WorldWideScience

Sample records for electro-optical flexible pipe

  1. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    International Nuclear Information System (INIS)

    Harrison, M.A.

    1988-01-01

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  2. Proposal for electro-optic multiplier based on dual transverse electro-optic Kerr effect.

    Science.gov (United States)

    Li, Changsheng

    2008-10-20

    A novel electro-optic multiplier is proposed, which can perform voltage multiplication operation by use of the Kerr medium exhibiting dual transverse electro-optic Kerr effect. In this kind of Kerr medium, electro-optic phase retardation is proportional to the square of its applied electric field, and orientations of the field-induced birefringent axes are only related to the direction of the field. Based on this effect, we can design an electro-optic multiplier by selecting the crystals of 6/mmm, 432, and m3m classes and isotropic Kerr media such as glass. Simple calculation demonstrates that a kind of glass-ceramic material with a large Kerr constant can be used for the design of the proposed electro-optic multiplier.

  3. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  4. Experimental electro-thermal method for nondestructively testing welds in stainless steel pipes

    International Nuclear Information System (INIS)

    Green, D.R.

    1979-01-01

    Welds in austenitic stainless steel pipes are notoriously difficult to nondestructively examine using conventional ultrasonic and eddy current methods. Survace irregularities and microscopic variations in magnetic permeability cause false eddy current signal variations. Ultrasonic methods have been developed which use computer processing of the data to overcome some of the problems. Electro-thermal nondestructive testing shows promise for detecting flaws that are difficult to detect using other NDT methods. Results of a project completed to develop and demonstrate the potential of an electro-thermal method for nondestructively testing stainless steel pipe welds are presented. Electro-thermal NDT uses a brief pulse of electrical current injected into the pipe. Defects at any depth within the weld cause small differences in surface electrical current distribution. These cause short-lived transient temperature differences on the pipe's surface that are mapped using an infrared scanning camera. Localized microstructural differences and normal surface roughness in the welds have little effect on the surface temperatures

  5. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  6. Flexible mobile robot system for smart optical pipe inspection

    Science.gov (United States)

    Kampfer, Wolfram; Bartzke, Ralf; Ziehl, Wolfgang

    1998-03-01

    Damages of pipes can be inspected and graded by TV technology available on the market. Remotely controlled vehicles carry a TV-camera through pipes. Thus, depending on the experience and the capability of the operator, diagnosis failures can not be avoided. The classification of damages requires the knowledge of the exact geometrical dimensions of the damages such as width and depth of cracks, fractures and defect connections. Within the framework of a joint R&D project a sensor based pipe inspection system named RODIAS has been developed with two partners from industry and research institute. It consists of a remotely controlled mobile robot which carries intelligent sensors for on-line sewerage inspection purpose. The sensor is based on a 3D-optical sensor and a laser distance sensor. The laser distance sensor is integrated in the optical system of the camera and can measure the distance between camera and object. The angle of view can be determined from the position of the pan and tilt unit. With coordinate transformations it is possible to calculate the spatial coordinates for every point of the video image. So the geometry of an object can be described exactly. The company Optimess has developed TriScan32, a special software for pipe condition classification. The user can start complex measurements of profiles, pipe displacements or crack widths simply by pressing a push-button. The measuring results are stored together with other data like verbal damage descriptions and digitized images in a data base.

  7. Electro Spray Method for Flexible Display

    Science.gov (United States)

    2016-05-12

    AFRL-AFOSR-JP-TR-2016-0095 Electro Spray Method for Flexible Display Yukiharu Uraoka NARA INSTITUTE OF SCIENCE AND TECHNOLOGY Final Report 11/26/2016...DATES COVERED (From - To)  20 Mar 2013 to 19 May 2016 4. TITLE AND SUBTITLE Electro Spray Method for Flexible Display 5a.  CONTRACT NUMBER 5b.  GRANT...NUMBER FA2386-13-1-4024 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Yukiharu Uraoka 5d.  PROJECT NUMBER 5e.  TASK NUMBER 5f.   WORK UNIT NUMBER 7

  8. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  9. Electro-optic transceivers for terahertz-wave applications

    International Nuclear Information System (INIS)

    Chen, Q.; Tani, M.; Jiang, Zhiping; Zhang, X.-C.

    2001-01-01

    Because of the reciprocal behavior of the optical rectification and the electro-optic effect in a nonlinear optical crystal, an electro-optic transceiver can alternately transmit pulsed electromagnetic radiation (optical rectification) and detect the return signal (electro-optic effect) in the same crystal. However, the optimal condition of the electro-optic transceiver may be very different from that of the spatially separated emitter and receiver. We present a detailed description of the crystal-orientation dependence of the electro-optic terahertz devices (transmitter, receiver, and transceiver). It is found that for a (110) zinc-blende electro-optical crystal, the efficiency of the electro-optic transceiver will be optimized when the angle between the polarization of the optical pump beam and the crystallographic z axis [0,0,1] is 26 degree. Meanwhile, for a (111) crystal, the angle between the optical beam and the crystallographic direction [-1,-1,2] should be 23 degree. The experimental results from a (110) ZnTe transceiver verify theoretical calculations and demonstrate a direct way to optimize the working efficiency of an electro-optic terahertz transceiver. [copyright] 2001 Optical Society of America

  10. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  11. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Sluis, K.L.V.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurement has been the development of suitable polarization modulators for submillimeter wavelength. The problems are to obtain high optical transmission and fast modulation frequencies. In ORNL, the authors have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequency of approximately 100 kHz, and both have high transmission. The original magneto-optic modulator consists of a 3 mm thick by 1.4 cm diameter 2-111 ferrite disk mounted at the center of an air core coil. Recently, a new ferrite modulator has been tested, which allows a much higher modulation frequency than the original device. A laboratory set-up designed to simulate a plasma heterodyne interferometer/polarimeter experiment has been used to determine the modulator characteristics. A mechanical polarization rotor was used to simulate the rotation by plasma. The transmission of the ferrite disk was 80 % at a wavelength of 0.447 mm. The authors have also performed preliminary measurement on an electro-optic modulator first demonstrated by Fetterman at Lincoln Laboratory, U.S. This device is a classical electro-optic modulator using a cryogenically cooled (4.2 K) LiTaO 3 crystal. Experiments are underway to determine the electro-optic properties of the crystal over the temperature range from 4.2 K to 77 K and over the range of wavelength from 0.118 mm to 0.447 mm. (Wakatsuki, Y.)

  12. Electro-optic polymers for high speed modulators

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature $(T_g)$ and photodefinable properties. The polymers tested are polysulfone (PS) and polycarbonate (PC). The electro-optic chromophore,

  13. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  14. Measurement of pipe wall thinning by ultra acoustic resonance technique using optical fiber

    International Nuclear Information System (INIS)

    Shirai, Takehiro; Machijima, Yuichi

    2009-01-01

    This is the novel system for Pipe Wall Thickness measurement which is combined EAMT(Electro Magnetic Acoustic Transducer) and Optical Fiber Sensor. The conventional ultrasonic thickness meter is using in pipe wall thickness measurement. However, it is necessary to remove a heat insulator from pipe line. A characteristic of this novel system is that it is possible to measure without removing a heat insulator and on-line monitoring, because of measurement probe is attached between pipe surface and heat insulator. As a result of measured with this system, we could measure 30 mm thickness of carbon and stainless steel at the maximum and pipe specimen of elbow shape. Heat-resistant characteristic confirmed at 200 degrees C until about 7000 hours. (author)

  15. Crosslinked polyimide electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D. [Case Western Reserve University, Department of Physics, Cleveland, Ohio 44106-7079 (United States); Beuhler, A.J.; Wargowski, D.A. [Amoco Research Center, Amoco Chemical Co., Naperville, Illinois 60566 (United States); Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Laboratories, Division 1811, Albuquerque, New Mexico 87185-1407 (United States); Ermer, S. [Lockheed Research and Development Division, Palo Alto, California 94304 (United States)

    1995-11-15

    We report studies of the optical and electro-optic properties of guest--host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest--host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile) (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest--host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays

    Science.gov (United States)

    Buyuktanir, Ebru Aylin

    My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of Sm

  17. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  18. Comparison and evaluation of flexible and stiff piping systems

    International Nuclear Information System (INIS)

    Hahn, W.; Tang, H.T.; Tang, Y.K.

    1983-01-01

    An experimental and numerical study was performed on a piping system, with various support configurations, to assess the difference in piping response for flexible and stiff piping systems. Questions have arisen concerning a basic design philosophy employed in present day piping designs. One basic question is, the reliability of a flexible piping system greater than that of a stiff piping system by virtue of the fact that a flexible system has fewer snubber supports. With fewer snubbers, the pipe is less susceptible to inadvertent thermal stresses introduced by snubber malfunction during normal operation. In addition to the technical issue, the matter of cost savings in flexible piping system design is a significant one. The costs associated with construction, in-service inspection and maintenance are all significantly reduced by reducing the number of snubber supports. The evaluation study, sponsored by the Electric Power Research Institute, was performed on a boiler feedwater line at Consolidated Edison's Indian Point Unit 1. In this study, the boiler feedwater line was tested and analyzed with two fundamentally different support systems. The first system was very flexible, employing rod and spring hangers, and represented the 'old' design philosophy. The pipe system was very flexible with this support system, due to the long pipe span lengths between supports and the fact that there was only one lateral support. This support did not provide much restraint since it was near an anchor. The second system employed strut and snubber supports and represented the 'modern' design philosophy. The pipe system was relatively stiff with this support system, primarily due to the increased number of supports, including lateral supports, thereby reducing the pipe span lengths between supports. The second support system was designed with removable supports to facilitate interchange of the supports with different support types (i.e., struts, mechanical snubbers and hydraulic

  19. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  20. Optical and electro-optic anisotropy of epitaxial PZT thin films

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  1. Direct electro-optic effect in langasites and α-quartz

    Science.gov (United States)

    Ivanov, Vadim

    2018-05-01

    Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.

  2. Analysis of the jet pipe electro-hydraulic servo valve with finite element methods

    Directory of Open Access Journals (Sweden)

    Kaiyu Zhao

    2018-01-01

    Full Text Available The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve.

  3. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  4. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Ido [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Aluma, Yaniv; Ilan, Micha [Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Kityk, Iwan [Institute of Electronic Systems, Faculty of Electrical Engineering, Czestochowa University, Czestochowa 42-201 (Poland); Mastai, Yitzhak, E-mail: Yitzhak.Mastai@biu.ac.il [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.

  5. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    International Nuclear Information System (INIS)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-01-01

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties

  6. Technical considerations for flexible piping design in nuclear power plants

    International Nuclear Information System (INIS)

    Lu, S.C.; Chou, C.K.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. A couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design were investigated. It was concluded that these changes substantially reduce calculated piping responses and allows piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements

  7. Comparison of ICEPEL predictions with single elbow flexible piping system experiment

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.

    1978-01-01

    The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90 0 thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by Stanford Research Institute

  8. Rational design of organic electro-optic materials

    CERN Document Server

    Dalton, L R

    2003-01-01

    Quantum mechanical calculations are used to optimize the molecular first hyperpolarizability of organic chromophores and statistical mechanical calculations are used to optimize the translation of molecular hyperpolarizability to macroscopic electro-optic activity (to values of greater than 100 pm V sup - sup 1 at telecommunications wavelengths). Macroscopic material architectures are implemented exploiting new concepts in nanoscale architectural engineering. Multi-chromophore-containing dendrimers and dendronized polymers not only permit optimization of electro-optic activity but also of auxiliary properties including optical loss (both absorption and scattering), thermal and photochemical stability and processability. New reactive ion etching and photolithographic techniques permit the fabrication of three-dimensional optical circuitry and the integration of that circuitry with semiconductor very-large-scale integration electronics and silica fibre optics. Electro-optic devices have been fabricated exploiti...

  9. Electro-optical Detection of Charged Particles

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    2001-01-01

    The electric field of charged particles can induce transient changes in the polarization of light that produce sub-picosecond modulation of a laser beam. This is a consequence of the electro-optical effect in which the presence of the electric field in an electro-optical medium produces a change in the index of refraction of the medium resulting in a phase retardation between polarization components parallel and perpendicular to the electric field. We have observed the electro-optical effect due to 10 picosecond electron beam bunches with rise times that were limited by the bandwidth of our data acquisition system. This technology is being applied to particle beam diagnostics and has the potential to produce charged particle detectors combining excellent spatial resolution with unprecedented temporal precision.

  10. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    International Nuclear Information System (INIS)

    Steffen, B.R.

    2007-07-01

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  11. Electro-optic methods for longitudinal bunch diagnostics at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, B.R.

    2007-07-15

    Precise measurements of the temporal profile of sub-picosecond electron bunches are of high interest for the optimization and operation of VUV and X-ray free electron lasers. In this thesis, the shortest electro-optic signals measured so far for electron bunch diagnostics are presented, reaching a time resolution of better than 50 fs (rms). The e ects that introduce signal distortions and limit the time resolution are studied in numerical simulations for different electro-optic detection materials and techniques. The time resolution is mainly limited by lattice resonances of the electro-optic crystal. Electro-optic signals as short as 54 fs (rms) are obtained with gallium phosphide (GaP) crystals in a crossed polarizer detection scheme using temporally resolved electro-optic detection. Measuring near crossed polarization, where the electro-optic signal is proportional to the velocity field of the relativistic electron bunch, the shortest obtained signal width is 70 fs (rms). The electro-optic signals are compared to electron bunch shapes that are measured simultaneously with a transverse deflecting structure with 20 fs resolution. Numerical simulations using the bunch shapes as determined with the transverse deflecting cavity as input data are in excellent agreement with electro-optical signals obtained with GaP, both for temporally and spectrally resolved measurements. In the case of zinc telluride (ZnTe) the observed signals are slightly broader and significantly smaller than expected from simulations. These discrepancies are probably due to the poor optical quality of the available ZnTe crystals. (orig.)

  12. Internal ultrasonic inspection of flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, O. (IKU Petroleumsforskning A/S, Trondheim (Norway) Norwegian Inst. of Tech., Trondheim (Norway). Div. of Petroleum Engineering and Applied Geophysics); Waag, T.I. (IKU Petroleumsforskning A/S, Trondheim (Norway))

    1993-10-01

    Methods for internal ultrasonic inspection of flexible pipe have been investigated through experiments with a short sample of Coflexip pipe. Ultrasonic backscatter methods using normal and non-normal incidence have been used for qualitative high contrast ultrasonic imaging of the inner surface of the pipe. Analysis of the internal cross-section has been performed based on the use of a non-contact ultrasonic caliper, and processing procedures which enable calculation of, and compensation for, eccentricity of the tool in the pipe. The methods developed can be used to quantitatively estimate the thickness of the internal carcass, and perform high resolution topographic mapping of the inner surface. (Author)

  13. Theory-inspired development of organic electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Larry R., E-mail: dalton@chem.washington.ed [Department of Chemistry, Bagley Hall 202D, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States); Department of Electrical Engineering, Bagley Hall 202D, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States)

    2009-11-30

    Real-time, time-dependent density functional theory (RTTDDFT) and pseudo-atomistic Monte Carlo-molecular dynamics (PAMCMD) calculations have been used in a correlated manner to achieve quantitative definition of structure/function relationships necessary for the optimization of electro-optic activity in organic materials. Utilizing theoretical guidance, electro-optic coefficients (at telecommunication wavelengths) have been increased to 500 pm/V while keeping optical loss to less than 2 dB/cm. RTTDDFT affords the advantage of permitting explicit treatment of time-dependent electric fields, both applied fields and internal fields. This modification has permitted the quantitative simulation of the variation of linear and nonlinear optical properties of chromophores and the electro-optic activity of materials with optical frequency and dielectric permittivity. PAMCMD statistical mechanical calculations have proven an effective means of treating the full range of spatially-anisotropic intermolecular electrostatic interactions that play critical roles in defining the degree of noncentrosymmetric order that is achieved by electric field poling of organic electro-optic materials near their glass transition temperatures. New techniques have been developed for the experimental characterization of poling-induced acentric order including a modification of variable angle polarization absorption spectroscopy (VAPAS) permitting a meaningful correlation of theoretical and experimental data related to poling-induced order for a variety of complex organic electro-optic materials.

  14. Theory-inspired development of organic electro-optic materials

    International Nuclear Information System (INIS)

    Dalton, Larry R.

    2009-01-01

    Real-time, time-dependent density functional theory (RTTDDFT) and pseudo-atomistic Monte Carlo-molecular dynamics (PAMCMD) calculations have been used in a correlated manner to achieve quantitative definition of structure/function relationships necessary for the optimization of electro-optic activity in organic materials. Utilizing theoretical guidance, electro-optic coefficients (at telecommunication wavelengths) have been increased to 500 pm/V while keeping optical loss to less than 2 dB/cm. RTTDDFT affords the advantage of permitting explicit treatment of time-dependent electric fields, both applied fields and internal fields. This modification has permitted the quantitative simulation of the variation of linear and nonlinear optical properties of chromophores and the electro-optic activity of materials with optical frequency and dielectric permittivity. PAMCMD statistical mechanical calculations have proven an effective means of treating the full range of spatially-anisotropic intermolecular electrostatic interactions that play critical roles in defining the degree of noncentrosymmetric order that is achieved by electric field poling of organic electro-optic materials near their glass transition temperatures. New techniques have been developed for the experimental characterization of poling-induced acentric order including a modification of variable angle polarization absorption spectroscopy (VAPAS) permitting a meaningful correlation of theoretical and experimental data related to poling-induced order for a variety of complex organic electro-optic materials.

  15. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurements has been the development of suitable polarization modulators for submillimeter wavelengths. The problems are to obtain high optical transmission and fast modulation frequencies. At ORNL we have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequencies of approximately 100 kHz and both have high transmission

  16. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  17. Fatigue analysis of flexible pipes using alternative element types and bend stiffener data

    OpenAIRE

    Chen, Minghao

    2011-01-01

    The flexible pipe is a vital part of a floating production system. The lifetime of a flexible riser system is crucial for the Health Safety and Environment (HSE) management. As a result of this, it is very necessary to carry out research on the lifetime of flexible pipe. In this thesis we formalized analysis on flexible pipes, utilizing the finite element analysis software BFLEX 2010, developed by MARINTEK. Chapter 1 describes basic knowledge about flexible pipe and relevant facilities. C...

  18. Electro-optically actuated liquid-lens zoom

    Science.gov (United States)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  19. Electro-Optical Parameters Of Hairy Rod Polymer/Dimethylformamide System

    International Nuclear Information System (INIS)

    Spasevska, Hristina

    2003-01-01

    Rigid rod polymers are materials with special features, that is the reason why they have large scientific and technological applications like isotropic-nematic and other types of transition. One of the biggest problems that happen while investigation to these polymers, at molecular level, is their poor solubility in most of the common solvents. Solubility gets better if while synthesize junctions flexible side chains, [1]. Remaining polymers belong on one new class - hairy rod polymers and have big potential for their technological applications. Because of their nonlinear optical properties and opportunity for self-organization in super molecular structures (films and fibers), can be used in electronics and telecommunications industry either at display-technologies [2]. That is the main reason why controlling the remaining polymer features and connection of their microscopic and macroscopic characteristics, like an complete characterization (in solutions and solid state) is from essential scientific interest, actually it is an imperative. The polymer POD-2/that is subject of investigation, bellows to hairy rod polymers and it is synthesized for the first time [3] by giving a support to their characterization. Measures on diluted solutions from the system POD-2/dimethylformamide are made by the method electric birefringence, at three temperatures (25, 40 and 55 o C). For different concentrations on system, from obtained electro-optical signals (EOS), dependence on electric birefringence (Δn) against applied electric field (E 2 ), is determined. By investigation of electro-optical effects, especially studding the way of their maintenance and losing, while applying electric square impulses, relaxation time τ o of polymer molecules is calculated. From these parameters, as presented data for EOS rise and decay too, deformational electro-optical effect has been determined. (Author)

  20. SCALE FACTOR DETERMINATION METHOD OF ELECTRO-OPTICAL MODULATOR IN FIBER-OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2016-05-01

    Full Text Available Subject of Research. We propose a method for dynamic measurement of half-wave voltage of electro-optic modulator as part of a fiber optic gyroscope. Excluding the impact of the angular acceleration o​n measurement of the electro-optical coefficient is achieved through the use of homodyne demodulation method that allows a division of the Sagnac phase shift signal and an auxiliary signal for measuring the electro-optical coefficient in the frequency domain. Method. The method essence reduces to decomposition of step of digital serrodyne modulation in two parts with equal duration. The first part is used for quadrature modulation signals. The second part comprises samples of the auxiliary signal used to determine the value of the scale factor of the modulator. Modeling is done in standalone model, and as part of a general model of the gyroscope. The applicability of the proposed method is investigated as well as its qualitative and quantitative characteristics: absolute and relative accuracy of the electro-optic coefficient, the stability of the method to the effects of angular velocities and accelerations, method resistance to noise in actual devices. Main Results. The simulation has showed the ability to measure angular velocity changing under the influence of angular acceleration, acting on the device, and simultaneous measurement of electro-optical coefficient of the phase modulator without interference between these processes. Practical Relevance. Featured in the paper the ability to eliminate the influence of the angular acceleration on the measurement accuracy of the electro-optical coefficient of the phase modulator will allow implementing accurate measurement algorithms for fiber optic gyroscopes resistant to a significant acceleration in real devices.

  1. A flexible film type EMAT for inspection of small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Cuixiang; Xiao, Pan; Zhao, Siqi; Chen, Zhenmao [Xi' an Jiaotong University, Xi' an (China); Takagi, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai (Japan)

    2017-08-15

    Pipe structures are widely applied in industries, and different kinds of defects may occur in the structures during their long-time service. For non-destructive testing of defects in pipes of small diameter, it has to be conducted from the inner side of the pipe when there is no space for detection from the outside or the geometry of the outside tube surface is too complicated. In this work, a flexible film type Electromagnetic acoustic transducer (EMAT) probe with a dual coil configuration is developed. The new probe is flexible and can be inserted into the pipe for inspection. First, the feasibility of the new probe was studied through numerical simulation. Then the feasibility of the proposed flexible EMAT for detection of wall thinning in small diameter pipe was verified experimentally. It was found that the new EMAT method is suitable for the detection of wall thinning defects for small pipes.

  2. Building electro-optical systems making it all work

    CERN Document Server

    Hobbs, Philip C D

    2009-01-01

    Praise for the First Edition ""Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work.""-Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexit

  3. Electro-Optics/Low Observables Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optics/Low Observables Laboratory supports graduate instruction for students enrolled in the Low Observables program. Its purpose is to introduce these...

  4. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    Science.gov (United States)

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  5. Future electro-optical sensors and processing in urban operations

    NARCIS (Netherlands)

    Grönwall, C.; Schwering, P.B.; Rantakokko, J.; Benoist, K.W.; Kemp, R.A.W.; Steinvall, O.; Letalick, D.; Björkert, S.

    2013-01-01

    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of

  6. Rational design of organic electro-optic materials

    International Nuclear Information System (INIS)

    Dalton, L R

    2003-01-01

    Quantum mechanical calculations are used to optimize the molecular first hyperpolarizability of organic chromophores and statistical mechanical calculations are used to optimize the translation of molecular hyperpolarizability to macroscopic electro-optic activity (to values of greater than 100 pm V -1 at telecommunications wavelengths). Macroscopic material architectures are implemented exploiting new concepts in nanoscale architectural engineering. Multi-chromophore-containing dendrimers and dendronized polymers not only permit optimization of electro-optic activity but also of auxiliary properties including optical loss (both absorption and scattering), thermal and photochemical stability and processability. New reactive ion etching and photolithographic techniques permit the fabrication of three-dimensional optical circuitry and the integration of that circuitry with semiconductor very-large-scale integration electronics and silica fibre optics. Electro-optic devices have been fabricated exploiting stripline, cascaded prism and microresonator device structures. Sub-1 V drive voltages and operational bandwidths of greater than 100 GHz have been demonstrated. Both single-and double-ring microresonators have been fabricated for applications such as active wavelength division multiplexing. Free spectral range values of 1 THz and per channel modulation bandwidths of 15 GHz have been realized permitting single-chip data rates of 500 Gb s -1 . Other demonstrated devices include phased array radar, optical gyroscopes, acoustic spectrum analysers, ultrafast analog/digital converters and ultrahigh bandwidth signal generators. (topical review)

  7. LMFBR flexible pipe joint development program. Annual technical progress report, government fiscal year 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Currently, the ASME Boiler and Pressure Vessel Code does not allow the use of flexible pipe joints (bellows) in Section III, Class 1 reactor primary piping systems. Studies have shown that the primary piping loops of LMFBR's could be simplified by using these joints. This simplification translates directly into shorter primary piping runs and reduced costs for the primary piping system. Further cost savings result through reduced vault sizes and reduced containment building diameter. In addition, the use of flexible joints localizes the motions from thermally-induced piping growth into components which are specifically designed to accommodate this motion. This reduces the stress levels in the piping system and its components. It is thus economically and structurally important that flexible piping joints be available to the LMFBR designer. The overall objective of the Flexible Joint Program is to provide this availability. This will be accomplished through the development of ASME rules which allow the appropriate use of such joints in Section III, Class 1 piping systems and through the development and demonstration of construction methods which satisfy these rules. The rule development includes analytic and testing methodology formulations which will be supported by subscale bellows testing. The construction development and demonstration encompass the design, fabrication, and in-sodium testing of prototypical LMFBR plant-size flexible pipe joints which meet all ASME rule requirements. The satisfactory completion of these developmental goals will result in an approved flexible pipe joint design for the LMFBR. Progress is summarized in the following efforts undertaken during 1977 to accomplish these goals: (1) code case support, (2) engineering and design, (3) material development, (4) testing, and (5) manufacturing development

  8. Optical logic gates based on electro-optic modulation with Sagnac interferometer.

    Science.gov (United States)

    Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong

    2014-07-20

    In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12)  m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.

  9. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  10. Electro-optical frequency shifting of lasers for plasma diagnostics

    International Nuclear Information System (INIS)

    Forman, P.R.

    1977-07-01

    An electro-optical frequency shifting device is proposed as an aid for plasma physics heterodyne interferometry and heterodyne scattering experiments. The method has the advantage over other electro-optic shifters, that a pure separable frequency shifted beam can be obtained even when less than half wave voltage is applied. (orig.) [de

  11. Electro-optical rendezvous and docking sensors

    Science.gov (United States)

    Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.

    1991-01-01

    Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.

  12. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLEXIBLE BURIED PIPE DEFORMATION BEHAVIOR UNDER VARIOUS BACKFILL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Niyazi Uğur TERZİ

    2009-01-01

    Full Text Available Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transducers and strain gauge rosettes are used in the laboratory tests. In order to analyze the buried pipe performance; Masada Derivation Formula which is mostly used by designers is employed. According to the test and mathematical studies, it is understood that relative density of backfill and its settlement method is a considerable effect on buried pipe performance and Masada Derivation method is very efficient for predicting the pipe performance.

  13. Systems engineering and analysis of electro-optical and infrared systems

    CERN Document Server

    Arrasmith, William Wolfgang

    2015-01-01

    Introduction to Electro-optic and Infrared (EO/IR) Systems Engineering?Radiation in the Visible and Infrared Parts of the Electromagnetic SpectrumRadiation SourcesThe Effect of the Atmosphere on Optical PropagationBasic OpticsOptical ModulationThe Detection of Optical RadiationNoise in the Optical Detection ProcessTechnical Performance Measures and Metrics of Optical DetectorsModern Detectors and their Measures of PerformanceThe Effects of Cooling on Optical Detector NoiseSignal and Image ProcessingElectro-Optic and Infrared Systems AnalysisLaser Imaging Systems?Spectral Imaging?LIDAR and LADA

  14. A novel numerical model for estimating the collapse pressure of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Victor P.P.; Antoun Netto, Theodoro [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia], e-mail: victor@lts.coppe.ufrj.br

    2009-07-01

    As the worldwide oil and gas industry operational environments move to ultra-deep waters, failure mechanisms in flexible pipes such as instability of the armor layers under compression and hydrostatic collapse are more likely to occur. Therefore, it is important to develop reliable numerical tools to reproduce the failure mechanisms that may occur in flexible pipes. This work presents a representative finite element model of flexible pipe capable to reproduce its pre and post-collapse behavior under hydrostatic pressure. The model, developed in the scope of this work, uses beam elements and includes nonlinear kinematics and material behavior influences. The dependability of the numerical results is assessed in light of experimental tests on flexible pipes with 4 inches and 8 inches nominal diameter available in the literature (Souza, 2002). The applied methodology provided coherent values regarding the estimation of the collapse pressures and results have shown that the proposed model is capable to reproduce experimental results. (author)

  15. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  16. Quantum model for electro-optical amplitude modulation.

    Science.gov (United States)

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  17. Missile Electro-Optical Countermeasures Simulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory comprises several hardware-in-the-loop missile flight simulations designed specifically to evaluate the effectiveness of electro-optical air defense...

  18. Progress in Nano-Electro-Optics III Industrial Applications and Dynamics of the Nano-Optical System

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This unique monograph series "Progress in Nano-Electro Optics" reviews the results of advanced studies of electro-optics on the nanometric scale. This third volume covers the most recent topics of theoretical and experimental interest including classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics. Each chapter is written by one or more leading scientists from the relevant field. Thus, high-quality scientific and technical information is provided to scientists, engineers, and students engaged in nano-electro optics and nanophotonics research. The first two volumes addressed the "Basics and Theory of Near Field Optics" (2002) and "Novel Devices and Atom Manipulation" (2003).

  19. Voltages and electric currents mensuration - class 15 kV - for systems electro-optical and magneto-optical; Medicao de tensoes e correntes - classe 15 kv - por sistemas eletro-opticos e magneto-opticos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Marcos Rodrigues

    1996-07-01

    The technical feasibility of the development of a novel system measuring of high voltage and current in 15 kV distribution lines was presented. The system is basically the combination of two other systems, one conventional and other electro-optical. The conventional subsystem is based on voltage dividers and magnetic rings while the electro-optical subsystem uses LEDs, resistors, optical-fibers and photodetectors. The system was completely tested in laboratory and its main characteristics are low price, easy of installation and flexibility. Two software for data acquisition by GPIB and A/D boards were also developed. The can provide reports on voltages, currents, power and phase-power. (author)

  20. A methodology to evaluate the fatigue life of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernando J.M. de; Sousa, Jose Renato M. de; Siqueira, Marcos Q. de; Sagrilo, Luis V.S. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Lemos, Carlos Alberto D. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper focus on a methodology to perform the fatigue analysis of flexible pipes. This methodology employs functions that convert forces and moments obtained in global analyses into stresses. The stresses are then processed by well-known cycle counting methods, and S-N curves evaluate the damage at several points in the pipe cross-section. Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A parametric study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers in the results, the importance of evaluating the fatigue life in various points of the pipe cross-section and the effect of different mean stress levels. The obtained results suggest that the consideration of friction effects strongly influences the fatigue life of flexible risers and these effects have to be accounted both in the global and local analyses of the riser. Moreover, mean stress effects are also significant and at least 8 equally spaced wires in each analyzed section of the riser must be considered in fatigue analyses. (author)

  1. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  2. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  3. Design of an Electro-Optic Modulator for High Speed Communications

    Science.gov (United States)

    Espinoza, David

    The telecommunications and computer technology industries have been requiring higher communications speeds at all levels for devices, components and interconnected systems. Optical devices and optical interconnections are a viable alternative over other traditional technologies such as copper-based interconnections. Latency reductions can be achieved through the use of optical interconnections. Currently, a particular architecture for optical interconnections is being studied at the University of Colorado at Boulder in the EMT/NANO project, called Broadcast Optical Interconnects for Global Communication in Many-Core Chip Multiprocessor. As with most types of networks, including optical networks, one of the most important components are modulators. Therefore adequate design and fabrication techniques for modulators contribute to higher modulation rates which lead to improve the efficiency and reductions in the latency of the optical network. Electro-optical modulators are presented in this study as an alternative to achieve this end. In recent years, nonlinear optical (NLO) materials have been used for the fabrication of high-speed electro-optical modulators. Polymers doped with chromophores are an alternative among NLO materials because they can develop large electro-optic coefficients and low dielectric constants. These two factors are critical for achieving high-speed modulation rates. These polymer-based electro-optical modulators can be fabricated using standard laboratory techniques, such as polymer spin-coating onto substrates, UV bleaching to achieve a refractive index variation and poling techniques to align the chromophores in cured polymers. The design of the electro-optic modulators require the use of the optical parameters of the materials to be used. Therefore the characterization of these materials is a required previous step. This characterization is performed by the fabrication of chromophores-doped polymer samples and conducting transmission and

  4. CAPD Software Development for Automatic Piping System Design: Checking Piping Pocket, Checking Valve Level and Flexibility

    International Nuclear Information System (INIS)

    Ari Satmoko; Edi Karyanta; Dedy Haryanto; Abdul Hafid; Sudarno; Kussigit Santosa; Pinitoyo, A.; Demon Handoyo

    2003-01-01

    One of several steps in industrial plant construction is preparing piping layout drawing. In this drawing, pipe and all other pieces such as instrumentation, equipment, structure should be modeled A software called CAPD was developed to replace and to behave as piping drafter or designer. CAPD was successfully developed by adding both subprogram CHKUPIPE and CHKMANV. The first subprogram can check and gives warning if there is piping pocket in the piping system. The second can identify valve position and then check whether valve can be handled by operator hand The main program CAPD was also successfully modified in order to be capable in limiting the maximum length of straight pipe. By limiting the length, piping flexibility can be increased. (author)

  5. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    Science.gov (United States)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  6. Complete achromatic and robustness electro-optic switch between two integrated optical waveguides

    Science.gov (United States)

    Huang, Wei; Kyoseva, Elica

    2018-01-01

    In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.

  7. High performance electro-optical modulator based on photonic crystal and graphene

    Science.gov (United States)

    Malekmohammad, M.; Asadi, R.

    2017-07-01

    An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.

  8. Hybrid electro-optics and chipscale integration of electronics and photonics

    Science.gov (United States)

    Dalton, L. R.; Robinson, B. H.; Elder, D. L.; Tillack, A. F.; Johnson, L. E.

    2017-08-01

    Taken together, theory-guided nano-engineering of organic electro-optic materials and hybrid device architectures have permitted dramatic improvement of the performance of electro-optic devices. For example, the voltage-length product has been improved by nearly a factor of 104 , bandwidths have been extended to nearly 200 GHz, device footprints reduced to less than 200 μm2 , and femtojoule energy efficiency achieved. This presentation discusses the utilization of new coarse-grained theoretical methods and advanced quantum mechanical methods to quantitatively simulate the physical properties of new classes of organic electro-optic materials and to evaluate their performance in nanoscopic device architectures, accounting for the effect on chromophore ordering at interfaces in nanoscopic waveguides.

  9. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    Science.gov (United States)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were

  10. On modelling of lateral buckling failure in flexible pipe tensile armour layers

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...... when exposed to repeated bending cycles and longitudinal compression, which mainly occurs during pipe laying in ultra-deep waters. On the basis of multiple single wire analyses, the mechanical behaviour of both layers of tensile armour wires can be determined. Since failure in one layer destabilises...... the torsional equilibrium which is usually maintained between the layers, lateral wire buckling is often associated with a severe pipe twist. This behaviour is discussed and modelled. Results are compared to a pipe model, in which failure is assumed not to cause twist. The buckling modes of the tensile armour...

  11. Study of near-source earthquake effects on flexible buried pipes

    Science.gov (United States)

    Davis, Craig Alan

    2000-10-01

    An investigation is carried out, using strong ground motion recordings, field measurements, and new analytical models, on large diameter flexible buried pipes shaken in the 1994 Northridge earthquake near field. Case studies are presented for corrugated metal pipes (CMP) in the Van Norman Complex (VNC) vicinity in Los Angeles, California. In 1994 the VNC yielded an unprecedented number of strong motion recordings with high acceleration and velocity. These recordings contain forward directivity pulses and provided the largest velocity ever instrumentally recorded (180 cm/s). The recorded motions were significantly different in the longitudinal and transverse directions and had approximately half the amplitude at the VNC center than on the north and south ends. The seismic performances of 61 underground CMPs are presented, beginning with detailed studies of a 2.4 m diameter pipe that suffered complete lateral buckling collapse at the Lower San Fernando Dam (LSFD). The case histories identify factors controlling large diameter CMP seismic performances that are incorporated into several newly developed models for the analysis and design of buried structures. Each model progressively improves the understanding of buried pipe behavior. Simple acceleration- and strain-based pseudo-static models are initially developed to identify main causes for CMP damage. Elasto-dynamic models for transverse SV waves are later used to understand flexible pipe response in the frequency and time domains and are compared with existing solutions. Finally, pseudo-static models, which analyze pipe responses in terms of free-field strains, are formulated to account for dynamic amplification, non-vertical wave incidence, soil layering, and trench backfill soil stiffness. The elastic models are used to investigate soil-pipe interface shear stress and non-linear soil behavior and show that the maximum pipe hoop force is best characterized by assuming no interface slippage. The models explain the

  12. A Simple Approach to Dynamic Optimisation of Flexible Optical Networks with Practical Application

    Directory of Open Access Journals (Sweden)

    Vic Grout

    2017-05-01

    Full Text Available This paper provides an initial introduction to, and definition of, the ‘Dynamically Powered Relays for a Flexible Optical Network’ (DPR-FON problem for opto-electro-optical (OEO regenerators used in optical networks. In such networks, optical transmission parameters can be varied dynamically as traffic patterns change. This will provide different bandwidths, but also change the regeneration limits as a result. To support this flexibility, OEOs (‘relays’ may be switched on and off as required, thus saving power. DPR-FON is shown to be NP-complete; consequently, solving such a dynamic problem in real-time requires a fast heuristic capable of delivering an acceptable approximation to the optimal configuration with low complexity. In this paper, just such an algorithm is developed, implemented, and evaluated against more computationally-demanding alternatives for two known cases. A number of real-world extensions are considered as the paper develops, combining to produce the ‘Generalised Dynamically Powered Relays for a Flexible Optical Network’ (GDPR-FON problem. This, too, is analysed and an associated fast heuristic proposed, along with an exploration of the further research that is required.

  13. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  14. Electro-optical characteristics of a liquid crystal cell with graphene electrodes

    Directory of Open Access Journals (Sweden)

    Nune H. Hakobyan

    2017-12-01

    Full Text Available In liquid crystal devices (LCDs the indium tin oxide (ITO films are traditionally used as transparent and conductive electrodes. However, today, due to the development of multichannel optical communication, the need for flexible LCDs and multilayer structures has grown. For this application ITO films cannot be used in principle. For this problem, graphene (an ultrathin material with unique properties, e.g., high optical transparency, chemical inertness, excellent conductivity is an excellent candidate. In this work, the electro-optical and dynamic characteristics of a liquid crystal (LC cell with graphene and ITO transparent conducting layers are investigated. To insure uniform thickness of the LC layer, as well as the same orientation boundary conditions, a hybrid LC cell containing graphene and ITO conductive layers has been prepared. The characteristics of LC cells with both types of conducting layers were found to be similar, indicating that graphene can be successfully used as a transparent conductive layer in LC devices.

  15. Electro-Optical Data Acquisition and Tracking System

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optical Data Acquisition and Tracking System (EDATS) dynamically tracks and measures target signatures. It consists of an instrumentation van integrated...

  16. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  17. Present status of metrology of electro-optical surveillance systems

    Science.gov (United States)

    Chrzanowski, K.

    2017-10-01

    There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.

  18. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  19. Defence electro-optics: European perspective

    Science.gov (United States)

    Hartikainen, Jari

    2011-11-01

    In 2009 the United States invested in defence R&T 3,6 times and in defence research and development 6,8 times as much as all member states of the European Defence Agency (EDA) combined while the ratio in the total defence expenditure was 2,6 in the US' favour. The European lack of investments in defence research and development has a negative impact on the competitiveness of European defence industry and on the European non-dependence. In addition, the efficiency of investment is reduced due to duplication of work in different member states. The Lisbon Treaty tasks EDA to support defence technology research, and coordinate and plan joint research activities and the study of technical solutions meeting future operational needs. This paper gives an overview how EDA meets the challenge of improving the efficiency of European defence R&T investment with an emphasis on electro-optics and describes shortly the ways that governmental and industrial partners can participate in the EDA cooperation. Examples of joint R&T projects addressing electro-optics are presented.

  20. Theory-Guided Design of Organic Electro-Optic Materials and Devices

    Directory of Open Access Journals (Sweden)

    Stephanie Benight

    2011-08-01

    Full Text Available Integrated (multi-scale quantum and statistical mechanical theoretical methods have guided the nano-engineering of controlled intermolecular electrostatic interactions for the dramatic improvement of acentric order and thus electro-optic activity of melt-processable organic polymer and dendrimer electro-optic materials. New measurement techniques have permitted quantitative determination of the molecular order parameters, lattice dimensionality, and nanoscale viscoelasticity properties of these new soft matter materials and have facilitated comparison of theoretically-predicted structures and thermodynamic properties with experimentally-defined structures and properties. New processing protocols have permitted further enhancement of material properties and have facilitated the fabrication of complex device structures. The integration of organic electro-optic materials into silicon photonic, plasmonic, and metamaterial device architectures has led to impressive new performance metrics for a variety of technological applications.

  1. Night vision and electro-optics technology transfer, 1972 - 1981

    Science.gov (United States)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  2. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    Daniel Pipa

    2010-01-01

    Full Text Available Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit and SS (semisubmersible platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs adaptive filter.

  3. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  4. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  5. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Sidorin, Y.; Waechter, C.A.

    2006-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (Tg) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which

  6. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure

    Directory of Open Access Journals (Sweden)

    Song Feng

    2018-01-01

    Full Text Available The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

  7. Electro-optical tunable birefringent filter

    Science.gov (United States)

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  8. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  9. Analysis and Optimisation of Carcass Production for Flexible Pipes

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe

    Un-bonded flexible pipes are used in the offshore oil and gas industry worldwide transporting hydrocarbons from seafloor to floating production vessels topside. Flexible pipes are advantageous over rigid pipelines in dynamic applications and during installation as they are delivered in full length......-axial tension FLC points were attained. Analysis of weld fracture of duplex stainless steel EN 1.4162 is carried out determining strains with GOM ARAMIS automated strain measurement system, which shows that strain increases faster in the weld zone than the global strain of the parent material. Fracture...... is the analysis and optimisation of the carcass manufacturing process by means of a fundamental investigation in the fields of formability, failure modes / mechanisms, Finite Element Analysis (FEA), simulative testing and tribology. A study of failure mechanisms in carcass production is performed by being present...

  10. Investigation of noninvasive healing of damaged piping system using electro-magneto-mechanical methods

    KAUST Repository

    Mukherjee, Debanjan

    2014-01-01

    Virtually all engineering applications involve the use of piping, conduits and channels. In the petroleum industry, piping systems are extensively employed in upstream and downstream processes. These piping systems often carry fluids that are corrosive, which leads to wear, cavitation and cracking. The replacement of damaged piping systems can be quite expensive, both in terms of capital costs, as well as in operational downtime. This motivates the present research on noninvasive healing of cracked piping systems. In this investigation, we propose to develop computational models for characterizing noninvasive repair strategies involving electromagnetically guided particles. The objective is to heal industrial-piping systems noninvasively, from the exterior of the system, during operation, resulting in no downtime, with minimal relative cost. The particle accumulation at a target location is controlled by external electro-magneto-mechanical means. There are two primary effects that play a role for guiding the particles to the solid-fluid interface/wall: mechanical shear due to the fluid flow, and an electrical or magnetic force. In this work we develop and study a relationship that characterizes contributions of both, and ascertain how this relationship scales with characteristic physical parameters. Characteristic non-dimensional parameters that describe system behavior are derived and their role in design is illustrated. A detailed, fully 3-dimensional discrete element simulation framework is presented, and illustrated using a model problem of magnetically guided particles. The detailed particle behavior is considered to be regulated by three effects: (1) the field strength (2) the mass flow rate and (3) the wall interactions.

  11. High-power electro-optic switch technology based on novel transparent ceramic

    International Nuclear Information System (INIS)

    Zhang Xue-Jiao; Ye Qing; Qu Rong-Hui; Cai Hai-wen

    2016-01-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. (paper)

  12. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2017-03-01

    Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  13. Comparison of the stress distribution in the metallic layers of flexible pipes using two alternative Bflex formulations

    OpenAIRE

    Shi, Yunzhu

    2014-01-01

    Axisymmetric load is the most common load acting on flexible pipe. Modelling axisymmetric load correctly is very important to estimate the strength of a flexible pipe. The purpose of the thesis is to compare the stress distribution in metallic layers under three load case, i.e. tension, internal pressure and external pressure. Literature study and discussion to mechanical properties of flexible pipe and finite element modelling method are included in the thesis. The modelling program is BFLEX...

  14. Piezo-optical and electro-optical behaviour of nematic liquid crystals dispersed in a ferroelectric copolymer matrix

    International Nuclear Information System (INIS)

    Ganesan, Lakshmi Meena; Wirges, Werner; Gerhard, Reimund; Mellinger, Axel

    2010-01-01

    Polymer-dispersed liquid crystals (PDLCs) are composite materials that consist of micrometre-sized liquid-crystal (LC) droplets embedded in a polymer matrix. From ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and a nematic LC, PDLC films containing 10 and 60 wt% LC were prepared, and their electro-optical and piezo-optical behaviour was investigated. The electric field that is generated by the application of mechanical stress leads to changes in the transmittance of the PDLC film through a combination of piezoelectric and electro-optical effects. Such a piezo-optical PDLC material may be useful, e.g., in sensing and visualization applications.

  15. Electro-optical switching of liquid crystals of graphene oxide

    Science.gov (United States)

    Song, Jang-Kun

    Electric field effects on aqueous graphene-oxide (GO) dispersions are reviewed in this chapter. In isotropic and biphasic regimes of GO dispersions, in which the inter-particle friction is low, GO particles sensitively respond to the application of electric field, producing field-induced optical birefringence. The electro-optical sensitivity dramatically decreases as the phase transits to the nematic phase; the increasing inter-particle friction hinders the rotational switching of GO particles. The corresponding Kerr coefficient reaches the maximum near the isotropic to biphasic transition concentration, at which the Kerr coefficient is found be c.a. 1:8 · 10-5 mV-2, the highest value ever reported in all Kerr materials. The exceptionally large Kerr effect arises from the Maxwell- Wagner polarization of GO particles with an extremely large aspect ratio and a thick electrical double layer (EDL). The polarization sensitively depends on the ratio of surface and bulk conductivities in dispersions. As a result, low ion concentration in bulk solvent is highly required to achieve a quality electro-optical switching in GO dispersions. Spontaneous vinylogous carboxylic reaction in GO particles produces H+ ions, resulting in spontaneous degradation of electro-optical response with time, hence the removal of residual ions by using a centrifuge cleaning process significantly improves the electro-optical sensitivity. GO particle size is another important parameter for the Kerr coefficient and the response time. The best performance is observed in a GO dispersion with c.a. 0.5 μm mean size. Dielectrophoretic migration of GO particles can be also used to manipulate GO particles in solution. Using these unique features of GO dispersions, one can fabricate GO liquid crystal devices similar to conventional liquid crystal displays; the large Kerr effect allows fabricating a low power device working at extremely low electric fields.

  16. Electro-optical properties of tetragonal KNbO 3

    Indian Academy of Sciences (India)

    Linear electro-optical tensor coefficients and optical susceptibility of tetragonal KNbO3 are calculated using a formalism based on bond charge theory. Results are in close agreement with the experimental data. The covalent Nb–O bonding network comprising the distorted NbO6 octahedral groups in the structure is found to ...

  17. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  18. Multi-scale theory-assisted nano-engineering of plasmonic-organic hybrid electro-optic device performance

    Science.gov (United States)

    Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.

    2018-02-01

    Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.

  19. Electro-optical fuel pin identification system

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1978-09-01

    A prototype Electro-Optical Fuel Pin Identification System referred to as the Fuel Pin Identification System (FPIS) has been developed by the Hanford Engineering Development Laboratory (HEDL) in support of the Fast Flux Test Facility (FFTF) presently under construction at HEDL. The system is designed to remotely read an alpha-numeric identification number that is roll stamped on the top of the fuel pin end cap. The prototype FPIS consists of four major subassemblies: optical read head, digital compression electronics, video display, and line printer

  20. Electro-optics of novel polymer-liquid crystalline composites

    International Nuclear Information System (INIS)

    Ibragimov, T.D.; Bayramov, G.M.; Imamaliyev, A.R.; Bayramov, G.M.

    2014-01-01

    The polymer network liquid crystals based on the liquid crystals H37 and 5CB with PMVP and PEG have been developed. Mesogene substance HOBA is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37+PMVP+HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 percent and 9 percent, correspondingly. The basic electro-optic parameters of the obtained composites are determined at room temperature. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with high polymer concentration on areas with their low concentration

  1. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    Science.gov (United States)

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  2. Applications of quantum electro-optic control and squeezed light

    International Nuclear Information System (INIS)

    Lam, P.K.

    2000-01-01

    Full text: The control theory of electronic feedback or feedforward is a topic well understood by many scientists and engineers. With many of the modern equipment relying on automation and robotics, an understanding of this classical control theory is a common requisite for many technologists. In the field of optics, electronic control theory is also commonly used in many situations. From the temperature controlling of laser systems, the auto-alignment of optical elements, to the locking of optical resonators, all make use of electronic control theory in their operations. In this talk, we present the use the control theory in the context of quantum optics. In much the same as its classical counterpart, the 'quantum electro-optic' control loop consists simply of an optical beam splitter, a detector and an electro-optic modulator. This simple system, however, can offer many interesting applications when used in combination with nonclassical states of light. One well-known example of non-classical light is that of the squeezed state of light. A light beam is referred to as being amplitude 'squeezed' when its amplitude has less noise when compared to that of a coherent light state. In fact, the field fluctuation of such light states in some sense lower that the field fluctuation of the photonic vacuum state. Yet another interesting non-classical light state is the so-called 'Einstein-Podolsky-Rosen' entangled pair. This consists of two beams of light, each of which has properties that are highly dependent on each other. Using both the quantum electro-optic control loops and these light states, we demonstrate schemes which allow us to perform noiseless optical amplification, quantum non-demolition measurement and quantum teleportation. These schemes may be important building blocks to the realisation of future quantum communications and quantum information networks

  3. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    Science.gov (United States)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  4. High-power electro-optic switch technology based on novel transparent ceramic

    Science.gov (United States)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  5. Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V V; Palto, S P; Yudin, S G [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-04-15

    The low-frequency quadratic electro-optical effect with a maximum electro-optical coefficient of g = 8 Multiplication-Sign 10{sup -19} m{sup 2}/V{sup 2} (i.e., four orders of magnitude greater than the standard high-frequency value) has been studied in thin films of ferroelectric polymer PVDF(70%)-TrFE(30%). The observed effect is related to the process of spontaneous polarization switching, during which the electron oscillators of C-F and C-H dipole groups rotate to become parallel to the applied field. As a result, the ellipsoid of the refractive index exhibits narrowing in the direction perpendicular to the field. The field dependence of the electro-optical coefficient g correlates with that of the apparent dielectric permittivity, which can be introduced under the condition of ferroelectric polarization switching. The observed electro-optical effect strongly decreases when the frequency increases up to several hundred hertz. The temperature dependence of the effect exhibits clearly pronounced hysteresis in the region of the ferroelectric phase transition.

  6. Thermal management evaluation of the complex electro-optical system

    Directory of Open Access Journals (Sweden)

    Nijemčević Srećko S.

    2017-01-01

    Full Text Available The thermal management of a complex electro-optical system aimed for outdoor application is challenging task due to the requirement of having an air-sealed enclosure, harsh working environment, and an additional thermal load generated by sunlight. It is essential to consider the effect of heating loads in the system components, as well as the internal temperature distribution, that can have influence on the system life expectancy, operational readiness and parameters, and possibility for catastrophic failure. The main objective of this paper is to analyze internal temperature distribution and evaluate its influence on system component operation capability. The electro-optical system simplified model was defined and related thermal balance simulation model based on Solid Works thermal analysis module was set and applied for temperature distribution calculation. Various outdoor environment scenarios were compared to evaluate system temperature distribution and evaluate its influence on system operation, reliability, and life time in application environment. This work was done during the design process as a part of the electro-optical system optimization. The results show that temperature distribution will not be cause for catastrophic failure and malfunction operation during operation in the expected environment.

  7. Test of Seal System for Flexible Pipe End Fitting

    DEFF Research Database (Denmark)

    Banke, Lars; Jensen, Thomas Gregers

    1999-01-01

    The purpose of the end fitting seal system is to ensure leak proof termination of flexible pipes. The seal system of an NKT end fitting normally consists of a number of ring joint gaskets mounted in a steel sleeve on the outside of the polymeric inner liner of the pipe. The seal system is activated...... by compression of the gaskets, thus using the geometry to establish a seal towards the inner liner of the pipe and the steel sleeve of the end fitting. This paper describes how the seal system of an end fitting can be tested using an autoclave. By regulating temperature and pressure, the seal system can...... be tested up to 130oC and 51.7 MPa. Pressure, temperature and the mechanical behaviours of the pipe are measured for use in further research. The set-up is used to test the efficiency of the seal system as function of parameters such as cross sectional shapes of the gaskets, tolerances between gaskets...

  8. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  9. Electro Optic Modulation In a Polymer Ringresonator

    Science.gov (United States)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  10. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  11. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... ability of the wires. This may cause the wires to buckle in the circumferential pipe direction, when these are restrained against radial deformations by adjacent layers. In the present paper, a single armoring wire modeled as a long and slender curved beam embedded in a frictionless cylinder bent...

  12. Fabrication of an electro optic polymer ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Driessen, A.; Diemeer, Mart; de Ridder, R.M.; de Ridder, R.M; Altena, G.; Altena, G; Geuzebroek, D.H.; Dekker, R; Dekker, R.

    2003-01-01

    A ringresonator made of an electro optic (EO) polymer was designed, realized and characterized. The ring was made of a 4-dimethylamino-4-nitrostilbene (DANS) containing polymer and used in a vertical coupling with the waveguides. The waveguides were made of the photo-definable SU8, preventing an

  13. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    Science.gov (United States)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  14. 100 GHz pulse waveform measurement based on electro-optic sampling

    Science.gov (United States)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  15. Pipe elbow stiffness coefficients including shear and bend flexibility factors for use in direct stiffness codes

    International Nuclear Information System (INIS)

    Perry, R.F.

    1977-01-01

    Historically, developments of computer codes used for piping analysis were based upon the flexibility method of structural analysis. Because of the specialized techniques employed in this method, the codes handled systems composed of only piping elements. Over the past ten years, the direct stiffness method has gained great popularity because of its systematic solution procedure regardless of the type of structural elements composing the system. A great advantage is realized with a direct stiffness code that combines piping elements along with other structural elements such as beams, plates, and shells, in a single model. One common problem, however, has been the lack of an accurate pipe elbow element that would adequately represent the effects of transverse shear and bend flexibility factors. The purpose of the present paper is to present a systematic derivation of the required 12x12 stiffness matrix and load vectors for a three dimensional pipe elbow element which includes the effects of transverse shear and pipe bend flexibility according to the ASME Boiler and Pressure Vessel Code, Section III. The results are presented analytically and as FORTRAN subroutines to be directly incorporated into existing direct stiffness codes. (Auth.)

  16. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    Science.gov (United States)

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (foptical response arises as an impulse of light intensity, which decays for the time essentially shorter than the electric pulse duration. At high frequencies (f>fc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  17. Proceedings of the IEEE laser and electro-optics society annual meeting

    International Nuclear Information System (INIS)

    Hudson, M.J.B.; Raney, H.; Raney, D.; Spalaris, C.N.

    1990-01-01

    This book is covered under the following headings: Electro-optic systems; Emerging laser technology; Optical sensors and measurements; Optoelectronics; Semiconductor diode lasers; Solid state lasers; UV and short wavelength; Applied optical diagnostics of semiconductor materials and devices symposium and optical sensors and measurements; and Applied optical diagnostics of semiconductor materials and devices symposium

  18. Photodefinable electro-optic polymer for high-speed modulators

    NARCIS (Netherlands)

    Balakrishnan, M.; Faccini, M.; Diemeer, Mart; Verboom, Willem; Driessen, A.; Reinhoudt, David; Leinse, Arne

    2006-01-01

    Direct waveguide definition of a negative photoresist (SU8) containing tricyanovinylidenediphenylaminobenzene (TCVDPA) as electro-optic (EO) chromophore, has been demonstrated for the first time. This was possible by utilising the chromophore low absorption window in the UV region allowing

  19. Electro-optical logic gates based on graphene-silicon waveguides

    Science.gov (United States)

    Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi

    2016-08-01

    In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.

  20. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.

    Science.gov (United States)

    He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan

    2015-03-07

    An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged

  1. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    Science.gov (United States)

    2010-09-01

    panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical

  2. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    Science.gov (United States)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  3. Design principles and realization of electro-optical circuit boards

    Science.gov (United States)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  4. Micro flexible robot hand using electro-conjugate fluid

    Science.gov (United States)

    Ueno, S.; Takemura, K.; Yokota, S.; Edamura, K.

    2013-12-01

    An electro-conjugate fluid (ECF) is a kind of functional fluid, which produces a flow (ECF flow) when subjected to high DC voltage. Since it only requires a tiny electrode pair in micrometer size in order to generate the ECF flow, the ECF is a promising micro fluid pressure source. This study proposes a novel micro robot hand using the ECF. The robot hand is mainly composed of five flexible fingers and an ECF flow generator. The flexible finger is made of silicone rubber having several chambers in series along its axis. When the chambers are depressurized, the chambers deflate resulting in making the actuator bend. On the other hand, the ECF flow generator has a needle-ring electrode pair inside. When putting the ECF flow generator into the ECF and applying voltage of 6.0 kV to the electrode pair, we can obtain the pressure of 33.1 kPa. Using the components mentioned above, we developed the ECF robot hand. The height, the width and the mass of the robot hand are 45 mm, 40 mm and 5.2 g, respectively. Since the actuator is flexible, the robot hand can grasp various objects with various shapes without complex controller.

  5. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    Science.gov (United States)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  6. Theory of Electro-Optical Properties of Graphene Nanoribbons

    OpenAIRE

    Gundra, Kondayya; Shukla, Alok

    2010-01-01

    We present calculations of the optical absorption and electro-absorption spectra of graphene nanoribbons (GNRs) using a $\\pi-$electron approach, incorporating long-range Coulomb interactions within the Pariser-Parr-Pople (PPP) model Hamiltonian. The approach is carefully bench marked by computing quantities such as the band structure, electric-field driven half metallicity, and linear optical absorption spectra of GNRs of various types, and the results are in good agreement with those obtaine...

  7. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.

    Science.gov (United States)

    Ai, Jianzhou; Wang, Lulu; Wang, Jian

    2017-09-15

    Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5  Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10  Gbit/s on-off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.

  8. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  9. Airborne Electro-Optical Sensor Simulation System. Final Report.

    Science.gov (United States)

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  10. Linear electro-optical properties of tetragonal BaTiO 3

    Indian Academy of Sciences (India)

    Linear optical susceptibility and clamped linear electro-optical tensor coefficients of tetragonal BaTiO3 are calculated using a formalism based on bond charge theory. Calculated values are in close agreement with experimental data. The covalent Ti–O bonds constituting distorted TiO6 octahedral groups are found to be ...

  11. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection

    International Nuclear Information System (INIS)

    Anthierens, C.

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60μm. A PID control law is used to control the robot but state feed back control law is planed. (author)

  12. Analog electro-optical readout of SiPMs for compact, low power ToF PET/MRI

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F; Levin, Craig S

    2014-01-01

    The aim of this work is to demonstrate time of flight (ToF) performance from analog electro-optical transmission of SiPM-based PET detector signals. In electro-optical readout schemes, scintillation signals are converted to near-infrared light by a laser diode and transmitted out of the MRI bore with fiber-optics [], greatly reducing the PET system's footprint, power consumption, and mutual interference with the MRI.

  13. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  14. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    Science.gov (United States)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  15. Torsion instability of Flexible Pipes at the TDP - Torsjonsinstabilitet av fleksible rør med sjøbunnskontakt

    OpenAIRE

    Hansson, Linn Storesund

    2017-01-01

    Dynamic flexible risers are a common term for cables, umbilicals and flexible pipes,that are freely or semi-freely suspended between two points (offshore). Flexible pipes are mostly used to transport fluids between platforms/ships etc. to a flow-line/sea floor installation or similar. The safe operating window for the installation is limited by whether induced motion of the installation vessel giving rise to dynamic tension and curvature at the touch-down-zone (TDZ). By investigation and ...

  16. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  17. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  18. Realization of a free-space 2 × 4 90° optical hybrid based on the birefringence and electro-optic effects of crystals

    International Nuclear Information System (INIS)

    Wan, Lingyu; Zhou, Yu; Liu, Liren; Sun, Jianfeng

    2013-01-01

    A free-space 2 × 4 90° optical hybrid with electro-optic modulation is presented. The hybrid principally consists of two pairs of electro-optic crystal plates coated with gold electrodes and a polarization analyzer. The optical hybrid uses the birefringence effect of a crystal to split and combine a signal beam and a local oscillator beam, uses the electro-optic effect to introduce a phase modulation and produce a phase shift, and outputs four-channel signal/local oscillator mixed beams whose phase difference can be adjusted continuously. A LiNbO 3 crystal is used to design and manufacture the space optical hybrid, and an experimental system is used to verify its performance. The results show that the output phase of the hybrid is continuously adjustable, enabling the hybrid to function perfectly as a 2 × 4 90° space optical hybrid under an appropriate electric field, and that the phase error can be compensated for by an electric field adjustment. (paper)

  19. A comparative study on effective dynamic modeling methods for flexible pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ho; Hong, Sup; Kim, Hyung Woo [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of); Kim, Sung Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-07-15

    In this paper, in order to select a suitable method that is applicable to the large deflection with a small strain problem of pipe systems in the deep seabed mining system, the finite difference method with lumped mass from the field of cable dynamics and the substructure method from the field of flexible multibody dynamics were compared. Due to the difficulty of obtaining experimental results from an actual pipe system in the deep seabed mining system, a thin cantilever beam model with experimental results was employed for the comparative study. Accuracy of the methods was investigated by comparing the experimental results and simulation results from the cantilever beam model with different numbers of elements. Efficiency of the methods was also examined by comparing the operational counts required for solving equations of motion. Finally, this cantilever beam model with comparative study results can be promoted to be a benchmark problem for the flexible multibody dynamics.

  20. Strained silicon as a new electro-optic material

    DEFF Research Database (Denmark)

    Jacobsen, Rune Shim; Andersen, Karin Nordström; Borel, Peter Ingo

    2006-01-01

    For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized1, 2. The slow progress within silicon optoelectronics, where electronic and optical...... functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data...... processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top...

  1. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    Science.gov (United States)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a

  2. Applied electro-optics educational and training program with multiple entrance and exit pathways

    Science.gov (United States)

    Scott, Patricia; Zhou, Feng; Zilic, Dorothy

    2007-06-01

    This paper presents an innovative hands-on training program designed to create a pipeline of highly-skilled technical workers for today's workforce economy. The 2+2+2 Pennsylvania Integrated Workforce Leadership Program in Electro-Optics prepares students for a career in this new high-tech field. With seamless transition from high school into college, the program offers the versatility of multiple entrance and exit pathways. After completion of each educational level, students can exit the program with various skill levels, including certificates, an associate's degree, or a bachelor's degree. Launched by Indiana University of Pennsylvania (IUP) in partnership with Lenape Vocational School (Lenape), the 2+2+2 educational pathway program was implemented to promote early training of high-school students. During the first level, students in their junior and/or senior year enroll in four Electro-Optics courses at Lenape. Upon completion of these courses and an Advanced Placement Equivalency course with an appropriate exam score, students can earn a certificate from Lenape for the 15+ credits, which also can be articulated into IUP's associate degree program in Electro-Optics. During the second level, students can earn an associate's degree in Electro-Optics, offered only at the IUP Northpointe Campus. After completion of the Associate in Applied Science (A.A.S.), students are prepared to enter the workforce as senior technicians. During the third level, students who have completed the Associate of Science (A.S.) in Electro-Optics have the opportunity to matriculate at IUP's Indiana Campus to earn a Bachelor of Science (B.S.) degree in Applied Physics with a track in Electro-Optics. Hence, the name 2+2+2 refers to getting started in high school, continuing the educational experience with an associate's degree program, and optionally moving on to a bachelor's degree. Consequently, students move from one educational level to the next with advanced credits toward the next

  3. Electro-optical muzzle flash detection

    Science.gov (United States)

    Krieg, Jürgen; Eisele, Christian; Seiffer, Dirk

    2016-10-01

    Localizing a shooter in a complex scenario is a difficult task. Acoustic sensors can be used to detect blast waves. Radar technology permits detection of the projectile. A third method is to detect the muzzle flash using electro-optical devices. Detection of muzzle flash events is possible with focal plane arrays, line and single element detectors. In this paper, we will show that the detection of a muzzle flash works well in the shortwave infrared spectral range. Important for the acceptance of an operational warning system in daily use is a very low false alarm rate. Using data from a detector with a high sampling rate the temporal signature of a potential muzzle flash event can be analyzed and the false alarm rate can be reduced. Another important issue is the realization of an omnidirectional view required on an operational level. It will be shown that a combination of single element detectors and simple optics in an appropriate configuration is a capable solution.

  4. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  5. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    Science.gov (United States)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  6. Quantum nondemolition measurement with a nonclassical meter input and an electro-optic enhancement

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchler, B.C.; Bachor, H.A.

    2002-01-01

    Optical quantum nondemolition measurements are performed using a beamsplitter with a nonclassical meter input and a electro-optic feedforward loop. The nonclassical meter input is provided by a stable 4.5 dB amplitude squeezed source generated by an optical parametric amplifier. We show...

  7. The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2014-07-01

    The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.

  8. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    Science.gov (United States)

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  9. Dielectric and electro-optical parameters of two ferroelectric liquid crystals: a comparative study

    International Nuclear Information System (INIS)

    Kumar Misra, Abhishek; Kumar Srivastava, Abhishek; Shukla, J P; Manohar, Rajiv

    2008-01-01

    Dielectric relaxation and an electro-optical study of two ferroelectric liquid crystals having different spontaneous polarizations (Felix 16/100 and Felix 17/000) showing SmC* and SmA phases have been performed in the temperature range 30-80 compfn C. The experimental data have been used to determine different relaxation parameters, viz. distribution parameter, relaxation frequency, dielectric strength and rotational viscosity. The Goldstone mode of dielectric permittivity has been well observed for both the samples under investigation. The activation energy of both the samples has also been determined by the best theoretical fitting of the Arrhenius plot. We have also evaluated the optical response time and anchoring energy coefficients from electro-optical measurement techniques for these samples.

  10. Tests, measurements, and characterization of electro-optic devices and systems

    International Nuclear Information System (INIS)

    Wadekar, S.G.

    1989-01-01

    This book contains the proceedings on tests, measurements and characterization of electro-optic devices and systems. Topics covered include: Measurement of spectral dynamics in single-quantum-well lasers, High power computer controlled laser diode characterization tester, and Laser diode characterization instrumentation

  11. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    Science.gov (United States)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical

  12. Contribution of electro-optics to plasma research

    International Nuclear Information System (INIS)

    Dillet, A.; Jacquot, C.; Stevenin, P.

    1967-01-01

    Two electro-optical devices useful for plasma diagnostic are described. The first includes two image converters and is able to record any luminous transient phenomenon (for instance, fast spectrography) with a photon gain sufficient to distinguish the physically observable luminous thresholds. The second makes use of the Faraday effect to measure magnetic fields without perturbation. A fast device has a pass band up to 30 MHz. A slower one can detect the '' of arc. (authors) [fr

  13. Radiation resistance of electro-optic polymer-based modulators

    International Nuclear Information System (INIS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-01-01

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation

  14. Fibre optic monitoring of pipes a world first

    International Nuclear Information System (INIS)

    Kuen, Thomas

    2014-01-01

    Full text: This article explains how water authorities can remotely monitor vast kilometres of underground pipe, quickly pinpoint faults and, more importantly, assess how critical they are. A new fibre optic system developed in a collaboration between Melbourne Water, Monash University, South East Water, CSIRO Land and Water, and Hawk Measurement Systems has the potential to provide 24/7 monitoring, inexpensive fault and deterioration location, and to reduce unnecessary pipe maintenance. Trials show the system is accurate to within one metre along 50km of pipe. A grant from the Department of State Development, Business and Innovation's Market Validation Program, along with cash and in-kind contributions, has resulted in a $2.5 million project. Existing fibre optic-sensing technology was known to have the capability to monitor the condition and integrity of pipes, but available solutions were largely confined to those above ground. What was needed was a system that allowed sensors to be installed and managed on buried pipes in a cost- effective manner for the long service life of water pipelines - about 100 years. Traditionally, leaks need to become visible first. They are then located with a stethoscope-like instrument, which requires a site visit. This observation can be drawn out because leaking water often appears at the surface some distance from the actual pipe fracture. With the new fibre optic system, once a fault is identified it can be evaluated remotely using a data-acquisition system capable of sensing three variables - stress and strain (or pressure), sound vibrations and temperature. A laser beam is sent to the optical fibre, which measures the signals coming back. Analysis of the spectrum interprets the signals, telling the operator what kind of fault is occurring, its location and dimensions. Continuous, long-term remote monitoring using fibre optics eliminates the need for onsite inspection. All the sensed variables are monitored and accuracy is

  15. A robust fibre laser system for electro-optic electron bunch profile measurements at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wissmann, Laurens-Georg

    2012-08-15

    For the electro-optic measurement of electron bunch profiles at FLASH a robust ytterbium doped fibre laser (YDFL) system has been developed consisting of a laser oscillator and a two-staged amplifier. The oscillator is designed to meet the specifications of high reliability and low noise operation. The amplifier makes use of tailored nonlinearity to enhance the spectral bandwidth of the output laser pulses. Active repetition rate control enables sub-picosecond synchronisation of the laser to the accelerator reference RF. Using a two-stage gating scheme the output pulse train repetition rate is adopted to the accelerator repetition rate. An experimental site used for electro-optic electron bunch diagnostics has been redesigned to support single-shot bunch profile measurements based on spectral decoding. An existing bunch profile monitor with a similar laser system was upgraded and electro-optic bunch profile measurements were conducted, allowing for a comparison with measurements done with other longitudinal electron bunch diagnostics and with former measurements.

  16. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  17. A robust fibre laser system for electro-optic electron bunch profile measurements at FLASH

    International Nuclear Information System (INIS)

    Wissmann, Laurens-Georg

    2012-08-01

    For the electro-optic measurement of electron bunch profiles at FLASH a robust ytterbium doped fibre laser (YDFL) system has been developed consisting of a laser oscillator and a two-staged amplifier. The oscillator is designed to meet the specifications of high reliability and low noise operation. The amplifier makes use of tailored nonlinearity to enhance the spectral bandwidth of the output laser pulses. Active repetition rate control enables sub-picosecond synchronisation of the laser to the accelerator reference RF. Using a two-stage gating scheme the output pulse train repetition rate is adopted to the accelerator repetition rate. An experimental site used for electro-optic electron bunch diagnostics has been redesigned to support single-shot bunch profile measurements based on spectral decoding. An existing bunch profile monitor with a similar laser system was upgraded and electro-optic bunch profile measurements were conducted, allowing for a comparison with measurements done with other longitudinal electron bunch diagnostics and with former measurements.

  18. Piping Flexibility Analysis of the Primary Cooling System of TRIGA 2000 Bandung Reactor due to Earthquake

    International Nuclear Information System (INIS)

    Rahardjo, H.P.

    2011-01-01

    Earthquakes in a nuclear installation can overload a piping system which is not flexible enough. These loads can be forces, moments and stresses working on the pipes or equipment. If the load is too large and exceed the allowable limits, the piping and equipment can be damaged and lead to overall system operation failure. The load received by piping systems can be reduced by making adequate piping flexibility, so all the loads can be transmitted homogeneously throughout the pipe without load concentration at certain point. In this research the analysis of piping stress has been conducted to determine the size of loads that occurred in the piping of primary cooling system of TRIGA 2000 Reactor, Bandung if an earthquake happened in the reactor site. The analysis was performed using Caesar II software-based finite element method. The ASME code B31.1 arranging the design of piping systems for power generating system (Power Piping Code) was used as reference analysis method. Modeling of piping systems was based on the cooling piping that has already been installed and the existing data reported in Safety Analysis Reports (SARs) of TRIGA 2000 reactor, Bandung. The quake considered in this analysis is the earthquake that occurred due to the Lembang fault, since it has the Peak Ground Acceleration (PGA) in the Bandung TRIGA 2000 reactor site. The analysis results showed that in the static condition for sustain and expansion loads, the stress fraction in all piping lines does not exceed the allowable limit. However, during operation moment, in dynamic condition, the primary cooling system is less flexible at sustain load, expansion load, and combination load and the stress fraction have reached 95,5%. Therefore a pipeline modification (re-routing) is needed to make pipe stress does not exceed the allowable stress. The pipeline modification was carried out by applied a gap of 3 mm in the X direction of the support at node 25 and eliminate the support at the node 30, also a

  19. Electro-optic and thermo-optic and properties of phase separated polymer dispersed liquid crystal films

    Czech Academy of Sciences Publication Activity Database

    Malik, P.; Bubnov, Alexej M.; Raina, K.K.

    2008-01-01

    Roč. 494, č. 12 (2008), s. 242-251 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z10100520 Keywords : polymer dispersed liquid crystals * electro-optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  20. Improvement of chirped pulse contrast using electro-optic birefringence scanning filter method

    International Nuclear Information System (INIS)

    Zeng Shuguang; Wang Xianglin; Wang Qishan; Zhang Bin; Sun Nianchun; Wang Fei

    2013-01-01

    A method using scanning filter to improve the contrast of chirped pulse is proposed, and the principle of this method is analyzed. The scanning filter is compared with the existing pulse-picking technique and nonlinear filtering technique. The scanning filter is a temporal gate that is independent on the intensity of the pulses, but on the instantaneous wavelengths of light. Taking the electro-optic birefringence scanning filter as an example, the application of scanning filter methods is illustrated. Based on numerical simulation and experimental research, it is found that the electro-optic birefringence scanning filter can eliminate a prepulse which is several hundred picoseconds before the main pulse, and the main pulse can maintain a high transmissivity. (authors)

  1. Development of laser marking system with electro-optic Q-switch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  2. Development of laser marking system with electro-optic Q-switch

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  3. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  4. An automated thermoelectric power apparatus using electro-optic relays

    International Nuclear Information System (INIS)

    Chakravarti, A.; Ranganathan, R.

    1992-01-01

    We report the design and construction of a thermoelectric power apparatus using home-made electro-optic relays with Z-80A microprocessor for automatic data acquisition and control. The advantages of such relays made out of LED-LDR combinations for the measurement of ΔE and ΔT are discussed in details. (author). 7 refs., 5 figs

  5. EVALUATION METHOD FOR PARASITIC EFFECTS OF THE ELECTRO-OPTICAL MODULATOR IN A FIBER OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    S. A. Volkovskiy

    2016-09-01

    Full Text Available Subject of Research.The paper proposes an original method for studying the parasitic effects in the electro-optic modulator of the fiber optic gyroscope. Proposed method is based on the usage of a special waveform phase modulation signal. Method. The essence of the proposed method lies in modification of serrodyne modulation signal, thereby providing a periodic displacement of the phase difference signal to the maximum of the interference curve. In this case, the intensity level reflects the influence of parasitic effects with the degree of manifestation being determined by the sequence of voltage control signals applied to the modulator. Enumeration of combinations of control signals and the corresponding intensity levels gives the possibility to observe an empirical dependence of the parasitic effects and use it later for compensation. Main Results. The efficiency of the proposed method is demonstrated by the program model of the fiber optic gyroscope. The results of the method application on a production sample of the device were obtained. Comparison with the results of direct estimate of the parasitic intensity modulation effect testifies to the effectiveness of the proposed method. Practical Relevance. The method can be used as a diagnostic tool to quantify the influence of parasitic effects in the electro-optic modulator of the fiber optic gyroscope as well as for their subsequent compensation.

  6. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-01

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  7. Effects of gold nanoparticles on the electro-optical properties of a polymer dispersed liquid crystal

    Science.gov (United States)

    Hinojosa, A.; Shive, C.; Sharma, Suresh

    2010-03-01

    We have studied the electro-optical properties of a polymer-dispersed liquid crystal (PDLC) as functions of relative concentrations of gold nanoparticles. PDLC samples were synthesized between indium-tin-oxide (ITO) coated glass slides, separated by SiO2 spacers, by using liquid crystal E44, a monofunctional acrylic oligomer (CN135), and a tetrafunctional crosslinker (SR295). A UV photoinitiator (SR1124) was used to facilitate the curing of the monomer exposed to UV radiation from a Hg spectral lamp. A He-Ne laser was used to measure optical transmission through the PDLC as a function of applied ac electric field (1 kHz). The PDLC without gold nanoparticles shows the expected behavior; transmission through the PDLC increases from a minimum (opaque) to a maximum (transparent) with increasing electric field. The electro-optical behavior of the PDLC is altered significantly (e. g., relatively low switching field) upon addition of relatively low concentrations of gold nanoparticles into the starting PDLC syrup. We present electro-optical data as functions of gold nanoparticle concentration and discuss possible mechanism to understand our results.

  8. Structural and optical properties of electro-optic material. Sputtered (Ba,Sr)TiO3

    International Nuclear Information System (INIS)

    Suzuki, Masato; Xu, Zhimou; Tanushi, Yuichiro; Yokoyama, Shin

    2006-01-01

    In order to develop a novel ring resonator optical switch, we have studied the structural and optical properties of the electro-optic material (Ba,Sr)TiO 3 (BST) deposited by RF sputtering on a SiO 2 cladding layer (1.0 μm). The crystallinity of the BST films is evaluated by X-ray diffraction and the optical propagation loss of the waveguides is measured using a He-Ne laser. As a result, it is found that there is a strong relationship between the optical propagation loss and crystallinity of the sputtered film. It is suggested that the propagating light is influenced by the crystal property, for example, the grain size and density of the polycrystalline BST film. (author)

  9. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  10. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    Science.gov (United States)

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  11. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  12. Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,

    Science.gov (United States)

    1981-06-01

    by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1

  13. Electro-optical detection of charged particles

    International Nuclear Information System (INIS)

    Semertzidis, Y.K.; Castillo, V.; Kowalski, L.; Kraus, D.E.; Larsen, R.; Lazarus, D.M.; Magurno, B.; Nikas, D.; Ozben, C.; Srinivasan-Rao, T.; Tsang, T.

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams

  14. Electro-optical detection of charged particles

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R; Lazarus, D M; Magurno, B; Nikas, D; Ozben, C; Srinivasan-Rao, T; Tsang, Thomas

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO sub 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  15. Electro-optical detection of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Semertzidis, Y.K.; Castillo, V.; Kowalski, L.; Kraus, D.E.; Larsen, R.; Lazarus, D.M. E-mail: lazarus@sun2.bnl.gov; Magurno, B.; Nikas, D.; Ozben, C.; Srinivasan-Rao, T.; Tsang, T

    2000-10-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO{sub 3} crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  16. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  17. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  18. A finite element model for the stress and flexibility analysis of curved pipes

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.

    1987-03-01

    We present a finite element model for the analysis of pipe bends with flanged ends or flanged tangents. Comments are made on the consideration of the internal pressure load. Flexibility and stress instensification factores obtained with the present model are compared with others available. (Author) [pt

  19. Method and apparatus for the electro-optic convolution of a one-dimensional signal

    International Nuclear Information System (INIS)

    1979-01-01

    Procedure for the electro-optic convolution of a signal and a filter function, whereby the one dimensional electro-optical signal would be portrayed as a line along which the clarity varies and whereby filter function is determined by one or more masks, whilst after each mask is placed a light detector, with which the light passing through the masks may be detected, whilst a one-dimensional portrayal of the signal along the masks will be developed, characterised in that a one dimensional portrayal of the signal, with the aid of an optical system in a direction across the line, will be enlarged, and that this enlarged signal in the direction of the line along the masks will be affected which the masks closing fields will contain, which are either fully transparent or are fully non-transparent. (Auth.)

  20. The Relationship between the Monomer Chain Length and the Electro-Optical Properties of Polymer Dispersed Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Liu J.

    2016-03-01

    Full Text Available Five polymers dispersed liquid crystalline (LC films were fabricated using photo-polymerizable monomers with different lengths of carbon chains. These LC films have shown different electro-optical (EO properties. Through their SEM pictures, the relationship between the linear electro-optical effect and the mesh size of the polymer network was explored. With the increase of number of photo-polymerizable monomers, the mesh size of the polymer network would become larger. So the liquid crystal molecules would be easily oriented in the electric field and therefore, the threshold voltage and saturation voltage would decrease. The open state response times were also reduced and the off state response times would be extended. The DFT simulations have shown principal role of the ground state dipole moments in the observed electro-optical efficiency.

  1. Development of Nanostructured Antireflection Coatings for Infrared and Electro-Optical Systems

    Directory of Open Access Journals (Sweden)

    Gopal G. Pethuraja

    2017-07-01

    Full Text Available Electro-optic infrared technologies and systems operating from ultraviolet (UV to long-wave infrared (LWIR spectra are being developed for a variety of defense and commercial systems applications. Loss of a significant portion of the incident signal due to reflection limits the performance of electro-optic infrared (IR sensing systems. A critical technology being developed to overcome this limitation and enhance the performance of sensing systems is advanced antireflection (AR coatings. Magnolia is actively involved in the development and advancement of nanostructured AR coatings for a wide variety of defense and commercial applications. Ultrahigh AR performance has been demonstrated for UV to LWIR spectral bands on various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings have been fabricated using a nanomanufacturable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of optical components and sensor substrates coated with AR structures have been measured and the process parameters fine-tuned to achieve a predicted high level of performance. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts on the development of nanostructured AR coatings on IR substrates.

  2. Qualification of new design of flexible pipe against singing: testing at multiple scales

    NARCIS (Netherlands)

    Golliard, J.; Lunde, K.; Vijlbrief, O.

    2016-01-01

    Flexible pipes for production of oil and gas typically present a corrugated inner surface. This has been identified as the cause of "singing risers": Flow-Induced Pulsations due to the interaction of sound waves with the shear layers at the small cavities present at each of the multiple

  3. Proceedings of the conference on lasers and electro-optics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book presents the papers discussed at a conference on the subject of electro-optics and lasers. Some of the topics discussed were: laser fusion and interactions; implosion experiments; tunable integrated Bragg lasers, CO 2 lasers; present status of integrated lasers; DFB lasers; transition metal lasers-solid state lasers, mirror laser resonators, multiquantumwell lasers; fusion laser technology; and dynamics and characteristics of diode lasers

  4. Demonstration of an optical phased array using electro-optic polymer phase shifters

    Science.gov (United States)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  5. Miniaturised Optical Fibre Sensor for Dew Detection Inside Organ Pipes

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2008-01-01

    Full Text Available A new optical sensor for the continuous monitoring of the dew formation inside organ pipes was designed. This aspect is particularly critical for the conservation of organs in unheated churches since the dew formation or the condensation on the pipe surfaces can contribute to many kinds of physical and chemical disruptive mechanisms. The working principle is based on the change in the reflectivity which is observed on the surface of the fibre tip, when a water layer is formed on its distal end. Intensity changes of the order of 35% were measured, following the formation of the water layer on the distal end of a 400/430 μm optical fibre. Long-term tests carried out placing the fibre tip inside the base of an in-house-made metallic foot of an organ pipe located in an external environment revealed the consistency of the proposed system.

  6. Progress in Nano-Electro-Optics VII Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems

    CERN Document Server

    Ohtsu, Motoichi

    2010-01-01

    This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  7. Rotating optical geometry sensor for inner pipe-surface reconstruction

    Science.gov (United States)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  8. Extending electro-optic detection to ultrashort electron beams

    Directory of Open Access Journals (Sweden)

    M. H. Helle

    2012-05-01

    Full Text Available We propose a technique to extend noninvasive electro-optic detection of relativistic electron beams to bunch lengths of ≃10  fs. This is made possible by detecting the frequency mixing that occurs between the optical probe and the space charge fields of the beam, while simultaneously time resolving the resulting mixed frequency signal. The necessary formalism to describe this technique is developed and numerical solutions for various possible experimental conditions are made. These solutions are then compared to simulation results for consistency. Finally, the method to reconstruct the original bunch profile from the proposed diagnostic is discussed and an example showing a 15 fs test beam reconstructed to within an accuracy of 15% is given.

  9. Measurement of strains at high temperatures by means of electro-optics holography

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey

    Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.

  10. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2010-01-01

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  11. Global Analysis of Flexible Risers

    DEFF Research Database (Denmark)

    Banke, Lars

    1996-01-01

    Flexible pipes are often a technically attractive alternative to the traditional steel pipe. Often commercial utilisation of oil/gas fields depends on the use of flexible pipes. An example is when floating production vessels are used, where the flexible pipe follows the wave induced motions...

  12. Structural control of side-chain chromophores to achieve highly efficient electro-optic activity.

    Science.gov (United States)

    Yang, Yuhui; Chen, Zhuo; Liu, Jialei; Xiao, Hongyan; Zhen, Zhen; Liu, Xinhou; Jiang, Guohua

    2017-05-10

    A series of chromophores J1-J4 have been synthesized based on julolidine donors modified with different rigid steric hindrance groups. Compared with the chromophore (J1) without the isolation group, chromophores J2, J3 and J4 show better stability. Structural analysis and photophysical property measurements were carried out to compare the molecular mobility and steric hindrance effect of the different donor-modified chromophores. All of these chromophores with isolation groups showed superb thermal stabilities with high thermal decomposition temperatures above 250 °C. Furthermore, with rigid steric hindrance, chromophores J3 and J4 showed more enhanced thermal stabilities with thermal decomposition temperatures of 269 °C and 275 °C, respectively. Density functional theory was used to calculate the hyperpolarizability (β), and the high molecular hyperpolarizability of these chromophores can be effectively translated into large electro-optic coefficients. The electro-optic coefficients of poled films containing 20 wt% of these new chromophores doped in amorphous polycarbonate were 127, 266 and 209 pm V -1 at 1310 nm for chromophores J1-J3, respectively, while the film containing chromophore J4 showed the largest r 33 value of only 97 pm V -1 at 25 wt%. These results indicated that the introduced isolation group can reduce intermolecular electrostatic interactions, thus enhancing the macroscopic electro-optic activity, while the size of the isolation group should be suitable.

  13. Development of two U.H.F. band resonators for application to CO2 laser electro-optical modulation

    International Nuclear Information System (INIS)

    Egan, M.G.; Blanc, P.; Sexton, M.C.

    1980-01-01

    The purpose of this report is to describe the design and testing of two U.H.F. band resonators destined for use in the linear electro-optical modulator of the CO 2 Laser Rapid Interferometer diagnostic at present under development for the WEGA Tokamak. The resonators take the form of a re-entrant coaxial line cavity and an interdigital line filter, both of which possess the regions of high electric field necessary to activate the linear electro-optical effect

  14. Electro-optical effect of a magnetically biased ferronematic liquid crystal.

    Science.gov (United States)

    Chen, S H; Liang, B J

    1988-09-01

    The electro-optical effect of a magnetically biased ferronematic liquid-crystal film is investigated by using birefringence measurements. When a magnetic field is applied, the threshold voltage of the Freedericksz transition no longer exists. The dependence of the birefringence on the magnetic field strength in the low field regime is presented. A theory that accounts for the results is given.

  15. Linear electro-optic coefficient in multilayer self-organized InAs quantum dot structures

    NARCIS (Netherlands)

    Akca, I.B.; Dana, A.; Aydinli, A.; Rossetti, M.; Li, L.; Dagli, N.; Fiore, A.

    2007-01-01

    The electro-optic coefficients of self-organized InAs quantum dot layers in molecular beam epitaxy grown laser structures in reverse bias have been investigated. Enhanced electrooptic coefficients compared to bulk GaAs were observed.

  16. Development of remote bore tools for pipe welding/cutting by YAG laser

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Nakahira, Masataka; Kakudate, Satoshi; Tada, Eisuke; Obara, Kenjiro; Taguchi, Kou; Nakamori, Naokazu

    1996-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, an internal access pipe welding/cutting using YAG laser beam is being developed according to the agreement of the ITER R and D task (T44). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In this report, the details of a welding/cutting head with a flexible optical fiber for YAG laser are described, together with the basic experiment results relating to the welding/cutting and rewelding. (author)

  17. Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams

    International Nuclear Information System (INIS)

    Beddar, A.S.; Mackie, T.R.; Attix, F.H.

    1992-01-01

    The use of a small plastic scintillator coupled to an optical fibre bundle light pipe for the dosimetry of radiotherapy x-ray or electron beams in a phantom has been studied. Under such conditions, some light is generated by the direct action of the radiation on the optical fibres themselves, and this 'background' signal must be correctly accounted for. Electron beams were incident on fused silica optical fibres and other light pipes made of polymethylmethacrylate (PMMA), polystyrene and water. The observed light signal generated in all cases was found to depend strongly on the angle between the electron direction and the light pipe axis, and to correlate well with the angular characteristics uniquely associated with Cerenkov radiation. The use of a parallel fibre bundle light pipe, identical to the one that carries light from the scintillator, offers a suitable means of generating a similar background Cerenkov light signal that can be subtracted to obtain output from the scintillation dosimeter alone. (author)

  18. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  19. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter

    Science.gov (United States)

    Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  20. Synthesis, characterization and electro-optic properties of novel siloxane liquid crystalline with a large tilt angle

    International Nuclear Information System (INIS)

    Liao, Chien-Tung; Lee, Jiunn-Yih; Lai, Chiu-Chun

    2011-01-01

    Research highlights: → In this study we report the synthesis and characterization of new ferroelectric liquid crystal material. → We examined the influence of the addition of a trisiloxane end-group on one side-chain of an achiral alkyl chain on the phase transition. → Finally, the properties of the chiral smectic C (SmC*) phase were measured for target compounds. - Abstract: This paper presents a study of the ferroelectric behavior in low molar mass organosiloxane liquid crystal materials. A few novel series of compounds with a large tilt angle were synthesized, and the mesophases exhibited were compared. The mesophases under discussion were investigated by means of polarizing microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electro-optical experiments. The influence of the molecular structure on the occurrence of the chiral smectic C (SmC*) phase was investigated. Finally, the electro-optical properties of the SmC* phase, such as tilt angle, dielectric permittivity and switching behavior were also measured. As a consequence, the correlation between the electro-optical properties and chemical structures of these compounds was investigated.

  1. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures.

    Science.gov (United States)

    Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei

    2010-09-01

    Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.

  2. Direct writing and electro-mechanical characterization of Ag micro-patterns on polymer substrates for flexible electronics

    International Nuclear Information System (INIS)

    Torres Arango, Maria A.; Cokeley, Anna M.; Beard, Jared J.; Sierros, Konstantinos A.

    2015-01-01

    There is currently a great interest in developing flexible electrodes. Such components are used in most electronic devices from displays to solar cells to flexible sensors. To date most of them are fabricated using expensive vacuum techniques, and are based on transparent conducting oxides. These oxides are not entirely compatible with flexible substrates under the application of mechanical stresses, due to their brittle nature. Therefore, there is a need to explore novel low-cost, large-area fabrication methods to deposit alternative conducting materials with enhanced electro-mechanical performance. This work focuses on Ag patterns fabricated at low temperatures (below 150 °C) on flexible polyethylene naphthalate utilizing a robotic printing approach. Such lithography-free method minimizes material waste by printing exact amounts of inks on digitally predefined locations. Additionally, it allows a broad feature size range, from a few μm to a few mm, and a variety of ink viscosities for better pattern control. We investigate the synthesis and direct writing of Ag particle-based inks, patterned-on-flex as lines and grids in the μm scale. We report on a high-yield ink synthesis method (~ 61.6%) with controlled particle size. It is found that the electrical resistivity (1.75 ∗ 10"−"4 Ω cm) of the patterns is in the same range with similar particle-based conductive components. The correlation between annealing temperature, microstructural evolution, and electrical performance is established. Also, the optical transmittance of the patterns can be controlled to meet specific application requirements by regulating the substrate surface area covered. Finally, the mechanical behavior under both monotonic and cyclic conditions shows a superior performance compared to brittle counterparts and underlines the potential of such metallic micro-patterns to be utilized in a wide range of flexible electronic applications. It is believed that direct writing of Ag patterns on

  3. Direct writing and electro-mechanical characterization of Ag micro-patterns on polymer substrates for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Torres Arango, Maria A.; Cokeley, Anna M.; Beard, Jared J.; Sierros, Konstantinos A., E-mail: kostas.sierros@mail.wvu.edu

    2015-12-01

    There is currently a great interest in developing flexible electrodes. Such components are used in most electronic devices from displays to solar cells to flexible sensors. To date most of them are fabricated using expensive vacuum techniques, and are based on transparent conducting oxides. These oxides are not entirely compatible with flexible substrates under the application of mechanical stresses, due to their brittle nature. Therefore, there is a need to explore novel low-cost, large-area fabrication methods to deposit alternative conducting materials with enhanced electro-mechanical performance. This work focuses on Ag patterns fabricated at low temperatures (below 150 °C) on flexible polyethylene naphthalate utilizing a robotic printing approach. Such lithography-free method minimizes material waste by printing exact amounts of inks on digitally predefined locations. Additionally, it allows a broad feature size range, from a few μm to a few mm, and a variety of ink viscosities for better pattern control. We investigate the synthesis and direct writing of Ag particle-based inks, patterned-on-flex as lines and grids in the μm scale. We report on a high-yield ink synthesis method (~ 61.6%) with controlled particle size. It is found that the electrical resistivity (1.75 ∗ 10{sup −4} Ω cm) of the patterns is in the same range with similar particle-based conductive components. The correlation between annealing temperature, microstructural evolution, and electrical performance is established. Also, the optical transmittance of the patterns can be controlled to meet specific application requirements by regulating the substrate surface area covered. Finally, the mechanical behavior under both monotonic and cyclic conditions shows a superior performance compared to brittle counterparts and underlines the potential of such metallic micro-patterns to be utilized in a wide range of flexible electronic applications. It is believed that direct writing of Ag patterns

  4. Electro-Optic Sampling of Transient Electric Fields from Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, Michael James [Rochester U.

    2000-01-01

    The passage of a relativistic charged particle beam bunch through a structure is accompanied by transient electromagnetic fields. By causality, these fields must be behind the bunch, and are called "wakefields." The wakefields act back on the beam, and cause instabilities such as the beam break-up instability, and the headtail instability, which limit the luminosity of linear colliders. The wakefields are particularly important for short bunches with high charge. A great deal of effort is devoted to analytical and numerical calculations of wakefields, and wakefield effects. Experimental numbers are needed. In this thesis, we present measurements of the transient electric fields induced by a short high-charge electron bunch passing through a 6-way vacuum cross. These measurements are performed in the time domain using electro-optic sampling with a time resolution of approximately 5 picoseconds. With different orientations of the electro-optic crystal, we have measured different vector components of the electric field. The Fourier transform of the time-domain data yields the product of the beam impedance with the excitation spectrum of the bunch. Since the bunch length is known from streak camera measurements, the k loss factor is directly obtained. There is reasonably good agreement between the experimental k loss factor with calculations from the code MAFIA. To our knowledge, this is the first direct measurement of the k loss factor for bunch lengths shorter than one millimeter ( nns). We also present results of magnetic bunch compression (using a dipole chicane) of a high-charge photoinjector beam for two different UV laser pulse lengths on the pholocalhode. Al best compression, a 13.87 nC bunch was compressed to 0.66 mm (2.19 ps) rms, or a peak current of 3 kA. Other results from the photoinjeclor are given, and the laser system for pholocalhode excitation and electro-optic sampling is described.

  5. Electro-optical study of the exposure of Azospirillum brasilense carbohydrate epitopes.

    Science.gov (United States)

    Guliy, Olga I; Matora, Larisa Yu; Dykman, Lev A; Staroverov, Sergey A; Burygin, Gennady L; Bunin, Viktor D; Burov, Andrei M; Ignatov, Oleg V

    2015-01-01

    The exposure of Azospirillum brasilense carbohydrate epitopes was investigated by electro-optical analysis of bacterial cell suspensions. To study changes in the electro-optical (EO) properties of the suspensions, we used antibodies generated to the complete lipopolysaccharide of A. brasilense type strain Sp7 and also antibodies to the smooth and rough O polysaccharides of Sp7. After 18 hr of culture growth, the EO signal of the suspension treated with antibodies to smooth O polysaccharide was approximately 20% lower than that of the suspension treated with antibodies to complete lipopolysaccharide (control). After 72 hr of culture growth, the strongest EO signal was observed for the cells treated with antibodies to rough O polysaccharide (approximately 46% greater than the control), whereas for the cells treated with antibodies to smooth O polysaccharide, it was much lower (approximately 23% of the control). These data were confirmed by electron microscopy. The results of the study may have importance for the rapid evaluation of changes in lipopolysaccharide form in microbial biotechnology, when the antigenic composition of the bacterial surface requires close control.

  6. Electro-optical study of nanoscale Al-Si-truncated conical photodetector with subwavelength aperture

    Science.gov (United States)

    Karelits, Matityahu; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-10-01

    A type of silicon photodiode has been designed and simulated to probe the optical near field and detect evanescent waves. These waves convey subwavelength resolution. This photodiode consists of a truncated conical shaped, silicon Schottky diode having a subwavelength aperture of 150 nm. Electrical and electro-optical simulations have been conducted. These results are promising toward the fabrication of a new generation of photodetector devices.

  7. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U. B.; Pandey, M. B., E-mail: mbpandey@gmail.com [Department of Physics, Vikramajit Singh Sanatan Dharama College, Kanpur-208002 (India); Dhar, R; Pandey, A. S. [Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad-211002 (India); Kumar, S. [Raman Research Institute, C. V. Raman Avenue, Bangalore-560080 (India); Dabrowski, R. [Institute of Applied Sciences and Chemistry, Military University of Technology, 00-908-Warswa (Poland)

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  8. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    International Nuclear Information System (INIS)

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-01-01

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature

  9. Single-shot electro-optic experiments for electron bunch diagnostics at Tsinghua Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Zhang, Zhen; Zhou, Zheng [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Huang, Wenhui, E-mail: huangwh@mail.tsinghua.edu.cn [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Tang, Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Li, Ming [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-10-21

    The electro-optic (EO) technique detects the Coulomb electric field distribution of relativistic electron bunches to obtain the associated longitudinal profile. This diagnostic method allows the direct time-resolved single-shot measurement and thus the real-time monitoring of the bunch profile and beam arrival time in a non-destructive way with sub-picosecond temporal resolution. In this paper, we report the measurement of the longitudinal profile of an electron bunch through electro-optic spectral decoding detection, in which the bunch profile is encoded into the spectra of the linearly chirped laser pulse. The experimental setup and measurement results of a 40 MeV electron bunch are presented, with a temporal profile length of 527 fs rms (~1.24 ps FWHM) and a beam arrival time jitter of 471 fs rms. Temporal resolution and future experimental improvement are also discussed.

  10. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  11. Determination of flexibility factors in curved pipes with end restraints using a semi-analytic formulation

    International Nuclear Information System (INIS)

    Fonseca, E.M.M.; Melo, F.J.M.Q. de; Oliveira, C.A.M.

    2002-01-01

    Piping systems are structural sets used in the chemical industry, conventional or nuclear power plants and fluid transport in general-purpose process equipment. They include curved elements built as parts of toroidal thin-walled structures. The mechanical behaviour of such structural assemblies is of leading importance for satisfactory performance and safety standards of the installations. This paper presents a semi-analytic formulation based on Fourier trigonometric series for solving the pure bending problem in curved pipes. A pipe element is considered as a part of a toroidal shell. A displacement formulation pipe element was developed with Fourier series. The solution of this problem is solved from a system of differential equations using mathematical software. To build-up the solution, a simple but efficient deformation model, from a semi-membrane behaviour, was followed here, given the geometry and thin shell assumption. The flexibility factors are compared with the ASME code for some elbow dimensions adopted from ISO 1127. The stress field distribution was also calculated

  12. Linear electro-optic effect in sputtered polycrystalline LiNbO3 films

    Science.gov (United States)

    Griffel, G.; Ruschin, S.; Croitoru, N.

    1989-04-01

    Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).

  13. Magnitude and nature of the quadratic electro-optic effect in potassium dihydrogen phosphate and ammonium dihydrogen phosphate crystals

    International Nuclear Information System (INIS)

    Gunning, Mark J.; Raab, Roger E.; Kucharczyk, Wlodimierz

    2001-01-01

    Measurements of the magnitude and the sign of certain quadratic electro-optic coefficients of potassium dihydrogen phosphate (KDP) and ammonium dihydrogen phosphate (ADP) were made with an actively stabilized Michelson interferometer. The results obtained for these coefficients are, in units of 10 -20 m 2 V -2 (as opposed to literature values of order 10 -18 m 2 V -2 ), as follows: (KDP)g xxxx =-3.4±0.5, g yyxx =-0.2±0.4, and g zzxx =-0.7±0.4; (ADP)g xxxx =-7.4±1.0, g yyxx =-1.7±0.9, and g zzxx =-1.4±0.9. The quadratic Faust--Henry coefficient describing the lattice and the electronic contributions to the quadratic electro-optic effect in KDP and ADP is estimated from our results. These show that the nonlinear susceptibility responsible for the quadratic electro-optic effect in these crystals is due mainly to nonlinear interactions of the low-frequency electric field with the crystal lattice. Copyright 2001 Optical Society of America

  14. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  15. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  16. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    Science.gov (United States)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  17. Single-crystal films of a combination of materials (co-crystal) involving DAST and IR-125 for electro-optic applications

    Science.gov (United States)

    Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.

    2006-03-01

    Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.

  18. A 130 GHz Electro-Optic Ring Modulator with Double-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2017-02-01

    Full Text Available The optical absorption coefficient of graphene will change after injecting carriers. Based on this principle, a high-speed double-layer graphene electro-optic modulator with a ring resonator structure was designed in this paper. From the numerical simulations, we designed a modulator. Its optical bandwidth is larger than 130 GHz, the switching energy is 0.358 fJ per bit, and the driven voltage is less than 1.2 V. At the same time, the footprint of the proposed modulator is less than 10 microns squared, which makes the process compatible with the Complementary Metal Oxide Semiconductors (CMOS process. This will provide the possibility for the on-chip integration of the photoelectric device.

  19. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  20. Non-linear finite element analysis of flexible pipes for deep-water applications

    OpenAIRE

    Edmans, Ben

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London Flexible pipes are essential components in the subsea oil and gas industry, where they are used to convey fluids under conditions of extreme external pressure and (often) axial load, while retaining low bending stiffness. This is made possible by their complex internal structure, consisting of unbonded components that are, to a certain extent, free to move internally relative to eac...

  1. On the integrity of flexible pipes for subsea applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcos C. de; Brack, Marcelo; Lontra Filho, Lauro L.; Jorge, Nilo de M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Most of PETROBRAS offshore oil and gas production is conveyed through Flexible Pipes (FPs) used for gathering, exporting and importing functions. PETROBRAS is the greatest user of FPs worldwide and, due to the complexity of the FP, a composite structure having many steel and polymeric layers and end fittings, it implies a huge number of possible failure mechanisms, much more than those expected for steel pipes. The use of FP demands a special approach over all life cycle phases, from the basic engineering up to the operation/reuse/decommission, by evaluating the application feasibility together with potential failures. This paper accounts some of PETROBRAS experience on FPs, mainly a current approach on their integrity and planned measures in order to assure production and prevent accidents, based on the most relevant failure mechanisms. The preventive actions includes review on failures and their causes and, consequently, improvement on specifications, FP design verification, prototype qualification, inspection and monitoring of integrity key parameters during installation and operation, as well as, maintenance. A FPs Company Integrity Directives and Database will allow a continuous improvement of field systems reliability through to a periodic assessment of performances and feedback to activities for the whole FP life cycle. (author)

  2. Pipe grabber

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.

    1981-05-15

    A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.

  3. A Study on the Characteristics of Corrosion in Cold Worked Flexible STS 304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, In Soo; Kim, Sung Jin

    1993-01-01

    Effects of cold working on the corrosion resistance of austenitic STS 304 stainless steel pipes were investigated using anodic polarization method, EDX analysis and SEM technique. Corrosion products had a lots of S and Cl - ion. Generally, corrosion patterns as a result of STS 304 stainless steel to concrete environment were proceeded in the order of the pitting to intergranular corrosion. In the case of the flexible pipes were covered tightly with other polymer materials, crevice corrosion occurred to a much greater extent on austenitic than on martensitic region

  4. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    Science.gov (United States)

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  5. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  6. Electro-optic sampling of THz pulses at the CTR source at FLASH

    International Nuclear Information System (INIS)

    Wunderlich, Steffen

    2012-06-01

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  7. Numerical simulation and optimal design of Segmented Planar Imaging Detector for Electro-Optical Reconnaissance

    Science.gov (United States)

    Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali

    2017-12-01

    Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.

  8. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    Science.gov (United States)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  9. Applicability of ANSYS ELBOW290 element for flexibility calculation of tight radius bends on feeder pipes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X., E-mail: Xuan.Zhang@candu.com [Candu Energy Inc, Mississauga, ON (Canada)

    2015-07-01

    A curved pipe element, ELBOW290, became available in ANSYS 12. This element was developed based on a simplified shell theory, and maintains the ability to capture cross-sectional deformations of elbows. Numerical testing on the applicability of this element for the flexibility calculation of the tight radius bends in CANDU reactors is carried out to determine the usability of this element in completing stress analyses for feeder pipes. Comparisons are made between the ELBOW290 and the shell element for various feeder bend types found in domestic and overseas CANDU reactors. The comparisons show that the ELBOW290 element is suitable for calculating the flexibility of the tight radius bends. (author)

  10. Li n @B36 ( n = 1, 2) Nanosheet with Remarkable Electro-Optical Properties: A DFT Study

    Science.gov (United States)

    Solimannejad, Mohammad; Kamalinahad, Saeedeh; Shakerzadeh, Ehsan

    2017-07-01

    In this study, an attempt has been made to investigate alteration in electro-optical properties of bowl-shape B36 nanosheet due to interaction with one and two Li atoms. Our results reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of B36 nanosheet is decreased because of a high energy level which is formed under influence of interactions with Li atoms. Gigantic enhancement in the first hyperpolarizability ( β 0) of the studied nanosheet up to 4920.62 au is indicated owing to the effect of Li adsorption. The result of the present study may be eventuating to design and fabrication of a nanosheet with tunable electro-optical properties.

  11. New Electronic Technology Applied in Flexible Organic Optical System

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-02-01

    Full Text Available The synthesis and application of new organic materials, nanostructured, for developing technology based on organic devices, have been the main focus of the scientific community. In recent years, the first polymeric electronics products have entered the market (organic semiconductor materials and there are some electrochromic devices among them that have been called smart windows, once they control the passage of light or heat through a closed environment as an ordinary window. The main functional aspect of electrochromic devices, when being used in architectural and automotive industry, is to control the passage of light and temperature with thermal and visual comfort. These devices can be flexible and very thin, not containing heavy metals, and formed by layers of organic material deposited in several architectures. In this study, the electro-deposition of organic materials in the Polyaniline, PANI case, which provide stability in optical and electrical parameters, was utilized with the means of developing prototypes of organic electrochromic devices. These materials were characterized by: ultraviolet-visible spectroscopy absorption (UV-Vis, measurement of thickness (MT and electrical measurements (EM. This study aims to establish the relationship between the thickness of the active layer and the value of the electrical resistivity of the layer deposited through an electro-deposition technique. The experimental results enabled the equating of the electrical resistivity related to the thickness of the deposited layer. The linear fit of these results has expressed the thickness of the conducting layer, α, and the lowest value of the electrical resistivity, β, associated with the gap between the valence band and the conduction band. Thus, the results have demonstrated that, when the layer of organic material is completely conductive, we may obtain the thickness of the organic material deposited on the substrate.

  12. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    Science.gov (United States)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  13. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    Science.gov (United States)

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  14. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modula......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro...... with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage....

  15. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  16. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen. • Enhanced

  17. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  18. A flexible optically re-writable color liquid crystal display

    Science.gov (United States)

    Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing

    2018-03-01

    It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.

  19. Electro-optic techniques for VLSI interconnect

    Science.gov (United States)

    Neff, J. A.

    1985-03-01

    A major limitation to achieving significant speed increases in very large scale integration (VLSI) lies in the metallic interconnects. They are costly not only from the charge transport standpoint but also from capacitive loading effects. The Defense Advanced Research Projects Agency, in pursuit of the fifth generation supercomputer, is investigating alternatives to the VLSI metallic interconnects, especially the use of optical techniques to transport the information either inter or intrachip. As the on chip performance of VLSI continues to improve via the scale down of the logic elements, the problems associated with transferring data off and onto the chip become more severe. The use of optical carriers to transfer the information within the computer is very appealing from several viewpoints. Besides the potential for gigabit propagation rates, the conversion from electronics to optics conveniently provides a decoupling of the various circuits from one another. Significant gains will also be realized in reducing cross talk between the metallic routings, and the interconnects need no longer be constrained to the plane of a thin film on the VLSI chip. In addition, optics can offer an increased programming flexibility for restructuring the interconnect network.

  20. Development of pipe welding, cutting and inspection tools for the ITER blanket

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  1. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

    Directory of Open Access Journals (Sweden)

    Oh Jae-Won

    2014-09-01

    Full Text Available This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics

  2. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

    Directory of Open Access Journals (Sweden)

    Jae-Won Oh

    2014-09-01

    Full Text Available This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

  3. Novel electro-optical phase modulator based on GaInAs/InP modulation-doped quantum-well structures

    DEFF Research Database (Denmark)

    Thirstrup, C.

    1992-01-01

    A novel electro-optical phase modulator working at 1.55 µm is analyzed and proposed. It is shown by a numerical model that in a GaInAs/InP pn-nin-pn multiple-quantum-well waveguide structure, large optical phase modulation can be obtained at small intensity modulation and with improved performance...

  4. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  5. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    Science.gov (United States)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  6. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Graduate School of China Academy of Engineering Physics, Beijing 100088 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Chang, Yan; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Li Qun [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  7. Casing Pipe Damage Detection with Optical Fiber Sensors: A Case Study in Oil Well Constructions

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2010-01-01

    Full Text Available Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR and the discrete fiber Bragg grating (FBG measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber-reinforced polymer (FRP rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain intact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multipole array acoustic instrument.

  8. Base-plate effects on pipe-support stiffness

    International Nuclear Information System (INIS)

    Winkel, B.V.; LaSalle, F.R.

    1981-01-01

    Present nuclear power plant design methods require that pipe support spring rates be considered in the seismic design of piping systems. Base plate flexibility can have a significant effect on the spring rates of these support structures. This paper describes the field inspection, test, and analytical techniques used to identify and correct excessively flexible base plates on the Fast Flux Test Facility pipe support structures

  9. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Directory of Open Access Journals (Sweden)

    Kasanický Martin

    2015-01-01

    Full Text Available A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  10. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  11. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  12. Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-12-01

    A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.

  13. Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact

    NARCIS (Netherlands)

    van Woudenbergh, T; Blom, PWM; Huiberts, JN

    2003-01-01

    The electro-optical characteristics of a polymer light-emitting diode with a strongly reduced hole injection have been investigated. A silver contact on poly-dialkoxy-p-phenylene vinylene decreases the hole injection by five orders of magnitude, resulting in both a highly reduced light output and

  14. Electro-optical measurements of 3D-stc detectors fabricated at ITC-irst

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, Andrea [INFN and Department of ICT, University of Trento, via Sommarive, 14 - 38050 Povo di Trento (Italy)], E-mail: zoboli@dit.unitn.it; Boscardin, Maurizio [ITC-irst, Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy); Bosisio, Luciano [INFN and Department of Physics, University of Trieste, via A. Valerio, 2 - 34127 Trieste (Italy); Dalla Betta, Gian-Franco [INFN and Department of ICT, University of Trento, via Sommarive, 14 - 38050 Povo di Trento (Italy); Piemonte, Claudio; Pozza, Alberto; Ronchin, Sabina; Zorzi, Nicola [ITC-irst, Microsystems Division, via Sommarive, 18 - 38050 Povo di Trento (Italy)

    2007-12-11

    In the past two years 3D silicon radiation detectors have been developed at ITC-irst (Trento, Italy). As a first step toward full 3D devices, simplified structures featuring columnar electrodes of one doping type only were fabricated. This paper reports the electro-optical characterization of 3D test diodes made with this approach. Experimental results and TCAD simulations provide good insight into the charge collection mechanism and response speed limitation of these structures.

  15. High stable electro-optical cavity-dumped Nd:YAG laser

    International Nuclear Information System (INIS)

    Ma, Y F; Yu, X; Zhang, J W; Li, H

    2012-01-01

    In this paper, an electro-optical cavity-dumped 10 Hz Nd:Y 3 Al 5 O 12 (Nd:YAG) laser was demonstrated. We designed an optimized high stable concavo-convex cavity according to the thermal-insensitive theory that the cavity could be deep stable and be insensitive to the change of thermal lens of laser crystal when g 1 *g 2 = 1/2. The output pulse width was constant at 6.0±0.1 ns. The maximum output energy was 40 mJ. The laser had outstanding stability of output characteristics. The fluctuations of average output energy and divergence angle within 8 cycles were 1.24% and 0.06 mrad, respectively

  16. Atmospheric lidar co-alignment sensor: flight model electro-optical characterization campaign

    Science.gov (United States)

    Valverde Guijarro, Ángel Luis; Belenguer Dávila, Tomás.; Laguna Hernandez, Hugo; Ramos Zapata, Gonzalo

    2017-10-01

    Due to the difficulty in studying the upper layer of the troposphere by using ground-based instrumentation, the conception of a space-orbit atmospheric LIDAR (ATLID) becomes necessary. ATLID born in the ESA's EarthCare Programme framework as one of its payloads, being the first instrument of this kind that will be in the Space. ATLID will provide vertical profiles of aerosols and thin clouds, separating the relative contribution of aerosol and molecular scattering to know aerosol optical depth. It operates at a wavelength of 355 nm and has a high spectral resolution receiver and depolarization channel with a vertical resolution up to 100m from ground to an altitude of 20 km and, and up to 500m from 20km to 40km. ATLID measurements will be done from a sun-synchronous orbit at 393 km altitude, and an alignment (co-alignment) sensor (CAS) is revealed as crucial due to the way in which LIDAR analyses the troposphere. As in previous models, INTA has been in charge of part of the ATLID instrument co-alignment sensor (ATLID-CAS) electro-optical characterization campaign. CAS includes a set of optical elements to take part of the useful signal, to direct it onto the memory CCD matrix (MCCD) used for the co-alignment determination, and to focus the selected signal on the MCCD. Several tests have been carried out for a proper electro-optical characterization: CAS line of sight (LoS) determination and stability, point spread function (PSF), absolute response (AbsRes), pixel response non uniformity (PRNU), response linearity (ResLin) and spectral response. In the following lines, a resume of the flight model electrooptical characterization campaign is reported on. In fact, results concerning the protoflight model (CAS PFM) will be summarized. PFM requires flight-level characterization, so most of the previously mentioned tests must be carried out under simulated working conditions, i.e., the vacuum level (around 10-5 mbar) and temperature range (between 50°C and -30°C) that

  17. Experimental Study on OSNR Requirements for Spectrum-Flexible Optical Networks

    DEFF Research Database (Denmark)

    Borkowski, Robert; Karinou, Fotini; Angelou, Marianna

    2012-01-01

    on adaptive allocation of superchannels in spectrum-flexible heterogeneous optical network. In total, three superchannels were transmitted. Two 5-subcarrier 14-GHz-spaced, 14 Gbaud, polarization-division-multiplexed (PDM) quadrature-phase-shift-keyed (QPSK) superchannels were separated by a spectral gap...... to maintain a 1×10−3 bit error rate of the central BOI subcarrier. The results provide a rule of thumb that can be exploited in resource allocation mechanisms of future spectrum-flexible optical networks.......The flexibility and elasticity of the spectrum is an important topic today. As the capacity of deployed fiber-optic systems is becoming scarce, it is vital to shift towards solutions ensuring higher spectral efficiency. Working in this direction, we report an extensive experimental study...

  18. Development of laser surface cladding through energy transmission over optical fiber

    International Nuclear Information System (INIS)

    Hirano, Kenji; Morishige, Norio; Irisawa, Toshio

    1990-01-01

    Much attention has recently been paid to laser cladding techniques as an approach in controlling the composition and structure of the metal surface. If YAG laser is used as the cladding method, the flexibility of laser cladding process increases extremely because YAG laser beam is transmitted through an optical fiber, and enabling cladding on pipes installed in actual plants. So experiments on YAG laser cladding through energy transmission over an optical fiber were performed to prevent stress corrosion cracking in austenitic stainless steel pipes. In order to build a cladding layer, mixed metal powder were pre-placed on the inner surface of the pipe using organic binder and the pre-placed powder beds were melted with YAG laser beam transmitted using an optical fiber. This paper introduces the method of building a cladding layer on pipes in actual nuclear plants. (author)

  19. Optics Flexibility and Dispersion Matching at Injection into the LHC

    CERN Document Server

    Koschik, A; Goddard, B; Kadi, Y; Kain, V; Mertens, V; Risselada, Thys

    2006-01-01

    The LHC requires very precise matching of transfer line and LHC optics to minimise emittance blow-up and tail repopulation at injection. The recent addition of a comprehensive transfer line collimation system to improve the protection against beam loss has created additional matching constraints and consumed a significant part of the flexibility contained in the initial optics design of the transfer lines. Optical errors, different injection configurations and possible future optics changes require however to preserve a certain tuning range. Here we present methods of tuning optics parameters at the injection point by using orbit correctors in the main ring, with the emphasis on dispersion matching. The benefit of alternative measures to enhance the flexibility is briefly discussed.

  20. Numerical studies on the electro-optic detection of femtosecond electron bunches

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2008-07-01

    Full Text Available The electro-optic (EO effect is a powerful diagnostic tool for determining the time profile of ultrashort relativistic electron bunches. When a relativistic bunch passes within a few mm of an electro-optic crystal, its transient electric field is equivalent to a half-cycle THz pulse passing through the crystal. The induced birefringence can be detected with polarized femtosecond laser pulses. A simulation code has been written in order to understand the faithfulness and the limitations of electron bunch shape reconstruction by EO sampling. The THz pulse and the laser pulse are propagated as wave packets through the EO crystal. Alternatively, the response function method is applied. Using experimental data on the material properties of zinc telluride (ZnTe and gallium phosphide (GaP, the effects of velocity mismatch, pulse shape distortion, and signal broadening are explicitly taken into account. The simulations show that the most severe limitation on the time resolution is given by the transverse-optical (TO lattice oscillation in the EO crystal. The lowest TO frequency is 5.3 THz in ZnTe and 11 THz in GaP. Only the Fourier components below the TO resonance are usable for the bunch shape reconstruction. This implies that the shortest rms bunch length which can be resolved with moderate distortion amounts to σ≈90  fs in ZnTe and σ≈50  fs in GaP. The influence of the crystal thickness on the amplitude and width of the EO signal is studied. The optimum thickness is in the range from 100 to 300  μm for ZnTe and from 50 to 100  μm for GaP.

  1. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  2. CuInS2/ZnS QD-ferroelectric liquid crystal mixtures for faster electro-optical devices and their energy storage aspects

    Science.gov (United States)

    Singh, Dharmendra Pratap; Vimal, Tripti; Mange, Yatin J.; Varia, Mahesh C.; Nann, Thomas; Pandey, K. K.; Manohar, Rajiv; Douali, Redouane

    2018-01-01

    CuInS2/ZnS core/shell quantum dots (CIS/ZnS QDs) dispersed ferroelectric liquid crystal (FLC) mixtures have been characterized for their application in electro-optical devices, energy storage, and solar cells. Physical properties of the CIS/ZnS QD-FLC (ferroelectric liquid crystal) mixtures have also been investigated with varying QD concentrations in order to optimize the critical concentration of QDs in mixtures. The presence of QDs breaks the geometrical symmetry in the FLC matrix, which results in a change in the physical properties of the mixtures. We observed the reduced values of primary and secondary order parameters (tilt angle and spontaneous polarization, respectively) for mixtures, which also depend on the concentration of QDs. The reduction of spontaneous polarization in QDs-FLC mixtures is attributed to the adverse role of flexoelectric contribution in the mixtures. The 92% faster electro-optic response and enhanced capacitance indicate the possible application of these mixtures in electro-optical devices and solar cells. Photoluminescence emission of pure FLC and QDs-FLC mixtures has been thermally tailored, which is explained by suitable models.

  3. Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure

    Science.gov (United States)

    Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon

    2018-04-01

    In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.

  4. Defect enhanced optic and electro-optic properties of lead zirconate titanate thin films

    Directory of Open Access Journals (Sweden)

    M. M. Zhu

    2011-12-01

    Full Text Available Pb(Zr1-xTixO3 (PZT thin films near phase morphotropic phase boundary were deposited on (Pb0.86La0.14TiO3-coated glass by radio frequency sputtering. A retrieved analysis shows that the lattice parameters of the as-grown PZT thin films were similar to that of monoclinic PZT structure. Moreover, the PZT thin films possessed refractive index as high as 2.504 in TE model and 2.431 in TM model. The as-grown PZT thin film had one strong absorption peak at 632.6 nm, which attributed to lead deficiency by quantitative XPS analysis. From the attractive properties achieved, electro-optic and photovoltaic characteristic of the films were carried out.

  5. Characterization and control of the electro-optic phase dispersion in lithium niobate modulators for wide spectral band interferometry applications in the mid-infrared.

    Science.gov (United States)

    Heidmann, S; Ulliac, G; Courjal, N; Martin, G

    2017-05-10

    Mid-infrared wideband modulation (3.2-3.7 μm) is achieved in an electro-optic Y-junction using lithium niobate waveguides in TE polarized light. Comparison between external (scanning mirror) and internal (electro-optical) modulation allows studying the chromatic polynomial dependence of the relative phase. Internal modulation consists on a V AC ramp up to 370 V at 0.25 Hz, applied over 14 mm long electrodes with 14 μm separation. The overall V π L π obtained is 17.5 V·cm, meaning that using a 300 V generator we can actively scan and track the whole L-band (3.4-4.1 μm) wideband fringes. We observe a dramatic reduction of the coherence length under electro-optic modulation, which is attributed to a strong nonlinear dependence of the electro-optic effect on the wavelength upon application of such high voltages. We study the effect of applying a V DC offset, from -50  V to 200 V (50 V step). We characterize this dispersion and propose an improved dispersion model that is used to show active dispersion compensation in wideband fringe modulation in the mid-infrared. This can be useful for long baseline interferometry or pulse compression applications when light propagates along fibers, in order to compensate for chromatic effects that induce differential dispersion or pulse spreading, respectively.

  6. On the feasibility of self-mixing interferometer sensing for detection of the surface electrocardiographic signal using a customized electro-optic phase modulator

    International Nuclear Information System (INIS)

    Bakar, A Ashrif A; Lim, Yah Leng; Wilson, Stephen J; Fuentes, Miguel; Bertling, Karl; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2013-01-01

    Optical sensing offers an attractive option for detection of surface biopotentials in human subjects where electromagnetically noisy environments exist or safety requirements dictate a high degree of galvanic isolation. Such circumstances may be found in modern magnetic resonance imaging systems for example. The low signal amplitude and high source impedance of typical biopotentials have made optical transduction an uncommon sensing approach. We propose a solution consisting of an electro-optic phase modulator as a transducer, coupled to a vertical-cavity surface-emitting laser and the self-mixing signal detected via a photodiode. This configuration is physically evaluated with respect to synthesized surface electrocardiographic (EKG) signals of varying amplitudes and using differing optical feedback regimes. Optically detected EKG signals using strong optical feedback show the feasibility of this approach and indicate directions for optimization of the electro-optic transducer for improved signal-to-noise ratios. This may provide a new means of biopotential detection suited for environments characterized by harsh electromagnetic interference. (paper)

  7. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    Cesari, F.; Ferranti, P.; Gasparrini, M.; Labanti, L.

    1975-01-01

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  8. Role of misalignment-induced angular chirp in the electro-optic detection of THz waves

    CERN Document Server

    Walsh, D A; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P

    2014-01-01

    A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the chi((2))-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system. (C) 2014 Optical Society of America.

  9. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  10. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    Directory of Open Access Journals (Sweden)

    Yujian Sun

    2016-12-01

    Full Text Available Polymer-dispersed liquid crystal (PDLC films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  11. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    Science.gov (United States)

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  12. Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices.

    Science.gov (United States)

    Basu, Rajratan; Shalov, Samuel A

    2017-07-01

    In a conventional liquid crystal (LC) cell, polyimide layers are used to align the LC homogeneously in the cell, and transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. It is experimentally presented here that monolayer graphene films on the two glass substrates can function concurrently as the LC aligning layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates. This replacement can effectively decrease the thickness of all the alignment layers and electrodes from about 100 nm to less than 1 nm. The interaction between LC and graphene through π-π electron stacking imposes a planar alignment on the LC in the graphene-based cell-which is verified using a crossed polarized microscope. The graphene-based LC cell exhibits an excellent nematic director reorientation process from planar to homeotropic configuration through the application of an electric field-which is probed by dielectric and electro-optic measurements. Finally, it is shown that the electro-optic switching is significantly faster in the graphene-based LC cell than in a conventional ITO-polyimide LC cell.

  13. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  14. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  15. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  16. An optical, electro-optic and thermal characterisation of various organic crystals

    International Nuclear Information System (INIS)

    Lochran, Stephen

    1997-01-01

    The organic materials S - 3 - methyl - 5 - nitro - N - (1 - phenylethyl) - 2 - pyridinamine [3- methyl-MBANP] and S - N - methyl - 5 - nitro - N -(1 - phenylethyl) - 2 - pyridinamine [N- methyl-MBANP] belong to a family of compounds based on the 2-(α-methylbenzylamino)-5- nitropyridine molecule and were identified as promising nonlinear optical materials by the powder disk test. Large single crystals were grown from solution for N-methyl-MBANP, which crystallises in a monoclinic space group, and from the melt and solution for 3-methyl-MBANP which crystallises in an orthorhombic space group. Orthoscopic examination of N-methyl-MBANP revealed no dispersion of the dielectric axes unlike the parent molecule and the position of the dielectric axes was correlated with the molecular structure. Preparation of prisms from single crystals of both materials facilitated the measurement of refractive indices in the visible and the near infra-red. The values obtained were correlated with the crystal structure and a Sellmeier equation fitted to each of the dispersion curves. The nonlinear optical properties of both materials were evaluated by use of the Maker fringe technique and phase matched intensities. By means of these two methods, the full nonlinear d ij tensor was obtained for both materials at a fundamental wavelength of 1064nm. The linear electro-optic properties of N-methyl-MBANP were evaluated using a conoscopic experiment and correlated with the crystal structure together with the magnitude of all non-zero elements in the d ij tensor. Separately, the thermal properties of N-methylurea (NMU), 4-nitro-4'-methylbenzylidene aniline (NMBA) and Zinc TrisThiourea Sulfate (ZTS) were evaluated and all correlated with the crystal structure and bonding. (author)

  17. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    Science.gov (United States)

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  18. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Planken, P.C.M.

    2002-01-01

    We report on a method to obtain a subwavelength resolution in terahertz time-domain imaging. In our method, a sharp copper tip is used to locally distort and concentrate the THz electric field. The distorted electric field, present mainly in the near field of the tip, is electro-optically measured

  19. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  20. Electro-Optical Design for Efficient Visual Communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-Ur

    1995-01-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end to end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communications theory. We use this approach to assess the electro-optical design of image gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the phot-detection mechanism. Results show that an image gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clearity with which fine detail can be restored.

  1. Electro-optical design for efficient visual communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-ur

    1995-03-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end-to-end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communication theory. We use this approach to assess the electro-optical design of image-gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the photodetection mechanism. Results show that an image-gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clarity with which fine detail can be restored.

  2. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    Science.gov (United States)

    Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung

    2014-09-01

    Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  3. Characteristics of Electro-Optic Device Using Conducting Polymers, Polythiophene and Polypyrrole Films

    Science.gov (United States)

    Kaneto, Keiichi; Yoshino, Katsumi; Inuishi, Yoshio

    1983-07-01

    Detailed characteristics of electro-optic elements (color switching and memory) utilizing the spectral change of conducting polymers by electrochemical doping and undoping are studied. The response time of color switching, for example, red≤ftrightarrowblue in polythiophene film in the electrolyte of LiBF4/acetonitrile is 30˜100 msec under the applied voltages of -2.0{≤ftrightarrow}+4.0 V vs. Li plate. More than 103 cycles of color switch are observed quite reproducibly. Three color states of yellow green, dark brown and blue are demonstrated for polypyrrole film.

  4. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  5. PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.

    Science.gov (United States)

    Anslan, Sten; Bahram, Mohammad; Hiiesalu, Indrek; Tedersoo, Leho

    2017-11-01

    High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable. © 2017 John Wiley & Sons Ltd.

  6. CWDM for very-short-reach and optical-backplane interconnections

    Science.gov (United States)

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  7. Highly-hermetic feedthrough fiber pigtailed circular TO-can electro-optic sensor for avionics applications

    Science.gov (United States)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas

    2012-06-01

    Electro-optic sensors made of lasers or photodetectors assemblies can be associated with a window interface. In order to use these sensors in an avionics application, this interface has to be set on the periphery of the aircraft. This creates constraints on both the position/access of the associated electronics circuit card and the aircraft fuselage. Using an optical fiber to guide the light signal to a sensor being situated inside the aircraft where electronics circuit cards are deployed is an obvious solution that can be readily available. Fiber collimators that adapt to circular TO-can type window sensors do exist. However, they are bulky, add weight to the sensor and necessitate regular maintenance of the optical interface since both the sensor window and the collimator end-face are unprotected against contamination. Such maintenance can be complex since the access to the electronics circuit card, where the sensor is sitting, is usually difficult. This interface alignment can also be affected by vibrations and mechanical shocks, thus impacting sensor performances. As a solution to this problem, we propose a highly-hermetic feedthrough fiber pigtailed circular TO-can package. The optical element to optical fiber interface being set inside the hermetic package, there is no risk of contamination and thus, such a component does not require any maintenance. The footprint of these sensors being identical to their window counterparts, they offer drop-in replacement opportunities. Moreover, we have validated such packaged electro-optic sensors can be made to operate between -55 to 115°C, sustain 250 temperature cycles, 1500G mechanical shocks, 20Grms random vibrations without any performance degradations. Their water content is much smaller than the 0.5% limit set by MIL-STD-883, Method 1018. They have also been verified to offer a fiber pigtail strain relief resistance over 400g. Depending on the electronics elements inside these sensors, they can be made to have a

  8. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer

    Science.gov (United States)

    Balakrishnan, M.; Faccini, M.; Diemeer, M. B. J.; Klein, E. J.; Sengo, G.; Driessen, A.; Verboom, W.; Reinhoudt, D. N.

    2008-04-01

    A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight cross-linking. Thereafter, poling (to align the chromophores) and further cross-linking (to increase the glass transition temperature) were simultaneously carried out. The material showed excellent photostability and the electro-optic modulation with an r33 of 11pm/V was demonstrated at 10MHz.

  9. ELECTRON BUNCH CHARACTERIZATION WITH SUBPICOSECOND RESOLUTION USING ELECTRO-OPTIC TECHNIQUE

    International Nuclear Information System (INIS)

    SEMERTZIDIS, Y.K.; CASTILLO, V.; LARSEN, R.; LAZARUS, D.M.; NIKAS, D.; OZBEN, C.; SRINIVASAN-RAO, T.; STILLMAN, A.; TSANG, T.; KOWALSKI, L.

    2001-01-01

    In the past decade, the bunch lengths of electrons in accelerators have decreased dramatically and are in the range off a few millimeters. Measurement of the length as well as the longitudinal profile of these short bunches have been a topic of research in a number of institutions. One of the techniques uses the electric field induced by the passage of electrons in the vicinity of a birefringent crystal to change its optical characteristics. Well-established electro-optic techniques can then be used to measure the temporal characteristics of the electron bunch. The inherent fast response of the crystal facilitates the measurement to femtosecond time resolution. However, the resolution in experiments so far has been limited to 70 ps, by the bandwidth of the detection equipment. Use of a streak camera can improve this resolution to a few picoseconds. In this paper we present a novel, non-invasive, single-shot approach to improve the resolution to tens of femtoseconds so that sub mm bunch length can be measured

  10. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    Science.gov (United States)

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    Science.gov (United States)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  12. Optical turbulence in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2009-07-01

    Full Text Available in the Spinning Pipe Gas Lens by optical means • Axial Propagation • Boundary Layer Phase Structure Function and Slope Correlation • Slope Correlation ( ) ( ) ( )[ ]2rrxrD φφφ −+= ( ) ( ) ( )rsrxsrCs += Inner Scale Outer Scale • Phase Structure Function... -----------------------Mean 4 3 2 1 DΦ(r2) or SC(r2) DΦ(r1) or SC(r1) Phase Structure Function ( ) oon Lrl,LC.logrlogrDlog ≤≤⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎠ ⎞⎜⎝ ⎛+= 2 22912 3 5 λ π φ Homogeneity Isotropy Boundary LayerAxisPropagation Path 1. Axial propagation fulfils...

  13. Design rules for piping: experimental validation of flexibility and elastic stress indices for elbows under bending

    International Nuclear Information System (INIS)

    Touboul, F.; Ben Jdidia, M.; Acker, D.

    1989-01-01

    Design rules for class 1 piping components are based on stress indices (B, C, K) and flexibility factors (k). For elbows, adjacent straight parts and internal pressure inhibit ovalization of the cross-section, so reducing the sub-mentioned indices. Published theoretical works and experimental results allow for improvement of coded values. End effect may be represented by a suitable function of the elbow angle. The favourable effect of pressure on C 2 , for fatigue damage evaluation, can be taken into account

  14. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  15. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  16. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  17. Cellulose Electro-Active Paper: From Discovery to Technology Applications

    Directory of Open Access Journals (Sweden)

    Zafar eAbas

    2014-09-01

    Full Text Available Cellulose electro-active paper (EAPap is an attractive material of electro-active polymers (EAPs family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.

  18. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  19. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    Science.gov (United States)

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  20. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  1. Comparison Between Stress Obtained by Numerical Analysis and In-Situ Measurements on a Flexible Pipe Subjected to In-Plane Bending Test

    DEFF Research Database (Denmark)

    Vestergaard Lukassen, Troels; Glejbøl, Kristian; Lyckegaard, Anders

    2016-01-01

    to stress patterns obtained during in-situ OMS measurements carried out during an actual experimental inplane bending test. The study showed a good correlation between the stress variation predicted with the finite element model and the measured stress variation.......To predict the lifetime and long-term properties of tensile armour wires in a dynamically loaded pipe, it is essential to have a tool which allows detailed prediction of the stress variations in the tensile armour wires during global pipe loading. Furthermore, detailed understanding of the stress...... variations will allow for performance optimization of the armour layers. To study the detailed stress variations in flexible pipes during dynamic loading, a comprehensive three-dimensional implicit nonlinear finite element model has been developed. The predicted numerical stress variations will be compared...

  2. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  3. Next Generation Flexible and Cognitive Heterogeneous Optical Networks

    DEFF Research Database (Denmark)

    Tomkos, Ioannis; Angelou, Marianna; Barroso, Ramón J. Durán

    2012-01-01

    Optical networking is the cornerstone of the Future Internet as it provides the physical infrastructure of the core backbone networks. Recent developments have enabled much better quality of service/experience for the end users, enabled through the much higher capacities that can be supported...... the capabilities of the Future Internet. In this book chapter, we highlight the latest activities of the optical networking community and in particular what has been the focus of EU funded research. The concepts of flexible and cognitive optical networks are introduced and their key expected benefits...

  4. Long range surface plasmon resonance enhanced electro-optically tunable Goos-Hänchen shift and Imbert-Fedorov shift in ZnSe prism

    Science.gov (United States)

    Goswami, Nabamita; Kar, Aparupa; Saha, Ardhendu

    2014-11-01

    A new theoretical approach towards the tuning of Goos-Hänchen shift and Imbert-Fedorov shift for the reflected light beam is observed, designed and simulated in this paper through electro-optically tunable liquid crystal at an incident wavelength of 1550 nm within the communication window. Here the considered Kretschmann-Raether geometry comprises a ZnSe prism and a liquid crystal layer of E44 between two metal layers of silver, where with the application of electric field from (0-10) V electro-optically tuning of the Goos-Hänchen shift from 64.09 μm to -53.408 μm and the Imbert-Fedorov shift from 122.8 μm to -32.5 μm for a change in refractive index of the liquid crystal layer from 1.52-1.79 are envisaged. This idea expedites the scope of fine tuning in optical switching within the μm ranges.

  5. Introduction of Spectrally and Spatially Flexible Optical Networks

    DEFF Research Database (Denmark)

    Xia, Tiejun J.; Fevrier, Herve; Wang, Ting

    2015-01-01

    Given the introduction of coherent 100G systems has provided enough fiber capacity to meet data traffic growth in the near term, enhancing network efficiency will be service providers' high priority. Adding flexibility at the optical layer is a key step to increasing network efficiency, and both...... spectral and spatial functionality will be considered in next generation optical networks along with advanced network management to effectively harness the new capabilities....

  6. Electro-optics/Laser International '80 UK Proceedings of the Conference, Brighton, England, March 25-27, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Jerrard, H G [ed.

    1980-01-01

    Papers are presented concerning recent developments in the fields of electro-optics, particularly as it relates to the use of lasers, and other laser applications. Specific topics include loss measurements in graded index compound glass optical fibers, coherent optical two-dimensional signal analysis for picture deblurring applications, applications of the high-resolution holography of large volumes, laser speckle vibrometry for measurements of microscopic motions at audio frequencies, laser hazard control under field conditions, laser coupling to a gaseous medium through resonance saturations, a time-of-flight laser anemometer for remote wind velocity measurement, an electron-beam-pumped excimer laser system, the evaluation of thermal imaging systems, and a flat-plate capacitor discharge N/sub 2/ laser.

  7. Inspection and monitoring techniques for un-bonded flexible risers and pipelines

    OpenAIRE

    Simonsen, Anders

    2014-01-01

    Master's thesis in Offshore technology Un-bonded flexible pipelines and risers are an alternative to conventional rigid steel pipes. The use of flexible pipes has enabled development of several offshore fields that seemed unfeasible with the use of rigid pipes due to extensive seabed preparation and large dynamic motions. The lack of knowledge and integrity management tools for flexible pipes is a limiting factor and cause pipelines and risers to be replaced before their service life has ...

  8. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  9. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  10. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter.

    Science.gov (United States)

    Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  11. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    International Nuclear Information System (INIS)

    Lin, Tien-Chai; Huang, Wen-Chang; Tsai, Fu-Chun

    2015-01-01

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10 −3 Ω −1 with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10 −3 Ω −1 with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure

  12. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Chai [Department of Electrical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Huang, Wen-Chang, E-mail: wchuang@mail.ksu.edu.tw [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Tsai, Fu-Chun [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China)

    2015-08-31

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure.

  13. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  14. On the design and construction of drifting-mine test targets for sonar, radar and electro-optical detection experiments

    NARCIS (Netherlands)

    Dol, H.S.

    2014-01-01

    The timely detection of small hazardous objects at the sea surface, such as drifting mines, is challenging for ship-mounted sensor systems, both for underwater sensor systems like sonar and above-water sensor systems like radar and electro-optics (lidar, infrared/visual cameras). This is due to the

  15. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    Science.gov (United States)

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  16. Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film

    Directory of Open Access Journals (Sweden)

    Akbar I. Inamdar

    2017-10-01

    Full Text Available The dataset presented here is related to the research article entitled “Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film” (Akbar et al., 2017 [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

  17. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    Science.gov (United States)

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  18. Recent progress in GeSi electro-absorption modulators

    International Nuclear Information System (INIS)

    Chaisakul, Papichaya; Marris-Morini, Delphine; Rouifed, Mohamed-Said; Coudevylle, Jean-René; Roux, Xavier Le; Edmond, Samson; Vivien, Laurent; Frigerio, Jacopo; Chrastina, Daniel; Isella, Giovanni

    2014-01-01

    Electro-absorption from GeSi heterostructures is receiving growing attention as a high performance optical modulator for short distance optical interconnects. Ge incorporation with Si allows strong modulation mechanism using the Franz–Keldysh effect and the quantum-confined Stark effect from bulk and quantum well structures at telecommunication wavelengths. In this review, we discuss the current state of knowledge and the on-going challenges concerning the development of high performance GeSi electro-absorption modulators. We also provide feasible future prospects concerning this research topic. (review)

  19. Double-Arched LD Array Stagger Pumped Electro-Optic Q-Switched Nd:YAG Laser without Water Cooling

    International Nuclear Information System (INIS)

    Xin-Yu, Chen; Guang-Yong, Jin; Yong-Ji, Yu; Chao, Wang; Da-Wei, Hao; Yi-Bo, Wang

    2010-01-01

    We report an experimental study on a double-arched LD array stagger pumped electro-optic Q-switched Nd:YAG laser without water cooling by using a convex-concave compensate resonator. Perfect matching of the gain field inside the rod and the fundamental mode of the cavity is made by this structure. When the repetition rate is 20 Hz, A maximum output energy at 1064 nm wavelength of 176 mJ (M 2 = 1.55) and 9.6 ns FWHM pulse width in fundamental mode Q-switch operation is obtained with LD injection current 120 A. The optical-optical conversion efficiency is 14.7%, the divergence angle of the output beam is about 1.8 mrad. (fundamental areas of phenomenology(including applications))

  20. Flexibility factors for small (d/D<1/3) branch connections with external loadings

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1977-03-01

    A piping system analysis is accurate only to the extent that the flexibilities of all portions of the piping system are accurately known. The use of a ''conservative'' flexibility factor is not possible because such a factor cannot be defined. Branch connections require a definition of flexibility factor which is conceptually different than commonly used for curved pipe. An appropriate definition for the flexibility factors of branch connections is presented. The background of the present Code formulations of flexibility factors for branch connections is discussed. Additional theoretical data and test data are summarized. Recommendations are given for revisions to Code formulations for handling the flexibility of branch connections in a piping system analysis

  1. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  2. Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks.

    Science.gov (United States)

    Tse, Kam-Hon; Chan, Chun-Kit

    2014-08-11

    A simple coded-subcarrier aided scheme is proposed to perform chromatic dispersion monitoring in flexible optical OFDM networks. A pair of coded label subcarriers is added to both edges of the optical OFDM signal spectrum at the edge transmitter node. Upon reception at any intermediate or the receiver node, chromatic dispersion estimation is performed, via simple direct detection, followed by electronic correlation procedures with the designated code sequences. The feasibility and the performance of the proposed scheme have been experimentally characterized. It provides a cost-effective monitoring solution for the optical OFDM signals across intermediate nodes in flexible OFDM networks.

  3. Contributions of the ORNL piping program to nuclear piping design codes and standards

    International Nuclear Information System (INIS)

    Moore, S.E.

    1975-11-01

    The ORNL Piping Program was conceived and established to develop basic information on the structural behavior of nuclear power plant piping components and to prepare this information in forms suitable for use in design analysis and codes and standards. One of the objectives was to develop and qualify stress indices and flexibility factors for direct use in Code-prescribed design analysis methods. Progress in this area is described

  4. Inverted cones grating for flexible metafilter at optical and infrared frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Jean-Baptiste; Le Rouzo, Judikaël; Escoubas, Ludovic [Aix-Marseille Université, IM2NP, CNRS-UMR 7334, Domaine Universitaire de Saint-Jérôme, Service 231, 13397 Marseille Cedex 20 (France); Brissonneau, Vincent; Dubarry, Christophe [CEA-LITEN DTNM, 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France); Ferchichi, Abdelkerim; Gourgon, Cécile [LTM CNRS, Laboratoire des Technologies de la Microélectronique 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France); Berginc, Gérard [Thales Optronique S.A., 2 Avenue Gay Lussac, 78990 Elancourt (France)

    2014-02-24

    By combining the antireflective properties from gradual changes in the effective refractive index and cavity coupling from cone gratings and the efficient optical behavior of a tungsten film, a flexible filter showing very broad antireflective properties from the visible to short wavelength infrared region and, simultaneously, a mirror-like behavior in the mid-infrared wavelength region and long-infrared wavelength region has been conceived. Nanoimprint technology has permitted the replication of inverted cone patterns on a large scale on a flexible polymer, afterwards coated with a thin tungsten film. This optical metafilter is of great interest in the stealth domain where optical signature reduction from the optical to short wavelength infrared region is an important matter. As it also acts as selective thermal emitter offering a good solar-absorption/infrared-emissivity ratio, interests are found as well for solar heating applications.

  5. Optical profilometer using laser based conical triangulation for inspection of inner geometry of corroded pipes in cylindrical coordinates

    Science.gov (United States)

    Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.

    2013-04-01

    An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.

  6. Development of a cryogenic flexible pipe for the transfer of liquefied natural gas; Mise au point d'un flexible cryogenique pour le transfert du gaz naturel liquefie

    Energy Technology Data Exchange (ETDEWEB)

    Rigaud, J.; Gerez, J.M.; Dieumegard, C. [Coflexip Stena Offshore, 75 - Paris (France)

    2000-07-01

    For historical reasons, the liquefaction of natural gas is performed with onshore equipments and LNG tanker-ships are loaded and unloaded using rigid articulated arms. When these operations are performed in harbors, the movement of the ship with respect to the pier are relatively limited. Today, several companies aim at liquefying natural gas using floating facilities. The loading of tanker-ships is performed offshore, and thus movements between the ship and the floating facility are enhanced. The use of a flexible pipe can be an interesting alternative solution to the articulated arm. This article describes the state-of-the-art of the LNG flexible technology developed by Coflexip Stena Offshore and the progress of the program of development of a cryogenic flexible: structure, fittings, safety (leaks detection), thermal calculations, optimization of the corrugated hose profile, pressure drops, fatigue tests and service life, materials development, prototype and real tests. (J.S.)

  7. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator.

    Science.gov (United States)

    Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador

    2003-08-15

    We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.

  8. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  9. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    Science.gov (United States)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  10. Performance of a viscous damper using electro-rheological fluid

    International Nuclear Information System (INIS)

    Otani, A.; Kobayashi, H.; Kobayashi, N.; Tadaishi, Y.

    1994-01-01

    A new damper has been developed that suppresses small-amplitude vibrations over a wide frequency range. The damper has been tested using both an electro-rheological fluid (ERF) and a highly viscous liquid, which are enclosed in the damper's casing (a metal bellows). The apparent viscosity of the ERF can be changed by varying the strength of the applied electrical field. Initially, a simple L-shaped piping model excited by a rotary-type exciter was used to investigate the performance of the damper, utilizing both fluids. The experimental results demonstrate the effectiveness of the passive damper. Based on the experimental results, application of the damper to an actual piping system with a big pump was carried out analytical

  11. Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hilal, Muhammad; Rashid, Bahroz; Khan, Shah Haider; Khan, Afzal, E-mail: afzal_khan@upesh.edu.pk

    2016-12-01

    To investigate the electro-optical properties of indium antimonide (InSb) for photo-voltaic applications, we performed first principles calculations using density functional theory (DFT). Our DFT calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2K code. These calculations are carried out using generalized gradient approximation (GGA) and Tran Blaha modified Becke Johnson (TB-mBJ) approximation for exchange co-relation potential. All the calculations are performed with and without the addition of spin-orbit interaction (SOI) to GGA and TB-mBJ potentials. Addition of SOI gives the results very close to their experimental values and makes the calculations independent of k-points consideration. All the results are calculated by considering the temperature as high as 300 K. To the best of our knowledge, all the previously published theoretical results were calculated at 0 K and no such results have been reported at 300 K. In this article, we are reporting band structure, density of states (DOS) and the band gap dependent optical properties of InSb. The calculated direct band gap is 0.17 eV, refractive index is 3.79 and extinction coefficient as 3.22. - Highlights: • Room temperature calculations of electro-optical properties of InSb. • Effect of SOI on the band structure and critical points. • The addition of SOI made the calculation k-points independent. • Optical properties were calculated without broadening or applying scissor potential.

  12. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto; Syed, Ahad A.; Hussain, Muhammad Mustafa

    2012-01-01

    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  13. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  14. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    Science.gov (United States)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  15. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    NARCIS (Netherlands)

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure

  16. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    OpenAIRE

    Yujian Sun; Cuihong Zhang; Le Zhou; Hua Fang; Jianhua Huang; Haipeng Ma; Yi Zhang; Jie Yang; Lan-Ying Zhang; Ping Song; Yanzi Gao; Jiumei Xiao; Fasheng Li; Kexuan Li

    2016-01-01

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found...

  17. Optical aberrations in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-06-01

    Full Text Available If a heated pipe is rotated about its axis, a density gradient is formed which results in the pipe acting as a graded index lens. In this study the authors revisit the concept of a spinning pipe gas lens and for the first time analyse both the wave...

  18. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  19. A compact plasmonic MOS-based 2×2 electro-optic switch

    Directory of Open Access Journals (Sweden)

    Ye Chenran

    2015-01-01

    Full Text Available We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, indium-tin-oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 (7 dB for the CROSS (BAR state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with silicon-on-insulator platforms for low-cost manufacturing.

  20. Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator.

    Science.gov (United States)

    Weicker, Lionel; Erneux, Thomas; Jacquot, Maxime; Chembo, Yanne; Larger, Laurent

    2012-02-01

    An electro-optic oscillator subject to two distinct delayed feedbacks has been designed to develop pronounced broadband chaotic output. Its route to chaos starts with regular pulsating gigahertz oscillations that we investigate both experimentally and theoretically. Of particular physical interest are the transitions to various crenelated fast time-periodic oscillations, prior to the onset of chaotic regimes. The two-delay problem is described mathematically by two coupled delay-differential equations, which we analyze by using multiple-time-scale methods. We show that the interplay of a large delay and a relatively small delay is responsible for the onset of fast oscillations modulated by a slowly varying square-wave envelope. As the bifurcation parameter progressively increases, this envelope undergoes a sequence of bifurcations that corresponds to successive fixed points of a sine map.

  1. Bunch length measurements using electro-optical sampling at the SLS linac

    International Nuclear Information System (INIS)

    Winter, A.

    2004-07-01

    A mode-locked titanium-sapphire laser with 15 fs pulse width is used to determine the time profile of the picosecond electron bunches in the Swiss light source linac of the Paul Scherrer Institute, Villigen Switzerland. This was done using the electro-optic effect in Zinc-Telluride crystals and sampling the change induced by coherent transition radiation with the TiSa laser. The development, implementation and results of an analogue synchronisation system to synchronise the repetition rate of the TiSa laser to the radio frequency of the accelerator with a short term stability of 40 fs is presented. The experimental setup of the bunch length measurements is described and results are presented on the coincidence measurements between the laser pulses and the coherent transition radiation pulses generated by the electron bunches. (orig.)

  2. Apparatus and method for determining stress and strain in pipes, pressure vessels, structural members and other deformable bodies

    International Nuclear Information System (INIS)

    Vachon, R.I.; Ranson, W.F.

    1987-01-01

    A method and apparatus for measuring stress and strain associated with a pipe, pressurized vessel, structural member or deformable body containing a flaw or stress concentration utilizes a laser beam to illuminate a surface being analyzed and an optical data digitizer to sense a signal provided by a speckle pattern produced by the light beam reflected from the illuminated surface. One signal is received from the surface in a reference condition and subsequent signals are received from the surface after surface deformation. The optical data digitizer provides the received signal to an image processor, and the processor stores the signals and correlates the deformed image received with the reference image and then sends this correlated information to a minicomputer which performs mathematical analyses of the signal to determine stress and strain associated with the surface. The apparatus is constructed as one integral unit, and further includes a digital and tape display, as well as a television monitor and an electro-optic range indicator. (author) 15 figs

  3. Optic and electro-optic investigations on SmQ, SmCA* and L phases in highly chiral compounds

    International Nuclear Information System (INIS)

    Manai, M.; Gharbi, A.; Marcerou, J.P.; Nguyen, H.T.; Rouillon, J.C.

    2005-01-01

    Chiral molecules give rise to a large variety of mesophases. Well-known examples are cholesteric or ferroelectric smectic phases where the chirality tends to favor a macroscopic twist. Furthermore, the molecular core length (l) plays an important role on the range of the mesophases and on the temperature (T NI ) for the onset of orientational order. The tendency for T NI is to increase (going over 200 - bar C for some compounds) with increasing l. We report in this paper on a selection of compounds which have been designed in order to favor an anticlinic smectic ordering together with high chirality. As a common feature, they have a long rigid core with four benzene rings and a chiral chain (usually the same) at each end. They display a locally anisotropic liquid phase referred to as ''L phase'' in a large temperature range between T NI and the low temperature SmQ or SmC A * phase. Optical rotatory power (ORP), birefringence and electro-optic studies have been performed with these compounds

  4. Applications of lasers and electro-optics

    International Nuclear Information System (INIS)

    Tan, B.C.; Low, K.S.; Chen, Y.H.; Harith bin Ahmad; Tou, T.Y.

    1994-01-01

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: 1. Industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes. Prototype operational systems have been developed. 2. Medical applications of lasers for cancer treatment using the technique of photodynamic therapy. A new and more effective treatment protocol has been proposed. 3. Agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies. Fruit ripeness signature has been developed and palm oil oxidation level were investigated. 4. Development of atmospheric pollution monitoring systems using laser lidar techniques. Laboratory scale systems were developed. 5. Other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials. The activities of the group (from 1988-1990) have resulted in the submission of a patent for a laser device, publication of many research paper sin local and overseas journals and conference proceedings, completion of 1 Ph.D. dissertation and 6 M. Phil theses. Currently (1991), a total of 3 Ph.D., 6 M. Phil research programmes are involved in this research and development programme

  5. An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

    International Nuclear Information System (INIS)

    Ooi, P.C.; Aw, K.C.; Gao, W.; Razak, K.A.

    2013-01-01

    In this work, we demonstrated a simple fabrication route towards an optically transparent and flexible memory device. The device is simple and consists of a metal/insulator/semiconductor structure; namely MIS. The preliminary MIS study with gold nanoparticles embedded between the polymethylsilsesquioxane layers was fabricated on p-Si substrate and the capacitance versus voltage measurements confirmed the charge trapped capability of the fabricated MIS memory device. Subsequently, an optically transparent and flexible MIS memory device made from indium–tin-oxide coated polyethylene terephthalate substrate and pentacene was used to replace the opaque p-Si substrate as the active layer. Current versus voltage (I–V) plot of the transparent and flexible device shows the presence of hysteresis. In an I–V plot, three distinct regions have been identified and the transport mechanisms are explained. The fabricated optically transparent and mechanically flexible MIS memory device can be programmed and erased multiple times, similar to a flash memory. Mechanical characterization to determine the robustness of the flexible memory device was also conducted but failed to establish any relationship in this preliminary work as the effect was random. Hence, more work is needed to understand the reliability of this device, especially when they are subjected to mechanical stress. - Highlights: ► An optically transparent and mechanically flexible memory is presented. ► Electrical characteristics show reprogrammable memory similar to flash memory. ► Transport mechanisms are proposed and explained. ► Mechanical bending tests are conducted

  6. An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P.C. [Mechanical Engineering, The University of Auckland (New Zealand); Aw, K.C., E-mail: k.aw@auckland.ac.nz [Mechanical Engineering, The University of Auckland (New Zealand); Gao, W. [Chemical and Materials Engineering, The University of Auckland (New Zealand); Razak, K.A. [School of Materials and Mineral Resources Engineering, Universiti Sains (Malaysia); NanoBiotechnology Research and Innovation, INFORMM, Universiti Sains (Malaysia)

    2013-10-01

    In this work, we demonstrated a simple fabrication route towards an optically transparent and flexible memory device. The device is simple and consists of a metal/insulator/semiconductor structure; namely MIS. The preliminary MIS study with gold nanoparticles embedded between the polymethylsilsesquioxane layers was fabricated on p-Si substrate and the capacitance versus voltage measurements confirmed the charge trapped capability of the fabricated MIS memory device. Subsequently, an optically transparent and flexible MIS memory device made from indium–tin-oxide coated polyethylene terephthalate substrate and pentacene was used to replace the opaque p-Si substrate as the active layer. Current versus voltage (I–V) plot of the transparent and flexible device shows the presence of hysteresis. In an I–V plot, three distinct regions have been identified and the transport mechanisms are explained. The fabricated optically transparent and mechanically flexible MIS memory device can be programmed and erased multiple times, similar to a flash memory. Mechanical characterization to determine the robustness of the flexible memory device was also conducted but failed to establish any relationship in this preliminary work as the effect was random. Hence, more work is needed to understand the reliability of this device, especially when they are subjected to mechanical stress. - Highlights: ► An optically transparent and mechanically flexible memory is presented. ► Electrical characteristics show reprogrammable memory similar to flash memory. ► Transport mechanisms are proposed and explained. ► Mechanical bending tests are conducted.

  7. Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions

    Science.gov (United States)

    Huang, Jen-Fa; Yen, Chih-Ta; Li, Tzung-Yen

    2008-07-01

    This study presents a double-spread code-division multiple-access (CDMA) scheme for radio-over-fiber (RoF) transmissions. The network coder/decoders (codecs) are implemented using arrayed-waveguide grating (AWG) routers coded with maximal-length sequence ( M-sequence) codes. The effects of phase-induced intensity noise (PIIN) and multiple-access interference (MAI) on the system performance are evaluated numerically for different values of the optical modulation index (OMI) during the nonlinear electro-optical modulator (EOM) response. At low OMI optical device noise is dominant, but at high OMI nonlinear effect becomes significant. Numerical result shows that the system performance is highly sensitive to the OMI. Therefore, specifying an appropriate value of the OMI is essential in optimizing the system performance. The influence of the degree of polarization (DOP) in the system is also discussed. By employing the scrambler in front of the balanced photo-detector, the system performance can be enhanced. The high-performance, low-cost characteristics of the double-spread CDMA render the scheme an ideal solution for radio-CDMA wireless system cascaded with optical CDMA network.

  8. Comprehensive study of electro-optic and passive Q-switching in solid state lasers for altimeter applications

    Science.gov (United States)

    Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil

    2006-12-01

    Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \

  9. Pipe supports and anchors - LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1983-06-01

    Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed

  10. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    Science.gov (United States)

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  11. Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.

    Science.gov (United States)

    Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold

    2013-10-15

    We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

  12. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    Science.gov (United States)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  13. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    Science.gov (United States)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  14. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  15. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  16. High-speed 2 × 2 silicon-based electro-optic switch with nanosecond switch time

    International Nuclear Information System (INIS)

    Xue-Jun, Xu; Shao-Wu, Chen; Hai-Hua, Xu; Yang, Sun; Yu-De, Yu; Jin-Zhong, Yu; Qi-Ming, Wang

    2009-01-01

    A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach–Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a V π L π figure of merit of 0.145 V·cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and −28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated

  17. Electro-optical techniques for the investigation of photoplethysmographic signals in human abdominal organs

    International Nuclear Information System (INIS)

    Kyriacou, P A; Crerar-Gilber, A; Langford, R M; Jones, D P

    2006-01-01

    There is a need for reliable continuous monitoring of abdominal organ oxygen saturation (SpO 2 ). Splanchnic ischaemia may ultimately lead to cellular hypoxia and necrosis and may well contribute to the development of multiple organ failures and increased mortality. A new reflectance electro-optical photoplethysmographic (PPG) probe and signal processing system were developed. PPG signals from abdominal organs (bowel, liver, and kidney) and the finger were obtained from 12 anaesthetised patients. The amplitudes of the abdominal organ PPGs were, on average, approximately the same as those obtained simultaneously from the finger. These observations suggest that pulse oximetry may be a valid monitoring technique for abdominal organs such as the bowel liver and kidney

  18. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    Science.gov (United States)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  19. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  20. Design issues of optical router for metropolitan optical network (MON) applications

    Science.gov (United States)

    Wei, Wei; Zeng, QingJi

    2001-10-01

    The popularity of the Internet has caused the traffic on the Metro Area Network (MAN) to grow drastically every year. It is believed that Wavelength Division Multiplexing (WDM) has become a cornerstone technology in the MAN. Solutions to provide a MAN with high bandwidth, good scalability and easy management are being constantly searched from both IP and WDM. In this paper we firstly propose a metro optical network architecture based on GMPLS--a flexible, highly scalable IP over WDM optical network architecture for the delivery of public network IP services. Two kinds of node including Electronic Label Switching Router (E-LSR) and Optical Router (O-LSR) are involved in this metro optical network architecture. Secondly, we mainly focus on design issues of OR including multi-granularity electro-optical hybrid switching fabrics, intelligent OTU, contro l plane software and etc. And we also discuss some issues such as routing, forwarding and management of OR. Finally, we reach conclusions that OR based on GMPLS and hybrid-switching fabrics is suitable for current multi-services application environment of MON and optimistic for IP traffic transfer.

  1. Optical fiber cabling technologies for flexible access network

    Science.gov (United States)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  2. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  3. Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks

    Science.gov (United States)

    Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie

    2015-12-01

    Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.

  4. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  5. Field investigation on structural performance of the buried UPVC pipes with and without geogrid reinforcement

    Science.gov (United States)

    Teja, Akkineni Surya; Rajkumar, R.; Gokula Krishnan, B.; Aravindh, R.

    2018-02-01

    Buried pipes are used mainly for water supply and drainage besides many other applications such as oil, liquefied natural gas, coal slurries and mine tailings. The pipes used may be rigid (reinforced concrete, vitrified clay and ductile iron) or flexible (Steel, UPVC, aluminium, Fiber glass and High-density polyethylene) although the distinction between them is blurring. Flexible pipe design is governed by deflection or buckling. UPVC pipes are preferred due to light weight, long term chemical stability and cost efficiency. This project aims to study the load deformation behaviour of the buried pipe and stress variation across the cross section of the pipe under static loading along with the influence of depth of embedment, density of backfill on the deformation and stresses in pipe and the deformation behaviour of buried pipe when soil is reinforced with geogrid reinforcement and evaluate the structural performance of the pipe.

  6. Optics Communications: Special issue on Polymer Photonics and Its Applications

    Science.gov (United States)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  7. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  8. Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction

    OpenAIRE

    C. M. Scoby; P. Musumeci; J. T. Moody; M. S. Gutierrez

    2010-01-01

    In this paper we study a new geometry setup for electro-optic sampling (EOS) where the electron beam runs parallel to the ⟨110⟩ face of a ZnTe crystal and the probe laser is perpendicular to it and to the beam path. The simple setup is used to encode the time-of-arrival information of a 3.5  MeV

  9. Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA

    DEFF Research Database (Denmark)

    Raddo, Thiago R.; Sanches, Anderson L.; Tafur Monroy, Idelfonso

    2016-01-01

    In this paper, we propose a new IP transmission architecture over optical fast frequency hopping code-division multiple-access (OFFH-CDMA) network capable of supporting multirate transmissions for applications in flexible optical access networks. The proposed network architecture is independent...

  10. Efficient simulation of flow and heat transfer in arbitrarily shaped pipes

    OpenAIRE

    Rosen Esquivel, P.I.

    2012-01-01

    The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances, etc. Nonetheless, the introduction of pipes with corrugated walls increases the difficulty of simulating flow and heat transfer in these type of pipes. The present thesis addresses the development...

  11. Flexible, pre-insulated pipelines for heat and water supply. Systems with integrated quality and service; Flexible, vorgedaemmte Rohrsysteme fuer die Versorgungstechnik. Gesamtsysteme mit Qualitaet und Service

    Energy Technology Data Exchange (ETDEWEB)

    Hetzel, Michaela [Uponor Central Europe, Hassfurt (Germany). Unternehmenskommunikation

    2010-10-15

    Flexible pipes are suited for heat distribution, cooling water and freshwater transport. Uponor uses a modified, cross-linked polythene for insulation. The material is flexible, ageing-resistant, and will reduce the heat loss. Pipes are supplied to the construction site within two days, cut to measure and with all required parts. (orig.)

  12. Renal arteriovenous fistula: A rare complication of electro-hydraulic ...

    African Journals Online (AJOL)

    A 62-year-old man with type 1 Von Willebrand's disease was electively admitted to a Northern Ireland district general hospital for endoscopic management of a 1 cm right lower pole calculus. After pre-operative administration of appropriate haematological factors, flexible ureteroscopic electro-hydraulic lithotripsy (EHL).

  13. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  14. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    Science.gov (United States)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  15. Impact of severe cracked germanium (111 substrate on aluminum indium gallium phosphate light-emitting-diode’s electro-optical performance

    Directory of Open Access Journals (Sweden)

    Annaniah Luruthudass

    2016-01-01

    Full Text Available Cracked die is a serious failure mode in the Light Emitting Diode (LED industry – affecting LED quality and long-term reliability performance. In this paper an investigation has been carried out to find the correlation between severe cracked germanium (Ge substrate of an aluminum indium gallium phosphate (AlInGaP LED and its electro-optical performance after the Temperature Cycle (TC test. The LED dice were indented at several bond forces using a die bonder. The indented dice were analysed using a Scanning Electron Microscope (SEM. The result showed that severe cracks were observed at 180 gF onward. As the force of indentation increases, crack formation also becomes more severe thus resulting in the chipping of the substrate. The cracked dies were packaged and the TC test was performed. The results did not show any electro-optical failure or degradation, even after a 1000 cycle TC test. Several mechanically cross-sectioned cracked die LEDs, were analysed using SEM and found that no crack reached the active layer. This shows that severely cracked Ge substrate are able to withstand a −40°C/+100°C TC test up to 1000 cycles and LED optical performance is not affected. A small leakage current was observed in all of the cracked die LEDs in comparison to the reference unit. However, this value is smaller than the product specification and is of no concern.

  16. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  17. Efficient simulation of flow and heat transfer in arbitrarily shaped pipes

    NARCIS (Netherlands)

    Rosen Esquivel, P.I.

    2012-01-01

    The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances,

  18. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  19. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  20. 2×2 polymeric electro-optic MZI switch using multimode interference couplers

    Science.gov (United States)

    Li, H. P.; Liao, J. K.; Tang, X. G.; Lu, R. G.; Liu, Y. Z.

    2009-11-01

    We present the design of a 2×2 photonic switch operating at 1.55-μm wavelength using electro-optic (EO) polymer waveguides. A Mach-Zehnder interferometer (MZI) is used to implement the proposed switch in which two identical 2×2 multimode interference (MMI) couplers are connected by two identical parallel single mode waveguides (two MZI arms). These two single-mode waveguides with electrodes allow modulating the phase difference between the two MZI arms based on the EO effect. In the proposed switch, the EO polymer, IPC-E/polysulfone, is used for the core layer of optical waveguides. UV15 and NOA61 are employed for the lower and upper cladding layers, respectively. The singlemode waveguide structure and 2×2 MMI coupler have been designed and analyzed for the EO switch. Device performance has been simulated using the beam propagation method. It is found that the switch performance is most sensitive to the MMI width and less sensitive to the MMI length. Optimized structure has been obtained for the 2×2 polymeric EO switch, which has a crosstalk level better than -25 dB and insertion loss lower than -1.8 dB. This performance makes the switch a potential candidate for practical use in photonic systems.

  1. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    Science.gov (United States)

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  2. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    Science.gov (United States)

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.

  3. Chemical laser exhaust pipe design research

    Science.gov (United States)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  4. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    Science.gov (United States)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  5. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    Science.gov (United States)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  6. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  7. Electro-optic analysis of the influence of target geometry on electromagnetic pulses generated by petawatt laser-matter interactions

    Science.gov (United States)

    Robinson, Timothy; Giltrap, Samuel; Eardley, Samuel; Consoli, Fabrizio; De Angelis, Riccardo; Ingenito, Francesco; Stuart, Nicholas; Verona, Claudio; Smith, Roland A.

    2018-01-01

    We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm) and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with earth following ejection of hot electrons from the plasma, in contrast to predictions for pin-mounted foils in the Poyé EMP generation model. With levitated targets, no EMP was measurable above the noise threshold of any diagnostic, despite observation of protons accelerated to >30 MeV energies, suggesting the discharge current contribution to EMP is dominant.

  8. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    OpenAIRE

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, ...

  9. Submicrosecond electro-optic switching in the liquid-crystal smectic A phase: The soft-mode ferroelectric effect

    Science.gov (United States)

    Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.

    1987-08-01

    A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.

  10. Commissioning of an electro-optic electron bunch length monitor at FLASH

    International Nuclear Information System (INIS)

    Breunlin, Jonas

    2011-03-01

    The demands on the electron beam qualities for free-electron lasers (FEL) are challenging in terms of high peak currents. At FLASH, the high-gain FEL in Hamburg, longitudinal bunch compression is performed to achieve the requested high charge densities in short bunches. The precise control of the bunch compression process requires advanced diagnostics on the longitudinal bunch profile. The bunch length monitor presented in this thesis is based on a non-destructive detection using the electro-optic effect. The focus is on a compact and reliable system for permanent bunch diagnostics. The monitor provides single-shot measurements of the longitudinal bunch profiles with lengths of a few picoseconds by spectrally encoding their charge distribution. First measurements for characterization purpose have been performed. It has been shown that the monitor is suitable for monitoring the longitudinal bunch profile behind the first bunch compressor at FLASH. Electron bunch profiles with slopes corresponding to a full width half maximum of about 1.4 ps have been detected. That is the intrinsic resolution limit of the utilized method. (orig.)

  11. Large-area multiplexed sensing using MEMS and fiber optics

    Science.gov (United States)

    Miller, Michael B.; Clark, Richard L., Jr.; Bell, Clifton R.; Russler, Patrick M.

    2000-06-01

    Micro-electro-mechanical (MEMS) technology offers the ability to implement local and independent sensing and actuation functions through the coordinated response of discrete micro-electro-mechanical 'basis function' elements. The small size of micromechanical components coupled with the ability to reduce costs using volume manufacturing techniques opens up significant potential not only in military applications such as flight and engine monitoring and control, but in autonomous vehicle control, smart munitions, airborne reconnaissance, LADAR, missile guidance, and even in intelligent transportation systems and automotive guidance applications. In this program, Luna Innovations is developing a flexible, programmable interface which can be integrated direction with different types of MEMS sensors, and then used to multiplex many sensors ona single optical fiber to provide a unique combination of functions that will allow larger quantities of sensory input with better resolution than ever before possible.

  12. Intense transient electric field sensor based on the electro-optic effect of LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing, E-mail: yangqing@cqu.edu.cn; Sun, Shangpeng; Han, Rui; Sima, Wenxia; Liu, Tong [State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing, 400044 (China)

    2015-10-15

    Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz–10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.

  13. Implementation of Optical Characterization for Flexible Organic Electronics Applications

    Science.gov (United States)

    Laskarakis, A.; Logothetidis, S.

    One of the most rapidly evolving sectors of the modern science and technology is the flexible organic electronic devices (FEDs) that are expected to significantly improve and revolutionize our everyday life. The FED application includes the generation of electricity by renewable sources (by organic photovoltaic cells - OPVs), power storage (thin film batteries), the visualization of information (by organic displays), the working and living environment (ambient lighting, sensors), safety, market (smart labels, radio frequency identification tags - RFID), textiles (smart fabrics with embedded display and sensor capabilities), as well as healthcare (smart sensors for vital sign monitoring), etc. Although there has been important progresses in inorganic-based Si devices, there are numerous advances in the organic (semiconducting, conducting), inorganic, and hybrid (organic-inorganic) materials that exhibit desirable properties and stability, and in the synthesis and preparation methods. The understanding of the organic material properties can lead to the fast progress of the functionality and performance of FEDs. The investigation of the optical properties of these materials can promote the understanding of the optical, electrical, structural properties of organic semiconductors and electrodes and can contribute to the optimization of the synthesis process and the tuning of their structure and morphology. In this chapter, we will describe briefly some of the advances toward the implementation of optical characterization methods, such as Spectroscopic Ellipsometry (SE) from the infrared to the visible and ultraviolet spectral region for the study of materials (flexible polymer substrates, barrier layers, transparent electrodes) to be used for application in the fabrication of FEDs.

  14. Energy-efficient virtual optical network mapping approaches over converged flexible bandwidth optical networks and data centers.

    Science.gov (United States)

    Chen, Bowen; Zhao, Yongli; Zhang, Jie

    2015-09-21

    In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.

  15. Flexible and re-configurable optical three-input XOR logic gate of phase-modulated signals with multicast functionality for potential application in optical physical-layer network coding.

    Science.gov (United States)

    Lu, Guo-Wei; Qin, Jun; Wang, Hongxiang; Ji, XuYuefeng; Sharif, Gazi Mohammad; Yamaguchi, Shigeru

    2016-02-08

    Optical logic gate, especially exclusive-or (XOR) gate, plays important role in accomplishing photonic computing and various network functionalities in future optical networks. On the other hand, optical multicast is another indispensable functionality to efficiently deliver information in optical networks. In this paper, for the first time, we propose and experimentally demonstrate a flexible optical three-input XOR gate scheme for multiple input phase-modulated signals with a 1-to-2 multicast functionality for each XOR operation using four-wave mixing (FWM) effect in single piece of highly-nonlinear fiber (HNLF). Through FWM in HNLF, all of the possible XOR operations among input signals could be simultaneously realized by sharing a single piece of HNLF. By selecting the obtained XOR components using a followed wavelength selective component, the number of XOR gates and the participant light in XOR operations could be flexibly configured. The re-configurability of the proposed XOR gate and the function integration of the optical logic gate and multicast in single device offer the flexibility in network design and improve the network efficiency. We experimentally demonstrate flexible 3-input XOR gate for four 10-Gbaud binary phase-shift keying signals with a multicast scale of 2. Error-free operations for the obtained XOR results are achieved. Potential application of the integrated XOR and multicast function in network coding is also discussed.

  16. Metallized ceramic vacuum pipe for particle beams

    International Nuclear Information System (INIS)

    Butler, B.L.; Featherby, M.

    1990-01-01

    A ceramic vacuum chamber segment in the form of a long pipe of rectangular cross section has been assembled from standard shapes of alumina ceramic using glass bonding techniques. Prior to final glass bonding, the internal walls of the pipe are metallized using an electroplating technology. These advanced processes allow for precision patterning and conductivity control of surface conducting films. The ability to lay down both longitudinal and transverse conductor patterns separated by insulating layers of glass give the accelerator designer considerable freedom in tailoring longitudinal and transverse beam pipe impedances. Assembly techniques of these beam pipes are followed through two iterations of semi-scale pipe sections made using candidate materials and processes. These demonstrate the feasibility of the concepts and provide parts for electrical characterization and for further refinement of the approach. In a parallel effort, a variety of materials, joining processes and assembly procedures have been tried to assure flexibility and reliability in the construction of 10-meter long sections to any required specifications

  17. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  18. Heat pipe thermal control of slender optics probes

    International Nuclear Information System (INIS)

    Prenger, F.C.

    1979-01-01

    The thermal design for a stereographic viewing system is presented. The design incorporates an annular heat pipe and thermal isolation techniques. Test results are compared with design predictions for a prototype configuration. Test data obtained during heat pipe startup showing temperature gradients along the evaporator wall are presented. Correlations relating maximum wall temperature differences to a liquid Reynolds number were obtained at low power levels. These results are compared with Nusselt's Falling Film theory

  19. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  20. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks

    Science.gov (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao

    2014-05-01

    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  1. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bixler, J.V.; Craig, W.; Decker, T. [Lawrence Livermore National Lab., CA (United States); Aarts, H.; Boggende, T. den; Brinkman, A.C. [Space Research Organization Netherlands, Utrecht (Netherlands); Burkert, W.; Brauninger, H. [Max-Planck Institute fur Extraterrestische Physik, Testanlage (Germany); Branduardi-Raymont, G. [Univ. College London (United Kingdom); Dubbeldam, L. [Space Research Organization Netherlands, Leiden (Netherlands)] [and others

    1994-07-12

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  2. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  3. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    Science.gov (United States)

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  4. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng; De La Cruz, Joshua A.; Hess, Andrew J.; Yang, Ronggui; Smalyukh, Ivan I.

    2018-06-01

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels. Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.

  5. Flexible Graphene Transistor Architecture for Optical Sensor Technology

    Science.gov (United States)

    Ordonez, Richard Christopher

    investigation demonstrated PN junction operation and the successful integration of the proposed architecture into an optoelectronic application with the use of semiconductor quantum dots in contact with the graphene material that acted as optical absorbers to increase detector gain. Applications that can benefit from such technology advancement include Nano-satellites (Nanosat), Underwater autonomous vehicles (UAV), and airborne platforms in which flexibility and sensitivity are critical parameters that must be optimized to increase mission duration and range.

  6. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  7. Controllable chaos in hybrid electro-optomechanical systems

    Science.gov (United States)

    Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying

    2016-01-01

    We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication. PMID:26948505

  8. Controllable chaos in hybrid electro-optomechanical systems.

    Science.gov (United States)

    Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying

    2016-03-07

    We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication.

  9. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants

    International Nuclear Information System (INIS)

    Goßler, Christian; Bierbrauer, Colin; Moser, Rüdiger; Kunzer, Michael; Holc, Katarzyna; Pletschen, Wilfried; Köhler, Klaus; Wagner, Joachim; Schwarz, Ulrich T; Schwaerzle, Michael; Ruther, Patrick; Paul, Oliver; Neef, Jakob; Keppeler, Daniel; Hoch, Gerhard; Moser, Tobias

    2014-01-01

    Currently available cochlear implants are based on electrical stimulation of the spiral ganglion neurons. Optical stimulation with arrays of micro-sized light-emitting diodes (µLEDs) promises to increase the number of distinguishable frequencies. Here, the development of a flexible GaN-based micro-LED array as an optical cochlear implant is reported for application in a mouse model. The fabrication of 15 µm thin and highly flexible devices is enabled by a laser-based layer transfer process of the GaN-LEDs from sapphire to a polyimide-on-silicon carrier wafer. The fabricated 50 × 50 µm 2 LEDs are contacted via conducting paths on both p- and n-sides of the LEDs. Up to three separate channels could be addressed. The probes, composed of a linear array of the said µLEDs bonded to the flexible polyimide substrate, are peeled off the carrier wafer and attached to flexible printed circuit boards. Probes with four µLEDs and a width of 230 µm are successfully implanted in the mouse cochlea both in vitro and in vivo. The LEDs emit 60 µW at 1 mA after peel-off, corresponding to a radiant emittance of 6 mW mm −2 . (paper)

  10. Reconciliation of equipment flexibility effects on piping system dynamic response

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1987-01-01

    Piping systems are connected to equipment; if the equipment cannot be considered as ''rigid'' relative to excitation frequencies, nozzle response spectra techniques, or equipment modeling techniques are used. If the equipment is considered rigid, a fixed anchor is assumed. However, occasionally after (seismic) dynamic analysis has been completed, tests or detailed equipment dynamic analyses demonstrate that the assumption of ''infinite stiff'' is questionable. This paper reviews several classes of equipment (pumps, vessels, reservoirs, heat exchangers), and the associated (piping stresses, support loads, equipment nozzle allowables). Significant divergences between design and ''as built'' results are shown (for heat exchangers in particular). The paper discusses the reconciliation process performed for a belgian PWR plant through the use of less conservative seismic damping data (Code Case N-411)

  11. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    Science.gov (United States)

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Design analysis of liquid metal pipe supports

    International Nuclear Information System (INIS)

    Margolin, L.L.; LaSalle, F.R.

    1979-02-01

    Design guidelines pertinent to liquid metal pipe supports are presented. The numerous complex conditions affecting the support stiffness and strength are addressed in detail. Topics covered include modeling of supports for natural frequency and stiffness calculations, support hardware components, formulas for deflection due to torsion, plate bending, and out-of-plane flexibility. A sample analysis and a discussion on stress analysis of supports are included. Also presented are recommendations for design improvements for increasing the stiffness of pipe supports and which were utilized in the FFTF system

  13. Nano-opto-electro-mechanical systems

    Science.gov (United States)

    Midolo, Leonardo; Schliesser, Albert; Fiore, Andrea

    2018-01-01

    A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from the field of optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, in both the classical and the quantum domains. This Perspective discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation and suggests potential avenues for further developments in this field.

  14. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    Science.gov (United States)

    Ivan, Marius G.; Vivet, Frédéric; Meinders, Erwin R.

    2010-06-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, and a functional device was successfully tested. Optical lithography was employed for manufacturing templates, which were subsequently used for imprinting liquid PDMS by thermal curing. Gold electrodes having various widths and distances among them were patterned with optical lithography on the top part which sealed the microchannels, and the devices were employed for detection of ionic species in aqueous salt solutions as well as micro-electrolysis cells. Due to the transparency of PDMS in UV-Vis the microfluidics were also used as photoreactors, and the in-situ formed charged species were monitored by applying a voltage between electrodes. Upon addition of a colorimetric pH sensor, acid was detected with absorption spectroscopy.

  15. Operating Experience Insights into Pipe Failures for Electro-Hydraulic Control and Instrument Air Systems in Nuclear Power Plant. A Topical Report from the Component Operational Experience, Degradation and Ageing Programme

    International Nuclear Information System (INIS)

    2015-01-01

    2010. The majority of the member organisations of the two projects were the same, often being represented by the same person. In May 2011, thirteen countries signed the CODAP 1. Term Agreement (Canada, Chinese Taipei, Czech Republic, Finland, France, Germany, Japan, Korea (Republic of), Slovak Republic, Spain, Sweden, Switzerland and the United States). The 1. Term work plan includes the preparation of Topical Reports to foster technical co-operation and to deepen the understanding of national differences in ageing management. The Topical Reports constitute CODAP Event Database and Knowledge Base insights reports and as such act as portals for future database application projects and in-depth studies of selected degradation mechanisms. Prepared in 2013 and published as NEA/CSNI/R(2014)6, a first Topical Report addressed flow accelerated corrosion (FAC) of carbon steel and low alloy steel piping. This, the second Topical Report addresses operating experience with electro-hydraulic control (EHC) and instrument air (IA) system piping. Degradation and failure of EHC or IA piping can adversely affect plant operability, and under certain circumstances lead to safety challenges. Both systems consist of significant lengths of small-diameter piping. The typical EHC system piping material is stainless steel; Type 304 or 316. Plants generally use carbon steel, copper, stainless steel, galvanised steel or combinations of two or more material types for IA system piping. The CODAP Topical Report on 'EHC and IA Piping Systems' includes a primer on the environmental and operational factors affecting the structural integrity of respective system, and evaluates service experience data as recorded in the CODAP Event Database. Also included in the report are descriptions of the national EHC and IA ageing management programme approaches and a summary of other information collected in the CODAP Knowledge Base. The report has been prepared by the CODAP Project Review Group, with

  16. Experimental study on the thermostable property of aramid fiber reinforced PE-RT pipes

    Directory of Open Access Journals (Sweden)

    Guoquan Qi

    2015-11-01

    Full Text Available Flexible composite pipes are advantageous in ultra high strength, high modulus, pH and corrosion resistance and light weight, but there are still some hidden safety troubles because they are poorer in thermostable capacity. Therefore, test samples of flexible composite pipes were prepared with high-temperature polythene (PE-RT as the neck bush and aramid fiber as the reinforcement layer. Experimental study was conducted by using HPHT vessel and differential thermal scanner for different working conditions, different temperatures, whole-pipe pressure-bearing capacity and 1000 h viability. It is shown by the environmental compatibility test that high temperature has little effect on the weight, Vicat softening temperature, mechanical properties and structures of neck bush PE-RT, but exerts an obvious effect on the tensility and whole-pipe water pressure blasting of the reinforcement aramid fiber. Besides, the drop of whole-pipe pressure-bearing capacity is caused by deformation and breaking of aramid fibers when the reinforcement layer is under the force of internal pressure. Finally, disorientation and crystallization of molecular thermal motion occur with the rise of temperature, so amorphous orientation reduces, crystallinity factor and crystalline orientation factor increase gradually, thus, disorientation of macromolecular chains increases and tensile strength decreases. It is concluded that this type of flexible composite pipe can smoothly pass 1000 h viability test. And it is recommended that it be used in the situations with temperature not higher than 95 °C and internal pressure not higher than 4 MPa.

  17. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  18. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  19. THz Electro-absorption Effect in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.

    2011-01-01

    In a THz pump - optical probe experiment we demonstrate an instantaneous electro-absorption effect in InGaAs/GaAs quantum dots, induced by the electric field of a single-cycle THz pulse with 3 THz bandwidth and with free-space peak electric field reaching 220 kV/cm. The transient modulation of QD...

  20. An experimental study of the response of the multiple support piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Koyanagi, R.

    1987-01-01

    From the test results, following remarks have been obtained. 1. Since the effect of internal pressure was not so small on the stress response, its effect should be considered in the design of piping systems. 2. The effect of the phase of excitations was fairly dominant to the response of piping systems. From this fact, the adopting of the support structures which have different dynamic characteristics may be one of the more realistic approaches to reduce the response of piping systems. 3. The acceleration responses near the support points are always underestimated because the natural modes of the analysis are zero at these support points. 4. If the pseudo-static response is dominant, the stress responses near the support points are always overestimated by the ABS method to support groups. In such case the SRSS method is recommended. 5. The 10% method to the closely spaced modes is conservative for the flexible piping. The closely spaced mode methods to these flexible piping systems should be used carefully. 6. The SRSS combination method is offered the reasonable results to the space, modes and support groups in the multiple response spectra method. (orig.)

  1. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  2. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  3. Large Electro-Optic Kerr-Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    Science.gov (United States)

    Schlick, Michael Christian; Kapernaum, Nadia; Neidhardt, Manuel; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Gießelmann, Frank

    2018-06-06

    The electro-optic Kerr effect in the isotropic phase of two ionic liquid crystals (ILCs) is investigated and compared to the Kerr effect in non-ionic liquid crystals (LCs) with same phase sequences, namely direct isotropic to hexagonal columnar transitions and direct isotropic to smectic-A transitions. Up to electric field amplitudes of some 106 V m-1, the optical birefringence induced in the isotropic phases follows Kerr's law and strongly increases when the temperature approaches the transition temperature into the particular liquid crystalline phase. Close to the transition, maximum Kerr constants in the order of 10-11 m V-2 are found, which are more than ten times higher than the Kerr constant of nitrobenzene, a strongly dipolar fluid with a huge Kerr effect applied in optical shutters and phase modulators. In comparison to their non-ionic LC counterparts the Kerr effect in ILCs is found to be enhanced in magnitude, but slowed-down in speed, showing rise times in the order of ten milliseconds. These remarkable differences are attributed to the presence of counterion polarization well-known from complex ionic fluids such as polyelectrolytes or ionic micellar solutions. ILCs thus combine the Kerr effect features of liquid crystals and complex ionic fluids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prediction of fan assisted flow in a duct/pipe network

    International Nuclear Information System (INIS)

    Quraishi, M.S.

    1996-01-01

    The commonly used fan+duct model is usually based on a table generated by matching the fan and system characteristic curves with the applied pressure drop across the fan+duct/pipe network and using linear or polynomial interpolation for intermediate values. However, this empirical approach can only handle a single system configuration for each table. If this approach is replaced by an algebraic formulation a general and flexible model can be developed. The algebraic model will be able to account for failure of resistances in the duct/pipe system as well as the failure of duct/pipe at an intermediate location. This paper presents the development of an algebraic model for fan+duct/pipe systems. (author)

  5. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  6. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    Science.gov (United States)

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  7. Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes

    Directory of Open Access Journals (Sweden)

    Ole M. Aamo

    2002-07-01

    Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.

  8. Accounting for straight parts effects on elbow's flexibilities in a beam type finite element program

    International Nuclear Information System (INIS)

    Millard, A.

    1983-01-01

    An extension of Von Karman's theory is applied to the calculations of the flexibility factor of a pipe bend terminated by a straight part or a flange. This analysis is restricted to the linear elastic deformation behaviour under in plane bending. Analytical solutions are given for the propagation of ovalization in the elbow and in the straight part. Considering the response of the piping structures, we note that the ovalization of the piping systems are reduced significantly when the straight parts or flanges effects are included. This results are presented in terms of global as well local flexibility factors. They have been compared to numerical results obtained by shell type finite elements method. A complete piping system is analyzed, for economical reasons, with a beam type approach. Also, we show how it is possible to take into account an elbow's flexibilities the straight parts effects by means of flexibilities factors introduced in a beam type elements. We have implemented this method in the computer program TEDEL. In some specific geometrical features, we compare solutions using shell type elements and our formulation. (orig.)

  9. Accounting for straight parts effects on elbow's flexibilities in a beam type finite element program

    International Nuclear Information System (INIS)

    Millard, A.; Vaghi, H.; Ricard, A.

    1983-08-01

    An extension of Von Karman's theory is applied to the calculations of the flexibility factor of a pipe bend terminated by a straight part or a flange. This analysis is restricted to the linear elastic deformation behaviour under in plane bending. Analytical solutions are given for the propagation of ovalization in the elbow and in the straight part. Considering the response of the piping structures, we note that the ovalization of the piping systems are reduced significantly when the straight parts or flanges effects are included. The results are presented in terms of global as well local flexibility factors. They have been compared to numerical results obtained by shell type finite element method. A complete piping system is analyzed, for economical reasons, with a beam type approach. Also, we show how it is possible to take into account on elbow's flexibilities the straight parts effects by means of flexibilities factors introduced in a beam type element. We have implemented this method in the computer program TEDEL. In some specific geometrical features, we compare solutions using shell type elements and our formulation

  10. Size effects in winding roll formed profiles: A study of carcass production for flexible pipes in offshore industry

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Storgaard; Bay, Niels

    2013-01-01

    neutral plane. Other parameters such as profile entry angle on the mandrel and spiral pitch are likely to have significant importance. Proper dividing point position is shown to be obtainable by adjusting the profile in the roll forming stage. The profile rolling is successfully modeled by Finite Element......Carcass production of flexible offshore oil and gas pipes implies winding and interlocking of a roll formed stainless steel profile around a mandrel in a spiral shape. The location of the dividing point between the left and right half of the s-shaped profile in the finished carcass is very...... Analysis (FEA), whereas a simplified FE-model of the subsequent winding operation shows that full interlock modeling is required for proper prediction of profile deformation. © (2013) Trans Tech Publications....

  11. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  12. Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers

    Directory of Open Access Journals (Sweden)

    S. Khajehpour

    Full Text Available AbstractIn this study, the governing equations of a rotating cantilever pipe conveying fluid are derived and the longitudinal and lateral induced vibrations are controlled. The pipe considered as an Euler Bernoulli beam with tip mass which piezoelectric layers attached both side of it as sensors and actuators. The follower force due to the fluid discharge causes both conservative and non-conservative work. For mathematical modeling, the Lagrange-Rayleigh-Ritz technique is utilized. An adaptive-robust control scheme is applied to suppress the vibration of the pipe. The adaptive-robust control method is robust against parameter uncertainties and disturbances. Finally, the system is simulated and the effects of varying parameters are studied. The simulation results show the excellent performance of the controller.

  13. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  14. Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures

    Science.gov (United States)

    Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.

    2012-01-01

    Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.

  15. Duty cycle dependence of a periodically poled LiNbO3-based electro-optic Solc filter.

    Science.gov (United States)

    Rabia, Eyal; Arie, Ady

    2006-01-20

    We demonstrate that the performance of a periodically poled LiNbO3- (PPLN-) based electro-optic Solc filter is dependent on the duty cycle of the crystal. This may limit the performance of the device for applications such as add-drop filtering and switching, owing to the deterioration of the extinction ratio. It is shown that by adding a retarder to the Solc filter it is possible to improve the extinction ratio; thus the dependence of the filter on the duty cycle can be reduced. Using Jones calculus, we analyzed the effect of a variable retarder that can also be rotated on the extinction ratio. We experimentally observed a 6 dB increase in the extinction ratio when we used a half-wavelength retarder.

  16. Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator

    Science.gov (United States)

    Ujjwal; Thangaraj, Jaisingh

    2018-05-01

    A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.

  17. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  18. Electro-optics laboratory evaluation: Deutsch optical waveguide connectors

    Science.gov (United States)

    1980-01-01

    A description of a test program evaluating the performance of an optical waveguide connector system is presented. Both quality and effectiveness of connections made in an optical fiber, performance of the equipment used and applicability of equipment and components to field conditions are reviewed.

  19. Performance Study of optical Modulator based on electrooptic effect

    International Nuclear Information System (INIS)

    Palodiya, V; Raghuwanshi, S K

    2016-01-01

    In this paper, we have studied and derive performance parameter of highly integrated Lithium Niobate optical modulator. This is a chirp free modulator having low switching voltage and large bandwidth. For an external modulator in which travelling-wave electrodes length L imposed the modulating switching voltage, the product of V_π and L is fixed for a given electro optic material Lithium Niobate. We investigate to achieve a low V_π by both magnitude of the electro-optic coefficient for a wide variety of electro-optic materials. A Sellmeier equation for the extraordinary index of congruent lithium niobate is derived. For phase-matching, predictions are accmate for temperature between room temperature 250°C and wavelength ranging from 0.4 to 5µm. The Sellmeier equations predict more accmately refractive indices at long wavelengths. Theoretical result is confirmed by simulated results. We have analysed the various parameters such as switching voltage, device performance index, time constant, transmittance, cut-off frequency, 3-dB bandwidth, power absorption coefficient and transmission bit rate of Lithium Niobate optical Modulator based on electro -optic effect. (paper)

  20. Diamond electro-optomechanical resonators integrated in nanophotonic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Rath, P.; Ummethala, S.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Diewald, S. [Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Lewes-Malandrakis, G.; Brink, D.; Heidrich, N.; Nebel, C. [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany)

    2014-12-22

    Diamond integrated photonic devices are promising candidates for emerging applications in nanophotonics and quantum optics. Here, we demonstrate active modulation of diamond nanophotonic circuits by exploiting mechanical degrees of freedom in free-standing diamond electro-optomechanical resonators. We obtain high quality factors up to 9600, allowing us to read out the driven nanomechanical response with integrated optical interferometers with high sensitivity. We are able to excite higher order mechanical modes up to 115 MHz and observe the nanomechanical response also under ambient conditions.

  1. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  2. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    Science.gov (United States)

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  3. Whistling of pipes with narrow corrugations: scale model tests and consequences for carcass design

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes for gas production and transport with a corrugated inner surface, as used in flexible pipes, can be subject to Flow-Induced Pulsations when the flow velocity is larger than a certain velocity. This onset velocity is dependent on the geometry of the corrugations, the operational conditions and

  4. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  5. High-level seismic tests of piping at the HDR [Heissdampfreaktor

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1989-01-01

    As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs

  6. Flutter instability of freely hanging articulated pipes conveying fluid

    Science.gov (United States)

    Schouveiler, Lionel; Chermette, Félix

    2018-03-01

    We experimentally investigate the stability of freely hanging articulated pipes made of rigid segments connected by flexible joints and with their displacements constrained in a vertical plane. When the velocity of the fluid conveyed by the pipe is increased, flutter-type instability occurs above a critical value. The critical velocity and the characteristics of the flutter modes (frequency, amplitude, and shape) are determined as a function of the number n of segments into the pipe which is varied from 2 to 5. Experimental results are compared to predictions from linear stability analysis extending previous studies by taking into account damping due to the dissipation in the joints. Qualitative agreement is found and the limits of the analysis are discussed.

  7. Effect of elastic constants of liquid crystals in their electro-optical properties

    Science.gov (United States)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  8. RF Energy Interaction With Electro-Optic Materials (Single Investigator Award Proposed to Address Research Topic Area 6.4. Electromagnetics and RF Circuit Integration)

    Science.gov (United States)

    2015-12-27

    sacrificial wet etching and transferred to silicon waveguides using a pick-and-place process. To demonstrate the technique, a hybrid silicon and...identified. Rapid thermal annealing (RTA) is then performed at 1000 °C for 30 s to repair the crystal lattice and restore the electro-optical properties of...material to increase the scattering loss of the acoustic wave [24,25]. The surface roughness can be produced by dry or wet etching . Sufficiently

  9. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    Science.gov (United States)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  10. Synthesis and electro-optic properties of the chromophore-containing NLO polyarylate polymers

    Science.gov (United States)

    Ren, Haohui; Peng, Chengcheng; Bo, Shuhui; Fan, Guofang; Xu, Guangming; Zhao, Hui; Zhen, Zhen; Liu, Xinhou

    2014-03-01

    Base on the same two monomers, diphenolic acid (DPA) and isophthaloyl chloride (IPC), three chromophore-containing nonlinear optical (NLO) polyarylate polymers were prepared. A tricyanofuran (TCF)-acceptor type chromophore group was in main-chain (mPAR-chr1), side-chain (sPAR-chr1) and side-chain with a 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,2-trifluoroethane (BPAPF) group (sPAR-F-chr1), respectively. The obtained polymers were characterized and evaluated by UV-Vis, 1H NMR, DSC and TGA. All the polymers exhibited good electro-optic (EO) activity. The relationship between EO coefficients (r33) and the chromophore concentration of the three polymers were also characterized and discussed. There were no obvious differences found in EO activity between mPAR-chr1 and sPAR-chr1 polyarylates with the same chromophore. The fluorinated block polyarylate sPAR-F-chr1 has the largest r33 value in these three polyarylates which is 52 pm/V at the wavelength of 1310 nm (which is almost twice the r33 value of normal polymers contained the same chormophore at the same content), when the concentration of chromophore 1 is 18wt.%. 85% of the r33 value was retained in the sPAR-F-chr1 after being heated at 85°C for 600 hours. The polymer sPAR-F-chr1, with good solubility, high Tg (above 200 °C) and side functional group at the same time, may probably be a practical NLO material. These properties make the new polyarylates have potential applications in EO devices such as EO modulators and switches.

  11. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    Science.gov (United States)

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  12. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter; Gall, Brady B. [Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Dale, Gregory E. [High Power Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  13. Statistical Real-time Model for Performance Prediction of Ship Detection from Microsatellite Electro-Optical Imagers

    Directory of Open Access Journals (Sweden)

    Lapierre FabianD

    2010-01-01

    Full Text Available Abstract For locating maritime vessels longer than 45 meters, such vessels are required to set up an Automatic Identification System (AIS used by vessel traffic services. However, when a boat is shutting down its AIS, there are no means to detect it in open sea. In this paper, we use Electro-Optical (EO imagers for noncooperative vessel detection when the AIS is not operational. As compared to radar sensors, EO sensors have lower cost, lower payload, and better computational processing load. EO sensors are mounted on LEO microsatellites. We propose a real-time statistical methodology to estimate sensor Receiver Operating Characteristic (ROC curves. It does not require the computation of the entire image received at the sensor. We then illustrate the use of this methodology to design a simple simulator that can help sensor manufacturers in optimizing the design of EO sensors for maritime applications.

  14. Electro photographic materials

    International Nuclear Information System (INIS)

    Buzdugan, A.; Andries, A.; Iovu, M.

    2000-01-01

    The invention relates to the creation of electro photographic materials . The invention allows to extend the material photosensitivity into the infrared range of the spectrum. An electro photographic materials contains an electro conducting base, including a dielectric base 1, for example glass, an electro conducting layer 2, for example of Al, Ni, Cr, an injecting layer 3, consisting of amorphous indium phosphide, a vitreous layer 4 of the arsenic sulphide - antimony sulphide system and a transporting layer 5 of the arsenic sulphide or arsenic selenide

  15. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  16. 24 CFR 3280.705 - Gas piping systems.

    Science.gov (United States)

    2010-04-01

    ... upstream of the connection. (3) The connection(s) may be made by a listed quick disconnect device which... separated. (4) The flexible connector, direct plumbing pipe, or “quick disconnect” device shall be provided... disconnect device is installed, a 3 inch by 13/4 inch minimum size tag made of etched, metal-stamped or...

  17. Calculation method of CGH for Binocular Eyepiece-Type Electro Holography

    International Nuclear Information System (INIS)

    Yang, Chanyoung; Yoneyama, Takuo; Sakamoto, Yuji; Okuyama, Fumio

    2013-01-01

    We had researched about eyepiece-type electro holography to display 3-D images of larger objects at wider angle. We had enlarged visual field considering depth of object with Fourier optical system using two lenses. In this paper, we extend our system for binocular. In the binocular system, we use two different holograms for each eye. The 3-D image for left eye should be observed like the real object observed using left eye and the same for right eye. So, we propose a method of calculation of computer-generated hologram (CGH) transforming the coordinate system of the model data to make two holograms for binocular eyepiece-type electro holography. The coordinate system of original model data is called the world coordinate system. The left and the right coordinate system are transformed from the world coordinate system. We also propose the method for correcting the installation error that occurs when placing the electronic and optical devices. The installation error is calculated and the model data is corrected using the distance between measured position and setup position of the reconstructed image Optical reconstruction experiments were carried out to verify the proposed method.

  18. Uranium-Molybdenum particles produced by electro-erosion

    International Nuclear Information System (INIS)

    Cabanillas, Edgardo D.; Lopez, Marisol; Pasqualini, Enrique E.; Lombardo, D. J. C.

    2003-01-01

    We have produced spheroidal U-Mo particles by the electro-erosion method using pure water as dielectric. The particles were characterised by optical metallography, scanning electron microscopy, energy dispersive spectrometry (EDS-EDAX) and X-ray diffraction. Spheroidal UO 2 particles with a peculiar distribution size were obtained with two distribution centred at 10 and 70 μm. The obtained particles have central inclusions of U and Mo compounds. (author)

  19. Multicast traffic grooming in flexible optical WDM networks

    Science.gov (United States)

    Patel, Ankitkumar N.; Ji, Philip N.; Jue, Jason P.; Wang, Ting

    2012-12-01

    In Metropolitan Area Networks (MANs), point-to-multipoint applications, such as IPTV, video-on-demand, distance learning, and content distribution, can be efficiently supported through light-tree-based multicastcommunications instead of lightpath-based unicast-communications. The application of multicasting for such traffic is justified by its inherent benefits of reduced control and management overhead and elimination of redundant resource provisioning. Supporting such multicast traffic in Flexible optical WDM (FWDM) networks that can provision light-trees using optimum amount of spectrum within flexible channel spacing leads to higher wavelength and spectral efficiencies compared to the conventional ITU-T fixed grid networks. However, in spite of such flexibility, the residual channel capacity of stranded channels may not be utilized if the network does not offer channels with arbitrary line rates. Additionally, the spectrum allocated to guard bands used to isolate finer granularity channels remains unutilized. These limitations can be addressed by using traffic grooming in which low-rate multicast connections are aggregated and switched over high capacity light-trees. In this paper, we address the multicast traffic grooming problem in FWDM networks, and propose a novel auxiliary graph-based algorithm for the first time. The performance of multicast traffic grooming is evaluated in terms of spectral, cost, and energy efficiencies compared to lightpath-based transparent FWDM networks, lightpathbased traffic grooming-capable FWDM networks, multicast-enabled transparent FWDM networks, and multicast traffic grooming-capable fixed grid networks. Simulation results demonstrate that multicast traffic grooming in FWDM networks not only improves spectral efficiency, but also cost, and energy efficiencies compared to other multicast traffic provisioning approaches of FWDM and fixed grid networks.

  20. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dewani, Aliya A., E-mail: a.ashraf@griffith.edu.au; O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir [School Of Electrical Engineering, Griffith University, Brisbane, 4111 (Australia)

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  1. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Directory of Open Access Journals (Sweden)

    Aliya A. Dewani

    2015-02-01

    Full Text Available A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm, flexible transparent plastic substrate (relative permittivity 3.2. It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  2. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Science.gov (United States)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  3. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    Science.gov (United States)

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-27

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.

  4. Vertical electro-absorption modulator design and its integration in a VCSEL

    Science.gov (United States)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.

    2018-04-01

    Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.

  5. Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology.

    Science.gov (United States)

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2017-01-01

    The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.

  6. The behaviour of flexible riser tensile armour in the region of an end fitting

    OpenAIRE

    Martindale, H. G. A.

    2006-01-01

    This is a study of axial and transverse slip in helically wound armour wires on flexible pipe under the influence of end restraint. Analysis of steel strip layers in order to find the effect of end restraint prompted the development of a new model to describe their behaviour. This avoids the shortfalls of adapting previous models designed either for similar but different structures or for application away from any end fitting restraint. Previous analytical solutions concerning flexible pipe t...

  7. ADIMEW: Fracture assessment and testing of an aged dissimilar metal weld pipe assembly

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hayes, B.; Goldthorpe, M.R.

    2004-01-01

    ADIMEW (Assessment of Aged Piping Dissimilar Metal Weld Integrity) was a three-year collaborative research programme carried out under the EC 5th Framework Programme. The objective of the study was to advance the understanding of the behaviour and safety assessment of defects in dissimilar metal welds between pipes representative of those found in nuclear power plant. ADIMEW studied and compared different methods for predicting the behaviour of defects located near the fusion boundaries of dissimilar metal welds typically used to join sections of austenitic and ferritic piping operating at high temperature. Assessment of such defects is complicated by issues that include: severe mis-match of yield strength of the constituent parent and weld metals, strong gradients of material properties, the presence of welding residual stresses and mixed mode loading of the defect. The study includes the measurement of material properties and residual stresses, predictive engineering analysis and validation by means of a large-scale test. The particular component studied was a 453mm diameter pipe that joins a section of type A508 Class 3 ferritic pipe to a section of type 316L austenitic pipe by means of a type 308 austenitic weld with type 308/309L buttering laid on the ferritic pipe. A circumferential, surface-breaking defect was cut using electro discharge machining into the 308L/309L weld buttering layer parallel to the fusion line. The test pipe was subjected to four-point bending to promote ductile tearing of the defect. This paper presents the results of TWI contributions to ADIMEW including: fracture toughness testing, residual stress measurements and assessments of the ADIMEW test using elastic-plastic, cracked body, finite element analysis. (orig.)

  8. Fabrication of an electro-absorption transceiver with a monolithically integrated optical amplifier for fiber transmission of 40–60 GHz radio signals

    International Nuclear Information System (INIS)

    Zhang, Andy Zhenzhong; Wang, Qin; Fonjallaz, Pierre-Yves; Almqvist, Susanne; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Chacinski, Marek; Thylén, Lars; Berggren, Jesper; Hammar, Mattias; Honecker, Jörg; Steffan, Andreas

    2011-01-01

    We report on the fabrication of a monolithically integrated semiconductor optical amplifier (SOA) and a reflective electro-absorption transceiver (EAT) for 40–60 GHz radio-over-fiber applications. The EAT can either function as a transmitter (reflective modulator) or as a receiver (photodetector) depending on operation mode. The SOA and the EAT sections are based on different InGaAsP multiple quantum-well active layers connected by a butt joint. Benzocyclobutene is used to reduce the capacitance beside the ridge mesa. Devices are designed to have a peaked response at the operating frequency through the design of microwave waveguides on top of the devices. The packaged device exhibits at 0.1 mW optical input power an amplified DC responsivity of 18.5 mA mW −1 and a modulation efficiency of 0.67 mW V −1 . The estimated radio frequency loss at 40 GHz of an optical link consisting of two SOA–EAT devices was 23 dB using an unmodulated optical input carrier to the transmitter of 0.94 mW

  9. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  10. Failure analysis on a ruptured petrochemical pipe

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Mohd [Industrial Technology Division, Malaysian Nuclear Agency, Ministry of Science, Technology and Innovation Malaysia, Bangi, Kajang, Selangor (Malaysia); Shamsudin, Shaiful Rizam; Kamardin, A. [Univ. Malaysia Perlis, Jejawi, Arau (Malaysia). School of Materials Engineering

    2010-08-15

    The failure took place on a welded elbow pipe which exhibited a catastrophic transverse rupture. The failure was located on the welding HAZ region, parallel to the welding path. Branching cracks were detected at the edge of the rupture area. Deposits of corrosion products were also spotted. The optical microscope analysis showed the presence of transgranular failures which were related to the stress corrosion cracking (SCC) and were predominantly caused by the welding residual stress. The significant difference in hardness between the welded area and the pipe confirmed the findings. Moreover, the failure was also caused by the low Mo content in the stainless steel pipe which was detected by means of spark emission spectrometer. (orig.)

  11. Dynamic Stability of Pipe Conveying Fluid with Crack and Attached Masses

    International Nuclear Information System (INIS)

    Ahn, Tae Soo; Yoon, Han Ik; Son, In Soo; Ahn, Sung Jin

    2007-01-01

    In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity

  12. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    International Nuclear Information System (INIS)

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-01-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 μm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10 5 electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 μm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at ∼0.44 μC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can

  13. Development of nonlinear dynamic analysis program for nuclear piping systems

    International Nuclear Information System (INIS)

    Kamichika, Ryoichi; Izawa, Masahiro; Yamadera, Masao

    1980-01-01

    In the design for nuclear power piping, pipe-whip protection shall be considered in order to keep the function of safety related system even when postulated piping rupture occurs. This guideline was shown in U.S. Regulatory Guide 1.46 for the first time and has been applied in Japanese nuclear power plants. In order to analyze the dynamic behavior followed by pipe rupture, nonlinear analysis is required for the piping system including restraints which play the role of an energy absorber. REAPPS (Rupture Effective Analysis of Piping Systems) has been developed for this purpose. This program can be applied to general piping systems having branches etc. Pre- and post- processors are prepared in this program in order to easily input the data for the piping engineer and show the results optically by use of a graphic display respectively. The piping designer can easily solve many problems in his daily work by use of this program. This paper describes about the theoretical background and functions of this program and shows some examples. (author)

  14. Optical Computing

    Indian Academy of Sciences (India)

    Other advantages of optics include low manufacturing costs, immunity to ... It is now possible to control atoms by trapping single photons in small, .... cement, and optical spectrum analyzers. ... risk of noise is further reduced, as light is immune to electro- ..... mode of operation including management of large multimedia.

  15. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes

    Science.gov (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming

    2008-07-01

    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  16. A new method to butt weld pipes with laser at different angles

    International Nuclear Information System (INIS)

    Gualini, M.M.S.

    1999-01-01

    Laser butt welding of pipes at different angles may be cumbersome and may require very expensive tooling. The pipe size may not allow using the laser for large volume throughputs. We propose a rotary optical head composed by an adjustable focus lens system and two reflecting mirrors. The laser beam is bent at 90 deg. C. so that weld can be performed inwards outwards. The optic head design compensates the rotary backlash and vibrations, like a penta prism thus ensuring a perfect follow up of the weld track. The optic head can be inclined at 45 deg. C. to laser butt weld pipe each other at 90 deg. C. In this case the laser beam focus position is computer controlled in order to keep the focus point always on the elliptical weld profile. The paper covers theoretical and practical aspects of the proposed device. (author)

  17. Classical and quantum chaos in atom optics

    International Nuclear Information System (INIS)

    Saif, Farhan

    2005-01-01

    The interaction of an atom with an electro-magnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electro-magnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences

  18. Software defined multi-OLT passive optical network for flexible traffic allocation

    Science.gov (United States)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui

    2016-10-01

    With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane

  19. Propagation of ovalization along straight pipes and elbows

    International Nuclear Information System (INIS)

    Millard, A.; Roche, R.L.

    1981-01-01

    The aim of this paper is to present analytical solutions for the propagation of evalization and the variation of the flexibility factor along pipe bends terminated by straight pipes or flanges, under in-plane bending, assuming an elastic material behaviour. The influence of the various strains in analysed in the simple case of a straight pipe, subjected to an elliptical cross-section shape deformation at one end. The results enlighten the very important part played by the distorsion in the propagation. They have been compared with finite elements solutions and with simple experiments. The solution is developed for an elbow terminated by a straight pipe or a flange, following the Von Karman's approach: local displacements are expanded in Fourier series, the coefficients of which vary along the curvilinear abscissa, like the rotation of the cross-section as a whole; the differential equations as well as the boundary conditions are found by minimization of the total potential energy of the assembly. The solutions are compared to existing and experimental results. (orig./HP)

  20. Finite element analysis of a fluid-structure interaction in flexible pipe ...

    African Journals Online (AJOL)

    The obtained mathematical system is constituted of four non-linear hyperbolic partial differential equations describing the wave propagation in both pipe wall and liquid flow. The fluid-structure interaction is found to be governed by Poisson's ratio. In this steady finite element method based on Galerkin formulation is applied.

  1. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  2. Is the structural damping of flexible pipes important for its strength against armor lateral buckling?; O amortecimento estrutural de dutos flexiveis e importante para sua resistencia contra flambagem lateral de armaduras?

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Mauro Pastor [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    This paper presents conclusions and results of a project conducted by the PETROBRAS Research Center in 1998. 163 laboratory tests were obtained under the Research Project. The purpose of the Research Project was to determine mechanical properties to be used in the global flexible riser analysis of the ultra deep water Roncador Field. Although the Research Project reached its objective, it had more success than the expected. That is statistics of the results of the Research Project lead to the theoretical background for the behavior of empty flexible pipes operating in ultra deep water. Other research project, finished 5 years later, fully proved this theoretical background. (author)

  3. Microstructural characterization of pipe bomb fragments

    International Nuclear Information System (INIS)

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-01-01

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  4. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    International Nuclear Information System (INIS)

    Musgrave, B.

    2000-01-01

    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow (∼ 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster ( -1 m -1 , and are the highest measured to date: the highest value previously published is 0.12 C N -1 m -1 , measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens and bimesogens have been doped with chiral additives and the resultant mixtures' flexoelectro-optic properties have been analysed. From this work it has been possible to determine that the polar cyanobiphenyl group is the key to the strong response in the estradiol-cyanobiphenyl materials. In conclusion, a recommendation is made, for the first time, for a general molecular structure likely to exhibit a strong flexoelectro-optic response: namely, bimesogenic materials composed of highly polar end groups separated by a flexible spacer. (author)

  5. Uses of four-fold coaxial corrugated piping in low temperature technology

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A; Rohner, P [Kabel- und Metallwerke Gutehoffnungshuette A.G., Hannover (Germany, F.R.)

    1978-06-01

    The increasing uses of superconducting equipment in various areas of research and technology, including even medicine, create an increasing demand for suitable transfer lines for liquid helium which still remains practically the only suitable coolant. This paper reports on flexible four-fold coaxial corrugated piping lines which can combine a forword flow and a return flow channel for the coolant and which can be designed for various operating conditions. The mechanical and thermal properties of such piping lines are discussed.

  6. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  7. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  8. Safety catching device for pipes in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1976-01-01

    The safety catching device consists of a steel wire passed in U-shape around the pipe to be caught and supported by two anchor ties embedded in the concrete of the missile shielding cylinder. This flexible catching device is to cause the energy released in case of a pipe rupture to be absorbed and no dangerous bending shesses to be transferred to the walls of the missile shielding cylinder. (UWI) [de

  9. Fibre optic sensor on robot end effector for flexible assembly

    International Nuclear Information System (INIS)

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-01-01

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed

  10. Evaluation of Environmentally Assisted Cracking of Armour Wires in Flexible Pipes, Power Cables and Umbilicals

    Science.gov (United States)

    Zhang, Zhiying

    Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.

  11. Optical coherence techniques for plasma doppler spectroscopy

    International Nuclear Information System (INIS)

    Howard, J.; Michael, C.; Glass, F.; Cheetham, A.D.

    2000-01-01

    A new electro-optically Modulated Optical Solid-State (MOSS) interferometer has been constructed for measurement of the low order spectral moments of line emission from optically thin radiant media. The instrument, which is based on the principle of the Fourier transform spectrometer, has high etendue and is rugged, compact and inexpensive. By employing electro-optical path-length modulation techniques, the spectral information is transferred to the temporal frequency domain and can be obtained using a single photodetector. Specifically, the zeroth moment (brightness) is given by the average signal level, the first moment (shift) by the modulation phase and the second moment (line width) by the modulation amplitude. (author)

  12. Comportement comparé de conduites rigides et flexibles ensouillées au voisinage de sols gelés Comparative Behavior of Rigid and Flexible Pipes Buried in the Vicinity of Frozen Ground

    Directory of Open Access Journals (Sweden)

    Putot C.

    2006-11-01

    Full Text Available Au cours des dernières années, les activités pétrolières à terre comme en mer, tant en Alaska qu'au Canada, se sont maintenues à un niveau raisonnable. En octobre 1987, le premier champ pétrolier offshore a été mis en exploitation en mer de Beaufort (Endicott. Bien que l'industrie soit principalement dans une phase d'exploration, des besoins vont progressivement se manifester en matière de lignes de collecte et d'injection. La détermination du tracé de conduites en offshore arctique ainsi que leur dimensionnement nécessite la prise en compte de facteurs très spécifiques : le raclage des glaces dérivantes impose une profondeur minimum d'ensouillage, ce qui accroît, malgré l'isolation des conduites, la proportion de chaleur communiquée au pergélisol (ou permafrost en dégel : les tassements différentiels résultant de la variabilité de composition des sols peuvent provoquer des déformations, voire des instabilités des conduites tout à fait inacceptables. Il est assez intuitif de penser que les conduites flexibles accommoderont plus facilement les mouvements de sol que les rigides. L'objet de cet article est de proposer une méthode d'analyse assez souple permettant de jauger facilement cet avantage. In recent years, onshore and offshore petroleum activities, in both Alaska and Canada, have continued on a reasonable level. In October 1987 the first offshore oil field began production in the Beaufort Sea (Endicott. Although the industry is mainly in an exploration phase, needs will steadily appear with regard to gathering and injection line. . The determination to lay flowlines in offshore arctic areas as well as their sizing require that very specific factors be taken into consideration. Scouring by drifting ice requires a minimum depth of burial. Despite the insulation of pipes, this burial increases the proportion of heat communicated to melting permafrost. The differential compaction resulting from the variability of

  13. Optical dosimeter

    International Nuclear Information System (INIS)

    Drukaroff, I.; Fishman, R.

    1984-01-01

    A reflecting optical dosimeter is a thin block of optical material having an input light pipe at one corner and an output light pipe at another corner, arranged so that the light path includes several reflections off the edges of the block to thereby greatly extend its length. In a preferred embodiment, one corner of the block is formed at an angle so that after the light is reflected several times between two opposite edges, it is then reflected several more times between the other two edges

  14. Large butterfly valve design copes with out-of-round pipe

    International Nuclear Information System (INIS)

    Saar, R.P.

    1975-01-01

    Two 96 inch circulating water lines at the Trojan reactor were joined to butterfly valves which had to be distorted to conform to the badly out-of-round pipes. Bubble tight seating was achieved by positioning a flexible seat ring after the valve was installed

  15. Integrating undergraduate research into the electro-optics and laser engineering technology program at Indiana University of Pennsylvania

    Science.gov (United States)

    Zhou, Andrew F.

    2014-07-01

    Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.

  16. Flexible organic light-emitting diodes consisting of a platinum doped indium tin oxide anode

    International Nuclear Information System (INIS)

    Hsu, C-M; Huang, C-Y; Cheng, H-E; Wu, W-T

    2009-01-01

    This paper demonstrates that a flexible organic light-emitting diode (OLED) with a platinum (Pt)-doped indium tin oxide (ITO) anode could show superior electro-optical characteristics to those of a conventional device. The threshold voltage and turn-on voltage of an OLED device consisting of an aluminium/lithium fluoride/tris(8-hydroxyquinoline) aluminium/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine/Pt-doped ITO/ITO structure were reduced by 1.2 V and 0.8 V, respectively. Current efficiency was found improved for a driving voltage of less than 6.5 V as a result of the enhanced hole-injection rate, attributed mainly to the elevated surface work function and partly reduced surface roughness of ITO by the incorporated Pt atoms in the ITO matrix.

  17. U-rans model for the prediction of the acoustic sound power generated in a whistling corrugated pipe

    NARCIS (Netherlands)

    Golliard, J.; González Díez, N.; Belfroid, S.P.C.; Nakiboǧlu, G.; Hirschberg, A.

    2013-01-01

    Corrugated pipes, as used in flexible risers for gas production or in domestic appliances, can whistle when a flow is imposed through the pipe. Nakiboglu et al [1, 2] have developed a method to compute the acoustic source term for axi-symmetric cavities. The method is based on the resolution of

  18. Optical properties of flexible fluorescent films prepared by screen printing technology

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2018-05-01

    Full Text Available In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(InN chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  19. Optical properties of flexible fluorescent films prepared by screen printing technology

    Science.gov (United States)

    Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang

    2018-05-01

    In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  20. Teaching pattern diversification for optics course: motivate interest, open minds and apply flexibly

    Science.gov (United States)

    Wang, Yunxin; Wang, Dayong; Rong, Lu; Zhao, Jie

    2015-10-01

    Optics is one of the most important basic courses for college students majoring in Applied Physics in university, which can supply the essential theoretical foundation for the subsequent courses such as Information Optics and Electrodynamics etc.. So Optics course plays a supporting effect in the knowledge frame of the college students. Optics course has its own feature, for one thing, many optical contents cannot be understood directly and easily, for another the optical phenomenon or experiments are interesting and can be displayed intuitively. Considering the above feature, the diversiform teaching patterns are developed to improve the teaching effect. To motivate their interest, students have the chance to visit optical laboratory for both teaching demonstration and science research, and voluntary demonstration of teaching apparatus in class are another approach. Furthermore, digital simulation and experimental design according to the classical knowledge are introduced to the optics course, so students can comprehend and verify the optical principle. Students are encouraged to propose new ideas, and these ideas can be achieved with the help of teachers and the funds support from our university. Besides, some talent students will be invited to join a research group composing by graduate students and teachers. In this group, the students have the chance to touch frontier topics in optics. The diversification of teaching patterns can supply a developing space with the rising gradient for students, which can inspire the interest, open their minds and make them apply flexibly by the participatory and inquiry.