Okor, Roland S

    2007-01-01

    The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The

  15. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  16. Requirements for controlling a repository's releases of carbon-14 dioxide; the high costs and negligible benefits

    International Nuclear Information System (INIS)

    Park, U Sun; Pflum, C.G.

    1990-01-01

    A repository excavated within the unsaturated zone may release carbon (C)-14 dioxide in amounts that exceed limits imposed by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). The release would not threaten the general population, but may expose some hypothetical maximally exposed individual to 0.0005 millirems/year. Yet a repository's releases of C-14 dioxide are strictly regulated, perhaps unintentionally. The EPA and NRC regulations could force the Department of Energy to design and fabricate an expensive 10,000-year waste package solely for the sake of controlling releases of C-14 dioxide. This paper argues that the repository regulations should exempt releases of C-14 dioxide or at least impose more equitable limits. 21 refs., 1 tab

  17. Ionic electroactive polymer artificial muscles in space applications.

    Science.gov (United States)

    Punning, Andres; Kim, Kwang J; Palmre, Viljar; Vidal, Frédéric; Plesse, Cédric; Festin, Nicolas; Maziz, Ali; Asaka, Kinji; Sugino, Takushi; Alici, Gursel; Spinks, Geoff; Wallace, Gordon; Must, Indrek; Põldsalu, Inga; Vunder, Veiko; Temmer, Rauno; Kruusamäe, Karl; Torop, Janno; Kaasik, Friedrich; Rinne, Pille; Johanson, Urmas; Peikolainen, Anna-Liisa; Tamm, Tarmo; Aabloo, Alvo

    2014-11-05

    A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.

  18. Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane

    Science.gov (United States)

    Ko, Hyun-U.; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Jayaramudu, Tippabattini; Kim, Jaehwan

    2017-08-01

    This paper reports cellulose nanocrystal (CNC) based transparent and electroactive polyurethane (CPPU), suitable for actively tunable optical lens. CNC is used for high dielectric filler to improve electromechanical behavior of CPPU. For high transparency and homogeneous distribution of CNC in polyurethane, CNC-poly[di(ethylene glycol) adipate] is used to play a role of polyol and isocyanate salt. The fabricated CPPU exhibits high transparency (>90%) and 10% of electromechanical strain under 3 V μm-1 electric field. Mechanical, dielectric properties as well as physical and chemical characteristics are investigated to prove the electromechanical behavior of CPPU.

  19. Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering

    Science.gov (United States)

    Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan

    2015-07-01

    Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.

  20. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  1. Enabling novel planetary and terrestrial mechanisms using electroactive materials at the JPL's NDEAA Lab

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh

    2004-01-01

    Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).

  2. An Electromechanical Model for a Dielectric ElectroActive Polymer Generator

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    Smart electroactive materials have attracted much of the scientific interest over the past few years, as they reflect a quite promising alternative to conservative approaches used nowadays in various transducer applications. Especially Dielectric ElectroActive Polymers (DEAPs), which are constantly...

  3. Electroactive properties of flexible piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Sakamoto Walter Katsumi

    2001-01-01

    Full Text Available A flexible piezoelectric composite with 0-3 connectivity, made from Lead Zirconate Titanate (PZT powder and vegetable-based polyurethane (PU, was doped with small amount of semiconductor powder. As a result a composite with 0-0-3 connectivity was obtained. The nature of absorption and steady state electrical conduction and the dielectric behaviour have been studied for this ceramic/polymer composite. The dielectric loss processes of the composite were observed to be dominated by those the polymer. Adding a semiconductor phase in the composite the electrical conductivity can be controlled and a continuous electric flux path could be created between the PZT grains. This composite may be poled at low voltage and in shorter time compared with composites without a conductive phase.

  4. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Karan [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia); Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M. [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Atkins, Gerald J., E-mail: gerald.atkins@adelaide.edu.au [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Losic, Dusan, E-mail: dusan.losic@adelaide.edu.au [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2016-12-01

    micrograms. • Controlled/delayed drug release patterns using simple biopolymer coatings. • TNTs survives the placement and retrieval from trabecular bone cores ex-vivo.

  5. Controlled release of tetracycline-HCl from halloysite-polymer composite films.

    Science.gov (United States)

    Ward, Christopher J; Song, Shang; Davis, Edward W

    2010-10-01

    The first direct comparison between two common methods for loading halloysite with a small molecule for controlled release is presented. While the methods differ in the degree of simplicity, they provide essentially the same level of loading and release kinetics. A tentative explanation of the "burst" effect often seen in the release of low molecular weight molecules from halloysite is provided. The ability of halloysite to mediate the release rate of a water soluble drug, tetracycline, from solution cast polyvinyl alcohol and polymethyl methacrylate films was evaluated. In some films, montmorillonite was also incorporated. The addition of montmorillonite to solutions used to cast tetracycline containing films significantly reduced the release rate from the dried films. The same overall effect was seen when the drug was loaded into halloysite prior to preparation of the films. In both cases, the release was best fit with the simple Higuchi model. However, when montmorillonite was added to solutions of polyvinyl alcohol and drug loaded halloysite the release profiles were better fit by the Ritgar-Peppas model for anomalous transport. Release from polymethyl methacrylate was reduced by a factor of three by incorporating the drug in halloysite prior to producing the films.

  6. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    Science.gov (United States)

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.

    Science.gov (United States)

    Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A

    2018-03-15

    Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for

  8. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    Science.gov (United States)

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  10. Control of drug releasing from biodegradable polymer drug delivery system by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo

    1999-01-01

    In order to introduce the drug to the target organ, we developed a gel to control the drug releasing velocity by response to change of temperature by means of γ-ray irradiation to gelatin-GMA modified dextran mixture aqueous solution. A certain level of molecular weight of drug is necessary. The response to the temperature (change of drug releasing velocity) was affected by the concentration of gelatin and the modification rate of GMA. The Higuchi equation was applied to the releasing of β-galactosidase from gelatin-dextran gel and the releasing velocity was calculated. The releasing velocity decreased with increasing GMA modification rate at 37degC and 15degC. The releasing velocity of β-galactosidase decreased with increasing the concentration of gelatin at 15degC, but the velocity increased with increasing the concentration at 37degC. These results indicated that the good drug releasing conditions are obtained by controlling the GMA modification rate and the concentration of gelatin. (S.Y.)

  11. A modified SILCS contraceptive diaphragm for long-term controlled release of the HIV microbicide dapivirine.

    Science.gov (United States)

    Major, Ian; Boyd, Peter; Kilbourne-Brook, Maggie; Saxon, Gene; Cohen, Jessica; Malcolm, R Karl

    2013-07-01

    There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine. Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices. A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm. The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    Science.gov (United States)

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  13. An Autophagic Flux Probe that Releases an Internal Control.

    Science.gov (United States)

    Kaizuka, Takeshi; Morishita, Hideaki; Hama, Yutaro; Tsukamoto, Satoshi; Matsui, Takahide; Toyota, Yuichiro; Kodama, Akihiko; Ishihara, Tomoaki; Mizushima, Tohru; Mizushima, Noboru

    2016-11-17

    Macroautophagy is an intracellular degradation system that utilizes the autophagosome to deliver cytoplasmic components to the lysosome. Measuring autophagic activity is critically important but remains complicated and challenging. Here, we have developed GFP-LC3-RFP-LC3ΔG, a fluorescent probe to evaluate autophagic flux. This probe is cleaved by endogenous ATG4 proteases into equimolar amounts of GFP-LC3 and RFP-LC3ΔG. GFP-LC3 is degraded by autophagy, while RFP-LC3ΔG remains in the cytosol, serving as an internal control. Thus, autophagic flux can be estimated by calculating the GFP/RFP signal ratio. Using this probe, we re-evaluated previously reported autophagy-modulating compounds, performed a high-throughput screen of an approved drug library, and identified autophagy modulators. Furthermore, we succeeded in measuring both induced and basal autophagic flux in embryos and tissues of zebrafish and mice. The GFP-LC3-RFP-LC3ΔG probe is a simple and quantitative method to evaluate autophagic flux in cultured cells and whole organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Controlled release of simvastatin from biomimetic β-TCP drug delivery system.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin.

  15. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  16. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang; Li, Shunbo; Wang, Limu; Yi, Xin; Hui, Yu Sanna; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  17. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  18. Use of controlled internal drug releasing (CIDR) devices to control reproduction in goats: A review.

    Science.gov (United States)

    Knights, Marlon; Singh-Knights, Doolarie

    2016-09-01

    High reproductive rates are necessary in order to increase the productivity of goat operations. Progesterone and its analogues are widely used in other species to control the reproductive system to facilitate synchronized births, induce fertile estrus or to facilitate the use of assisted reproductive techniques with the goal of increasing productivity of livestock. Progesterone impregnated controlled internal drug releasing (CIDR) devices are approved for delivery of the natural hormone progesterone to synchronize and induce fertile estrus in sheep. A few studies have reported a high estrous response and pregnancy rates when CIDRs are used to induce estrus in goats. However, significant variation exists in the duration of treatment (5-16 days) and in the use of exogenous gonadotropins as part of the treatment protocol. As gonadotropins are not currently approved for commercial use in small ruminants in the USA, studies are needed to determine the necessity for exogenous gonadotropins and whether they can be replaced by enhancing endogenous secretion through photoperiodic manipulation of the doe and \\ or increase stimulation through the 'buck-effect'. Future studies must not only evaluate efficacy, but should consider the economic feasibility of using CIDRs in commercial production systems. © 2016 Japanese Society of Animal Science.

  19. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  20. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  1. Chitosan/alginate based multilayers to control drug release fromophthalmic lens

    OpenAIRE

    Silva, Diana; Pinto, Luís F. V.; Bozukova, Dimitriya; Santos, Luís F.; Serro, Ana Paula; Saramago, Benilde

    2016-01-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (algin...

  2. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    OpenAIRE

    Gonçalves,Vanessa L.; Laranjeira,Mauro C. M.; Fávere,Valfredo T.; Pedrosa,Rozângela C.

    2005-01-01

    In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS), and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree ...

  3. The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups

    International Nuclear Information System (INIS)

    Le Floch, Fabien; Thuaire, Aurelie; Simonato, Jean-Pierre; Bidan, Gerard

    2009-01-01

    We report the modification and characterization of single-walled carbon nanotubes (SWCNTs) in view of molecular sensing applications. We found that ultrasonicated SWCNTs present sticking properties that make them adhere on electrode surfaces. This allows excellent characterization of SWCNTs by cyclic voltammetry (CV) before and after chemical functionalization with diazonium salts bearing electroactive groups. Bare SWCNTs presented distinct invariant shapes in CV, used as control curves, in comparison with functionalized SWCNTs for which specific signatures corresponding to the presence of grafted molecules were identified. According to the electronic substituents in the para position of the diazonium salts, divergent behaviours were observed for the grafting reactions. Diazonium salts having electrowithdrawing groups could be grafted without electrochemical induction whereas those bearing electron donating groups required a cathodic potential to generate the formation of the radical species.

  4. The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, Fabien; Thuaire, Aurelie; Simonato, Jean-Pierre [LITEN/DTNM/LCRE, CEA-Grenoble 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Bidan, Gerard [INAC/DIR, CEA-Grenoble 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)], E-mail: jean-pierre.simonato@cea.fr

    2009-04-08

    We report the modification and characterization of single-walled carbon nanotubes (SWCNTs) in view of molecular sensing applications. We found that ultrasonicated SWCNTs present sticking properties that make them adhere on electrode surfaces. This allows excellent characterization of SWCNTs by cyclic voltammetry (CV) before and after chemical functionalization with diazonium salts bearing electroactive groups. Bare SWCNTs presented distinct invariant shapes in CV, used as control curves, in comparison with functionalized SWCNTs for which specific signatures corresponding to the presence of grafted molecules were identified. According to the electronic substituents in the para position of the diazonium salts, divergent behaviours were observed for the grafting reactions. Diazonium salts having electrowithdrawing groups could be grafted without electrochemical induction whereas those bearing electron donating groups required a cathodic potential to generate the formation of the radical species.

  5. Workload control and order release : A lean solution for make-to-order companies

    NARCIS (Netherlands)

    Thurer, M.; Stevenson, M.; Silva, C.; Land, M.J.; Fredendall, L.D.

    2012-01-01

    Protecting throughput from variance is the key to achieving lean. Workload control (WLC) accomplishes this in complex make-to-order job shops by controlling lead times, capacity, and work-in-process (WIP). However, the concept has been dismissed by many authors who believe its order release

  6. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  7. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    International Nuclear Information System (INIS)

    Angelov, Anatoliy; Bratkova, Svetlana; Loukanov, Alexandre

    2013-01-01

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H 2 S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m −2 with current density of 3.2 A m −2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  8. Micro-mechanics of ionic electroactive polymer actuators

    Science.gov (United States)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  9. Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations.

    Science.gov (United States)

    Garrido-Herrera, F J; Gonzalez-Pradas, E; Fernandez-Pérez, M

    2006-12-27

    Different alginate-based systems of isoproturon, imidacloprid, and cyromazine have been investigated in order to obtain controlled release (CR) properties. The basic formulation [sodium alginate (1.50%), pesticide (0.30%), and water] was modified using different amounts of bentonite and activated carbon. The higher values of encapsulation efficiency corresponded to those formulations prepared with higher percentages of activated carbon, showing higher encapsulation efficiency values for isoproturon and imidacloprid than for cyromazine, which has a higher water solubility. The kinetic experiments of imidacloprid/isoproturon release in water have shown us that the release rate is higher in imidacloprid systems than in those prepared with isoproturon. Moreover, it can be deduced that the use of bentonite and/or activated carbon sorbents reduces the release rate of the isoproturon and imidacloprid in comparison with the technical product and with alginate formulation without modifying agents. The highest decrease in release rate corresponds to the formulations prepared with the highest percentage of activated carbon. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T50, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the pesticide release data, the release of isoproturon and imidacloprid from the various formulations into water is controlled by a diffusion mechanism. The sorption capacity of the sorbents and the permeability of the formulations were the most important factors modulating pesticide release. Finally, a linear correlation of the T50 values and the content of activated carbon in formulations were obtained.

  10. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    Science.gov (United States)

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  11. Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus

    International Nuclear Information System (INIS)

    Kemel, M.L.; Desban, M.; Glowinski, J.; Gauchy, C.

    1989-01-01

    By use of a sensitive in vitro microsuperfusion method, the cholinergic presynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of [ 3 H]dopamine continuously synthesized from [ 3 H]tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of [ 3 H]dopamine were calcium-dependent in both compartments. With 10 -6 M tetrodotoxin, 5 x 10 -5 M acetylcholine stimulated [ 3 H]dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine, thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) in contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10 -6 M atropine completely abolished the cholinergic stimulatory effect on [ 3 H]dopamine release in striosomal area, delayed and prolonged stimulation of [ 3 H] dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine. Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on [ 3 H]dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of [ 3 H]dopamine release mediated by muscarinic and nicotinic receptors, respectively

  12. Experimental Physics and Industrial Control System (EPICS): Application source/release control for EPICS R3.11.6

    International Nuclear Information System (INIS)

    Zieman, B.; Kraimer, M.

    1994-01-01

    This manual describes a set of tools that can be used to develop software for EPICS based control systems. It provides the following features: Multiple applications; the entire system is composed of an arbitrary number of applications: Source/Release Control; all files created or modified by the applications developers can be put under sccs (a UNIX Source/Release control utility): Multiple Developers; it allows a number of applications developers to work separately during the development phase but combine their applications for system testing and for a production system; Makefiles: makefiles are provided to automatically rebuild various application components. For C and state notation programs, Imagefiles are provided

  13. A double-blind placebo-controlled study of controlled release fluvoxamine for the treatment of generalized social anxiety disorder

    NARCIS (Netherlands)

    Westenberg, HGM; Stein, DJ; Yang, HC; Li, D; Barbato, LM

    This was a randomized double-blind placebo-controlled multicenter study to assess the efficacy, safety, and tolerability of fluvoxamine in a controlled release (CR) formulation for treatment of generalized social anxiety disorder (GSAD). A total of 300 subjects with GSAD were randomly assigned to

  14. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  16. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Science.gov (United States)

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.

  17. Simulation and parametric study of a film-coated controlled-release pharmaceutical.

    Science.gov (United States)

    Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders

    2002-04-23

    Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.

  18. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  19. Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers

    Directory of Open Access Journals (Sweden)

    A. Bah

    2014-01-01

    Full Text Available Controlled-release fertilizers are expected to minimize nutrient loss from crop fields due to their potential to supply plant-available nutrients in synchrony with crop requirements. The evaluation of the efficiency of these fertilizers in tropical oil palm agroecological conditions is not yet fully explored. In this study, a one-year field trial was conducted to determine the impact of fertilization with water soluble conventional mixture and controlled-release fertilizers on runoff loss of nutrients from an immature oil palm field. Soil and nutrient loss were monitored for one year in 2012/2013 under erosion plots of 16 m2 on 10% slope gradient. Mean sediments concentration in runoff amounted to about 6.41 t ha−1. Conventional mixture fertilizer posed the greatest risk of nutrient loss in runoff following fertilization due to elevated nitrogen (6.97%, potassium (13.37%, and magnesium (14.76% as percentage of applied nutrients. In contrast, this risk decreased with the application of controlled-release fertilizers, representing 0.75–2.44% N, 3.55–5.09% K, and 4.35–5.43% Mg loss. Meanwhile, nutrient loss via eroded sediments was minimal compared with loss through runoff. This research demonstrates that the addition of controlled-release fertilizers reduced the runoff risks of nutrient loss possibly due to their slow-release properties.

  20. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  1. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  2. Release from control of inactive material from decommissioning the ASTRA research reactor

    International Nuclear Information System (INIS)

    Brandl, A.; Hrnecek, E.; Steger, F.; Kurz, H.; Meyer, F.; Karacson, P.

    2003-01-01

    The Austrian Research Centers Seibersdorf have been operating a 10 MW ASTRA research reactor from 1960 until 1999. After that date, a submission of the intention to decommission the reactor has been provided to the Competent Authorities. After completion of an Environmental Impact Study by the Competent Authorities and modification of the Permissions for Site Use, the reactor finally entered the decommissioning phase in 2003. Inactive materials from the decommissioning site are expected to be released from control. The procedure for such a release from control agreed upon between the Competent Authorities and ARC Seibersdorf involves a four-step measurement, verification, and certification process detailed in this paper. By September 2003, this four-step procedure has been completed for 16500 kg of steel re-enforced concrete and for 5500 kg of other materials; the release from control of 3000 kg of paraffin and 10000 kg of graphite from the thermal column are planned for the near future. (author)

  3. Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology

    Directory of Open Access Journals (Sweden)

    Bingna Huang

    2018-02-01

    Full Text Available Pesticides are the basis for defending against major biological disasters and important for ensuring national food security. Biocompatible, biodegradable, intelligent, and responsive materials are currently an emerging area of interest in the field of efficient, safe, and green pesticide formulation. Using nanotechnology to design and prepare targeted pesticides with environmentally responsive controlled release via compound and chemical modifications has also shown great potential in creating novel formulations. In this review, special attention has been paid to intelligent pesticides with precise controlled release modes that can respond to micro-ecological environment changes such as light-sensitivity, thermo-sensitivity, humidity sensitivity, soil pH, and enzyme activity. Moreover, establishing intelligent and controlled pesticide release technologies using nanomaterials are reported. These technologies could increase pesticide-loading, improve the dispersibility and stability of active ingredients, and promote target ability.

  4. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis.

    Science.gov (United States)

    Adams, Christopher S; Antoci, Valentin; Harrison, Gerald; Patal, Payal; Freeman, Terry A; Shapiro, Irving M; Parvizi, Javad; Hickok, Noreen J; Radin, Shula; Ducheyne, Paul

    2009-06-01

    Peri-prosthetic infection remains a serious complication of joint replacement surgery. Herein, we demonstrate that a vancomycin-containing sol-gel film on Ti alloy rods can successfully treat bacterial infections in an animal model. The vancomycin-containing sol-gel films exhibited predictable release kinetics, while significantly inhibiting S. aureus adhesion. When evaluated in a rat osteomyelitis model, microbiological analysis indicated that the vancomycin-containing sol-gel film caused a profound decrease in S. aureus number. Radiologically, while the control side showed extensive bone degradation, including abscesses and an extensive periosteal reaction, rods coated with the vancomycin-containing sol-gel film resulted in minimal signs of infection. MicroCT analysis confirmed the radiological results, while demonstrating that the vancomycin-containing sol-gel film significantly protected dense bone from resorption and minimized remodeling. These results clearly demonstrate that this novel thin sol-gel technology can be used for the targeted delivery of antibiotics for the treatment of periprosthetic as well as other bone infections. Copyright 2008 Orthopaedic Research Society

  5. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  6. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  7. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    Science.gov (United States)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  8. Synthesis and characterization of a HAp-based biomarker with controlled drug release for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    González, Maykel [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico); Merino, Ulises [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico); University of the Valley of Mexico (UVM), Boulevard Villas del Mesón 1000, Juriquilla, Santiago de Querétaro, Querétaro 76320 (Mexico); Vargas, Susana [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico); Quintanilla, Francisco [University of the Valley of Mexico (UVM), Boulevard Villas del Mesón 1000, Juriquilla, Santiago de Querétaro, Querétaro 76320 (Mexico); Rodríguez, Rogelio, E-mail: rogelior@unam.mx [Dept. of Molecular Engineering of Materials, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico (CFATA-UNAM), Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230 (Mexico)

    2016-04-01

    A biocompatible hybrid porous polymer–ceramic material was synthesized to be used as a biomarker in the treatment of breast cancer. This device was equipped with the capacity to release medicaments locally in a controlled manner. The biomaterial was Hydroxyapatite(HAp)-based and had a controlled pore size and pore volume fraction. It was implemented externally using a sharp end and a pair of barbed rings placed opposite each other to prevent relative movement once implanted. The biomarker was impregnated with cis-diamine dichloride platinum (II) [Cl{sub 2}-Pt-(NH{sub 3}){sub 2}]; the rate of release was obtained using inductively coupled plasma atomic emission spectroscopy (ICP-AES), and release occurred over the course of three months. Different release profiles were obtained as a function of the pore volume fraction. The biomaterial was characterized using scanning electron microscopy (SEM) and Raman spectroscopy. - Highlights: • A novel biocompatible hybrid porous polymer–ceramic material was synthesized. • The polymer–ceramic (HAp-based) material was used to prepare a biomarker. • The biomarker was impregnated with cis-diamine dichloride platinum (II). • The rate of cisplatin release was determined using inductively coupled plasma. • The kinetics of the cisplatin release was studied varying the biomarker porosity.

  9. Synthesis and characterization of a HAp-based biomarker with controlled drug release for breast cancer

    International Nuclear Information System (INIS)

    González, Maykel; Merino, Ulises; Vargas, Susana; Quintanilla, Francisco; Rodríguez, Rogelio

    2016-01-01

    A biocompatible hybrid porous polymer–ceramic material was synthesized to be used as a biomarker in the treatment of breast cancer. This device was equipped with the capacity to release medicaments locally in a controlled manner. The biomaterial was Hydroxyapatite(HAp)-based and had a controlled pore size and pore volume fraction. It was implemented externally using a sharp end and a pair of barbed rings placed opposite each other to prevent relative movement once implanted. The biomarker was impregnated with cis-diamine dichloride platinum (II) [Cl_2-Pt-(NH_3)_2]; the rate of release was obtained using inductively coupled plasma atomic emission spectroscopy (ICP-AES), and release occurred over the course of three months. Different release profiles were obtained as a function of the pore volume fraction. The biomaterial was characterized using scanning electron microscopy (SEM) and Raman spectroscopy. - Highlights: • A novel biocompatible hybrid porous polymer–ceramic material was synthesized. • The polymer–ceramic (HAp-based) material was used to prepare a biomarker. • The biomarker was impregnated with cis-diamine dichloride platinum (II). • The rate of cisplatin release was determined using inductively coupled plasma. • The kinetics of the cisplatin release was studied varying the biomarker porosity.

  10. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs).

    Science.gov (United States)

    Tran, Vy Anh; Lee, Sang-Wha

    2018-01-15

    This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modelling approach for biological control of insect pest by releasing infected pest

    International Nuclear Information System (INIS)

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  12. Potential for control of Cadra cautella (Walker) by release of fully or partially sterile males

    International Nuclear Information System (INIS)

    Brower, J.H.; Tilton, E.W.

    1975-01-01

    Modifications of the sterile-male release technique appear to offer promise for the control of post-harvest lepidopteran pest populations within storage structures. Theoretical models of release strategies for Cadra cautella showed that each method has an 'ideal' flooding ratio. This ratio represents the best balance between extinction in a few generations and minimization of the total number of insects released. From data reported concerning the population dynamics of Cadra cautella in the field an ideal flooding ratio for fully sterile (S) males to fertile (F) males of 97:1 would achieve extinction in 3 generations. Total numbers of males released per 100 native insects that would be needed to achieve extinction at these flooding ratios would be 14,850, 14,900 and 18,500, respectively. (author)

  13. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium

    Directory of Open Access Journals (Sweden)

    Vanessa L. Gonçalves

    2005-03-01

    Full Text Available In this work chitosan microspheres were prepared by the simple coacervation method and crosslinked using epichlorhydrin or glutaraldehyde for the controlled release of diclofenac sodium. The effects of the crosslinking agents on chitosan microspheres over a 12-hour period were assessed with regard to swelling, hydrolysis, porosity, crosslinking, impregnation of diclofenac sodium (DS, and consequently to the release of DS in buffer solutions, simulating the gastrointestinal tract. The degree of swelling varied with the pH for glutaraldehyde chitosan microspheres (GCM and epichlorhydrin chitosan microspheres (ECM. Partial acid and basic hydrolysis affected the swelling behavior of the GCM matrix. Release kinetics of diclofenac sodium from these matrices were investigated at pH 1.2, 6.8 and 9.0, simulating the gastrointestinal tract conditions. The results indicated that the release mechanism deviated slightly from Fickian transport.

  14. Controlled release from drug microparticles via solventless dry-polymer coating.

    Science.gov (United States)

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

    International Nuclear Information System (INIS)

    Tan Zhonghua

    2003-01-01

    Biochemistry drug, at present, is still the main tool that human struggle to defeat the diseases. So, developing safe and efficacious technique of drug targeting delivery and controlled release is key to enhance curative effect, decrease drug dosage, and lessen its side effect. Drug-loaded nanoparticles, which is formed by conjugate between nanotechnology and modern pharmaceutics, is a new fashioned pharmic delivery carrier. Because of advantages in pharmic targeting transport and controlled or slow release and improving bioavailability, it has been one of developing trend of modern pharmaceutical dosage forms

  16. Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum

    Directory of Open Access Journals (Sweden)

    Gurpreet Arora

    2011-01-01

    Full Text Available The aim of study was to prepare controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum as natural polymer. Tablets were formulated by direct compression technology employing the natural polymer in different concentrations (5, 10, 15 and 20% w/w. The prepared batches were evaluated for drug assay, diameter, thickness, hardness and tensile strength, swelling index, mucoadhesive strength (using texture analyzer and subjected to in vitro drug release studies. Real-time stability studies were also conducted on prepared batches. In vitro drug release data were fitted in various release kinetic models for studying the mechanism of drug release. Tensile strength was found to increase from 0.808 ± 0.098 to 1.527 ± 0.10 mN/cm 2 and mucoadhesive strength increased from 13.673 ± 1.542 to 40.378 ± 2.345 N, with an increase in the polymer concentration from 5 to 20% (A1 to A4. Swelling index was reported to increase with both increase in the concentration of gum and the time duration. The in vitro drug release decreased from 97.76 to 83.4% (A1 to A4 with the increase in polymer concentration. The drug release from the matrix tablets was found to follow zero-order and Higuchi models, indicating the matrix-forming potential of natural polymer. The value of n was found to be between 0.5221 and 0.8992, indicating the involvement of more than one drug release mechanism from the formulation and possibly the combination of both diffusion and erosion. These research findings clearly indicate the potential of S. plebeian gum to be used as binder, release retardant and mucoadhesive natural material in tablet formulations.

  17. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Novel Electroactive Polymers as Environmentally Compliant Coatings for Corrosion Control

    National Research Council Canada - National Science Library

    Zarras, Peter; Mansfeld, Florian; Wynne, Kenneth, J; Tallman, Dennis E; Benicewicz, Brian C; Xu, Jun; Kendall, Gay

    2006-01-01

    The objectives of this SERDP program (WP 1148) have been completed successfully. The synthesis, scale-up and characterization of new monomers based on a bis-amino derivative of poly-p-phenylene vinylene (PPV) called poly(2,5-bis...

  19. Nanoscale architectural tuning of parylene patch devices to control therapeutic release rates

    International Nuclear Information System (INIS)

    Pierstorff, Erik; Lam, Robert; Ho, Dean

    2008-01-01

    The advent of therapeutic functionalized implant coatings has significantly impacted the medical device field by enabling prolonged device functionality for enhanced patient treatment. Incorporation of drug release from a stable, biocompatible surface is instrumental in decreasing systemic application of toxic therapeutics and increasing the lifespan of implants by the incorporation of antibiotics and anti-inflammatories. In this study, we have developed a parylene C-based device for controlled release of Doxorubicin, an anti-cancer chemotherapy and definitive read-out for preserved drug functionality, and further characterized the parylene deposition condition-dependent tunability of drug release. Drug release is controlled by the deposition of a layer of 20-200 nm thick parylene over the drug layer. This places a porous layer above the Doxorubicin, limiting drug elution based on drug accessibility to solvent and the solvent used. An increase in the thickness of the porous top layer prolongs the elution of active drug from the device from, in the conditions tested, the order of 10 min to the order of 2 d in water and from the order of 10 min to no elution in PBS. Thus, the controlled release of an anti-cancer therapeutic has been achieved via scalably fabricated, parylene C-encapsulated drug delivery devices.

  20. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  1. Development of novel diclofenac potassium controlled release tablets by wet granulation technique and the effect of co-excipients on in vitro drug release rates.

    Science.gov (United States)

    Shah, Shefaatullah; Khan, Gul Majid; Jan, Syed Umer; Shah, Kifayatullah; Hussain, Abid; Khan, Haroon; Khan, Haroon; Khan, Haroon; Khan, Kamran Ahmad

    2012-01-01

    The aim of the present study was the formulation and evaluation of controlled release polymeric tablets of Diclofenac Potassium by wet granulation method for the release rate, release pattern and the mechanism involved in drug release. Formulations having three grades of polymer Ethocel (7P; 7FP, 10P, 10FP, 100P, 100FP) in several drugs to polymer ratios (10:3 and 10:1) were compressed into tablets using wet granulation method. Co-excipients were added to some selected formulations to investigate their enhancement effect on in vitro drug release patterns. In vitro drug release studies were performed using USP Method-1 (Rotating Basket method) and Phosphate buffer (pH 7.4) was used as a dissolution medium. The similarities and dissimilarities of release profiles of test formulations with reference standard were checked using f2 similarity factor and f1 dissimilarity factor. Mathematical/Kinetic models were employed to determine the release mechanism and drug release kinetics.

  2. Studies for improvement of regulatory control on the radioactive effluent released from nuclear facilities

    International Nuclear Information System (INIS)

    Cheong, Jae Hak; Park, H. M.; Song, M. C.; Lee, K. H.; Jang, J. K.; Chun, J. K.; Jeong, K. H.

    2005-05-01

    This report contains the second-year results of the research project titled 'Studies for Improvement of Regulatory Control on the Radioactive Effluent Released from Nuclear Facilities' and mainly provides technical and strategic approaches to improve performance of regulatory control on the gaseous effluent released from domestic nuclear facilities. The main result contained here includes overview and technical bases of radioactive gaseous effluent control (Chapter 1), reconsideration of the sensitivity requirements for measurement of radioactivity in gaseous effluent sample (Chapter 2), uncertainty analysis of the calculated radioactivity in gaseous effluent (Chapter 3), and improvement of quantification method of noble gas releases (Chapter 4). In addition, analysis of the impact due to combined sampling of particulate from multiple release points (Chapter 5), comparison of domestic nuclear reactors gaseous effluent data to foreign PWRs (Chapter 6), standardized sampling technique for collection of gaseous tritium (Chapter 7), and application of Xe-133 equivalent concept to gaseous effluent control (Chapter 8) are also provided. As a whole, this report provides a generic approach to improve the performance of regulatory control on the gaseous effluent. Therefore, actual enforcement of the recommendations should be preceded by establishment of a series of action plans reflecting on the site- and facility-specific design and operational features

  3. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  4. Controlled release of volatiles under mild reaction conditions: from nature to everyday products.

    Science.gov (United States)

    Herrmann, Andreas

    2007-01-01

    Volatile organic compounds serve in nature as semiochemicals for communication between species, and are often used as flavors and fragrances in our everyday life. The quite limited longevity of olfactive perception has led to the development of pro-perfumes or pro-fragrances--ideally nonvolatile and odorless fragrance precursors which release the active volatiles by bond cleavage. Only a limited amount of reaction conditions, such as hydrolysis, temperature changes, as well as the action of light, oxygen, enzymes, or microorganisms, can be used to liberate the many different chemical functionalities. This Review describes the controlled chemical release of fragrances and discusses additional challenges such as precursor stability during product storage as well as some aspects concerning toxicity and biodegradability. As the same systems can be applied in different areas of research, the scope of this Review covers fragrance delivery as well as the controlled release of volatiles in general.

  5. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang, Yi; Zhang, Dun

    2012-01-01

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction and Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.

  6. Controlled release profiles of dipyridamole from biodegradable microspheres on the base of poly(3-hydroxybutyrate.

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Novel biodegradable microspheres on the base of poly(3-hydroxybutyrate (PHB designed for controlled release of antithrombotic drug, namely dipyridamole (DPD, have been kinetically studied. The profiles of release from the microspheres with different diameters 4, 9, 63, and 92 µm present the progression of nonlinear and linear stages. Diffusionkinetic equation describing both linear (PHB hydrolysis and nonlinear (diffusion stages of the DPD release profiles from the spherical subjects has been written down as the sum of two terms: desorption from the homogeneous sphere in accordance with diffusion mechanism and the zero-order release. In contrast to the diffusivity dependence on microsphere size, the constant characteristics (k of linearity are scarcely affected by the diameter of PHB microparticles. The view of the kinetic profiles as well as the low rate of DPD release are in satisfactory agreement with kinetics of weight loss measured in vitro for the PHB films. Taking into account kinetic results, we suppose that the degradation of both films and PHB microspheres is responsible for the linear stage of DPD release profiles. In the nearest future, combination of biodegradable PHB and DPD as a representative of proliferation cell inhibitors will give possibility to elaborate the novel injectable therapeutic system for a local, long-term, antiproliferative action.

  7. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  8. Evaluation of tecniques for controlling UF6 release clouds in the GAT environmental chamber

    International Nuclear Information System (INIS)

    Lux, C.J.

    1982-01-01

    Studies designed to characterize the reaction between UF 6 and atmospheric moisture, evaluate environmental variables of UF 6 cloud formation and ultimate cloud fate, and UF 6 release cloud control procedure have been conducted in the 1200 cu. ft. GAT environmental chamber. In earlier chamber experiments, 30 separate UF 6 release tests indicated that variations of atmospheric conditions and sample sizes had no significant effect on UO 2 F 2 particle size distribution, release cloud formation, or cloud settling rates. During the past year, numerous procedures have been evaluated for accelerating UF 6 cloud knockdown in a series of 37 environmental chamber releases. Knockdown procedures included: coarse water spray; air jet; steam spray (electrostatically charged and uncharged); carbon dioxide; Freon-12; fine water mist (uncharged); boric acid mist (charged and uncharged); and an ionized dry air stream. UF 6 hydrolysis cloud settling rates monitored by a laser/powermeter densitometer, indicated the relative effectiveness of various cloud knockdown techniques. Electrostatically charged boric acid/water mist, and electrostatically ionized dry air were both found to be very effective, knocking down the UO 2 F 2 release cloud particles in two to five minutes. Work to adapt these knockdown techniques for use under field conditions is continuing, taking into account recovery of the released uranium as well as nuclear criticality constraints

  9. Development and evaluation of diltiazem hydrochloride controlled-release pellets by fluid bed coating process

    Directory of Open Access Journals (Sweden)

    Mikkilineni Bhanu Prasad

    2013-01-01

    Full Text Available The aim of the present study was to develop controlled-release pellets of diltiazem HCl with ethyl cellulose and hydroxylpropyl methylcellulose phthalate as the release rate retarding polymers by fluid bed coating technique. The prepared pellets were evaluated for drug content, particle size, subjected to Scanning Electron Microscopy (SEM and Differential Scanning Calori metry (DSC, and evaluated for in vitro release. Stability studies were carried out on the optimized formulations for a period of 3 months. The drug content was in the range of 97%-101%. The mean particle size of the drug-loaded pellets was in the range 700-785 μm. The drug release rate decreased as the concentration of ethyl cellulose increased in the pellet formulations. Among the prepared formulations, FDL10 and FDL11 showed 80% drug release in 16 h, matching with USP dissolution test 6 for diltiazem HCl extended-release capsules. SEM photographs confirmed that the prepared formulations were spherical in nature with a smooth surface. The compatibility between drug and polymers in the drug-loaded pellets was confirmed by DSC studies. Stability studies indicated that the pellets were stable.

  10. Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug.

    Science.gov (United States)

    Zhai, Qing-Zhou

    2013-01-01

    This article used MCM-41 as a carrier for the assembly of propranolol hydrochloride by the impregnation method. By means of chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and low-temperature N(2) adsorption-desorption at 77 K, the characterization was made for the prepared materials. The propranolol hydrochloride guest assembly capacity was 316.20 ± 0.31 mg/g (drug/MCM-41). Powder XRD test results indicated that during the process of incorporation, the frameworks of the MCM-41 were not destroyed and the crystalline degrees of the host-guest nanocomposite materials prepared still remained highly ordered. Characterization by SEM and TEM showed that the composite material presented spherical particle and the average particle size of composite material was 186 nm. FT-IR spectra showed that the MCM-41 framework existed well in the (MCM-41)-propranolol hydrochloride composite. Low-temperature nitrogen adsorption-desorption results at 77 K showed that the guest partially occupied the channels of the molecular sieves. Results of the release of the prepared composite drug in simulated body fluid indicated that the drug can release up to 32 h and its maximum released amount was 99.20 ± 0.11%. In the simulated gastric juice release pattern of drug, the maximum time for the drug release was discovered to be 6 h and the maximum cumulative released amount of propranolol hydrochloride was 45.13 ± 0.23%. The drug sustained-release time was 10 h in simulated intestinal fluid and the maximum cumulative released amount was 62.05 ± 0.13%. The prepared MCM-41 is a well-controlled drug delivery carrier.

  11. Electroactive polymer (EAP) actuators for future humanlike robots

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-03-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  12. Comparison of the dielectric electroactive polymer generator energy harvesting cycles

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    The Dielectric ElectroActive Polymer (DEAP) generator energy harvesting cycles have been in the spotlight of the scientific interest for the past few years. Indeed, several articles have demonstrated thorough and comprehensive comparisons of the generator fundamental energy harvesting cycles......, namely Constant Charge (CC), Constant Voltage (CV) and Constant E-field (CE), based on averaged theoretical models. Yet, it has not been possible until present to validate the outcome of those comparisons via respective experimental results. In this paper, all three primary energy harvesting cycles...... are experimentally compared, based upon the coupling of a DEAP generator with a bidirectional non-isolated power electronic converter, by means of energy gain, energy harvesting efficiency and energy conversion efficiency....

  13. Human-like robots as platforms for electroactive polymers (EAP)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2008-03-01

    Human-like robots, which have been a science fiction for many years, are increasingly becoming an engineering reality thanks to many technology advances in recent years. Humans have always sought to imitate the human appearance, functions and intelligence and as the capability progresses they may become our household appliance or even companion. Biomimetic technologies are increasingly becoming common tools to support the development of such robots. As artificial muscles, electroactive polymers (EAP) are offering important actuation capability for making such machines lifelike. The current limitations of EAP are hampering the possibilities that can be adapted in such robots but progress is continually being made. As opposed to other human made machines and devices, this technology raises various questions and concerns that need to be addressed. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper the state-of-the-art and the challenges will be reviewed.

  14. Electroactive Polymer (EAP) Actuators for Future Humanlike Robots

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  15. Nitrogen mineralization and volatilization from controlled release urea fertilizers in selected malaysian soils

    International Nuclear Information System (INIS)

    Singh, K.J.K.A.; Yusop, M.K.; Oad, F.C.

    2017-01-01

    Controlled release urea fertilizers are usually used for extended duration in supplying nitrogen. The rate of urea hydrolysis could be efficiently minimized through these fertilizers. Various controlled released fertilizers i.e Uber-10 (30%N), Meister-20 (40%N), Meister-27 (40%N), Humate Coated Urea (45%N), Duration Polymer Coated Urea Type-V (43%N), Gold-N-Sulfur Coated Urea (41%N) and common urea (46%N) were applied to inland soil series of Malaysia. The soil series investigated were: Serdang (Typic Paleudult), Munchong (Typic Hapludox), Segamat (Typic Hapludox), Selangor (Typic Tropaquept), Rengam (Typic Kandiudult) and Holyrood (Typic Kandiudult). The maximum release of ammonium (NH/sub 4/-N) was noted in Gold-N-Sulfur Coated Urea, Humate Coated Urea and common Urea over 8 weeks of incubation. However, the release of NH4-N under the influence of Duration Type-V and Uber-10 took 2nd place. The Meister-20 and Meister-27 had minimum release of NH4-N. Munchong series was efficient in releasing higher NH4-N compared to rest of soils during 8th week of incubation due to higher soil total carbon, low /sub 4/-N and total nitrogen. Ammonia (NH/sub 3/-N) loss progressively increased with unit increase in incubation week and was higher during 6th week of fertilizer application. The higher loss of NH3-N was found in common Urea. However, Meister-20, Meister-27, Duration Polymer Coated Urea Type-V and Uber-10 had lower loss of NH/sub 3/-N due to slow release property and this character could be beneficial for supplying nutrients to next season crop. (author)

  16. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  17. Pharmacokinetics and Pharmacodynamics of Tamsulosin in its Modified-Release and Oral Controlled Absorption System Formulations

    NARCIS (Netherlands)

    Franco-Salinas, Gabriela; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2010-01-01

    Tamsulosin is an alpha(1)-adrenoceptor antagonist used for the treatment of lower urinary tract symptoms that are suggestive of benign prostatic hyperplasia. It is mostly used in a modified-release (M R) Formulation. but an oral controlled absorption system (OCAS) and a 'without-water' tablet

  18. Dynamics of controlled release systems based on water-in-water emulsions: A general theory

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2008-01-01

    Phase-separated biopolymer solutions, and aqueous dispersions of hydrogel beads, liposomes, polymersomes, aqueous polymer microcapsules, and colloidosomes are all examples of water-in-water emulsions. These systems can be used for encapsulation and controlled release purposes, in for example food or

  19. Synthesis of hydrogels of alginate for system controlled release of progesterone

    International Nuclear Information System (INIS)

    Abreu, Marlon de F.; Rodriguez, Ruben J.S.; Silva, Ester C.C. da; Barreto, Gabriela N.S.

    2015-01-01

    The chemical modifications of natural polymers like alginate, has allowed the development of new formulations for controlled release systems. In this work we report the synthesis of a derivative of the amidic alginate with alkyl chain. The polymer was characterized by spectroscopic techniques: Nuclear Magnetic Resonance and Fourier Transform Infrared. (author)

  20. Study of hydrogels based on polyacrilamide as new controlled release dosage forms produced by frontal polymerization

    OpenAIRE

    Sechi, Rossana; Gavini, Elisabetta; Mariani, Alberto; Bidali, Simone; Bonferoni, Maria Cristina; Sanna, Vanna Annunziata; Rassu, Giovanna; Pirisino, Gerolamo Antonio; Giunchedi, Paolo

    2006-01-01

    The work purpose was the evaluation of the potential application of the Frontal Polymerization (FP) technique as a new method for the preparation of controlled release dosage forms based on polyacrilamide, in which the drug loading and the polymer preparation occur at the same time.

  1. Timing of insertion of levonorgestrel-releasing intrauterine system : a randomised controlled trial

    NARCIS (Netherlands)

    van der Heijden, Pahh; Geomini, Pmaj; Herman, M C; Veersema, S; Bongers, M Y

    OBJECTIVE: The objective was to assess whether patient-perceived pain during the insertion of the levonorgestrel-releasing intrauterine system (LNG-IUS) depends on the timing during the menstrual cycle. DESIGN: A stratified two-armed non-inferiority randomised controlled trial. SETTING: Large

  2. Design Project on Controlled-Release Drug Delivery Devices: Implementation, Management, and Learning Experiences

    Science.gov (United States)

    Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa

    2010-01-01

    A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…

  3. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    Science.gov (United States)

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  4. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  5. Combined gelatin-chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins

    NARCIS (Netherlands)

    Kuijpers, A. J.; Engbers, G. H. M.; Meyvis, T. K. L.; de Smedt, S. S. C.; Demeester, J.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J.

    2000-01-01

    Chemically cross-linked gelatin-chondroitin sulfate (ChS) hydrogels were prepared for the controlled release of small cationic proteins. The amount of chondroitin sulfate in the gelatin gels varied between 0 and 20 wt %. The chemical cross-link density, the degree of swelling, and the rheological

  6. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  7. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight

    Science.gov (United States)

    Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...

  8. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients

    NARCIS (Netherlands)

    Li, Y.; Vries, R. de; Slaghek, T.; Timmermans, J.; Cohen Stuart, M.A.; Norde, W.

    2009-01-01

    A novel biocompatible and biodegradable microgel system has been developed for controlled uptake and release of especially proteins. It contains TEMPO-oxidized potato starch polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). Physical chemical properties have been

  9. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  10. Preparation and Characterization of Controlled-Release Avermectin/Castor Oil-Based Polyurethane Nanoemulsions.

    Science.gov (United States)

    Zhang, Hong; Qin, He; Li, Lingxiao; Zhou, Xiaoteng; Wang, Wei; Kan, Chengyou

    2017-06-12

    Avermectin (AVM) is a low-toxic and high-active biopesticide, but it can be easily degraded by UV light. In this paper, biodegradable castor oil-based polyurethanes (CO-PU) are synthesized and used as carriers to fabricate a new kind of AVM/CO-PU nanoemulsion through an emulsion solvent evaporation method, and the chemical structure, colloidal property, AVM loading capacity, controlled-release behavior, foliar adhesion, and photostability of the AVM/CO-PU drug delivery systems are investigated. Results show that AVM is physically encapsulated in the CO-PU carrier nanospheres, the diameter of the AVM/CO-PU nanoparticles is 85%. The release profiles indicate that the release rate is relatively high at the early stage and then slows, which can be adjusted by loaded AVM content, temperature, and pH of the release medium. The foliar pesticide retention of the AVM/CO-PU nanoemulsions is improved, and the photolysis rate of AVM in the AVM/CO-PU nanoparticles is significantly slower than that of the free AVM. A release mechanism of the AVM/CO-PU nanoemulsions is proposed, which is controlled by both diffusion and matrix erosion.

  11. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    Science.gov (United States)

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of carbon nanofillers on the microstructure and electromechanical properties of electroactive polymers

    Science.gov (United States)

    Sigamani, Nirmal Shankar

    electroactive polymers, the relatively high electrical conductivity and low breakdown limits their use for practical applications. So next step was to exploit the advantages of a conductive carbon nanostructure while controlling its network to better impact its electrical properties which could also lead to higher breakdown strength. Based on the promising impact of hybrid nanofillers on the ferroelectric polymer PVDF, a similar polymer with a relaxor ferroelectric character is considered owing to its higher inherent electroactive response and higher breakdown strength. Given that it is not broadly studied, there was a need to understand structure-property relationship of the PVDF TrFE CTFE terpolymer. Hence, the effect of processing conditions (such as annealing times and isothermal crystallization temperatures) on the microstructure and the subsequent electromechanical properties were analyzed. This structure-property analysis helped to understand the relation between the different types of crystalline phases and the degrees of crystallinity as well as to observe crystal sizes as they relate to the electric field induced strain. As a final step, the effect of the hybrid SWNT/GO on both microstructure and electromechanical properties of the terpolymer were studied. The hybrid nanofillers were chemically modified to form a covalent bond between them to improve their interaction. The morphology of the hybrid nanofillers after the chemical modification was studied for two different chemical modification routes: one using thionyl chloride, other using NHS and EDAC as catalysts. Of the two methods, the NHS and EDAC catalyst method showed a strong uniform interaction, confirmed by SEM images and FTIR results, with a shift in the peak to 1630 cm-1. Finally, the effect of hybrid SWNT and GO on the electromechanical properties were studied and, interestingly, the hybrid terpolymer nanocomposite film showed a lower electroactive strain compared to pure terpolymer at the same applied

  14. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Directory of Open Access Journals (Sweden)

    Feifel Sven C

    2011-12-01

    influence of particle size are discussed. Conclusions This study demonstrates the ability to construct fully electro-active cyt c multilayer assemblies by using carboxy-modified silica nanoparticles. Thus it can be shown that functional, artificial systems can be build up following natural examples of protein arrangements. The absence of any conductive properties in the second building block clearly demonstrates that mechanisms for electron transfer through such protein multilayer assemblies is based on interprotein electron exchange, rather than on wiring of the protein to the electrode. The construction strategy of this multilayer system provides a new controllable route to immobilize proteins in multiple layers featuring direct electrochemistry without mediating shuttle molecules and controlling the electro-active amount by the number of deposition steps.

  15. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    OpenAIRE

    Muhammad Zaman; Junaid Qureshi; Hira Ejaz; Rai Muhammad Sarfraz; Hafeez ullah Khan; Fazal Rehman Sajid; Muhammad Shafiq ur Rehman

    2016-01-01

    Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes dif...

  16. The Experiment of Carbofuran Controlled Release Formulation Insecticide Application on Rice Plants

    International Nuclear Information System (INIS)

    Sulistyati, M.; Ulfa TS; Sofnie M Ch; Kuswadi AN

    2004-01-01

    Field test of carbofuran insecticide (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methylcarbamate) controlled release formulation on rice plants of IR-64 variety was carried out in Pusakanegara, West Java. This insecticide formulation was made by using the mixture of activated charcoal, tapioca, kaolin, Na-alginate as a filler matrix. Insecticide formulation was applied one week after transplanting. The observations were conducted on the number of tillers, damage level caused by Orseolia oryzae (Wood/Mason), Chilo suppressalis (Walker), and Cnaphalocrosis medinalis (Guen) on new young plants. The observation were carried out on three weeks after application of carbofuran insecticide formulation then every two weeks until harvest. The number of tillers were occurred at the treatments of controlled release formulation of 20kg/ha, 30kg/ha, and 40kg/ha dose rate on the third weeks, it was showed significant difference compared with commercial carbofuran, and the following weeks were no significant difference between the treatments. The attack of Orseolia oryzae was occurred at the treatments of controlled release formulation with dose rate of 30 kg/ha and 40 kg/ha on the seventh weeks, ninth weeks, and eleventh weeks, those attacks were significantly difference found compared with commercial carbofuran. The attack of Chilo suppressalis was occurred at the treatments of controlled release formulation of 40kg/ha dose rate on the fifth weeks, it was showed significant difference which was compared to untreated carbofuran. The attack of Cnaphalocrosis medinalis was occurred on the ninth weeks, three dose rate of controlled released formulation were showed significant differences which compared with commercial carbofuran and were showed 50% less than commercial carbofuran, while the grains dry weight were no significant difference between the treatments. (author)

  17. STUDIES ON NATURAL AND SYNTHETIC POLYMERS FOR CONTROLLED RELEASE MATRIX TABLET OF ACECLOFENAC

    OpenAIRE

    Abhishek S. Joshi *, Deepak A. Joshi , Avinash V. Dhobale , Sandhya S. Bundel , Vijay R. Chakote, Gunesh N. Dhembre

    2018-01-01

    The present study was aimed to design new oral controlled release matrix tablets of new NSAID Aceclofenac for once a day by using 10, 15, 20 and 25% of GG:HPMC and XG:HPMC mixture in the ratio 1:1 by wet granulation method. The prepared tablets subjected to in vitro drug release studies in pH 7.4 buffer solution. All the formulation meets the pre-compression and compression characteristics. All the tablets prepared with 10, 15, 20 and 25% of HPMC: XG mixture in the ratio 1:1 fails to meet the...

  18. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  19. Wirelessly driven electro-active paper actuator made with cellulose–polypyrrole–ionic liquid and dipole rectenna

    International Nuclear Information System (INIS)

    Yang, Sang Yeol; Mahadeva, Suresha K; Kim, Jaehwan

    2010-01-01

    This paper reports a wirelessly driven electro-active paper actuator that consists of a dipole rectenna array, a power control circuit and two cellulose–polypyrrole–ionic liquid (CPIL) electro-active paper actuators. The CPIL nanocomposite actuator was fabricated by incorporating nanoscaled PPy onto cellulose by an in situ polymerization technique, which was followed by activation in a room temperature ionic liquid. The CPIL actuator shows its maximum bending displacement of 10 mm at an ambient humidity condition with 30 mW electrical power consumption. The CPIL actuator is very stable in its actuator performance. The dipole rectenna array receives microwaves and converts them to dc power so as to wirelessly supply power to the actuators. Three flexible dipole rectenna arrays are designed, manufactured and characterized. The rectenna array that has nine rectenna elements generates the maximum power of 75 mW. This power was used to successfully activate the two CPIL actuators and the control circuit. Detailed fabrication and characterization of the CPIL actuator and the dipole rectenna array as well as the control circuit are explained

  20. Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release

    Directory of Open Access Journals (Sweden)

    Sharad S. Darandale

    2012-10-01

    Full Text Available The aim of the present study was to develop and characterize a gastroretentive dosage form suitable for controlled drug release. It consists of a drug loaded polymeric film made up of a bilayer of immediate (IR and controlled release (CR layers folded into a hard gelatin capsule. Gastroretention results from unfolding and swelling of the film and its bioadhesion to the gastric mucosa. Furosemide, a drug with a narrow absorption window, was selected as the model drug. Inclusion of hydroxypropyl β-cyclodextrin in both layers and Carbopol® 971P NF in the CR layer of the bilayer film resulted in optimum drug release, bioadhesion and mechanical properties. The film with zig-zag folding in the capsule was shown to unfold and swell under acidic conditions and provide IR of drug over 1 h and CR for up to 12 h in acidic medium. X-ray diffraction, differential scanning calorimetry and scanning electron microscopy revealed uniform dispersion of furosemide in the polymeric matrices. The results indicate the dosage form is gastroretentive and can provide controlled release of drugs with narrow therapeutic windows.

  1. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    Science.gov (United States)

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  2. Chitosan/alginate based multilayers to control drug release from ophthalmic lens.

    Science.gov (United States)

    Silva, Diana; Pinto, Luís F V; Bozukova, Dimitriya; Santos, Luís F; Serro, Ana Paula; Saramago, Benilde

    2016-11-01

    In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Releasing method of connection of control rod and its drive mechanism in a reactor

    International Nuclear Information System (INIS)

    Ishida, Kazuo; Futatsugi, Masao.

    1976-01-01

    Object: To disengage a control rod from a control rod drive device in a boiling water reactor with a minimal failure of the device, when connection there between cannot be released in a normal manner. Structure: First, a part of a piston tube in the control rod drive device is withdrawn externally of a control rod housing and cut. Next, a discharge tool, which is designed to be connected with the cut piston tube, is connected to the remainder of the piston tube within the housing and the aforesaid piston tube is pushed into the index tube. The index tube is then cut by the discharge tool. Thus, the control rod drive device and the control rod may be separated. Thereafter, the control rod may be removed from the top of the reactor container whereas the control rod drive device removed from the bottom thereof. (Ikeda, J.)

  4. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  5. Modified gum Arabic hydrogels as matrices for controlled release of curcumin supramolecular complexes

    International Nuclear Information System (INIS)

    Gerola, Adriana P.; Silva, Danielle C.; Rubira, Adley F.; Muniz, Edvani C.

    2015-01-01

    Modified gum Arabic (GA) hydrogels show a pH-responsive behavior making them excellent matrices to be used for oral administration of drugs. Our goal is to study the behavior of those matrices in simulated gastric and intestinal fluids. In this work we will present how the methacrylation degree of GA, by using glycidyl methacrylate, can affect the properties of these hydrogels for controlled release. The drug used in this work is the curcumin (Cur). Cur is associated with numerous pharmacological activities, but their application is limited by the low water solubility. We will present some studies involving the formation of host-guest complexes between Cur and natural cyclodextrins. Both modified GA and hydrogels were characterized by different techniques. The kinetics release of Cur complex-containing modified GA hydrogels was studied to have an insight on the release mechanism and rate constants. Toxicity studies on undifferentiated and differentiated Caco-2 were also carried out. (author)

  6. Controlling the release of active compounds from the inorganic carrier halloysite

    International Nuclear Information System (INIS)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-01-01

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles

  7. Research and development of controlled release technology for agrochemicals using isotopes

    International Nuclear Information System (INIS)

    1986-01-01

    In recent years, increasing investment has been made into development of measures to reduce pesticide contamination of food and the environment while at the same time protecting crops and livestock from pest attack. Studies to develop controlled-release technology are frequently carried out with labelled compounds. Radiotracer techniques provide a unique tool in measuring the release rate of the chemical, the stability of the chemical within the formulation and evaluating the effect of environmental factors on the release rate. These technologies and pesticide residue problems were the theme of the Seminar. The Seminar has illustrated the potential value of isotope techniques and has reviewed information on current developments in this field and their relevance to agriculture in developing countries

  8. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath; Almahdali, Sarah; Vu, Khanh B.; Zapsas, Georgios; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2017-01-01

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  9. Controlling the release of active compounds from the inorganic carrier halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M. [National Research Council - Institute of Composites and Biomedical Materials, P.le E. Fermi, 1 80055 Portici (Naples) (Italy)

    2014-05-15

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  10. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.

    Science.gov (United States)

    Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj

    2009-01-01

    Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.

  11. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?

    DEFF Research Database (Denmark)

    Carpi, Federico; Kornbluh, Roy; Sommer-Larsen, Peter

    2011-01-01

    Electroactive polymer (EAP) actuators are electrically responsive materials that have several characteristics in common with natural muscles. Thus, they are being studied as 'artificial muscles' for a variety of biomimetic motion applications. EAP materials are commonly classified into two major...

  12. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  13. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Nanostructural control of the release of macromolecules from silica sol–gels

    Science.gov (United States)

    Radin, Shula; Bhattacharyya, Sanjib; Ducheyne, Paul

    2013-01-01

    The therapeutic use of biological molecules such as growth factors and monoclonal antibodies is challenging in view of their limited half-life in vivo. This has elicited the interest in delivery materials that can protect these molecules until released over extended periods of time. Although previous studies have shown controlled release of biologically functional BMP-2 and TGF-β from silica sol–gels, more versatile release conditions are desirable. This study focuses on the relationship between room temperature processed silica sol–gel synthesis conditions and the nanopore size and size distribution of the sol–gels. Furthermore, the effect on release of large molecules with a size up to 70 kDa is determined. Dextran, a hydrophilic polysaccharide, was selected as a large model molecule at molecular sizes of 10, 40 and 70 kDa, as it enabled us to determine a size effect uniquely without possible confounding chemical effects arising from the various molecules used. Previously, acid catalysis was performed at a pH value of 1.8 below the isoelectric point of silica. Herein the silica synthesis was pursued using acid catalysis at either pH 1.8 or 3.05 first, followed by catalysis at higher values by adding base. This results in a mesoporous structure with an abundance of pores around 3.5 nm. The data show that all molecular sizes can be released in a controlled manner. The data also reveal a unique in vivo approach to enable release of large biological molecules: the use more labile sol–gel structures by acid catalyzing above the pH value of the isoelectric point of silica; upon immersion in a physiological fluid the pores expand to reach an average size of 3.5 nm, thereby facilitating molecular out-diffusion. PMID:23643607

  15. Silicone Doped Chitosan-Acrylamide Coencapsulated Urea Fertilizer: An Approach to Controlled Release Fertilizers

    Directory of Open Access Journals (Sweden)

    Sempeho Ibahati Siafu

    2017-01-01

    Full Text Available In the absence of special management practices, urea is known to undergo chemical transformations resulting in severe losses (≈60–70% of total fertilizer applied. In an attempt to design urea controlled release fertilizers in order to counterbalance the 60–70% loss, urea was cross-linked with chitosan and acrylamide under refluxed in situ copolymerization technique; the procedures were repeated with silicone doping prior cross-linking with MBA. The particles were characterized with FTIR/ATR, EDX, XRD, and SEM. The IR bands observed within 3426–409 cm−1 revealed the formation of new bands after coencapsulation for the νγN-H, νβN-H, νOH, νsNH2, νCH2, νC=O, δ′NH2, νC=C, δNH2, νC-N, βCH3, $C-N, γNH2, νC=O, and $CH2. Crystallinity indices for urea with and without silicone doping were found to be 50.9% and 72.1%, respectively, with a distinctive split peak at (d 12.30°. The formation of Microdunes and Microballs 3D network sized 0.64 μm was noted. Release profiles demonstrated that 80% N was released in a period of 30 days at RT and pH 7. The release patterns exhibited linear and deformed sigmoid release models. Empirically, the findings demonstrated that it is possible to design urea controlled release fertilizers with varying particle sizes and morphologies by using chitosan-acrylamide coencapsulation.

  16. Release of fission products during controlled loss-of-coolant accidents and hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Albrecht, H.; Malinauskas, A.P.

    1978-01-01

    A few years ago the Projekt Nukleare Sicherheit joined the United States Nuclear Regulatory Commission in the development of a research program which was designed to investigate fission product release from light water reactor fuel under conditions ranging from spent fuel shipping cask accidents to core meltdown accidents. Three laboratories have been involved in this cooperative effort. At Argonne National Laboratory (ANL), the research effort has focused on noble gas fission product release, whereas at Oak Ridge National Laboratory (ORNL) and at Kernforschungszentrum Karlsruhe (KfK), the studies have emphasized the release of species other than the noble gases. In addition, the ORNL program has been directed toward the development of fission product source terms applicable to analyses of spent fuel shipping cask accidents and controlled loss-of-coolant accidents, and the KfK program has been aimed at providing similar source terms which are characteristic of core meltdown accidents. The ORNL results are presented for fission product release from defected fuel rods into a steam atmosphere over the temperature range 500 to 1200 0 C, and the KfK results for release during core meltdown sequences

  17. Fabrication of Glucose-Sensitive Layer-by-Layer Films for Potential Controlled Insulin Release Applications

    Directory of Open Access Journals (Sweden)

    Talusan Timothy Jemuel E.

    2015-01-01

    Full Text Available Self-regulated drug delivery systems (DDS are potential alternative to the conventional method of introducing insulin to the body due to their controlled drug release mechanism. In this study, Layer-by-Layer technique was utlized to manufacture drug loaded, pH responsive thin films. Insulin was alternated with pH-sensitive, [2-(dimethyl amino ethyl aminoacrylate] (PDMAEMA and topped of with polymer/glucose oxidase (GOD layers. Similarly, films using a different polymer, namely Poly(Acrylic Acid (PAA were also fabricated. Exposure of the films to glucose solutions resulted to the production of gluconic acid causing a polymer conformation change due to protonation, thus releasing the embedded insulin. The insulin release was monitored by subjecting the dipping glucose solutions to Bradford Assay. Films exhibited a reversal in drug release profile in the presence of glucose as compared to without glucose. PAA films were also found out to release more insulin compared to that of the PDMAEMA films.The difference in the profile of the two films were due to different polymer-GOD interactions, since both films exhibited almost identical profiles when embedded with Poly(sodium 4-styrenesulfonate (PSS instead of GOD.

  18. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    Science.gov (United States)

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Controlled antiseptic/eosin release from chitosan-based hydrogel modified fibrous substrates.

    Science.gov (United States)

    Romano, Ilaria; Ayadi, Farouk; Rizzello, Loris; Summa, Maria; Bertorelli, Rosalia; Pompa, Pier Paolo; Brandi, Fernando; Bayer, Ilker S; Athanassiou, Athanassia

    2015-10-20

    Fibers of cellulose networks were stably coated with N-methacrylate glycol chitosan (MGC) shells using subsequent steps of dip coating and photo-curing. The photo-crosslinked MGC-coated cellulose networks preserved their fibrous structure. A model hydrophilic antiseptic solution containing eosin, chloroxylenol and propylene glycol was incorporated into the shells to study the drug release dynamics. Detailed drug release mechanism into phosphate buffered saline (PBS) solutions from coated and pristine fibers loaded with the antiseptic was investigated. The results show that the MGC-coated cellulose fibers enable the controlled gradual release of the drug for four days, as opposed to fast, instantaneous release from eosin coated pristine fibers. This release behavior was found to affect the antibacterial efficiency of the fibrous cellulose sheets significantly against Staphylococcus aureus and Candida albicans. In the case of the MGC-eosin functionalized system the antibacterial efficiency was as high as 85% and 90%, respectively, while for the eosin coated pristine cellulose system the efficiency was negative, indicating bacterial proliferation. Furthermore, the MGC-eosin system was shown to be efficacious in a model of wound healing in mice, reducing the levels of various pro-inflammatory cytokines that modulate early inflammatory phase responses. The results demonstrate good potential of these coated fibers for wound dressing and healing applications. Due to its easy application on common passive commercial fibrous dressings such as gauzes and cotton fibers, the method can render them active dressings in a cost effective way. Copyright © 2015. Published by Elsevier Ltd.

  20. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Chenxin [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Zhixin [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Liu Xinye; Li Yao; Shi Yang; Zhang Di [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2011-03-15

    Research highlights: {yields} A responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. {yields} A combination of surface modification of CMK-3 and in situ internal polymerization of PNIPAM was used. {yields} The system exhibited a pronounced transition at around 20-25 deg. C. - Abstract: A novel responsive drug delivery system based on poly(N-isopropyl acrylamide) (PNIPAM) functionalized ordered mesoporous carbon (CMK-3) is developed. The polymer-functionalized CMK-3 was obtained by a combination of simple surface modification of CMK-3 and in situ internal polymerization of PNIPAM. The formation of the PNIPAM inside the CMK-3 was confirmed by thermal gravimetric analysis, Fourier transform-infrared spectroscopy, scanning and transmission electron microscopy and N{sub 2} adsorption/desorption measurements. Controlled drug release tests through the porous network of the PNIPAM functionalized CMK-3 were carried out by measuring the uptake and release of ibuprofen in vitro. The release profiles exhibited a pronounced transition at around 20-25 deg. C. This thermo-sensitive release property of this delivery system was further confirmed by temperature-variable hydrogen nuclear magnetic resonance analysis. The internal PNIPAM layers acted as a storage gate as well as a release switch in response to the stimuli of environment.

  1. Environmental Release Prevention and Control Plan (ERP and CP) annual review and update for 1993

    International Nuclear Information System (INIS)

    Jannik, G.T.; Mamatey, A.; Arnett, M.

    1993-01-01

    In the Environmental Release Prevention and Control Plan (ERP and CP), WSRC made a commitment to conduct the following follow-up activities and actions: (1) Complete the action items developed in response to the findings and recommendation of the Environmental Release Prevention Taskteam (WSRC-RP-92-356). (2) Complete all batch and continuous release procedure revisions to incorporate the attributes that WSRC senior management required of each procedure. (3) DOE-SR Assistance Managers and WSRC counterparts to reach consensus and closure on the identified engineered solutions documented in the ERP and CP, develop and drive implementation of facility changes per the agreements. (4) Continue to analyze releases and monitor performance in accordance with the ERP and CP, and utilize the ALARA Release Guides Committee to drive improvements. (5) Conduct annual re-evaluations of the cost benefit analyses of the identified engineered solutions, and identify new options and alternatives for each outfall in response to site mission and facility changes. This report documents the efforts that have been completed over the past year in response to these commitments

  2. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    Science.gov (United States)

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. pH-controlled drug loading and release from biodegradable microcapsules.

    Science.gov (United States)

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  4. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    Science.gov (United States)

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  5. Use of hydrophilic and hydrophobic polymers for the development of controlled release tizanidine matrix tablets

    Directory of Open Access Journals (Sweden)

    Tariq Ali

    2014-12-01

    Full Text Available The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2 results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.

  6. Effective control of modified palygorskite to NH4+-N release from sediment.

    Science.gov (United States)

    Chen, Lei; Zheng, Tianyuan; Zhang, Junjie; Liu, Jie; Zheng, Xilai

    2014-01-01

    Sediment capping is an in situ treatment technology that can effectively restrain nutrient and pollutant release from the sediment in lakes and reservoirs. Research on sediment capping has focused on the search for effective, non-polluting and affordable capping materials. The efficiency and mechanism of sediment capping with modified palygorskite in preventing sediment ammonia nitrogen (NH4+-N) release to surface water were investigated through a series of batch and sediment capping experiments. Purified palygorskite and different types of modified palygorskite (i.e. heated, acid-modified and NaCI-modified palygorskite) were used in this investigation. Factors affecting control efficiency, including the temperature, thickness and grain size of the capping layer, were also analysed. The batch tests showed that the adsorption of NH4+-N on modified palygorskite achieved an equilibration in the initial 45 min, and the adsorption isotherm followed the Freundlich equation. Sediment capping experiments showed that compared with non-capped condition, covering the sediment with modified palygorskite and sand both inhibited NH4+-N release to the overlying water. Given its excellent chemical stability and strong adsorption, heated palygorskite, which has a NH4+-N release inhibition ratio of 41.3%, is a more effective sediment capping material compared with sand. The controlling effectiveness of the modified palygorskite increases with thicker capping layer, lower temperature and smaller grain size of the capping material.

  7. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy

    Directory of Open Access Journals (Sweden)

    Fu X

    2017-05-01

    Full Text Available Xudong Fu,1 Xinjun Wang,1 Shaolong Zhou,1 Yanyan Zhang2 1The Fifth Affiliated Hospital of Zhengzhou University, 2School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Despite advances in controlled drug delivery, drug delivery systems (DDSs with controlled activated drug release and high spatial and temporal resolution are still required. Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. In this study, a near-infrared light-controlled “off–on” DDS with magnetic resonance imaging and magnetic targeting properties was developed using a hybrid nanoplatform (carbon nanotubes [CNTs]-iron oxide nanoparticle. Doxorubicin (DOX and distearoyl-sn-glycero-3-phosphoethanolamine-PEG were adsorbed onto CNTs-iron oxide nanoparticle, and then to avoid the unexpected drug release during circulation, 1-myristyl alcohol was used to encapsulate the CNTs–drug complex. Herein, multifunctional DOX-loaded nanoparticles (NPs with “off–on” state were developed. DOX-NPs showed an obvious “off–on” effect (temperature increase, drug release controlled by near-infrared light in vitro and in vivo. In the in vivo and in vitro studies, DOX-NPs exhibited excellent magnetic resonance imaging ability, magnetic targeting property, high biosafety, and high antitumor combined therapeutic efficacy (hyperthermia combined with chemotherapy. These results highlight the great potential of DOX-NPs in the treatment of cancer. Keywords: controlled drug release, magnetic targeting, MRI, combination therapy

  8. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    Science.gov (United States)

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Thermal treating of acrylic matrices as a tool for controlling drug release.

    Science.gov (United States)

    Hasanzadeh, Davood; Ghaffari, Solmaz; Monajjemzadeh, Farnaz; Al-Hallak, M H D-Kamal; Soltani, Ghazal; Azarmi, Shirzad

    2009-12-01

    The purpose of the present study was to investigate the effect of thermal-treating on the release of ibuprofen from the granules prepared using aqueous dispersions of Eudragit. To accomplish this goal, different formulations were prepared using wet granulation method containing two different types of Eudragit aqueous dispersions, RS30D, RL30D and Avicel as filler. Tablets were prepared using direct compression method. The prepared tablets were thermally treated at 50 and 70 degrees C for 24 h. The drug release from tablets was assessed before and after thermal-treating. The results of release study showed that, thermally-treating the tablets at the temperatures higher than glass transition temperature (Tg) of the polymer can decrease the drug release from matrices. For mechanistic evaluation of the effect of thermal-treating, powder X-ray diffraction (XPD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), Fourier transform infrared (FT-IR) and helium pycnometer have been employed. The SEM graphs showed that the tablets have smoother surface with less porosity after thermal-treating. FT-IR spectra showed no change in the spectrum of thermally-treated tablet compared to control. In DSC graphs, no crystalline change was seen in the heat-treated samples of ibuprofen tablets, but decreased and widened peak size were related to the probable formation of solid solution of ibuprofen in Eudragit matrix. The results of helium pycnometer showed a significant decrease in the total porosity of some heat-treated samples. This study revealed the importance of thermal treating on the drug release from sustained release tablets containing Eudragit polymer.

  10. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.

    Science.gov (United States)

    Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla

    2016-01-15

    Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Novel HPLC Analysis of Hydrocortisone in Conventional and Controlled-Release Pharmaceutical Preparations

    OpenAIRE

    Adi-Dako, Ofosua; Oppong Bekoe, Samuel; Ofori-Kwakye, Kwabena; Appiah, Enoch; Peprah, Paul

    2017-01-01

    An isocratic sensitive and precise reverse phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the determination and quantification of hydrocortisone in controlled-release and conventional (tablets and injections) pharmaceutical preparations. Chromatographic separation was achieved on an ODS (C18), 5??m, 4.6 ? 150?mm, with an isocratic elution using a freshly prepared mobile phase of composition methanol?:?water?:?acetic acid (60?:?30?:?10, v/v/v) at ...

  12. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  13. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  14. Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release.

    Science.gov (United States)

    García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio

    2018-07-01

    In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  16. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A comparative histological study of alginate beads as a promising controlled release delivery for mefenamic acid.

    Science.gov (United States)

    Sevgi, Ferhan; Kaynarsoy, Buket; Ozyazici, Mine; Pekcetin, Cetin; Ozyurt, Dogan

    2008-01-01

    The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 x 2(2) factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 +/- 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t(50) % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg(-1)), blank and MA (100 mgkg(-1)) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.

  18. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  19. On the impact of self-clearing on electroactive polymer (EAP) actuators

    Science.gov (United States)

    Ahmed, Saad; Ounaies, Zoubeida; Lanagan, Michael T.

    2017-10-01

    Electroactive polymer (EAP)-based actuators have large potential for a wide array of applications; however, their practical implementation is still a challenge because of the requirement of high driving voltage, which most often leads to premature defect-driven electrical breakdown. Polymer-based capacitors have the ability to clear defects with partial electrical breakdown and subsequent removal of a localized electrode section near the defect. In this study, this process, which is known as self-clearing, is adopted for EAP technologies. We report a methodical approach to self-clear an EAP, more specifically P(VDF-TrFE-CTFE) terpolymer, to delay premature defect-driven electrical breakdown of the terpolymer actuators at high operating electric fields. Breakdown results show that electrical breakdown strength is improved up to 18% in comparison to a control sample after self-clearing. Furthermore, the electromechanical performance in terms of blocked force and free displacement of P(VDF-TrFE-CTFE) terpolymer-based bending actuators are examined after self-clearing and precleared samples show improved blocked force, free displacement and maximum sustainable electric field compared to control samples. The study demonstrates that controlled self-clearing of EAPs improves the breakdown limit and reliability of the EAP actuators for practical applications without impeding their electromechanical performance.

  20. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release.

    Science.gov (United States)

    Sun, Bin; Lynn, David M

    2010-11-20

    We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that

  1. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    Science.gov (United States)

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers.

    Science.gov (United States)

    Zhong, Kang; Lin, Zuan-Tao; Zheng, Xi-Liang; Jiang, Gang-Biao; Fang, Yu-Sheng; Mao, Xiao-Yun; Liao, Zong-Wen

    2013-02-15

    Phosphate rock (PHR), a traditional fertilizer, is abundant, but is hard to be utilized by plants. To improve the utilization of PHR, and to integrate water-retaining and controlled-release fertilizers, an agricultural superabsorbent polymer based on sulfonated corn starch/poly (acrylic acid) embedding phosphate rock (SCS/PAA/PHR) was prepared. PHR can be suspended and well-dispersed in SCS/PAA by sulfonated corn starch (SCS). PHR and KOH were mixed in acrylic acid solution to provide phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent were investigated. The maximum swelling capacity in distilled water or 0.9 wt.% (weight percent) NaCl solution reached 498 g g(-1) and 65 g g(-1) (water/prepared dry superabsorbent) respectively. Moreover, release behaviours of P and K in SCS/PAA/PHR were also investigated. The results showed that SCS/PAA/PHR possessed excellent sustained-release property of plant nutrient, and the SCS/PAA could improve the P release greatly. Besides, the XPS analysis was employed to study the relationship between PHR and superabsorbent polymer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  4. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  6. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    International Nuclear Information System (INIS)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na; Lee, Jae Yung; Park, Se Yeon

    2016-01-01

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX

  7. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na [Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul (Korea, Republic of); Lee, Jae Yung [Dept. Biological Science, Mokpo National University, Mokpo (Korea, Republic of); Park, Se Yeon [Dept. Applied Chemistry, Dongduk Women' s University, Seoul (Korea, Republic of)

    2016-12-15

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX.

  8. Controlled release of astaxanthin from nanoporous silicified-phospholipids assembled boron nitride complex for cosmetic applications

    Science.gov (United States)

    Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho

    2017-12-01

    Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.

  9. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  10. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating.

    Science.gov (United States)

    Alejo, Teresa; Andreu, Vanesa; Mendoza, Gracia; Sebastian, Victor; Arruebo, Manuel

    2018-08-01

    Near-infrared (NIR) responsive nanoparticles are of great interest in the biomedical field as antennas for photothermal therapy and also as triggers for on-demand drug delivery. The present work reports the preparation of hollow gold nanoparticles (HGNPs) with plasmonic absorption in the NIR region covalently bound to a thermoresponsive polymeric shell that can be used as an on-demand drug delivery system for the release of analgesic drugs. The photothermal heating induced by the nanoparticles is able to produce the collapse of the polymeric shell thus generating the release of the local anesthetic bupivacaine in a spatiotemporally controlled way. Those HGNPs contain a 10 wt.% of polymer and present excellent reversible heating under NIR light excitation. Bupivacaine released at physiological temperature (37 °C) showed a pseudo-zero order release that could be spatiotemporally modified on-demand after applying several pulses of light/temperature above and below the lower critical solution temperature (LCST) of the polymeric shell. Furthermore, the nanomaterials obtained did not displayed detrimental effects on four mammalian cell lines at doses up to 0.2 mg/mL. From the results obtained it can be concluded than this type of hybrid thermoresponsive nanoparticle can be used as an externally activated on-demand drug delivery system. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release

    Science.gov (United States)

    Khalid, Asma; Mitropoulos, Alexander N.; Marelli, Benedetto; Tomljenovic-Hanic, Snjezana; Omenetto, Fiorenzo G.

    2015-01-01

    Nanoparticle (NP) based technologies have proved to be considerably beneficial for advances in biomedicine especially in the areas of disease detection, drug delivery and bioimaging. Over the last few decades, NPs have garnered interest for their exemplary impacts on the detection, treatment, and prevention of cancer. The full potential of these technologies are yet to be employed for clinical use. The ongoing research and development in this field demands single multifunctional composite materials that can be employed simultaneously for drug delivery and biomedical imaging. In this manuscript, a unique combination of silk fibroin (SF) and nanodiamonds (NDs) in the form of nanospheres are fabricated and investigated. The spheres were loaded with the anthracyline Doxorubicin (DoX) and the drug release kinetics for these ND-SF-DoX (NDSX) spheres were studied. NDs provided the fluorescence modality for imaging while the degradable SF spheres stabilized and released the drug in a controlled manner. The emission and structural properties of the spheres were characterized during drug release. The degradability of SF and the subsequent release of DoX from the spheres were monitored through fluorescence of NDs inside the spheres. This research demonstrates the enormous potential of the ND-SF nanocomposite platforms for diagnostic and therapeutic purposes, which are both important for pharmaceutical research and clinical settings. PMID:26819823

  12. Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China

    Directory of Open Access Journals (Sweden)

    Xin Tong

    2018-01-01

    Full Text Available Controlled release urea (CRU is considered to enhance crop yields while alleviating negative environmental problems caused by the hazardous gas emissions that are associated with high concentrations of ammonium (NH4+ and nitrate (NO3− in black soils. Short-term effects of sulfur-coated urea (SCU and polyurethane-coated urea (PCU, compared with conventional urea, on NO3− and NH4+ in black soils were studied through the buried bag experiment conducted in an artificial climate chamber. We also investigated nitrogen (N release kinetics of CRU and correlations between the cumulative N release rate and concentrations of NO3− and NH4+. CRU can reduce concentrations of NO3− and NH4+, and PCU was more effective in maintaining lower soil NO3−/NH4+ ratios than SCU and U. Parabolic equation could describe the kinetics of NO3− and NH4+ treated with PCU. The Elovich equation could describe the kinetics of NO3− and NH4+ treated with SCU. The binary linear regression model was established to predict N release from PCU because of significant correlations between the cumulative N release rate and concentrations of NO3− and NH4+. These results provided a methodology and data support for characterizing and predicting the N release from PCU in black soils.

  13. Dual turn-on fluorescence signal-based controlled release system for real-time monitoring of drug release dynamics in living cells and tumor tissues.

    Science.gov (United States)

    Kong, Xiuqi; Dong, Baoli; Song, Xuezhen; Wang, Chao; Zhang, Nan; Lin, Weiying

    2018-01-01

    Controlled release systems with capabilities for direct and real-time monitoring of the release and dynamics of drugs in living systems are of great value for cancer chemotherapy. Herein, we describe a novel dual turn-on fluorescence signal-based controlled release system ( CDox ), in which the chemotherapy drug doxorubicin ( Dox ) and the fluorescent dye ( CH ) are conjugated by a hydrazone moiety, a pH-responsive cleavable linker. CDox itself shows nearly no fluorescence as the fluorescence of CH and Dox is essentially quenched by the C=N isomerization and N-N free rotation. However, when activated under acidic conditions, CDox could be hydrolyzed to afford Dox and CH , resulting in dual turn-on signals with emission peaks at 595 nm and 488 nm, respectively. Notably, CDox exhibits a desirable controlled release feature as the hydrolysis rate is limited by the steric hindrance effect from both the Dox and CH moieties. Cytotoxicity assays indicate that CDox shows much lower cytotoxicity relative to Dox , and displays higher cell inhibition rate to cancer than normal cells. With the aid of the dual turn-on fluorescence at different wavelengths, the drug release dynamics of CDox in living HepG2 and 4T-1 cells was monitored in double channels in a real-time fashion. Importantly, two-photon fluorescence imaging of CDox in living tumor tissues was also successfully performed by high-definition 3D imaging. We expect that the unique controlled release system illustrated herein could provide a powerful means to investigate modes of action of drugs, which is critical for development of much more robust and effective chemotherapy drugs.

  14. Doses of controlled-release fertilizer for production of rubber tree rootstocks

    Directory of Open Access Journals (Sweden)

    Renato Luis Grisi Macedo

    2012-06-01

    Full Text Available This experimental study aimed to evaluate the effects of doses of controlled-release fertilizer (ALL on the development of rubber tree rootstocks. The fertilizer used was Osmocote®, scheduled to be released for 8-9 months and with the following composition: N (15%, P2O5 (9%, K2O (12%, Mg (1%, S (2.3%, B (0.02%, Cu (0.05%, Fe (1%, Mn (0.06%, Mo (0.02% and Zn (0.05%. A randomized block design was used, with four treatments and eight replicates of 20 plants per plot. The controlled-release fertilizer was added to Rendimax Floreira® substrate at doses of 0, 3, 6 and 9 g per liter, and rootstocks were produced in plastic containers with a capacity of two liters of substrate. Three seeds of clone GT 1 were scattered in each container and thinning was performed on day 60, leaving the most vigorous plant only. After the fourth leaf shot from each rootstock, the containers of each treatment were topped, due to compaction, with 300 mL of the relevant fertilizer and substrate mixture. The rootstocks were evaluated at eight months of age as to height, stem diameter (DC 5 cm above root collar, total dry matter, shoot and root dry matter, leaf nutrient levels and percentage of plants suitable for grafting (DC≥1.0 cm. Results revealed that adequate development and nutrition of rootstocks was achieved by using 6 g of controlled-release fertilizer per liter of substrate.

  15. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    International Nuclear Information System (INIS)

    Meerod, Siraprapa; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2015-01-01

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown

  16. New cellulose–lignin hydrogels and their application in controlled release of polyphenols

    International Nuclear Information System (INIS)

    Ciolacu, Diana; Oprea, Ana Maria; Anghel, Narcis; Cazacu, Georgeta; Cazacu, Maria

    2012-01-01

    Novel superabsorbant cellulose–lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose–lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV–VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (E H ), the asymmetric index (a/b) and the enthalpy of H-bond formation (ΔH). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: ► A unique method to obtain cellulose–lignin hydrogels. ► The application of these hydrogels as controlled release systems was tested. ► Polyphenols from grapes seed as active ingredient.

  17. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    International Nuclear Information System (INIS)

    Valenti, G.; La Carta, S.; Rapisarda, M.; Carbone, D.; Recca, G.; Rizzarelli, P.; Mazzotti, G.; Giorgini, L.; Perna, S.; Di Gesù, R.

    2016-01-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ("1H-NMR, "1"3C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different

  18. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Science.gov (United States)

    Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.

    2016-05-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic

  19. Development and evaluation of controlled-release buccoadhesive verapamil hydrochloride tablets

    Directory of Open Access Journals (Sweden)

    Emami J.

    2008-05-01

    Full Text Available Background and purpose of the study: Verapamil hydrochloride is a calcium channel blocker which is used in the control of supraventricular arrhythmia, hypertension and myocardial infraction. There are considerable inter-individual variations in serum concencentration of verpamil due to variation in the extent of hepatic metabolism. In this study controlled-release buccoadhesive tablets of verapamil hydrochloride (VPH were prepared in order to achieve constant plasma concentrations, to improve the bioavailability by the avoidance of hepatic first-pass metabolism, and to prevent frequent administration. Materials and methods: Tablets containing fixed amount of VPH were prepared by direct compression method using polymers like carbomer (CP, hydroxypropylmethyl cellulose (HPMC and sodium carboxymethyl cellulose (NaCMC in various combination and ratios and evaluated for thickness, weight variation, hardness, drug content uniformity, swelling, mucoadhesive strength, drug release and possible interaction between ingredients. Results: All tablets were acceptable with regard to thickness, weight variation, hardness, and drug content. The maximum bioadhesive strength was observed in tablets formulated with a combination of CP-NaCMC followed by CP-HPMC and NaCMC-HPMC.  Decreasing the content of CP in CP-HPMC tablets or NaCMC in CP-NaCMC or NaCMC-HPMC systems resulted in decrease in detachment forces. Lower release rates were observed by lowering the content of CP in CP-HPMC containing formulations or NaCMC in tablets which contained CP-NaCMC or NaCMC-HPMC. The release behavior was non-Fickian controlled by a combination of diffusion and chain relaxation mechanisms and best fitted zero-order kinetics. Conclusion: The buccoadhesive VPH tablets containing 53% CP and 13.3% HPMC showed suitable release kinetics (n = 0.78, K0 zero order release = 4.11 mg/h, MDT = 5.66 h and adhesive properties and did not show any interaction between polymers and drug based on

  20. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, G.; La Carta, S.; Rapisarda, M.; Carbone, D.; Recca, G.; Rizzarelli, P., E-mail: paola.rizzarelli@cnr.it [Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche Via P. Gaifami 18, 95129 Catania (Italy); Mazzotti, G.; Giorgini, L. [Dipartimento di Chimica Industriale «Toso Montanari», Università di Bologna Via Risorgimento 4, 40136 Bologna (Italy); Perna, S. [ST Microelectronics Srl, Stradale Primosole, 50–95121 Catania (Italy); Di Gesù, R. [Merck Serono S.p.A., Via L. Einaudi, 11–00012 Guidonia Montecelio, Rome (Italy)

    2016-05-18

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient’s compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye’s diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10–60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy ({sup 1}H-NMR, {sup 13}C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of

  1. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  2. Electro-active paper for a durable biomimetic actuator

    International Nuclear Information System (INIS)

    Yun, Sung-Ryul; Yun, Gyu Young; Kim, Jung Hwan; Chen, Yi; Kim, Jaehwan

    2009-01-01

    Cellulose electro-active paper (EAPap), known as a smart material, has merits in terms of low voltage operation, light weight, dryness, low power consumption, biodegradability, abundance and low price. Since EAPap requires low power consumption, a remotely driven actuator has been proposed using microwave power transmission. This concept is attractive for many biomimetic systems such as crawling micro-insect robots, flying objects like dragon flies and smart wallpapers. However, the actuation performance of EAPap is sensitive to humidity and degrades with time. Thus, in this paper, a durable EAPap is studied. The fabrication of EAPap is explained and the actuation performance is shown with applied electric field, frequency, humidity level and time. The fabrication process includes dissolving cellulose fibers, eliminating solvent and Li ions with a mixture of deionized water and isopropyl alcohol, washing with water, drying and coating with gold. The morphology of the fabricated EAPap is analyzed by taking scanning electron microscope images and x-ray diffractograms. The actuation performance is tested in terms of bending displacement with frequency, time and humidity level

  3. Bio-kinetic energy harvesting using electroactive polymers

    Science.gov (United States)

    Slade, Jeremiah R.; Bowman, Jeremy; Kornbluh, Roy

    2012-06-01

    In hybrid vehicles, electric motors are used on each wheel to not only propel the car but also to decelerate the car by acting as generators. In the case of the human body, muscles spend about half of their time acting as a brake, absorbing energy, or doing what is known as negative work. Using dielectric elastomers it is possible to use the "braking" phases of walking to generate power without restricting or fatiguing the Warfighter. Infoscitex and SRI have developed and demonstrated methods for using electroactive polymers (EAPs) to tap into the negative work generated at the knee during the deceleration phase of the human gait cycle and convert it into electrical power that can be used to support wearable information systems, including display and communication technologies. The specific class of EAP that has been selected for these applications is termed dielectric elastomers. Because dielectric elastomers dissipate very little mechanical energy into heat, greater amounts of energy can be converted into electricity than by any other method. The long term vision of this concept is to have EAP energy harvesting cells located in components of the Warfighter ensemble, such as the boot uppers, knee pads and eventually even the clothing itself. By properly locating EAPs at these sites it will be possible to not only harvest power from the negative work phase but to actually reduce the amount of work done by the Warfighter's muscles during this phase, thereby reducing fatigue and minimizing the forces transmitted to the joints.

  4. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, L.; Erickson, Carl J.; Meixler, Lewis D.; Ascione, G.; Gentile, Charles A.; Tilson, C.; Bernasek, Stephen L.; Abelev, E.

    2009-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface

  5. Regulating the path from legacy recognition, through recovery to release from regulatory control.

    Science.gov (United States)

    Sneve, Malgorzata Karpow; Smith, Graham

    2015-04-01

    Past development of processes and technologies using radioactive material led to construction of many facilities worldwide. Some of these facilities were built and operated before the regulatory infrastructure was in place to ensure adequate control of radioactive material during operation and decommissioning. In other cases, controls were in place but did not meet modern standards, leading to what is now considered to have been inadequate control. Accidents and other events have occurred resulting in loss of control of radioactive material and unplanned releases to the environment. The legacy from these circumstances is that many countries have areas or facilities at which abnormal radiation conditions exist at levels that give rise to concerns about environmental and human health of potential interest to regulatory authorities. Regulation of these legacy situations is complex. This paper examines the regulatory challenges associated with such legacy management and brings forward suggestions for finding the path from: legacy recognition; implementation, as necessary, of urgent mitigation measures; development of a longer-term management strategy, through to release from regulatory control. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  7. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tessy, E-mail: tessy3@prodigy.net.mx [Universidad Autonoma Metropolitana-Xochimilco. Departamento de Microbiologia. Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico D.F. Mexico (Mexico); Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118 (United States); Ortiz, Emma [Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Meza, Doraliz [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, Mexico D.F., C.P. 09340 (Mexico); Basaldella, Elena [CIC-CINDECA - Universidad Nacional de La Plata - Calle 47 No 257 - La Plata (Argentina); Bokhimi, Xim; Magana, Carlos [Instituto de fisica, UNAM. Circuito de la Investigacion s/n. C.U. Mexico D.F. 01000 (Mexico); Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier [Departamento de Quimica Inorganica, Universidad de Alicante. Apartado 99, E-03080 Alicante, Espana Spain (Spain)

    2011-04-15

    Research highlights: {yields} Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. {yields} Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. {yields} Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. {yields} The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. {yields} There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO{sub 2}). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO{sub 2} tubes than in mesoporous silica

  8. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    International Nuclear Information System (INIS)

    Lopez, Tessy; Ortiz, Emma; Meza, Doraliz; Basaldella, Elena; Bokhimi, Xim; Magana, Carlos; Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier

    2011-01-01

    Research highlights: → Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. → Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. → Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. → The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. → There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO 2 ). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N 2 adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO 2 tubes than in mesoporous silica matrix.

  9. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  10. Rearing and Release of Megamelus scutellaris Berg (Hemiptera: Delphacidae) for Biological Control of Water hyacinth in 2015

    Science.gov (United States)

    2017-06-01

    Hemiptera: Delphacidae) for Biological Control of Waterhyacinth in 2015 by Jan Freedman and Nathan Harms PURPOSE: Waterhyacinth biological control ... control agents. Three insects were released in the United States for biological control of waterhyacinth during the 1970s; two weevils, Neochetina...content) and competitive interactions with other biological control agents (e.g., Neochetina spp.), though their consideration in other biological

  11. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.

    Science.gov (United States)

    Chen, Zhi; Wang, Ting; Yan, Qing

    2018-02-01

    Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.

  12. Regulatory Initiatives for Control and Release of Technologically Enhanced Naturally-Occurring Radioactive Materials

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, P.V.

    1999-03-02

    Current drafts of proposed standards and suggested State regulations for control and release of technologically-enhanced naturally-occurring radioactive material (TENORM), and standards for release of volumetrically-contaminated material in the US are reviewed. These are compared to the recommendations of the International Atomic Energy Association (IAEA) Safety Series and the European Commission (EC) proposals. Past regulatory efforts with respect to TENORM in the US dealt primarily with oil-field related wastes. Currently, nine states (AK, GA, LA, MS, NM, OH, OR SC, TX) have specific regulations pertaining to TENORM, mostly based on uranium mill tailings cleanup criteria. The new US proposals are dose- or risk-based, as are the IAEA and EC recommendations, and are grounded in the linear no threshold hypothesis (LNT). TENORM wastes involve extremely large volumes, particularly scrap metal and mine wastes. Costs to control and dispose of these wastes can be considerable. The current debate over the validity of LNT at low doses and low dose rates is particularly germane to this discussion. Most standards setting organizations and regulatory agencies base their recommendations on the LNT. The US Environmental Protection Agency has released a draft Federal Guidance Report that recommends calculating health risks from low-level exposure to radionuclides based on the LNT. However, some scientific and professional organizations are openly questioning the validity of LNT and its basis for regulations, practices, and costs to society in general. It is not clear at this time how a non-linear regulatory scheme would be implemented.

  13. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  14. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release.

    Science.gov (United States)

    Yang, Dan-Xia; Chen, Xiao-Wei; Yang, Xiao-Quan

    2018-01-01

    Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. Microscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v 0 ), maximum headspace concentrations (C max ) and partition coefficients (k a/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device

    International Nuclear Information System (INIS)

    Song, Wei; Shi, Tong; Ren, Weiping; Yu, Xiaowei; Markel, David C

    2013-01-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL Col /PVA HA ). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL Col /PVA HA NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL Col /PVA HA NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL Col /PVA HA NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL Col /PVA HA NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL Col /PVA HA NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection. (paper)

  16. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device.

    Science.gov (United States)

    Song, Wei; Yu, Xiaowei; Markel, David C; Shi, Tong; Ren, Weiping

    2013-09-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL(Col)/PVA(HA)). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL(Col)/PVA(HA) NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL(Col)/PVA(HA) NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL(Col)/PVA(HA) NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL(Col)/PVA(HA) NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL(Col)/PVA(HA) NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection.

  17. Regulatory Initiatives for Control and Release of Technologically Enhanced Naturally-Occurring Radioactive Material

    International Nuclear Information System (INIS)

    Egidi, P.V.

    1999-01-01

    Current drafts of proposed standards and suggested State regulations for control and release of technologically-enhanced naturally-occurring radioactive material (TENORM), and standards for release of volumetrically-contaminated material in the US are reviewed. These are compared to the recommendations of the International Atomic Energy Association (IAEA) Safety Series and the European Commission (EC) proposals. Past regulatory efforts with respect to TENORM in the US dealt primarily with oil-field related wastes. Currently, nine states (AK, GA, LA, MS, NM, OH, OR SC, TX) have specific regulations pertaining to TENORM, mostly based on uranium mill tailings cleanup criteria. The new US proposals are dose- or risk-based, as are the IAEA and EC recommendations, and are grounded in the linear no threshold hypothesis (LNT). TENORM wastes involve extremely large volumes, particularly scrap metal and mine wastes. Costs to control and dispose of these wastes can be considerable. The current debate over the validity of LNT at low doses and low dose rates is particularly germane to this discussion. Most standards setting organizations and regulatory agencies base their recommendations on the LNT. The US Environmental Protection Agency has released a draft Federal Guidance Report that recommends calculating health risks from low-level exposure to radionuclides based on the LNT. However, some scientific and professional organizations are openly questioning the validity of LNT and its basis for regulations, practices, and costs to society in general. It is not clear at this time how a non-linear regulatory scheme would be implemented

  18. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    International Nuclear Information System (INIS)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A; Wanichwecharungruang, Supason P

    2008-01-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin

  19. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    Science.gov (United States)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.

    2008-05-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.

  20. Controlled release effervescent buccal discs of buspirone hydrochloride: in vitro and in vivo evaluation studies.

    Science.gov (United States)

    Jaipal, A; Pandey, M M; Charde, S Y; Sadhu, N; Srinivas, A; Prasad, R G

    2016-01-01

    In the present study controlled release effervescent buccal discs of buspirone hydrochloride (BS) were designed using HPMC as rate controlling and bioadhesive polymer by direct compression method. Sodium bicarbonate and citric acid were used in varying amounts as effervescence forming agents. Carbon dioxide evolved due to reaction of sodium bicarbonate and citric acid was explored for its potential as buccal permeation enhancer. The designed buccal discs were evaluated for physical characteristics and in vitro drug release studies. Bioadhesive behavior of designed buccal discs was assessed using texture analyzer. In vivo animal studies were performed in rabbits to study bioavailability of BS in the designed buccal discs and to establish permeation enhancement ability of carbon dioxide. It was observed that effervescent buccal discs have faster drug release compared to non-effervescent buccal discs in vitro and effervescent buccal discs demonstrated significant increase in bioavailability of drug when compared to non-effervescent formulation. Hence, effervescent buccal discs can be used as an alternative to improve the drug permeation resulting in better bioavailability. However, the amount of acid and base used for generation of carbon dioxide should be selected with care as this may damage the integrity of bioadhesive dosage form.

  1. Biodegradable soy wound dressings with controlled release of antibiotics: Results from a guinea pig burn model.

    Science.gov (United States)

    Egozi, Dana; Baranes-Zeevi, Maya; Ullmann, Yehuda; Gilhar, Amos; Keren, Aviad; Matanes, Elias; Berdicevsky, Israela; Krivoy, Norberto; Zilberman, Meital

    2015-11-01

    There is growing interest in the development of biodegradable materials from renewable biopolymers, such as soy protein, for biomedical applications. Soy protein is a major fraction of natural soybean and has the advantages of being economically competitive, biodegradable and biocompatible. It presents good water resistance as well as storage stability. In the current study, homogenous antibiotic-loaded soy protein films were cast from aqueous solutions. The antibiotic drug gentamicin was incorporated into the films in order to inhibit bacterial growth, and thus prevent or combat infection, upon its controlled release to the surrounding tissue. The current in vivo study of the dressing material in contaminated deep second-degree burn wounds in guinea pigs (n=20) demonstrated its ability to accelerate epithelialization with 71% epithelial coverage compared to an unloaded format of the soy material (62%) and a significant improved epithelial coverage as compared to the conventional dressing material (55%). Our new platform of antibiotic-eluting wound dressings is advantageous over currently used popular dressing materials that provide controlled release of silver ions, due to its gentamicin release profile, which is safer. Another advantage of our novel concept is that it is based on a biodegradable natural polymer and therefore does not require bandage changes and offers a potentially valuable and economic approach for treating burn-related infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  2. Novel HPLC Analysis of Hydrocortisone in Conventional and Controlled-Release Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Ofosua Adi-Dako

    2017-01-01

    Full Text Available An isocratic sensitive and precise reverse phase high-performance liquid chromatography (RP-HPLC method was developed and validated for the determination and quantification of hydrocortisone in controlled-release and conventional (tablets and injections pharmaceutical preparations. Chromatographic separation was achieved on an ODS (C18, 5 μm, 4.6 × 150 mm, with an isocratic elution using a freshly prepared mobile phase of composition methanol : water : acetic acid (60 : 30 : 10, v/v/v at a flow rate of 1.0 ml/min. The detection of the drug was successfully achieved at a wavelength of 254 nm. The retention time obtained for the drug was 2.26 min. The proposed method produced linear detectable responses in the concentration range of 0.02 to 0.4 mg/ml of hydrocortisone. High recoveries of 98–101% were attained at concentration levels of 80%, 100%, and 120%. The intraday and interday precision (RSD were 0.19–0.55% and 0.33–0.71%, respectively. A comparison of hydrocortisone analyses data from the developed method and the official USP method showed no significant difference (p>0.05 at a 95% confidence interval. The method was successfully applied to the determination and quantification of hydrocortisone in six controlled-release and fifteen conventional release pharmaceutical preparations.

  3. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  4. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  5. Experimental Assessment of Water Sprays Utilization for Controlling Hydrogen Sulfide Releases in Confined Space

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhao

    2015-01-01

    Full Text Available This paper reported the utilization of water spray for controlling H2S release in a confined space, which is especially important in industry. A typical spray tower was modified to simulate the confined space for people's enterable routine operation (e.g., pump room, in which the dilution capacity of water sprays can also be evaluated. This work consists of two parts: the first part focuses on the influences of different operating conditions on chemical dilution capacities of water sprays in mechanisms; the second one is comparison between two nozzle configurations for evaluating their feasibilities of practical application. Water sprays express eligible performance for H2S release control even though their dilution capacity was weakened at high gaseous concentrations and rates of releases. The presence of Na2CO3 can significantly improve absorption effectiveness of H2S in water and the optimal Na2CO3 additive was found to be 1.0 g·L−1 in this test. Compared with Na2CO3, adjusting water flow rate may be an effective strategy in enhancing dilution capacity of water sprays due to the fact that larger flow rate led to both less dilution time (TD and dilution concentration (CD. Furthermore, multinozzle configuration is more efficient than single-nozzle configuration under the same water consumption.

  6. Application of radiations to development of controlled release drugs and diagnostic drugs

    International Nuclear Information System (INIS)

    Yoshida, Masaru

    1990-01-01

    The report briefly outlines various biological materials developed by the author by means of chemical reactions and processing techniques using radiations. They include testosterone release materials for artificial spermary, controlled anticancer medicine release materials, in vivo degrading materials (parabolic, linear or S-shape degradation-time curve), functional particles with activated functional groups, targeting materials, substances for immunity diagnosis, and other 'intelligent' materials. Intelligent materials, like human organs, respond to specific stimuli from the external environment. Some components such as amino acids and nucleic acids are converted into acryloyl or methacryloyl derivatives to allow the material to show various functions. Methacryloyl-L-proline polymer in an aqueous system, for example, shows an reversible thermal response to changes in the water temperature, that is, swelling and shrinking at low and high temperature, respectively. The mechanism of the thermal response of its copolymer wiht hydroxypropylmethacrylate can be interpreted as resulting from the formation of a surface regulating layer. (N.K.)

  7. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qin Guoting; Li Zheng; Xia Rongmin; Li Feng; O' Neill, Brian E; Li, King C [Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Goodwin, Jessica T; Khant, Htet A; Chiu, Wah, E-mail: zli@tmhs.org, E-mail: kli@tmhs.org [National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030 (United States)

    2011-04-15

    A critical issue for current liposomal carriers in clinical applications is their leakage of the encapsulated drugs that are cytotoxic to non-target tissues. We have developed partially polymerized liposomes composed of polydiacetylene lipids and saturated lipids. Cross-linking of the diacetylene lipids prevents the drug leakage even at 40 deg. C for days. These inactivated drug carriers are non-cytotoxic. Significantly, more than 70% of the encapsulated drug can be instantaneously released by a laser that matches the plasmon resonance of the tethered gold nanoparticles on the liposomes, and the therapeutic effect was observed in cancer cells. The remote activation feature of this novel drug delivery system allows for precise temporal and spatial control of drug release.

  8. Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.

    Science.gov (United States)

    Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da

    2017-10-02

    Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Computer-aided and predictive models for design of controlled release of pesticides

    DEFF Research Database (Denmark)

    Suné, Nuria Muro; Gani, Rafiqul

    2004-01-01

    In the field of pesticide controlled release technology, a computer based model that can predict the delivery of the Active Ingredient (AI) from fabricated units is important for purposes of product design and marketing. A model for the release of an M from a microcapsule device is presented...... in this paper, together with a specific case study application to highlight its scope and significance. The paper also addresses the need for predictive models and proposes a computer aided modelling framework for achieving it through the development and introduction of reliable and predictive constitutive...... models. A group-contribution based model for one of the constitutive variables (AI solubility in polymers) is presented together with examples of application and validation....

  10. TiO2 nanocomposite for the controlled release of drugs against pathogens causing wound infections

    Science.gov (United States)

    Devanand Venkatasubbu, G.; Nagamuthu, S.; Anusuya, T.; Kumar, J.; Chelliah, Ramachandran; Rani Ramakrishnan, Sudha; Antony, Usha; Khan, Imran; Oh, Deog-Hwan

    2018-02-01

    Chitosan titanium dioxide nanocomposite has been used for wound healing. Titanium dioxide (TiO2) nanoparticles are synthesised and made in to nanocomposite along with chitosan. Curcumin nanoparticles are synthesised. Three different drugs with antimicrobial activity are incorporated into the chitosan/TiO2nanocomposite. Ciprofloxacin, amoxicillin and curcumin nanoparticles are incorporated within the chitosan/TiO2 nanoparticles. The nanoparticles and nanocomposite are characterized with XRD, FTIR, TEM and SEM. Drug loading was found to be around 45% for all the three drug molecules. The drug release profile shows a controlled release of drug molecules from the nanocomposite. Antibacterial studies shows a good inhibition of bacterial species by the nanocomposites.

  11. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.

    Science.gov (United States)

    Jhawat, Vikas; Gupta, Sumeet; Saini, Vipin

    2016-11-01

    In the present study, pluronic lecithin based organogels (PLO gels) were formulated as topical carrier for controlled delivery of mefenamic acid. Ten organogel formulations were prepared by a method employing lecithin as lipophilic phase and pluronic F-127 as hydrophilic phase in varying concentrations to study various parameters using in vitro diffusion study and in vivo studies. All formulations were found to be off-white, homogenous, and reluctant to be washed easily and have pH value within the range of 5.56-5.80 which is nonirritant. Polymer concentration increased in formulations of F1 to F5 (lecithin) and F6 to F10 (pluronic) resulted in decrease of the gelation temperature, increase of viscosity and reduction of spreadability of gels having polymer tendency to form rigid 3D network. Organogels with higher viscosity were found to be more stable and retard the drug release from the gel. The formulations of F2 and F3 were selected for kinetic studies and stability studies, as they found to have all physical parameters within acceptable limits, highest percent drug content and exhibited highest drug release in eight hours. The order of drug release from various formulations was found to be F2 > F3 > F10 > F4 > F1 > F9 > F8 > F5 > F7 > F6. The optimized formulation F2 was found to follow zero order rate kinetics showing controlled release of the drug from the formulations. In vivo anti-inflammatory activity of optimized mefenamic acid organogel (F2) against a standard marketed preparation (Volini gel) was found satisfactory and significant.

  12. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    Science.gov (United States)

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way.

  14. 3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.

    Science.gov (United States)

    Siyawamwaya, Margaret; du Toit, Lisa C; Kumar, Pradeep; Choonara, Yahya E; Kondiah, Pierre P P D; Pillay, Viness

    2018-04-12

    A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a loading of ∼12.5 mg/6.3 mg/4 mg of EFV/TDF/FTC respectively per printed layer. Hydrogen bonding between the EFV/TDF/FTC and HA-PQ10 was detected which was indicative of possible drug solubility enhancement. The overall surface of the tablet exhibited a fibrilla structure and the 90° inner pattern was determined to be optimal for 3DP of the FDC. In vitro and in vivo drug release profiles from the 3DP FDC demonstrated that intestinal-targeted and controlled drug release was achieved. A 3DP FDC was successfully manufactured with the aid of a 3D-Bioplotter in a single step process. The versatile HA-PQ10 entrapped all drugs and achieved an enhanced relative bioavailability of EFV, TDF, and FTC compared to the market formulation for potentially enhanced HIV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. WE-AB-BRA-03: Non-Invasive Controlled Release from Implantable Hydrogel Scaffolds Using Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Moncion, A; Kripfgans, O.D; Putnam, A.J; Frances chi, R.T; Fabiilli, M.L [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: To control release of a model payload in acoustically responsive scaffolds (ARSs) using focused ultrasound (FUS). Methods: Fluorescently-labeled dextran (10 kDa) was encapsulated in sonosensitive perfluorocarbon (C{sub 6}F{sub 14} or C{sub 5}F{sub 12}) double emulsions (mean diameter: 2.9±0.1 µm). For in vitro release studies, 0.5 mL ARSs (10 mg/mL fibrin, 1% (v/v) emulsion) were polymerized in 24 well plates and covered with 0.5 mL medium. Starting one day after polymerization, ARSs were exposed to FUS (2.5 MHz, Pr = 8 MPa, 13 cycles, 100 Hz PRF) for 2 min daily. The amount of dextran released into the media was quantified. For in vivo studies, 0.25 mL ARSs were prepared as described previously and injected subcutaneously in the lower back of BALB/c mice. After polymerization, a subset of the implanted ARSs were exposed to FUS (as previously described). Animals were imaged longitudinally using a fluorescence imaging system to quantify the amount of dextran released from the ARSs. Results: In vitro: Over 6 days, +FUS displayed an 8.2-fold increase in dextran release compared to −FUS (−FUS: 2.7±0.6%; +FUS: 22.2±3.0%) for C{sub 6}F{sub 14} ARSs, and a 6.7-fold increase (−FUS: 5.0±0.8%; +FUS: 38.5±1.6%) for C{sub 5}F{sub 12}:C{sub 6}F{sub 14} ARSs. In vivo: +FUS displayed statistically greater dextran release compared to −FUS one day after implantation for C{sub 5}F{sub 12}:C{sub 6}F{sub 14} ARSs (−FUS: 55.1±1.5%; +FUS: 74.1±2.2%) and three days after implantation for C{sub 6}F{sub 14} ARSs (−FUS: 1.4±6.5%; +FUS: 30.4±5.4%). Conclusion: FUS enables non-invasive control of payload release from an ARS, which could benefit growth factor delivery for tissue regeneration. ARS are versatile due to their tunability (i.e. stiffness, emulsion composition, FUS pressure, FUS frequency, etc.) and can be modified to for optimal payload release. Future work will optimize ARS formulations for in vivo use to minimize payload release in the absence of

  16. Efficacy of an ivermectin controlled-release capsule against nematode and arthropod endoparasites in sheep.

    Science.gov (United States)

    Rehbein, S; Batty, A F; Barth, D; Visser, M; Timms, B J; Barrick, R A; Eagleson, J S

    1998-03-28

    Five controlled trials were conducted in Germany or in the United Kingdom, using 74 female sheep of merino or Dorset horn breeds, to evaluate the efficacy of an ivermectin controlled-release capsule against naturally acquired or induced infections of gastrointestinal nematodes, lungworms and nasal bot larvae and against incoming infections with gastrointestinal and pulmonary nematodes. Half of the animals were treated with one ivermectin controlled-release capsule that delivered ivermectin at the rate of 1.6 mg per day for 100 days while the other half remained untreated. Parasites were counted 21, 28, 35 or 56 days after administration of the capsule. The treatment was highly effective (> or = 99 per cent) against established parasites of the following species: Haemonchus contortus (adults and fourth-stage larvae), Ostertagia circumcincta, O pinnata, O trifurcata, Ostertagia species fourth-stage larvae, Trichostrongylus axei, T colubriformis, T vitrinus, Cooperia curticei, Nematodirus battus, N filicollis, Strongyloides papillosus, Chabertia ovina, Oesophagostomum venulosum, Trichuris ovis, Tr skrjabini, Dictyocaulus filaria, Protostrongylus rufescens and Oestrus ovis (larvae). The treatment prevented the establishment of the gastrointestinal nematodes H contortus, O circumcincta, T axei, T colubriformis, C curticei, N battus, N filicollis, Ch ovina, Oe vennulosum and the establishment of the lungworm D filaria by > 99 per cent compared with untreated controls (P < or = 0.01).

  17. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  18. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-12-30

    It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

  19. Limited capsular release and controlled manipulation under anaesthesia for the treatment of frozen shoulder.

    Science.gov (United States)

    Bidwai, Amit S; Mayne, Alistair Iw; Nielsen, Maryke; Brownson, Peter

    2016-01-01

    In light of recent interest in the cost-effectiveness of the treatment options available for frozen shoulder, we aimed to determine the results of limited anterior capsular release and controlled manipulation under anaesthesia (MUA) in the treatment of primary frozen shoulder in terms of patient-related outcomes measure, range of motion and re-intervention rates. This single-surgeon series included prospectively collected data on all patients undergoing capsular release with MUA from March 2011 until June 2013, with a minimum follow-up of 6 months from the index procedure. Outcome measures included pre- and postoperative Oxford Shoulder Score (OSS), range of motion and need for re-intervention. Fifty-four procedures were performed in 52 patients. Mean age 50 years (range 42 years to 59 years); male: female ratio = 11: 41. There was a highly statistically significant improvement in both pain and function modules of the OSS (p patients were diabetics. There was no significant difference in pre-operative and postoperative OSS or range of motion between the diabetic group and the non-diabetic groups. No patients required surgical re-intervention. A combination of limited capsular release and MUA for the treatment of primary frozen shoulder is a safe and effective procedure resulting in marked improvement in pain, function and range of motion.

  20. Development and characterization of controlled release polar lipid microparticles of candesartan cilexetil by solid dispersion

    Science.gov (United States)

    Kamalakkannan, V; Puratchikody, A; Ramanathan, L

    2013-01-01

    Candesartan cilexetil (CC) is a newer class of angiotensin II receptor antagonist used for the treatment of hypertension. The solubility of the CC is very poor and its oral bioavailability is only 15%. The controlledrelease polar lipid microparticles of CC (formulations F1, F2, F3 and F4) were prepared using variable erodible lipophilic excipients like hydrogenated castor oil, stearic acid, cetostearyl alcohol and carnauba wax by fusion method. The particle sizes of polar lipid microparticles were less than 50 microns and they were irregular in shape. Drug content ranged between 98.96 ± 2.1 and 101.9 ± 1.6% were present in all the formulations. The formulation F3 showed better drug release throughout the study period in a controlled release manner. Moreover, the in vitro release showed that all the formulations were best fitted to Higuchi model. Accelerated stability studies indicated that there was no significant changes in the chemical and physical characteristics of the formulated drug product during initial and at the end of the study period. The FTIR and DSC studies showed that there was no interaction between the drug and lipophilic excipients and no polymorphic transitions in all formulations. The X-ray diffraction peak of solid dispersion indicated that the crystalline nature of CC disappeared and no new peaks could be observed, suggesting the absence of interaction between drug and excipients. PMID:24019822

  1. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    Science.gov (United States)

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phototoxicity free quantum dot-based niosome formulation for controlled drug release and its monitoring

    Science.gov (United States)

    Kumar, Sunil; Kang, T. W.; Bala, Suman; Kamboj, Sunil; Jeon, H. C.

    2018-04-01

    A novel niosomes-based system composed of Hypromellose (HPMC) functionalized fluorescent, biocompatible ZnS:Mn quantum dots (QDs), and anti-HIV drug Tenofovir disoproxil fumarate (TDF) was designed. An appropriate ratio of surfactant Sorbitan Monostearate (SPAN-60) and cholesterol was used to obtain an optimal entrapment efficiency. Initially, after observing the successful interaction of HPMC with SPAN-60, the noisome formulation including (QDs + drug) and HPMC-coated QDs was synthesized by a wet chemical route and characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Selected Electron Diffraction (SAED). Secondly, (QDs + drug) loaded niosome formulations were studied by varying the ratio of SPAN-60 and cholesterol. Multiple studies were done to characterize the shape, size, viscosity, colloidal stability, and entrapment efficiency of (QDs + drug) loaded niosomes. Lastly, pH-dependent (QDs + drug) release profiles were studied by a spectroscopic technique considering the pH of the human gastrointestinal region to obtain the formulation stability of (QDs + drug) release from the niosome vesicles. These studies also include pH-dependent photo-stability measurements based on laser-induced multiphoton excitation technique in the Infrared region. The multiphoton time-resolved studies were completed to avoid the UV induced phototoxicity in the drug delivery modules. Current studies on the formulation of niosomes-based (QDs + drug) system laid a foundation to make a complete phototoxicity free system for tracking controlled drug release and its imaging.

  3. Uranium geochemistry in estuarine sediments: Controls on removal and release processes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Cochran, J.K.

    1993-01-01

    Porewater uranium profiles from Long Island Sound (LIS) and Amazon shelf sediments and LIS sediment incubation experiments indicate that both removal and release processes control U geochemistry in estuarine sediments. Release of U from sediments occurs in association with Fe reduction. A correlation between U and Fe (and Mn) observed in sediment incubation experiments suggests that there is release of U from Fe-Mn-oxides as they are reduced, consistent with data from the Amazon shelf. In both sediment porewater profiles (LIS and Amazon) and sediment incubation experiments (LIS), there is removal of U from porewater under conditions of sulfate reduction. Sediment incubation experiments indicate that the removal rate is first-order with respect to U concentration, and the rate constant is linearly correlated to sulfate reduction rates. The link between U removal and sulfate reduction (a measure of diagenetic microbial activity) is consistent with a microbial mediation of U reduction. The diffusion flux of U into LIS sediments is estimated from porewater profiles. The inclusion of this estuarine removal term in the oceanic U balance increases the importance of the sediment sink. 62 refs., 12 figs., 2 tabs

  4. Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field

    KAUST Repository

    Nappini, Silvia

    2010-01-01

    In this work we have studied the effect of a low-frequency alternating magnetic field (LF-AMF) on the permeability of magnetoliposomes, i.e. liposomes including magnetic nanoparticles within their water pool. Large unilamellar liposomes loaded with magnetic cobalt ferrite nanoparticles (CoFe 2O4) have been prepared and characterized. Structural characterization of the liposomal dispersion has been performed by dynamic light scattering (DLS). The enhancement of liposome permeability upon exposure to LF-AMF has been measured as the self-quenching decrease of a fluorescent hydrophilic molecule (carboxyfluorescein, CF) entrapped in the liposome pool. Liposome leakage has been monitored as a function of field frequency, time of exposure and concentration, charge and size of the embedded nanoparticles. The results show that CF release from magnetoliposomes is strongly promoted by LF-AMF, reasonably as a consequence of nanoparticle motions in the liposome pool at the applied frequency. CF release as a function of time in magnetoliposomes unexposed to magnetic field follows Fickian diffusion, while samples exposed to LF-AMF show zero-order kinetics, consistently with an anomalous transport, due to an alteration of the bilayer permeability. These preliminary results open up new perspectives in the use of these systems as carriers in targeted and controlled release of drugs. © The Royal Society of Chemistry 2010.

  5. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.

    Science.gov (United States)

    Hiremath, Praveen S; Saha, Ranendra N

    2008-10-01

    The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.

  6. Mechanical properties of cellulose electro-active paper under different environmental conditions

    International Nuclear Information System (INIS)

    Kim, Heung Soo; Kim, Jaehwan; Jung, Woochul; Ampofo, Joshua; Craft, William; Sankar, Jagannathan

    2008-01-01

    The mechanical properties of cellulose-based electro-active paper (EAPap) are investigated under various environmental conditions. Cellulose EAPap has been discovered as a smart material that can be used as both sensor and actuator. Its advantages include low voltage operation, light weight, low power consumption, biodegradability and low cost. EAPap is made with cellulose paper coated with thin electrodes. EAPap shows a reversible and reproducible bending movement as well as longitudinal displacement under an electric field. However, EAPap is a complex anisotropic material which has not been fully characterized. This study investigates the mechanical properties of cellulose-based EAPap, including Young's modulus, yield strength, ultimate strength and creep, along with orientation directions, humidity and temperature levels. To test the materials in different humidity and temperature levels, a special material testing system was made that can control the testing environmental conditions. The initial Young's modulus of EAPap is in the range of 4–9 GPa, which was higher than that of other polymer materials. Also, the Young's modulus is orientation dependent, which may be associated with the piezoelectricity of EAPap materials. The elastic strength and stiffness gradually decreased when the humidity and temperature were increased. Creep and relaxation were observed under constant stress and strain, respectively. Through scanning electron microscopy, EAPap is shown to exhibit both layered and oriented cellulose macromolecular structures that impact both the elastic and plastic behavior

  7. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.

    Science.gov (United States)

    Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi

    2011-01-25

    A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.

  8. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.

    Science.gov (United States)

    McClements, David Julian; Li, Yan

    2010-09-15

    There is a need for edible delivery systems to encapsulate, protect and release bioactive and functional lipophilic constituents within the food and pharmaceutical industries. These delivery systems could be used for a number of purposes: controlling lipid bioavailability; targeting the delivery of bioactive components within the gastrointestinal tract; and designing food matrices that delay lipid digestion and induce satiety. Emulsion technology is particularly suited for the design and fabrication of delivery systems for lipids. In this article we provide an overview of a number of emulsion-based technologies that can be used as edible delivery systems by the food and other industries, including conventional emulsions, nanoemulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems can be produced from food-grade (GRAS) ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals) using relatively simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, preparation, and utilization of each type of delivery system for controlling lipid digestion are discussed. This knowledge can be used to select the most appropriate emulsion-based delivery system for specific applications, such as encapsulation, controlled digestion, and targeted release. Copyright 2010 Elsevier B.V. All rights reserved.

  9. HPMA copolymer-drug conjugates with controlled tumor-specific drug release

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Roč. 18, č. 1 (2018), s. 1-15, č. článku 1700209. ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA17-13283S; GA ČR(CZ) GA17-08084S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : biodegradable spacer * controlled drug release * drug delivery systems Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.238, year: 2016

  10. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...... content of 8.4% (w/w). Almost spherical 50–90 nm nanoparticles were observed by scanning and transmission electron microscopy upon drying. Drug linking to glycol chitosan was confirmed by FTIR spectroscopy and proton NMR. Particles were also characterized by differential scanning calorimetry and wide...

  11. Controlled release of non-steroidal antiinflammatory and anticancer drugs from hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravieri, Beatriz Bernardes; Molina, Eduardo Ferreira, E-mail: bia_ms_@hotmail.com [Universidade de Franca, SP (Brazil)

    2016-07-01

    Full text: Chronic inflammation is a well known risk factor for the development of human cancer, and at least one third of all human cancers have been associated with inflammation. This can lead to cellular proliferation, a process which per se increases the risk of abnormal cell formation and ultimately the development of cancer. For treating clinical conditions such as inflammation and cancer, the most common methods (e.g., oral administration, injection) can cause unwanted side effects due to drug delivery to non-target sites and the introduction of high doses of the drug to reach the desired location. An alternative to these problems is the preparation of materials that can release drugs with different activities. Thinking about it, the aim of this study was to use a class of hybrid materials based on siloxane-polyether known as ureasil for controlled release of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP), and anticancer, such as 5-fluorouracil (5- FU). These drugs have been incorporated in the matrix in different proportions and thereafter, were characterized by different techniques such as XRD, FTIR, DSC and SAXS. In addition, it has been evaluated the release kinetics of these species with different chemical structures. The results have shown that the drug molecules were homogeneously distributed in the xerogel hybrids, which contributed to the drug’s release profile fine-tuning. The chemical environment of the polyether chains was amended by incorporating the drugs. The analysis from XRD, FTIR, SAXS and DSC confirm the good solubility of the substances within hybrid matrix. This hybrid material based on polymers and inorganic compounds may have potential applications in human health. (author)

  12. Controlled release of non-steroidal antiinflammatory and anticancer drugs from hybrid materials

    International Nuclear Information System (INIS)

    Caravieri, Beatriz Bernardes; Molina, Eduardo Ferreira

    2016-01-01

    Full text: Chronic inflammation is a well known risk factor for the development of human cancer, and at least one third of all human cancers have been associated with inflammation. This can lead to cellular proliferation, a process which per se increases the risk of abnormal cell formation and ultimately the development of cancer. For treating clinical conditions such as inflammation and cancer, the most common methods (e.g., oral administration, injection) can cause unwanted side effects due to drug delivery to non-target sites and the introduction of high doses of the drug to reach the desired location. An alternative to these problems is the preparation of materials that can release drugs with different activities. Thinking about it, the aim of this study was to use a class of hybrid materials based on siloxane-polyether known as ureasil for controlled release of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP), and anticancer, such as 5-fluorouracil (5- FU). These drugs have been incorporated in the matrix in different proportions and thereafter, were characterized by different techniques such as XRD, FTIR, DSC and SAXS. In addition, it has been evaluated the release kinetics of these species with different chemical structures. The results have shown that the drug molecules were homogeneously distributed in the xerogel hybrids, which contributed to the drug’s release profile fine-tuning. The chemical environment of the polyether chains was amended by incorporating the drugs. The analysis from XRD, FTIR, SAXS and DSC confirm the good solubility of the substances within hybrid matrix. This hybrid material based on polymers and inorganic compounds may have potential applications in human health. (author)

  13. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    Science.gov (United States)

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Electrospun Gelatin/poly(Glycerol Sebacate Membrane with Controlled Release of Antibiotics for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Parisa Shirazaki

    2017-01-01

    Full Text Available Background: The most important risk that threatens the skin wounds is infections. Therefore, fabrication of a membrane as a wound dressing with the ability of antibiotic delivery in a proper delivery rate is especially important. Materials and Methods: Poly(glycerol sebacate (PGS was prepared from sebacic acid and glycerol with 1:1 ratio; then, it was added to gelatin in the 1:3 ratio and was dissolved in 80% (v/v acetic acid, and finally, ciprofloxacin was added in 10% (w/v of polymer solution. The gelatin/PGS membrane was fabricated using an electrospinning method. The membrane was cross-linked using ethyl-3-(3-dimethylaminopropyl carbodiimide ethyl-3-(3-dimethylaminopropylcarbodiim (EDC and N-hydroxysuccinimide (NHS in different time periods to achieve a proper drug release rate. Fourier-transform infrared (FTIR spectroscopy was being used to manifest the peaks of polymers and drug in the membrane. Scanning electron microscopy (SEM was used to evaluate the morphology, fibers diameter, pore size, and porosity before and after crosslinking process. Ultraviolet (UV-visible spectrophotometry was used to show the ciprofloxacin release from the cross-linked membrane. Results: FTIR analysis showed the characteristic peaks of gelatin, PGS, and ciprofloxacin without any added peaks after the crosslinking process. SEM images revealed that nanofibers' size increased during the crosslinking process and porosity was higher than 80% before and after crosslinking process. UV-visible spectrophotometry showed the proper rate of ciprofloxacin release occurred from cross-linked membrane that remaining in EDC/NHS ethanol solution for 120 min. Conclusion: The obtained results suggest that this recently developed gelatin/PGS membrane with controlled release of ciprofloxacin could be a promising biodegradable membrane for wound dressing.

  15. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  16. Water - The radiological health of rivers: releases are very much controlled downstream power plants. What do hospital releases represent? The Seine reserves a surprise

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    After a brief presentation of the role of the IRSN in the control of the radioactivity present in waters and in the control and follow-up of all sources of radioactivity, a first article briefly present the hydro-collector network, indicates that some point samplings of sediment and aquatic species are performed, that a national network of beacons for a continuous radioactivity measurement is installed in the main French rivers, downstream nuclear installations, and that advanced measurement techniques are used to detect very small level of tritium. Maps giving a brief indication of the radiological condition of the Loire and Rhone are provided. A second article addresses the control of releases downstream power plants, and evokes the legal context and the associated objectives and produced documents. The third article discusses the risk associated with hospital wastes and releases (liquid and solid effluents), how radioactivity is controlled between the hospital and tap water distribution. The last article reports and comments the results obtained by an analysis of historical pollutions trapped in the sediments of the Seine: 40 year-old traces of plutonium have been discovered, due to an accidental release from a CEA installation in Fontenay-aux-Roses, with no detrimental impact on population or on sewer workers

  17. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent.

    Science.gov (United States)

    Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong

    2015-07-15

    To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension

    Directory of Open Access Journals (Sweden)

    Subhashree Sahoo

    2011-01-01

    Full Text Available Mucoadhesive polymeric (carbopol 934 suspension of ciprofloxacin was prepared by ultrasonication and optimized with the aim of developing an oral controlled release gastro-retentive dosage form. The qualitative analysis of the formulation was performed by fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, X-ray powder diffraction (XRD, and scanning electron microscopy (SEM analyses. FTIR (400 cm-1 to 4000 cm-1 region and Raman (140 to 2400 cm-1 region Spectroscopic studies were carried out and the spectra were used for interpretation. XRD data of pure drug, polymer and the formulation were obtained using a powder diffractometer scanned from a Bragg′s angle (2q of 10° to 70°. The dispersion of the particle was observed using SEM techniques. The particle size distribution and aspect ratio of particles in the polymeric suspension were obtained from SEM image analysis. The results from FTIR and Raman spectroscopic analyses suggested that, in formulation, the carboxylic groups of ciprofloxacin and hydroxyl groups of C934 undergo a chemical interaction leading to esterification and hydrogen bonding. The XRD data suggested that the retention of crystalline nature of ciprofloxacin in the formulation would lead to increase in stability and drug loading; decrease in solubility; and delay in release of the drug from polymeric suspension with better bioavailability and penetration capacity. The SEM image analysis indicated that, in the formulation maximum particles were having aspect ratio from 2 to 4 and standard deviation was very less which provided supporting evidences for homogeneous, uniformly dispersed, stable controlled release ciprofloxacin suspension which would be pharmaceutically acceptable.

  19. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    Science.gov (United States)

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  20. Reversible formation of aminals: a new strategy to control the release of bioactive volatiles from dynamic mixtures.

    Science.gov (United States)

    Godin, Guillaume; Levrand, Barbara; Trachsel, Alain; Lehn, Jean-Marie; Herrmann, Andreas

    2010-05-14

    Dynamic mixtures generated by reversible aminal formation of fragrance aldehydes with N,N-dibenzyl alkyldiamines in aqueous systems were found to be suitable delivery systems for the controlled release of bioactive volatiles.

  1. Controlled release in hard to access places by poly(methyl methacrylate) microcapsules triggered by gamma irradiation

    DEFF Research Database (Denmark)

    Kostrzewska, Malgorzata; Ma, Baoguang; Javakhishvili, Irakli

    2015-01-01

    microcapsules were shown to become permeable after irradiation and release an encapsulated cross-linker, which enables the remotely controlled formation of polydimethylsiloxanes in traditionally unavailable places. Therefore, the activation method has significant implications for industrial application....

  2. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems.

    Science.gov (United States)

    Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J

    2017-09-28

    We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of controlled release glass in the production of French marigold (Tagetes patula L.

    Directory of Open Access Journals (Sweden)

    Vujošević Ana

    2012-01-01

    Full Text Available This paper investigates the possibility and justification of controlled release glass application as a new ecological material in the production of plants-seedlings of French marigold (Tagetes patula L.. During the investigation its influence on the development of the produced plants-seedlings was monitored. The seedlings were produced in poly-propylene containers (speedling system and poly-propylene pots (pot system. The trial was conducted in the greenhouse at the Faculty of Agriculture in Belgrade during 2011. In the course of seedling production the glass granulation of < 0.5 mm was added in the following doses: 0, 1, 2, 3, and 4 g/l. The results of the research show a positive effect of controlled release glass application in the production of French marigold seedlings, since high quality seedlings were produced justifying its application. The best effect on the analyzed parameters of plant-seedling development was found when substrate was applied in the dose of 1 g/l.

  5. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  6. Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.

    Science.gov (United States)

    Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook

    2011-02-14

    The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Ammonia and carbon dioxide emissions by stabilized conventional nitrogen fertilizers and controlled release in corn crop

    Directory of Open Access Journals (Sweden)

    Taylor Lima de Souza

    Full Text Available ABSTRACT The market of stabilized, slow and controlled release nitrogen (N fertilizers represents 1% of the world fertilizer consumption. On the other hand, the increase in availability, innovation and application of these technologies could lead to the improvement of N use efficiency in agroecossystems and to the reduction of environmental impacts. The objective of this study was to quantify agronomic efficiency relative index, ammonia volatilization, and CO2 emissions from conventional, stabilized and controlled release N fertilizers in corn summer crop. The experiment was carried out in a corn crop area located in Lavras, state of Minas Gerais, Brazil, without irrigation. All treatments were applied in topdressing at rate of 150 kg ha-1 N. N-NH3 losses from N fertilizers were: Granular urea (39% of the applied N = prilled urea (38% > urea coated with 16% S0 (32% = blend of urea + 7.9% S0 + polymers + conventional urea (32% > prilled urea incorporated at 0.02 m depth (24% > urea + 530 mg kg-1 of NBPT (8% = Hydrolyzed leather (9% > urea + thermoplastic resin (3% = ammonium sulfate (1% = ammonium nitrate (0.7%. Thermoplastic resin coated urea, ammonium nitrate and ammonium sulfate presented low values of cumulative CO2 emissions in corn crop. On the other hand, hydrolyzed leather promoted greater C-CO2 emission, when compared with other nitrogen fertilizers.

  8. Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A

    Science.gov (United States)

    Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent

    2014-01-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750

  9. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Science.gov (United States)

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    2014-03-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  10. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Directory of Open Access Journals (Sweden)

    Paolo Giacobini

    2014-03-01

    Full Text Available Neuropilin-1 (Nrp1 guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH, the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  11. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    Science.gov (United States)

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    Science.gov (United States)

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  13. Design and in vivo evaluation of oxycodone once-a-day controlled-release tablets

    Directory of Open Access Journals (Sweden)

    Kim JY

    2015-01-01

    Full Text Available Ju-Young Kim,1,* Sung-Hoon Lee,2,3,* Chun-Woong Park,4 Yun-Seok Rhee,5 Dong-Wook Kim,6 Junsang Park,3 Moonseok Lee,3 Jeong-Woong Seo,2 Eun-Seok Park2 1College of Pharmacy, Woosuk University, Wanju-gun, Republic of Korea; 2School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 3GL Pharmtech, Seongnam, Republic of Korea; 4College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea; 5College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea; 6Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea *These authors contributed equally to this work Abstract: The aim of present study was to design oxycodone once-a-day controlled-release (CR tablets and to perform in vitro/in vivo characterizations. Release profiles to achieve desired plasma concentration versus time curves were established by using simulation software and reported pharmacokinetic parameters of the drug. Hydroxypropyl methylcellulose (HPMC 100,000 mPa·s was used as a release modifier because the polymer was found to be resistant to changes in conditions of the release study, including rotation speed of paddle and ion strength. The burst release of the drug from the CR tablets could be suppressed by applying an additional HPMC layer as a physical barrier. Finally, the oxycodone once-a-day tablet was comprised of two layers, an inert HPMC layer and a CR layer containing drug and HPMC. Commercial products, either 10 mg bis in die (bid [twice a day] or once-a-day CR tablets (20 mg were administered to healthy volunteers, and calculated pharmacokinetic parameters indicated bioequivalence of the two different treatments. The findings of the present study emphasize the potential of oxycodone once-a-day CR tablets for improved patient compliance, safety, and efficacy, which could help researchers to develop new CR dosage forms of oxycodone. Keywords

  14. Pest control and resistance management through release of insects carrying a male-selecting transgene.

    Science.gov (United States)

    Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke

    2015-07-16

    Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli

  15. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants.

    Science.gov (United States)

    Lan, Shih-Feng; Kehinde, Timilehin; Zhang, Xiangming; Khajotia, Sharukh; Schmidtke, David W; Starly, Binil

    2013-06-01

    Dental implants provide support for dental crowns and bridges by serving as abutments for the replacement of missing teeth. To prevent bacterial accumulation and growth at the site of implantation, solutions such as systemic antibiotics and localized delivery of bactericidal agents are often employed. The objective of this study was to demonstrate a novel method of controlled localized delivery of antibacterial agents to an implant site using a biodegradable custom fabricated ring. The study involved incorporating a model antibacterial agent (metronidazole) into custom designed poly-ε-caprolactone/alginate (PCL/alginate) composite rings to produce the intended controlled release profile. The rings can be designed to fit around the body of any root form dental implants of various diameters, shapes and sizes. In vitro release studies indicate that pure (100%) alginate rings exhibited an expected burst release of metronidazole in the first few hours, whereas Alginate/PCL composite rings produced a medium burst release followed by a sustained release for a period greater than 4 weeks. By varying the PCL/alginate weight ratios, we have shown that we can control the amount of antibacterial agents released to provide the minimal inhibitory concentration (MIC) needed for adequate protection. The fabricated composite rings have achieved a 50% antibacterial agent release profile over the first 48 h and the remaining amount slowly released over the remainder of the study period. The PCL/alginate agent release characteristic fits the Ritger-Peppas model indicating a diffusion-based mechanism during the 30-day study period. The developed system demonstrates a controllable drug release profile and the potential for the ring to inhibit bacterial biofilm growth for the prevention of diseases such as peri-implantitis resulting from bacterial infection at the implant site. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Apparatus for dynamic measurement of gases released from materials heated under programmed temperature-time control

    International Nuclear Information System (INIS)

    Early, J.W.; Abernathey, R.M.

    1982-04-01

    This apparatus, a prototype of one being constructed for hotcell examination of irradiated nuclear materials, measures dynamic release rates and integrated volumes of individual gases from materials heated under controlled temperature-time programs. It consists of an inductively heated vacuum furnace connected to a quadrupole mass spectrometer. A computerized control system with data acquisition provides scanning rates down to 1s and on-line tabular and graphic displays. Heating rates are up to 1300 0 C/min to a maximum temperature of 2000 0 C. The measurement range is about 10 -6 to 10 -2 torr-liter/s for H 2 , CH 4 , H 2 O, N 2 , and CO and 10 -8 to 10 -2 torr-liter/s for He, Kr, and Xe. Applications are described for measurements of Kr and Xe in mixed oxide fuel, various gases in UO 2 pellets, and He in 238 PuO 2 power and heat sources

  17. Light-triggerable formulations for the intracellular controlled release of biomolecules.

    Science.gov (United States)

    Lino, Miguel M; Ferreira, Lino

    2018-05-01

    New therapies based on the use of biomolecules [e.g., proteins, peptides, and non-coding (nc)RNAs] have emerged during the past few years. Given their instability, adverse effects, and limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. Sophisticated nanoformulations responsive to light offer an excellent opportunity for the controlled release of these biomolecules, enabling the control of timing, duration, location, and dosage. In this review, we discuss the design principles for the delivery of biomolecules, in particular proteins and RNA-based therapeutics, by light-triggerable formulations. We further discuss the opportunities offered by these formulations in terms of endosomal escape, as well as their limitations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Aerial release of Rhinoncomimus latipes (Coleoptera: Curculionidae) to control Persicaria perfoliata (Polygonaceae) using an unmanned aerial system.

    Science.gov (United States)

    Park, Yong-Lak; Gururajan, Srikanth; Thistle, Harold; Chandran, Rakesh; Reardon, Richard

    2018-01-01

    Rhinoncomimus latipes (Coleoptera: Curculionidae) is a major biological control agent against the invasive plant Persicaria perfoliata. Release of R. latipes is challenging with the current visit-and-hand release approach because P. perfoliata shows a high degree of patchiness in the landscape, possesses recurved barbs on its stems, and often spreads into hard-to-access areas. This 3-year study developed and evaluated unmanned aerial systems (UAS) for precise aerial release of R. latipes to control P. perfoliata. We have developed two UAS (i.e. quad-rotor and tri-rotor) and an aerial release system to disseminate R. latipes. These include pods containing R. latipes and a dispenser to accommodate eight pods. Results of field tests to evaluate the systems showed no significant (P > 0.05) effects on survivorship and feeding ability of R. latipes after aerial release. Our study demonstrates the potential of UAS for precision aerial release of biological control agents to control invasive plants. The aerial deployment systems we have developed, including both pods and a dispenser, are low cost, logistically practical, and effective with no negative effects on aerially released R. latipes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    International Nuclear Information System (INIS)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe

    2014-01-01

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm −2 , the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm −2 ) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  20. Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation

    Directory of Open Access Journals (Sweden)

    Zhengao Wang

    2018-03-01

    Full Text Available To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.

  1. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baudler, André; Riedl, Sebastian; Schröder, Uwe, E-mail: uwe.schroeder@tu-bs.de [Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig (Germany)

    2014-07-30

    The performance of primary and secondary electroactive biofilms grown on layered corrugated carbon (LCC) electrodes was studied over a period of several months. With an average projected current density of 6.7 mA cm{sup −2}, the studied secondary electroactive biofilms outperformed the primary biofilms (3.0 mA cm{sup −2}) over the entire experimental period. At the same time, both, primary and secondary biofilms, exhibited a constant Coulomb efficiency of about 89%. The study further illustrates that three-dimensional electrodes such as LCC allow a sustained long-term performance without significant decrease in electrode performance.

  2. 'Breath figure' PLGA films as implant coatings for controlled drug release

    Science.gov (United States)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  3. Magnetic Active Agent Release System (MAARS): evaluation of a new way for a reproducible, externally controlled drug release into the small intestine.

    Science.gov (United States)

    Dietzel, Christian T; Richert, Hendryk; Abert, Sandra; Merkel, Ute; Hippius, Marion; Stallmach, Andreas

    2012-08-10

    Human absorption studies are used to test new drug candidates for their bioavailability in different regions of the gastrointestinal tract. In order to replace invasive techniques (e.g. oral or rectal intubation) a variety of externally controlled capsule-based drug release systems has been developed. Most of these use ionizing radiation, internal batteries, heating elements or even chemicals for the localization and disintegration process of the capsule. This embodies potential harms for volunteers and patients. We report about a novel technique called "Magnetic Active Agent Release System" (MAARS), which uses purely magnetic effects for this purpose. In our trial thirteen healthy volunteers underwent a complete monitoring and release procedure of 250 mg acetylsalicylic acid (ASA) targeting the flexura duodenojejunalis and the mid-part of the jejunum. During all experiments MAARS initiated a sufficient drug release and was well tolerated. Beside this we also could show that the absorption of ASA is about two times faster in the more proximal region of the flexura duodenojejunalis with a tmax of 47±13 min compared to the more distal jejunum with tmax values of 100±10 min (p=0.031). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J. IV; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S.

    2000-03-01

    Pseudomonas fluorescens HK44 represents the first genetically engineered microorganism approved for field testing in the United States for bioremediation purposes. Strain HK44 harbors an introduced lux gene fused within a naphthalene degradative pathway, thereby allowing this recombinant microbe to bioluminescent as it degrades specific polyaromatic hydrocarbons such as naphthalene. The bioremediation process can therefore be monitored by the detection of light. P. fluorescens HK44 was inoculated into the vadose zone of intermediate-scale, semicontained soil lysimeters contaminated with naphthalene, anthracene, and phenanthrene, and the population dynamics were followed over an approximate 2-year period in order to assess the long-term efficacy of using strain HK44 for monitoring and controlling bioremediation processes. Results showed that P. fluorescens HK44 was capable of surviving initial inoculation into both hydrocarbon contaminated and uncontaminated soils and was recoverable from these soils 660 days post inoculation. It was also demonstrated that strain HK44 was capable of generating bioluminescence in response to soil hydrocarbon bioavailability. Bioluminescence approaching 166,000 counts/s was detected in fiber optic-based biosensor devices responding to volatile polyaromatic hydrocarbons, while a portable photomultiplier module detected bioluminescence at an average of 4300 counts/s directly from soil-borne HK44 cells within localized treatment areas. The utilization of lux-based bioreporter microorganisms therefore promises to be a viable option for in situ determination of environmental contaminant bioavailability and biodegradation process monitoring and control.

  5. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  6. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Di [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Qin [College of Environmental Science and Engineering, Hohai University, Nanjing (China); Zhong, Jicheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Wu, Wei; Jia, Fei [College of Environmental Science and Engineering, Hohai University, Nanjing (China)

    2012-11-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K{sub p}) values and greater adsorption capacity (Q{sub max}) values, while zero equilibrium concentrations (EPC{sub 0}s) were similar to those in native sediments. The larger K{sub p} and Q{sub max} were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: Black-Right-Pointing-Pointer Evaluation of capping with soils was performed through high-resolution sampling. Black-Right-Pointing-Pointer Capping decreased the concentrations of DRP in pore waters and its release to waters. Black-Right-Pointing-Pointer Capping decreased the resupply of pore water DRP from the sediments. Black-Right-Pointing-Pointer Capped sediments had stronger abilities to adsorb and retain P. Black-Right-Pointing-Pointer Active Fe and Al introduced by capping played a critical role.

  7. In situ green synthesis of antimicrobial carboxymethyl chitosan-nanosilver hybrids with controlled silver release.

    Science.gov (United States)

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial c