WorldWideScience

Sample records for electricity system reliability

  1. Hawaii Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  2. Hawaii electric system reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  3. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-11-26

    ... Bulk-Power System. See Rules Concerning Certification of the Electric Reliability Organization; and... Bulk-Power System in North America because it protects the reliability of the bulk electric system and... Electric Reliability Organization Definition of Bulk Electric System; Final Rule #0;#0;Federal Register...

  4. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  5. 76 FR 16263 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2011-03-23

    ...; Order No. 743-A] Revision to Electric Reliability Organization Definition of Bulk Electric System AGENCY... certain provisions of the Final Rule. Order No. 743 directed the Electric Reliability Organization (ERO) to revise the definition of the term ``bulk electric system'' through the ERO's Reliability Standards...

  6. Reliability evaluation of deregulated electric power systems for planning applications

    International Nuclear Information System (INIS)

    Ehsani, A.; Ranjbar, A.M.; Jafari, A.; Fotuhi-Firuzabad, M.

    2008-01-01

    In a deregulated electric power utility industry in which a competitive electricity market can influence system reliability, market risks cannot be ignored. This paper (1) proposes an analytical probabilistic model for reliability evaluation of competitive electricity markets and (2) develops a methodology for incorporating the market reliability problem into HLII reliability studies. A Markov state space diagram is employed to evaluate the market reliability. Since the market is a continuously operated system, the concept of absorbing states is applied to it in order to evaluate the reliability. The market states are identified by using market performance indices and the transition rates are calculated by using historical data. The key point in the proposed method is the concept that the reliability level of a restructured electric power system can be calculated using the availability of the composite power system (HLII) and the reliability of the electricity market. Two case studies are carried out over Roy Billinton Test System (RBTS) to illustrate interesting features of the proposed methodology

  7. 77 FR 39858 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2012-07-05

    ... bulk electric system reliability through steady state power flow, and contain a transient stability... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... definition of ``bulk electric system'' developed by the North American Electric Reliability Corporation (NERC...

  8. Reliability planning in distributed electric energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.

    1978-10-01

    The goal of this paper is to develop tools for technology evaluation that address questions involving the economics of large-scale systems. The kind of cost discussed usually involves some dynamic aspect of the energy system. In particular, such properties as flexibility, stability, and resilience are features of entire systems. Special attention must be paid to the question of reliability, i.e., availability on demand. The storage problem and the planning for reliability in utility systems are the subjects of this paper. The introductory chapter addresses preliminary definitions--reliability planning, uncertainty, resilience, and other sensitivities. The study focuses on the contrast between conventional power generation technologies with controllable output and intermittent resources such as wind and solar electric conversion devices. The system studied is a stylized representation of California conditions. Significant differences were found in reliability planning requirements (and therefore costs) for systems dominated by central station plants as opposed to those dominated by intermittent resource technologies. It is argued that existing hydroelectric facilities need re-optimization. These plants provide the only currently existing bulk power storage in electric energy systems. 38 references. (MCW)

  9. 78 FR 29209 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-05-17

    ... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... local distribution'' as set forth in the Federal Power Act (FPA). \\1\\ Revisions to Electric Reliability... Reliability Organization Definition of Bulk Electric System, Order No. 743, 133 FERC ] 61,150, at P 16 (2010...

  10. Bulk electric system reliability evaluation incorporating wind power and demand side management

    Science.gov (United States)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed

  11. FUNDAMENTALS OF RELIABILITY OF ELECTRIC POWER SYSTEM AND EQUIPMENT

    OpenAIRE

    Engr. Anumaka; Michael Chukwukadibia

    2011-01-01

    Today, the electric power system consists of complex interconnected network which are prone to different problems that militates against the reliability of the power system. Inadequate reliability in the power system causes problems such as high failure rate of power system installations and consumer equipment, transient and intransient faults, symmetrical faults etc. This paper provides an extensive review of the powers system and equipment reliability and related failure patterns in equipment.

  12. Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique

    Directory of Open Access Journals (Sweden)

    Hejun Yang

    2018-03-01

    Full Text Available The electrical system of a wind farm has a significant influence on the wind farm reliability and electrical energy yield. The disconnect switch installed in an electrical system cannot only improve the operating flexibility, but also enhance the reliability for a wind farm. Therefore, this paper develops a probabilistic transfer technique for integrating the electrical topology structure, the isolation operation of disconnect switch, and stochastic failure of electrical equipment into the reliability assessment of wind farm electrical system. Firstly, as the traditional two-state reliability model of electrical equipment cannot consider the isolation operation, so the paper develops a three-state reliability model to replace the two-state model for incorporating the isolation operation. In addition, a proportion apportion technique is presented to evaluate the state probability. Secondly, this paper develops a probabilistic transfer technique based on the thoughts that through transfer the unreliability of electrical system to the energy transmission interruption of wind turbine generators (WTGs. Finally, some novel indices for describing the reliability of wind farm electrical system are designed, and the variance coefficient of the designed indices is used as a convergence criterion to determine the termination of the assessment process. The proposed technique is applied to the reliability assessment of a wind farm with the different topologies. The simulation results show that the proposed techniques are effective in practical applications.

  13. Reliability Electrical Power System of Hospital as Cold Standby System

    Directory of Open Access Journals (Sweden)

    Grabski Franciszek

    2016-07-01

    Full Text Available The probabilistic model of a hospital electrical power system consisting of mains, an emergency power system and the automatic transfer switch with the generator starter are discussed in this paper. The reliability model is semi-Markov process describing two different units renewable cold standby system and switch. The embedded Semi-Markov processes concept is applied for description of the system evolution. Time to failure of the system is represented by a random variable denoting the first passage time of the process from the given state to the subset of states. The appropriate theorems of the Semi-Markov processes theory allow us to evaluate the reliability function and some reliability characteristics.

  14. Influence of reliability of the relay protection to the whole reliability of electric power systems

    International Nuclear Information System (INIS)

    Stojanovski, Ljupcho I.

    2001-01-01

    The influence of the reliability of the elements of relay protection up today analyses of the reliability on electric power systems, very rare has been taken into consideration, in other words, in these analyses it is assumed that the reliability of the protection has value one. In this work an attempt is that through modelling of individual types of protection of the elements of high-voltage systems to make calculation to the influence of the reliability of the relay protection on the total reliability of the high-voltage systems.(Author)

  15. Improvement of standards on functional reliability of electric power systems

    International Nuclear Information System (INIS)

    Barinov, V.A.; Volkov, G.A.; Kalita, V.V.; Kogan, F.L.; Makarov, S.F.; Manevich, A.S.; Mogirev, V.V.; Sin'chugov, F.I.; Skopintsev, V.A.; Khvoshchinskaya, Z.G.

    1993-01-01

    Analysis of the most principal aspects of the existing standards and requirements on assuring safety and stability of electric power systems (EPS) and effective (reliable and economical) power supply of consumers is given. The reliability is determined as ability to accomplish the assigned functions. Basic recommendations on improving the standards regulating the safety and reliability of the NPP functioning are formulated

  16. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  17. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    Bonfietti, Gerson

    2003-01-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  18. 76 FR 73608 - Reliability Technical Conference, North American Electric Reliability Corporation, Public Service...

    Science.gov (United States)

    2011-11-29

    ... or municipal authority play in forming your bulk power system reliability plans? b. Do you support..., North American Electric Reliability Corporation (NERC) Nick Akins, CEO of American Electric Power (AEP..., EL11-62-000] Reliability Technical Conference, North American Electric Reliability Corporation, Public...

  19. 76 FR 58101 - Electric Reliability Organization Interpretation of Transmission Operations Reliability Standard

    Science.gov (United States)

    2011-09-20

    ....C. Cir. 2009). \\4\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC... for maintaining real and reactive power balance. \\14\\ Electric Reliability Organization Interpretation...; Order No. 753] Electric Reliability Organization Interpretation of Transmission Operations Reliability...

  20. 76 FR 23222 - Electric Reliability Organization Interpretation of Transmission Operations Reliability

    Science.gov (United States)

    2011-04-26

    ....3d 1342 (DC Cir. 2009). \\5\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693... Reliability Standards for the Bulk-Power System. Action: FERC-725A. OMB Control No.: 1902-0244. Respondents...] Electric Reliability Organization Interpretation of Transmission Operations Reliability AGENCY: Federal...

  1. 18 CFR 39.3 - Electric Reliability Organization certification.

    Science.gov (United States)

    2010-04-01

    ... operators of the Bulk-Power System, and other interested parties for improvement of the Electric Reliability... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric Reliability..., Reliability Standards that provide for an adequate level of reliability of the Bulk-Power System, and (2) Has...

  2. 76 FR 23171 - Electric Reliability Organization Interpretations of Interconnection Reliability Operations and...

    Science.gov (United States)

    2011-04-26

    ... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g...-Power System reliability may request an interpretation of a Reliability Standard.\\7\\ The ERO's standards... information in its reliability assessments. The Reliability Coordinator must monitor Bulk Electric System...

  3. 75 FR 14097 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-03-24

    ... electrical failure of a 138 kV motor operated switch on a 138 kV-13 kV transformer located in the ReliabilityFirst region resulted in the tripping of two transformers, one due to the electrical failure and the... Commission 18 CFR Part 40 [Docket No. RM09-18-000; 130 FERC ] 61,204] Revision to Electric Reliability...

  4. Assessing Changes in the Reliability of the U.S. Electric Power System

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stanford Univ., CA (United States). Dept. of Physics; LaCommare, Kristina H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eto, Joseph H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sweeney, James L. [Stanford Univ., CA (United States)

    2015-08-01

    Over the past 15 years, the most well-publicized efforts to assess trends in U.S. electric power system reliability have focused only on a subset of all power interruption events (see, for example, Amin 2008 and Campbell 2012)—namely, only the very largest events, which trigger immediate emergency reporting to federal agencies and industry regulators. Anecdotally, these events are thought by many to represent no more than 10% of the power interruptions experienced annually by electricity consumers. Moreover, a review of these emergency reports has identified shortcomings in relying on these data as reliable sources for assessing trends, even with the reliability events they report (Fisher et al. 2012). Recent work has begun to address these limitations by examining trends in reliability data collected annually by electricity distribution companies (Eto et al. 2012). In principle, all power interruptions experienced by electricity customers, regardless of size, are recorded by the distribution utility. Moreover, distribution utilities have a long history of recording this information, often in response to mandates from state public utility commissions (Eto et al. 2006). Thus, studies that rely on reliability data collected by distribution utilities can, in principle, provide a more complete basis upon which to assess trends or changes in reliability over time.

  5. 76 FR 66055 - North American Electric Reliability Corporation; Order Approving Interpretation of Reliability...

    Science.gov (United States)

    2011-10-25

    ...\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242... materially affected'' by Bulk-Power System reliability may request an interpretation of a Reliability... Electric Reliability Corporation; Order Approving Interpretation of Reliability Standard; Before...

  6. Reliability Evaluation for Optimizing Electricity Supply in a Developing Country

    Directory of Open Access Journals (Sweden)

    Mark Ndubuka NWOHU

    2007-09-01

    Full Text Available The reliability standards for electricity supply in a developing country, like Nigeria, have to be determined on past engineering principles and practice. Because of the high demand of electrical power due to rapid development, industrialization and rural electrification; the economic, social and political climate in which the electric power supply industry now operates should be critically viewed to ensure that the production of electrical power should be augmented and remain uninterrupted. This paper presents an economic framework that can be used to optimize electric power system reliability. Finally the cost models are investigated to take into account the economic analysis of system reliability, which can be periodically updated to improve overall reliability of electric power system.

  7. 76 FR 66057 - North American Electric Reliability Corporation; Order Approving Regional Reliability Standard

    Science.gov (United States)

    2011-10-25

    ... Reliability Standard that is necessitated by a physical difference in the Bulk-Power System.\\7\\ \\7\\ Order No... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g... electric system event analyses and thereby improve system reliability by promoting improved system design...

  8. Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.

    2012-01-01

    The subject of this paper is the analysis of an electrical transmission system with the objective of identifying its most critical elements with respect to failures and attacks. The methodological approach undertaken is based on graph-theoretical (topological) network analysis. Four different perspectives of analysis are considered within the formalism of weighed networks, adding to the purely topological analysis of the system, the reliability and electrical characteristics of its components. In each phase of the analysis: i) a graph-theoretical representation is offered to highlight the structure of the most important system connections according to the particular characteristics examined (topological, reliability, electrical or electrical-reliability), ii) the classical degree index of a network node is extended to account for the different characteristics considered. The application of these concepts of analysis to an electrical transmission system of literature confirms the importance of different perspectives of analysis on such a critical infrastructure. - Highlights: ► We analyze a power system from topological, reliability and electrical perspectives. ► We rank critical components within a vulnerability assessment framework. ► We compute an extended degree to rank critical energy paths. ► We compare several analytical approaches and provide a table for choosing among them. ► We suggest network changes to increase the reliability of highly loaded energy paths.

  9. Electrical system design and reliability at Ontario Hydro nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Royce, C. J. [Ontario Hydro, 700 University Avenue, Toronto, Ontario M5G 1X6 (Canada)

    1986-02-15

    This paper provides an overview of design practice and the predicted and actual reliability of electrical station service Systems at Ontario Nuclear Generating Stations. Operational experience and licensing changes have indicated the desirability of improving reliability in certain instances. For example, the requirement to start large emergency coolant injection pumps resulted in the turbine generator units in a multi-unit station being used as a back-up power supply. Results of reliability analyses are discussed. To mitigate the effects of common mode events Ontario Hydro adopted a 'two group' approach to the design of safety related Systems. This 'two group' approach is reviewed and a single fully environmentally qualified standby power supply is proposed for future use. (author)

  10. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    Science.gov (United States)

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  11. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  12. Distribution-level electricity reliability: Temporal trends using statistical analysis

    International Nuclear Information System (INIS)

    Eto, Joseph H.; LaCommare, Kristina H.; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-01

    This paper helps to address the lack of comprehensive, national-scale information on the reliability of the U.S. electric power system by assessing trends in U.S. electricity reliability based on the information reported by the electric utilities on power interruptions experienced by their customers. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. We find that reported annual average duration and annual average frequency of power interruptions have been increasing over time at a rate of approximately 2% annually. We find that, independent of this trend, installation or upgrade of an automated outage management system is correlated with an increase in the reported annual average duration of power interruptions. We also find that reliance on IEEE Standard 1366-2003 is correlated with higher reported reliability compared to reported reliability not using the IEEE standard. However, we caution that we cannot attribute reliance on the IEEE standard as having caused or led to higher reported reliability because we could not separate the effect of reliance on the IEEE standard from other utility-specific factors that may be correlated with reliance on the IEEE standard. - Highlights: ► We assess trends in electricity reliability based on the information reported by the electric utilities. ► We use rigorous statistical techniques to account for utility-specific differences. ► We find modest declines in reliability analyzing interruption duration and frequency experienced by utility customers. ► Installation or upgrade of an OMS is correlated to an increase in reported duration of power interruptions. ► We find reliance in IEEE Standard 1366 is correlated with higher reported reliability.

  13. Reliability risks during the transition to competitive electricity markets

    International Nuclear Information System (INIS)

    Hughes, J.P.

    2005-01-01

    The Electricity Consumers Resource Council (ELCON) is a U.S. association representing industrial consumers of electricity, and is a long-standing advocate of competition in the electric power industry. However, because a reliable grid is necessary to support competitive wholesale markets, ELCON believes that the transmission system is an essential facility that must remain regulated. The initiatives discussed in this white paper represent significant steps that the National Electric Reliability Council (NERC) and the industry have taken to improve reliability in a competitive and restructured electric industry. Strategic manoeuvres of incumbent utilities to maintain market share were evaluated, as well as discrimination against potential competitors. It was suggested that, occasionally, indecisive federal policies have been taken advantage of by utilities. The unintended consequences of state restructuring policies that allow utilities to over-earn their revenue requirements were reviewed. NERC reliability standards will remain unenforceable until a new Electricity Reliability Organization has been certified. Flawed market designs and inadequate market power mitigation, as well as the financial distress of merchant generators, pose considerable risks. It was suggested that these risks could trigger transmission loading relief incidents, local outages or widespread outages. In the absence of mandatory reliability standards with penalties, and complementary market rules for mitigating generation and transmission market power, economic incentives will encourage other forms of opportunistic behavior that may be the root cause of other outages. Public concern regarding these risks to grid reliability may result in lost public support for competitive electricity markets. Proposed solutions include the certification of a new Electric Reliability Organization to establish and enforce mandatory reliability standards, and granting the Federal Energy Regulatory Commission

  14. Demand Response Application forReliability Enhancement in Electricity Market

    OpenAIRE

    Romera Pérez, Javier

    2015-01-01

    The term reliability is related with the adequacy and security during operation of theelectric power system, supplying the electricity demand over time and saving thepossible contingencies because every inhabitant needs to be supplied with electricity intheir day to day. Operating the system in this way entails spending money. The first partof the project is going to be an analysis of the reliability and the economic impact of it.During the last decade, electric utilities and companies had be...

  15. Dynamic Self-Adaptive Reliability Control for Electric-Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Yi Wan

    2015-02-01

    Full Text Available The high-speed electric-hydraulic proportional control is a new development of the hydraulic control technique with high reliability, low cost, efficient energy, and easy maintenance; it is widely used in industrial manufacturing and production. However, there are still some unresolved challenges, the most notable being the requirements of high stability and real-time by the classical control algorithm due to its high nonlinear characteristics. We propose a dynamic self-adaptive mixed control method based on the least squares support vector machine (LSSVM and the genetic algorithm for high-speed electric-hydraulic proportional control systems in this paper; LSSVM is used to identify and adjust online a nonlinear electric-hydraulic proportional system, and the genetic algorithm is used to optimize the control law of the controlled system and dynamic self-adaptive internal model control and predictive control are implemented by using the mixed intelligent method. The internal model and the inverse control model are online adjusted together. At the same time, a time-dependent Hankel matrix is constructed based on sample data; thus finite dimensional solution can be optimized on finite dimensional space. The results of simulation experiments show that the dynamic characteristics are greatly improved by the mixed intelligent control strategy, and good tracking and high stability are met in condition of high frequency response.

  16. 75 FR 71625 - System Restoration Reliability Standards

    Science.gov (United States)

    2010-11-24

    ... to start operating and delivering electric power without assistance from the electric system... and system restoration and reporting following disturbances. \\3\\ North American Electric Reliability... Reliability Standards for the Bulk-Power System and determined that the proposed requirements are necessary to...

  17. On reliability and maintenance modelling of ageing equipment in electric power systems

    International Nuclear Information System (INIS)

    Lindquist, Tommie

    2008-04-01

    Maintenance optimisation is essential to achieve cost-efficiency, availability and reliability of supply in electric power systems. The process of maintenance optimisation requires information about the costs of preventive and corrective maintenance, as well as the costs of failures borne by both electricity suppliers and customers. To calculate expected costs, information is needed about equipment reliability characteristics and the way in which maintenance affects equipment reliability. The aim of this Ph.D. work has been to develop equipment reliability models taking the effect of maintenance into account. The research has focussed on the interrelated areas of condition estimation, reliability modelling and maintenance modelling, which have been investigated in a number of case studies. In the area of condition estimation two methods to quantitatively estimate the condition of disconnector contacts have been developed, which utilise results from infrared thermography inspections and contact resistance measurements. The accuracy of these methods were investigated in two case studies. Reliability models have been developed and implemented for SF6 circuit-breakers, disconnector contacts and XLPE cables in three separate case studies. These models were formulated using both empirical and physical modelling approaches. To improve confidence in such models a Bayesian statistical method incorporating information from the equipment design process was also developed. This method was illustrated in a case study of SF6 circuit-breaker operating rods. Methods for quantifying the effect of maintenance on equipment condition and reliability have been investigated in case studies on disconnector contacts and SF6 circuit-breakers. The input required by these methods are condition measurements and historical failure and maintenance data, respectively. This research has demonstrated that the effect of maintenance on power system equipment may be quantified using available data

  18. Load As A Reliability Resource in the Restructured Electricity Market

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, J.D.

    2002-06-10

    Recent electricity price spikes are painful reminders of the value that meaningful demand-side responses could bring to the restructuring US electricity system. Review of the aggregate offers made by suppliers confirms that even a modest increase in demand elasticity could dramatically reduce these extremes in price volatility. There is a strong need for dramatically increased customer participation in these markets to enhance system reliability and reduce price volatility. Indeed, allowing customers to manage their loads in response to system conditions might be thought of as the ultimate reliability resource. Most would agree that meaningful demand-side responses to price are the hallmark of a well-functioning competitive market [1]. Yet, in today's markets for electricity, little or no such response is evident. The reason is simple: customers currently do not experience directly the time-varying costs of their consumption decisions. Consequently, they have no incentive to modify these decisions in ways that might enhance system reliability or improve the efficiency of the markets in which electricity is traded. Increased customer participation is a necessary step in the evolution toward more efficient markets for electricity and ancillary services. This scoping report provides a three-part assessment of the current status of efforts to enhance the ability of customer's load to participate in competitive markets with a specific focus on the role of customer loads in enhancing electricity system reliability. First, this report considers the definitions of electricity-reliability-enhancing ancillary services (Section 2) and a preliminary assessment of the ability of customer's loads to provide these services. Second, is a review a variety of programs in which load has been called on as a system reliability resource (Section 3). These experiences, drawn from both past and current utility and ISO programs, focus on programs triggered by system

  19. 78 FR 41339 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Science.gov (United States)

    2013-07-10

    ...] Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards AGENCY: Federal... Reliability Standards identified by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. FOR FURTHER INFORMATION CONTACT: Kevin Ryan (Legal Information...

  20. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model

    OpenAIRE

    Chassin, David P.; Posse, Christian

    2004-01-01

    The reliability of electric transmission systems is examined using a scale-free model of network structure and failure propagation. The topologies of the North American eastern and western electric networks are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using s...

  1. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  2. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Science.gov (United States)

    2010-01-01

    ... System (APS)—7, except Duquesne Light Company. 2. American Electric Power System (AEP)—entire AEP System... 10 Energy 4 2010-01-01 2010-01-01 false Electric regions-electric region groupings for reliability... of electric regions for use with regard to the Act. The regions are identified by FERC Power Supply...

  3. Reliable electricity. The effects of system integration and cooperative measures to make it work

    Energy Technology Data Exchange (ETDEWEB)

    Hagspiel, Simeon [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Koeln Univ. (Germany). Dept. of Economics

    2017-12-15

    We investigate the effects of system integration for reliability of supply in regional electricity systems along with cooperative measures to support it. Specifically, we set up a model to contrast the benefits from integration through statistical balancing (i.e., a positive externality) with the risk of cascading outages (a negative externality). The model is calibrated with a comprehensive dataset comprising 28 European countries on a high spatial and temporal resolution. We find that positive externalities from system integration prevail, and that cooperation is key to meet reliability targets efficiently. To enable efficient solutions in a non-marketed environment, we formulate the problem as a cooperative game and study different rules to allocate the positive and negative effects to individual countries. Strikingly, we find that without a mechanism, the integrated solution is unstable. In contrast, proper transfer payments can be found to make all countries better off in full integration, and the Nucleolus is identified as a particularly promising candidate. The rule could be used as a basis for compensation payments to support the successful integration and cooperation of electricity systems.

  4. Reliable electricity. The effects of system integration and cooperative measures to make it work

    International Nuclear Information System (INIS)

    Hagspiel, Simeon; Koeln Univ.

    2017-01-01

    We investigate the effects of system integration for reliability of supply in regional electricity systems along with cooperative measures to support it. Specifically, we set up a model to contrast the benefits from integration through statistical balancing (i.e., a positive externality) with the risk of cascading outages (a negative externality). The model is calibrated with a comprehensive dataset comprising 28 European countries on a high spatial and temporal resolution. We find that positive externalities from system integration prevail, and that cooperation is key to meet reliability targets efficiently. To enable efficient solutions in a non-marketed environment, we formulate the problem as a cooperative game and study different rules to allocate the positive and negative effects to individual countries. Strikingly, we find that without a mechanism, the integrated solution is unstable. In contrast, proper transfer payments can be found to make all countries better off in full integration, and the Nucleolus is identified as a particularly promising candidate. The rule could be used as a basis for compensation payments to support the successful integration and cooperation of electricity systems.

  5. Assessment and Improving Methods of Reliability Indices in Bakhtar Regional Electricity Company

    Directory of Open Access Journals (Sweden)

    Saeed Shahrezaei

    2013-04-01

    Full Text Available Reliability of a system is the ability of a system to do prospected duties in future and the probability of desirable operation for doing predetermined duties. Power system elements failures data are the main data of reliability assessment in the network. Determining antiseptic parameters is the goal of reliability assessment by using system history data. These parameters help to recognize week points of the system. In other words, the goal of reliability assessment is operation improving and decreasing of the failures and power outages. This paper is developed to assess reliability indices of Bakhtar Regional Electricity Company up to 1393 and the improving methods and their effects on the reliability indices in this network. DIgSILENT Power Factory software is employed for simulation. Simulation results show the positive effect of improving methods in reliability indices of Bakhtar Regional Electricity Company.

  6. Reliability payments to generation capacity in electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Pringles, Rolando; Larisson, Carlos; Garcés, Francisco

    2014-01-01

    Electric power is a critical input to modern economies. Generation adequacy and security of supply in power systems running under competition are currently topics of high concern for consumers, regulators and governments. In a market setting, generation investments and adequacy can only be achieved by an appropriate regulatory framework that sets efficient remuneration to power capacity. Theoretically, energy-only electricity markets are efficient and no additional mechanism is needed. Nonetheless, the energy-only market design suffers from serious drawbacks. Therefore, jointly with the evolution of electricity markets, many remunerating mechanisms for generation capacity have been proposed. Explicit capacity payment was the first remunerating approach implemented and perhaps still the most applied. However, this price-based regulation has been applied no without severe difficulties and criticism. In this paper, a new reliability payment mechanism is envisioned. Capacity of each generating unit is paid according to its effective contribution to overall system reliability. The proposed scheme has many attractive features and preserves the theoretical efficiency properties of energy-only markets. Fairness, incentive compatibility, market power mitigation and settlement rules are investigated in this work. The article also examines the requirements for system data and models in order to implement the proposed capacity mechanism. A numerical example on a real hydrothermal system serves for illustrating the practicability of the proposed approach and the resulting reliability payments to the generation units. - Highlights: • A new approach for remunerating supply reliability provided by generation units is proposed. • The contribution of each generating unit to lessen power shortfalls is determined by simulations. • Efficiency, fairness and incentive compatibility of the proposed reliability payment are assessed

  7. The integrated North American electricity market : a bi-national model for securing a reliable supply of electricity

    International Nuclear Information System (INIS)

    Egan, T.

    2004-03-01

    The 50 million people who experienced the power blackout on August 14, 2003 in southern Ontario and the U.S. Midwest and Northeast understood how vital electricity is in our day-to-day lives, but they also saw the resiliency of the North American electricity system. More than 65 per cent of the power generation was restored to service within 12 hours and no damage was caused to the generation or transmission facilities. Although the interconnected North American electricity system is among the most reliable in the world, it is threatened by an aging infrastructure, lack of new generation and transmission to meet demand, and growing regulatory pressures. This report suggests that any measures that respond to the threat of ongoing reliability should be bi-national in scope due to the interconnected nature of the system. Currently, the market, regulatory and administrative systems are different in each country. The full engagement and cooperation of both Canada and the United States is important to ensure future cross-border trade and power reliability. The Canadian Electricity Association proposes the following 7 measures: (1) support an open debate on all the supply options available to meet growing power demands, (2) promote bi-national cooperation in the construction of new transmission capacity to ensure a reliable continental electricity system, (3) examine opportunities for bi-national cooperation for investment in advanced transmission technologies and transmission research and development, (4) promote new generation technology and demand-side measures to relieve existing transmission constraints and reduce the need for new transmission facilities, (5) endorse a self-governing international organization for developing and enforcing mandatory reliability standards for the electricity industry, (6) coordinate measures to promote critical infrastructure protection, and (7) harmonize U.S. and Canadian efforts to streamline or clarify regulation of electricity

  8. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, John F.; Dagle, Jeffery E.

    1999-12-01

    This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

  9. Reliability of power system with open access

    International Nuclear Information System (INIS)

    Ehsani, A.; Ranjbar, A. M.; Fotuhi Firuzabad, M.; Ehsani, M.

    2003-01-01

    Recently, in many countries, electric utility industry is undergoing considerable changes in regard to its structure and regulation. It can be clearly seen that the thrust towards privatization and deregulation or re regulation of the electric utility industry will introduce numerous reliability problems that will require new criteria and analytical tools that recognize the residual uncertainties in the new environment. In this paper, different risks and uncertainties in competitive electricity markets are briefly introduced; the approach of customers, operators, planners, generation bodies and network providers to the reliability of deregulated system is studied; the impact of dispersed generation on system reliability is evaluated; and finally, the reliability cost/reliability worth issues in the new competitive environment are considered

  10. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  11. Assessing reliability in energy supply systems

    International Nuclear Information System (INIS)

    McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel

    2007-01-01

    Reliability has always been a concern in the energy sector, but concerns are escalating as energy demand increases and the political stability of many energy supply regions becomes more questionable. But how does one define and measure reliability? We introduce a method to assess reliability in energy supply systems in terms of adequacy and security. It derives from reliability assessment frameworks developed for the electricity sector, which are extended to include qualitative considerations and to be applicable to new energy systems by incorporating decision-making processes based on expert opinion and multi-attribute utility theory. The method presented here is flexible and can be applied to any energy system. To illustrate its use, we apply the method to two hydrogen pathways: (1) centralized steam reforming of imported liquefied natural gas with pipeline distribution of hydrogen, and (2) on-site electrolysis of water using renewable electricity produced independently from the electricity grid

  12. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  13. Managing relationships between electric power industry restructuring and grid reliability

    International Nuclear Information System (INIS)

    Thomas, R.J.

    2005-01-01

    The electricity system is a critical infrastructure, and its continued and reliable functioning is essential to the nation's economy and well-being. However, the inter-dependency of electricity networks is not completely understood. The economic impact of outages was discussed in this white paper. It was suggested that moving to a restructured environment has degraded the reliability of the bulk system. New institutional arrangements and approaches to information management are needed. It was suggested that reliability practices caused the 2003 blackout, and not technical failures. Uncertainties in the restructured market were discussed, as well as incentives to maintain system adequacy. Examples of deregulation in other countries were presented. Organizational complexities were reviewed, including the Federal Energy Regulatory Commission's (FERC) requirements and the new layers of complexity that have been added to the decision-making process in the light of restructuring. Planning and connectivity issues were reviewed. The need for design standards in power grid control centres was discussed. Difficulties in collecting data from different control centres were considered. Issues concerning the lack of investment in research and development were discussed, with particular reference to the urgent need for coordinated research programs. The looming manpower crisis in the electric power industry was also discussed. Recommendations included ensuring that the transmission system can support a market structure; building a national reliability centre; solving the manpower crisis; and testing market designs before deploying them. It was concluded that good engineering design principles, including experimental economic testing, should be required of any new electricity market design before authorizing its use. 31 refs., 1 tab., 6 figs

  14. Improving electrical power systems reliability through locally controlled distributed curtailable load

    Science.gov (United States)

    Dehbozorgi, Mohammad Reza

    2000-10-01

    Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to

  15. Will British weather provide reliable electricity?

    International Nuclear Information System (INIS)

    Oswald, James; Raine, Mike; Ashraf-Ball, Hezlin

    2008-01-01

    There has been much academic debate on the ability of wind to provide a reliable electricity supply. The model presented here calculates the hourly power delivery of 25 GW of wind turbines distributed across Britain's grid, and assesses power delivery volatility and the implications for individual generators on the system. Met Office hourly wind speed data are used to determine power output and are calibrated using Ofgem's published wind output records. There are two main results. First, the model suggests that power swings of 70% within 12 h are to be expected in winter, and will require individual generators to go on or off line frequently, thereby reducing the utilisation and reliability of large centralised plants. These reductions will lead to increases in the cost of electricity and reductions in potential carbon savings. Secondly, it is shown that electricity demand in Britain can reach its annual peak with a simultaneous demise of wind power in Britain and neighbouring countries to very low levels. This significantly undermines the case for connecting the UK transmission grid to neighbouring grids. Recommendations are made for improving 'cost of wind' calculations. The authors are grateful for the sponsorship provided by The Renewable Energy Foundation

  16. Electric Power quality Analysis in research reactor: Impacts on nuclear safety assessment and electrical distribution reliability

    International Nuclear Information System (INIS)

    Touati, Said; Chennai, Salim; Souli, Aissa

    2015-01-01

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)

  17. Electric Power quality Analysis in research reactor: Impacts on nuclear safety assessment and electrical distribution reliability

    Energy Technology Data Exchange (ETDEWEB)

    Touati, Said; Chennai, Salim; Souli, Aissa [Nuclear Research Centre of Birine, Ain Oussera, Djelfa Province (Algeria)

    2015-07-01

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)

  18. METHODS OF IMPROVING THE RELIABILITY OF THE CONTROL SYSTEM TRACTION POWER SUPPLY OF ELECTRIC TRANSPORT BASED ON AN EXPERT INFORMATION

    Directory of Open Access Journals (Sweden)

    O. O. Matusevych

    2009-03-01

    Full Text Available The author proposed the numerous methods of solving the multi-criterion task – increasing of reliability of control system on the basis of expert information. The information, which allows choosing thoughtfully the method of reliability increasing for a control system of electric transport, is considered.

  19. ANALYSIS OF POWER SYSTEM RELIABILITY IMPROVEMENT FOR 74-BUS RADIAL DISTRIBUTION SYSTEM

    OpenAIRE

    Su Mon Myint*

    2018-01-01

    In Myanmar, electric power system planning is widely constructed because of more and more load growth and facing with failure of electricity, outage problems and system shut-down. Thus, not only making new power system network but also improving reliability of the existing system using suitable methods is very important to provide an adequate supply of electrical energy to its customers as economically and reliably as possible with an acceptable degree of continuity and quality that is design...

  20. INCREASED RELIABILITY OF ELECTRIC BLASTING

    OpenAIRE

    Kashuba, Oleh Ivanovych; Skliarov, L I; Skliarov, A L

    2017-01-01

    The problems of improving reliability of an electric blasting method using electric detonators with nichrome filament bridges. It was revealed that in the calculation of the total resistance of the explosive network it is necessary to increase to 24% of the nominal value

  1. 75 FR 35689 - System Personnel Training Reliability Standards

    Science.gov (United States)

    2010-06-23

    ... planning staff at control areas and reliability coordinators concerning power system characteristics and... Coordination--Staffing). \\11\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, Federal... American bulk electric system are competent to perform those reliability-related tasks.\\22\\ The proposed...

  2. Novel approach for evaluation of service reliability for electricity customers

    Institute of Scientific and Technical Information of China (English)

    JIANG; John; N

    2009-01-01

    Understanding reliability value for electricity customer is important to market-based reliability management. This paper proposes a novel approach to evaluate the reliability for electricity customers by using indifference curve between economic compensation for power interruption and service reliability of electricity. Indifference curve is formed by calculating different planning schemes of network expansion for different reliability requirements of customers, which reveals the information about economic values for different reliability levels for electricity customers, so that the reliability based on market supply demand mechanism can be established and economic signals can be provided for reliability management and enhancement.

  3. Electric Power Infrastructure Reliability And Security Research And Development Initiative. Final report

    International Nuclear Information System (INIS)

    Dale, S.; Meeker, R.; Steurer, M.; Li, H.; Pamidi, S.; Rodrigo, H.; Suryanarayanan, S.; Cartes, D.; Ordonez, J.; Domijan, A.; Liu, W.; Cox, D.; McLaren, P.; Hovsapian, R.; Edwards, D.; Simmons, S.; Wilde, N.; Woodruff, S.; Kopriva, D.; Hussaini, Y.; Mohammed, O.; Zheng, J.; Baldwin, T.L.

    2008-01-01

    This is the final scientific/technical report for the Electric Power Infrastructure Reliability and Security R and D Initiative sponsored by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, under award number DE-FG02-05CH11292. This report covers results from the FSU-led, multi-institution effort conducted over the period 8/15/05 to 10/14/2007. Building upon existing infrastructure for power systems research, modeling, and simulation, the Center for Advanced Power Systems (CAPS) at Florida State University (FSU) is developing world-class programs in electric power systems research and education to support future electric power system needs and challenges. With U.S. Department of Energy Support, FSU CAPS has engaged in a multi-faceted effort to conduct basic and applied research towards understanding, developing, and deploying technologies and approaches that can lead to improved reliability and security of the North American electric power generation and delivery infrastructure. This wide-reaching project, through a number of carefully selected thrusts cutting across several research disciplines, set out to address key terrestrial electric utility power system issues and challenges. The challenges and the thrusts to address them were arrived at through analysis of a number of national reports and recommendations combined with input from an experienced multi-disciplined team of power systems research staff and faculty at FSU CAPS. The resulting project effort can be grouped into four major areas: - Power Systems and New Technology Insertion - Controls, Protection, and Security - Simulation Development - High Temperature Superconductivity (HTS)

  4. OPTIMIZATION OF THE RELIABILITY OF AGRICULTURAL CONSUMERS ELECTRICITY DISTRIBUTING AND SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Lupushor I.

    2007-12-01

    Full Text Available The problems of the optimization reliability in electrical networks of the different class of voltage have probabilistic nature, they discretely change and depend on the number of factors both definite and indefinite and have importance by selection of electric equipment, graph of development of electrical networks and voltage levels. The definition of the major factors, which have determining significance on their value and speed of their change allow to elaborate methods of their optimization and to elaborate effective methods of their growth limitation in electrical networks with the different class of voltage.

  5. 18 CFR 39.4 - Funding of the Electric Reliability Organization.

    Science.gov (United States)

    2010-04-01

    ... CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.4 Funding of the Electric Reliability Organization. (a) Any... Reliability Organization. 39.4 Section 39.4 Conservation of Power and Water Resources FEDERAL ENERGY...

  6. 75 FR 72664 - System Personnel Training Reliability Standards

    Science.gov (United States)

    2010-11-26

    ...--Staffing). \\2\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, 72 FR 16416 (Apr... on the North American bulk electric system are competent to perform those reliability-related tasks... PER-004-2 will achieve a significant improvement in the reliability of the Bulk- Power System and...

  7. Reliability and Cost Impacts for Attritable Systems

    Science.gov (United States)

    2017-03-23

    on reliability and cost: a probabilistic model. Electric Power Systems Research, 72(3), 213-224. Kalbfleisch, J.D. & Prentice, R.L. (1980). The...copyright protection in the United States. AFIT-ENV-MS-17-M-172 RELIABILITY AND COST IMPACTS FOR ATTRITABLE SYSTEMS THESIS Presented to... power of discrete time Markov chains, whether homogeneous or non-homogeneous, to model the reliability and dependability of repairable systems should

  8. Potential for deserts to supply reliable renewable electric power

    Science.gov (United States)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  9. 76 FR 16277 - System Restoration Reliability Standards

    Science.gov (United States)

    2011-03-23

    ... electric system. Blackstart units are essential to restart generation and restore power to the grid in the... Standard EOP-007-0. \\2\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, 72 FR... = $5,894,624. Title: Mandatory Reliability Standards for the Bulk-Power System. Action: FERC 725A...

  10. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  11. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  12. Research on the Reliability Testing of Electrical Automation Control Equipment

    OpenAIRE

    Yongjie Luo

    2014-01-01

    According to the author’s many years’ work experience, this paper first discusses the concepts of electrical automation control equipment reliability testing, and then analyzes the test method of electrical automation control equipment reliability testing, finally, on this basis, this article discusses how to determine the reliability test method of electrical automation control equipment. Results of this study will provide a useful reference for electrical automation control equipment reliab...

  13. Factors influencing the reliability of non-electric detonating circuit in underground uranium mines and preventive measures of misfiring

    International Nuclear Information System (INIS)

    Li Qin

    2010-01-01

    Characteristics of non-electric detonating circuit are introduced. The main factors influencing the reliability of non-electric detonating circuit are described. Taking an underground blasting of a uranium mine for example, the reliability of various kinds of detonating network system is calculated using the reliability theory and numerical analysis method. The reasons that cause the misfiring in non-electric detonating circuit system are analyzed, and preventive measures are put forward.(authors)

  14. power system reliability in supplying nuclear reactors

    International Nuclear Information System (INIS)

    Gad, M.M.M.

    2007-01-01

    this thesis presents a simple technique for deducing minimal cut set (MCS) from the defined minimal path set (MPS) of generic distribution system and this technique have been used to evaluate the basic reliability indices of Egypt's second research reactor (ETRR-2) electrical distribution network. the alternative system configurations are then studied to evaluate their impact on service reliability. the proposed MCS approach considers both sustained and temporary outage. the temporary outage constitutes an important parameter in characterizing the system reliability indices for critical load point in distribution system. it is also consider the power quality impact on the reliability indices

  15. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  16. 77 FR 7526 - Interpretation of Protection System Reliability Standard

    Science.gov (United States)

    2012-02-13

    ... Federal Power Act (FPA) requires a Commission-certified Electric Reliability Organization (ERO) to develop.... Cir. 2009). \\8\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats... a person that is ``directly and materially affected'' by Bulk-Power System reliability may request...

  17. R&D program benefits estimation: DOE Office of Electricity Delivery and Energy Reliability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-12-04

    The overall mission of the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. In support of this mission, OE conducts a portfolio of research and development (R&D) activities to advance technologies to enhance electric power delivery. Multiple benefits are anticipated to result from the deployment of these technologies, including higher quality and more reliable power, energy savings, and lower cost electricity. In addition, OE engages State and local government decision-makers and the private sector to address issues related to the reliability and security of the grid, including responding to national emergencies that affect energy delivery. The OE R&D activities are comprised of four R&D lines: High Temperature Superconductivity (HTS), Visualization and Controls (V&C), Energy Storage and Power Electronics (ES&PE), and Distributed Systems Integration (DSI).

  18. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  19. Innovations in power systems reliability

    CERN Document Server

    Santora, Albert H; Vaccaro, Alfredo

    2011-01-01

    Electrical grids are among the world's most reliable systems, yet they still face a host of issues, from aging infrastructure to questions of resource distribution. Here is a comprehensive and systematic approach to tackling these contemporary challenges.

  20. Bayesian approach in the power electric systems study of reliability ...

    African Journals Online (AJOL)

    Keywords: Reliability - Power System - Bayes Theorem - Weibull Model - Probability. ... ensure a series of estimated parameter (failure rate, mean time to failure, function .... only on random variable r.v. describing the operating conditions: ..... Multivariate performance reliability prediction in real-time, Reliability Engineering.

  1. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  2. Flexibility and reliability in long-term planning exercises dedicated to the electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Maizi, Nadia; Drouineau, Mathilde; Assoumou, Edi; Mazauric, Vincent

    2010-09-15

    Long-term planning models are useful to build plausible options for future energy systems and must consequently address the technological feasibility and associated cost of these options. This paper focuses on the electricity sector and on problems of flexibility and reliability in power systems in order to improve results provided by long-term planning exercises: flexibility needs are integrated as an additional criterion for new investment decisions and, reliability requirements are assessed through the level of electrical losses they induced and a related cost. These approaches are implemented in a long-term planning model and demonstrated through a study of the Reunion Island.

  3. Risk-based methods for reliability investments in electric power distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Alvehag, Karin

    2011-07-01

    Society relies more and more on a continuous supply of electricity. However, while under investments in reliability lead to an unacceptable number of power interruptions, over investments result in too high costs for society. To give incentives for a socio economically optimal level of reliability, quality regulations have been adopted in many European countries. These quality regulations imply new financial risks for the distribution system operator (DSO) since poor reliability can reduce the allowed revenue for the DSO and compensation may have to be paid to affected customers. This thesis develops a method for evaluating the incentives for reliability investments implied by different quality regulation designs. The method can be used to investigate whether socio economically beneficial projects are also beneficial for a profit-maximizing DSO subject to a particular quality regulation design. To investigate which reinvestment projects are preferable for society and a DSO, risk-based methods are developed. With these methods, the probability of power interruptions and the consequences of these can be simulated. The consequences of interruptions for the DSO will to a large extent depend on the quality regulation. The consequences for the customers, and hence also society, will depend on factors such as the interruption duration and time of occurrence. The proposed risk-based methods consider extreme outage events in the risk assessments by incorporating the impact of severe weather, estimating the full probability distribution of the total reliability cost, and formulating a risk-averse strategy. Results from case studies performed show that quality regulation design has a significant impact on reinvestment project profitability for a DSO. In order to adequately capture the financial risk that the DSO is exposed to, detailed riskbased methods, such as the ones developed in this thesis, are needed. Furthermore, when making investment decisions, a risk

  4. Alberta's electricity policy framework : competitive, reliable, sustainable

    International Nuclear Information System (INIS)

    2005-01-01

    This paper described public policies in Alberta that are implemented to create an electric power industry that is competitive, reliable and sustainable. The success of Alberta's competitive electric market framework can be attributed to new investment in the industry along with new players participating in the electricity market. The Alberta Department of Energy is committed to a competitive wholesale market model and to competitively-priced electricity. The Alberta Energy and Utilities Board supports the development of Alberta's vast resource base and facilitates power generation development and support through transmission development and an interconnected transmission system. A wholesale market Policy Task Force was established in 2005 to review the progress in Alberta's electric market design and its competitive retail market. This paper outlines a policy framework which addresses design of the regulated rate option post July 1, 2006; short-term adequacy; and long-term adequacy. Other inter-related market issues were also discussed, such as operating reserves market, transmission services, interties, demand response, balancing pool assets, credit, market power mitigation, and wind generation. It is expected that the recommendations in this paper will be implemented as quickly as possible following amendments to regulations or ISO rules. tabs., figs.

  5. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

    2009-06-01

    Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

  6. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  7. Engineering of electrical systems of nuclear power stations for improved reliability

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Ramanathan, K.; Choudhary, N.N.

    1977-01-01

    Operational problems experienced in electrical systems/equipment of the Tarapur Atomic Power Station (TAPS) and the Rajasthan Atomic Power Station (RAPS) and their solutions are dealt in detail. This experience has led to new design concepts which are being introduced for improved reliability in design of the Madras Atomic Power Project (MAPP) and the Narora Atomic Power Project (NAPP). Saline pollution on switchyard equipments was the major problem of the TAPS due to its coastal location. Saline pollution resulted in flash over of insulators and failure of clamps. The problem was solved by suitable changes in insulators, conductors, transformers, switches and arranging portable live line washing of the switchyard equipment. In MAPP which is also located on coast, an indoor switchyard is built. NAPP is located in a seismic zone, therefore, all equipment is specified for appropriate seismic duty. Various other improvements are described. (M.G.B.)

  8. Innovative protection and control systems for a reliable and secure operation of electrical transmission systems; Innovative Schutz- und Leitsysteme zur zuverlaessigen und sicheren elektrischen Energieuebertragung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sven C.; Kubis, Adreas; Rehtanz, Christian [Technische Univ. Dortmund (Germany). Inst. fuer Energiesysteme, Energieeffizienz und Energiewirtschaft (ie3); Brato, Sebastian; Goetze, Juergen [Technische Univ. Dortmund (Germany). Arbeitsgebiet Datentechnik

    2012-07-01

    The integration of European electricity markets as well as the increasing power feed-in by renewable energy sources pose new challenges to the operation of electrical transmission systems. Modern protection and control systems based on wide-area information can substantially contribute to a reliable and secure system operation even against the background of future demands. In this paper research advances regarding new applications for wide-area monitoring, protection and control as well as an integrated simulation for power and ICT systems are presented that have been developed in the course of DFG research unit FOR1511 at TU Dortmund. (orig.)

  9. Nodal price volatility reduction and reliability enhancement of restructured power systems considering demand-price elasticity

    International Nuclear Information System (INIS)

    Goel, L.; Wu, Qiuwei; Wang, Peng

    2008-01-01

    With the development of restructured power systems, the conventional 'same for all customers' electricity price is getting replaced by nodal prices. Electricity prices will fluctuate with time and nodes. In restructured power systems, electricity demands will interact mutually with prices. Customers may shift some of their electricity consumption from time slots of high electricity prices to those of low electricity prices if there is a commensurate price incentive. The demand side load shift will influence nodal prices in return. This interaction between demand and price can be depicted using demand-price elasticity. This paper proposes an evaluation technique incorporating the impact of the demand-price elasticity on nodal prices, system reliability and nodal reliabilities of restructured power systems. In this technique, demand and price correlations are represented using the demand-price elasticity matrix which consists of self/cross-elasticity coefficients. Nodal prices are determined using optimal power flow (OPF). The OPF and customer damage functions (CDFs) are combined in the proposed reliability evaluation technique to assess the reliability enhancement of restructured power systems considering demand-price elasticity. The IEEE reliability test system (RTS) is simulated to illustrate the developed techniques. The simulation results show that demand-price elasticity reduces the nodal price volatility and improves both the system reliability and nodal reliabilities of restructured power systems. Demand-price elasticity can therefore be utilized as a possible efficient tool to reduce price volatility and to enhance the reliability of restructured power systems. (author)

  10. State Electricity Regulatory Policy and Distributed Resources: Distributed Resources and Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Cowart, R.; Harrington, C.; Moskovitz, D.; Shirley, W.; Weston, F.; Sedano, R.

    2002-10-01

    Designing and implementing credit-based pilot programs for distributed resources distribution is a low-cost, low-risk opportunity to find out how these resources can help defer or avoid costly electric power system (utility grid) distribution upgrades. This report describes implementation options for deaveraged distribution credits and distributed resource development zones. Developing workable programs implementing these policies can dramatically increase the deployment of distributed resources in ways that benefit distributed resource vendors, users, and distribution utilities. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Accommodating Distributed Resources in Wholesale Markets, NREL/SR-560-32497; (2) Distributed Resources and Electric System Re liability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501.

  11. Puget Sound area electric reliability plan. Draft environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power & Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound`s power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  12. Puget Sound Area Electric Reliability Plan : Draft Environmental Impact State.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound's power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  13. 78 FR 73112 - Monitoring System Conditions-Transmission Operations Reliability Standards; Interconnection...

    Science.gov (United States)

    2013-12-05

    ...\\ \\8\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, 72 FR 16416 (Apr. 4... operators and reliability coordinators to ``plan and operate the interconnected Bulk Electric System in a... mandated in the currently- effective standards, thereby improving reliability of the bulk power system...

  14. 78 FR 803 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-01-04

    ... Bulk 74. Electric System 1. Inclusion I1 (Transformers) 75. Commission Determination 80. 2. Inclusion... configurations are included in the bulk electric system. Inclusions: I1--Transformers with the primary terminal... bulk electric system. 15. NERC explained that inclusion I1 includes transformers with the primary...

  15. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  16. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  17. Designing incentive market mechanisms for improving restructured power system reliabilities

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Wu, Qiuwei

    2011-01-01

    state. The reliability management of producers usually cannot be directly controlled by the system operators in a restructured power system. Producers may have no motivation to improve their reliabilities, which can result in serious system unreliability issues in the new environment. Incentive market...... mechanisms for improving the restructured power system reliabilities have been designed in this paper. In the proposed incentive mechanisms, penalty will be implemented on a producer if the failures of its generator(s) result in the variation of electricity prices. Incentive market mechanisms can motivate......In a restructured power system, the monopoly generation utility is replaced by different electricity producers. There exists extreme price volatility caused by random failures by generation or/and transmission systems. In these cases, producers' profits can be much higher than those in the normal...

  18. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controls can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key

  19. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    Directory of Open Access Journals (Sweden)

    Faris M Alwan

    Full Text Available The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  20. An artificial intelligence system for reliability studies

    International Nuclear Information System (INIS)

    Llory, M.; Ancelin, C.; Bannelier, M.; Bouhadana, H.; Bouissou, M.; Lucas, J.Y.; Magne, L.; Villate, N.

    1990-01-01

    The EDF (French Electricity Company) software developed for computer aided reliability studies is considered. Such software tools were applied in the study of the safety requirements of the Paluel nuclear power plant. The reliability models, based on IF-THEN type rules, and the generation of models by the expert system are described. The models are then processed applying algorithm structures [fr

  1. Modelling Reliability of Supply and Infrastructural Dependency in Energy Distribution Systems

    OpenAIRE

    Helseth, Arild

    2008-01-01

    This thesis presents methods and models for assessing reliability of supply and infrastructural dependency in energy distribution systems with multiple energy carriers. The three energy carriers of electric power, natural gas and district heating are considered. Models and methods for assessing reliability of supply in electric power systems are well documented, frequently applied in the industry and continuously being subject to research and improvement. On the contrary, there are compar...

  2. Distribution reliability in the reformed New Zealand electricity industry

    International Nuclear Information System (INIS)

    McGlinchy, B. J.

    1997-01-01

    The process of deregulating the electric power industry in New Zealand, which began in 1984, and is now a fully competitive system, was described. The industry is not only fully competitive, but enjoys the distinction of being subject only to very light-handed regulation. The regulation requires each company within the industry to publish an annual financial statement, the rate of profit and some performance indicators including reliability indices. Companies also report on faults in lines and cables, and on a voluntary basis they contribute to a 'by cause' survey, using indicators developed by the Canadian Electricity Association. It is expected that the indices that will be developed from this data will be used as benchmarks for performance. The data could also be used for probability analysis in system expansion programs. 6 refs., 7 figs

  3. Maintenance Optimization Schedulingof Electric Power SystemsConsidering Renewable EnergySources

    OpenAIRE

    Yu, Jia

    2015-01-01

    Maintenance is crucial in any industry to keep components in a reasonable functionalcondition, especially in electric power system, where maintenance is done so that thefrequency and the duration of a fault can be shortened, thus increasing the availability of acertain component. And the reliability of the whole electric power system can also beimproved. In the many deregulated electricity markets, reliability and economic drivingforces are the two aspects that system operators mainly conside...

  4. A physical review on power system reliability factors

    International Nuclear Information System (INIS)

    Navid, Taghizadegan; Ahmad Reza, Zentabchi; Mohammad Ali, Tavakoli; Nader, Samsunchi; Mohammad Ali, Tavakoli

    2005-01-01

    Full text : Planning and design engineers and management must necessarily take into consideration the funds available, the requirements of regulatory agencies and other restrictions that may be imposed, as well as availability of equipment and supplies. A well-designed electrical power system strikes a reasonable between reliability and cost. A prime responsibility of power system operators is to operate their systems in such a way that will provide the maximum reliability of service possible with the facilities under their control

  5. A design of electric power supply system for gamma irradiator ISG-500

    International Nuclear Information System (INIS)

    Harno Garnito; Enggar; Harjani; Ari Satmoko; Sutomo Budihaharjo

    2010-01-01

    Reliability of electrical power system in Irradiator system is absolutely necessary during the life cycle. Electrical energy is used as the main supporting element for both Irradiator operation of mechanical system, lighting, as well as for instrumentation and control systems. The reliability of electrical power system in the system can be achieved by paying attention Irradiator safety, simplicity of operation, ease of maintenance and possible future development. Distribution network of the most commonly used is the Radial network system, for the simple and in accordance with the criteria demanded by a distribution system. In addition to the network system, to get the reliability of electric power supply system is the selection of equipment/materials that meet the standards, and the installation of which provide facilities for maintenance and repairs. (author)

  6. Reliability modeling and analysis of smart power systems

    CERN Document Server

    Karki, Rajesh; Verma, Ajit Kumar

    2014-01-01

    The volume presents the research work in understanding, modeling and quantifying the risks associated with different ways of implementing smart grid technology in power systems in order to plan and operate a modern power system with an acceptable level of reliability. Power systems throughout the world are undergoing significant changes creating new challenges to system planning and operation in order to provide reliable and efficient use of electrical energy. The appropriate use of smart grid technology is an important drive in mitigating these problems and requires considerable research acti

  7. Reliable CPS design for mitigating semiconductor and battery aging in electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Proebstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2015-01-01

    Reliability and performance of cyber-physical systems (CPS) in electric vehicles (EVs) are influenced by three design aspects: (i) controller design, (ii) battery usage, i.e., Battery rate capacity and aging effects, (iii) processor aging of the in-vehicle embedded platform. In this paper, we

  8. Survey of aircraft electrical power systems

    Science.gov (United States)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  9. An assessment of the reliability of the Ontario electricity system : 18-month outlook from April 2004 to September 2005

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents a resource assessment by the Independent Electricity Market Operator (IMO) for the 18-month period from April 2004 to September 2005. It is based on the IMO's forecast of electricity demand. The information was provided by power generators in Ontario. The outlook for the electricity system has improved due to the return to service of 3 nuclear units and the addition of more than 700 MW of generation. The return to service of the nuclear units has decreased Ontario's reliance on imports to help meet energy demand in the province. The shutdown of 1150 MW of coal-fired generation at Lakeview Thermal Generating Station in Mississauga emphasizes the importance of improving transmission and generation capacity in the Toronto area. This report also includes updated values for existing resource scenarios and planned resource scenarios. The reliability of Ontario's transmission system was also assessed along with the adequacy of the existing resource to meet the forecast demand. The existing installed generation resources include 5 nuclear stations generating 10,831 MW of electricity, 5 coal stations generating 7,564 MW of electricity, 22 oil and gas fired stations generating 4,364 MW of electricity, 61 hydroelectric stations generating 7,676 MW of electricity, and 2 other stations generating 66 MW of electricity. Although the existing resource scenario is better than in previous reports, imports will be required under extreme weather conditions to help meet electricity demand in Ontario during peak periods. 21 tabs., 10 figs

  10. 18 CFR 375.303 - Delegations to the Director of the Office of Electric Reliability.

    Science.gov (United States)

    2010-04-01

    ... Director of the Office of Electric Reliability. 375.303 Section 375.303 Conservation of Power and Water... Delegations § 375.303 Delegations to the Director of the Office of Electric Reliability. The Commission... Electric Reliability Organization or Regional Entity rules or procedures; (ii) Reject an application...

  11. A COMPUTERIZED DIAGNOSTIC COMPLEX FOR RELIABILITY TESTING OF ELECTRIC MACHINES

    Directory of Open Access Journals (Sweden)

    O.О. Somka

    2015-06-01

    Full Text Available Purpose. To develop a diagnostic complex meeting the criteria and requirements for carrying out accelerated reliability test and realizing the basic modes of electric machines operation and performance of the posed problems necessary in the process of such test. Methodology. To determine and forecast the indices of electric machines reliability in accordance with the statistic data of repair plants we have conditionally divided them into structural parts that are most likely to fail. We have preliminarily assessed the state of each of these parts, which includes revelation of faults and deviations of technical and geometric parameters. We have determined the analyzed electric machine controlled parameters used for assessment of quantitative characteristics of reliability of these parts and electric machines on the whole. Results. As a result of the research, we have substantiated the structure of a computerized complex for electric machines reliability test. It allows us to change thermal and vibration actions without violation of the physics of the processes of aging and wearing of the basic structural parts and elements material. The above mentioned makes it possible to considerably reduce time spent on carrying out electric machines reliability tests and improve trustworthiness of the data obtained as a result of their performance. Originality. A special feature of determination of the controlled parameters consists in removal of vibration components in the idle mode and after disconnection of the analyzed electric machine from the power supply with the aim of singling out the vibration electromagnetic component, fixing the degree of sparking and bend of the shaft by means of phototechnique and local determination of structural parts temperature provided by corresponding location of thermal sensors. Practical value. We have offered a scheme of location of thermal and vibration sensors, which allows improvement of parameters measuring accuracy

  12. Engineering and Design: Reliability Analysis of Navigation Lock and Dam Mechanical and Electrical Equipment

    National Research Council Canada - National Science Library

    Beranek, Dwight

    2001-01-01

    This engineer technical letter (ETL) provides guidance for assessing the reliability of mechanical and electrical systems of navigation locks and dams and for establishing an engineering basis for major rehabilitation investment decisions...

  13. Industrial plant electrical systems: Simplicity, reliability, cost savings, redundancies

    International Nuclear Information System (INIS)

    Silvestri, A.; Tommazzolli, F.; Pavia Univ.

    1992-01-01

    This article represents a compact but complete design and construction manual for industrial plant electrical systems. It is to be used by design engineers having prior knowledge of local power supply routes and voltages and regards principally the optimum choice of internal distribution systems which can be radial or single, double ringed or with various network configurations, and with single or multiple supplies, and many or few redundancies. After giving guidelines on the choosing of these options, the manual deals with problematics relevant to suitable cable sizing. A cost benefit benefit analysis method is suggested for the choice of the number of redundancies. Recommendations are given for the choice of transformers, motorized equipment, switch boards and circuit breakers. Reference is made to Italian electrical safety and building codes

  14. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles

    Science.gov (United States)

    Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang

    2018-05-01

    With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.

  15. TOPEX electrical power system

    Science.gov (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  16. Nuclear electric propulsion operational reliability and crew safety study

    International Nuclear Information System (INIS)

    Karns, J.J.; Fragola, J.R.; Kahan, L.; Pelaccio, D.

    1993-01-01

    The central purpose of this analysis is to assess the ''achievability'' of a nuclear electric propulsion (NEP) system in a given mission. ''Achievability'' is a concept introduced to indicate the extent to which a system that meets or achieves its design goals might be implemented using the existing technology base. In the context of this analysis, the objective is to assess the achievability of an NEP system for a manned Mars mission as it pertains to operational reliability and crew safety goals. By varying design parameters, then examining the resulting system achievability, the design and mission risk drivers can be identified. Additionally, conceptual changes in design approach or mission strategy which are likely to improve overall achievability of the NEP system can be examined

  17. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  18. Small nuclear power reactor emergency electric power supply system reliability comparative analysis; Analise da confiabilidade do sistema de suprimento de energia eletrica de emergencia de um reator nuclear de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Bonfietti, Gerson

    2003-07-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  19. THE ANALYSIS OF STRUCTURAL RELIABILITY OF THE MAIN ELECTRIC CONNECTION CIRCUITS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.

  20. 76 FR 23801 - North American Electric Reliability Corporation; Order Approving Reliability Standard

    Science.gov (United States)

    2011-04-28

    ... have an operating plan and facilities for backup functionality to ensure Bulk-Power System reliability... entity's primary control center on the reliability of the Bulk-Power System. \\1\\ Mandatory Reliability... potential impact of a violation of the Requirement on the reliability of the Bulk-Power System. The...

  1. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  2. Reliable, Low Cost Distributed Generator/Utility System Interconnect: 2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2003-08-01

    This report details a research program to develop requirements that support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept that allows distributed generation to be interconnected to the electric power system in a manner that provides value to end users without compromising reliability and performance.

  3. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Science.gov (United States)

    2010-04-01

    ... RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric... Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water...

  4. Bayesian approach in the power electric systems study of reliability ...

    African Journals Online (AJOL)

    Subsequently, Bayesian methodologies are framed in an ampler problem list, based on the definition of an opportune "vector of state" and of a vector describing the system performances, aiming to the definition and the calculation or the estimation of system reliability. The purpose of our work is to establish a useful model ...

  5. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  6. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Weller, G.H.

    2001-07-15

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  7. Systems reliability/structural reliability

    International Nuclear Information System (INIS)

    Green, A.E.

    1980-01-01

    The question of reliability technology using quantified techniques is considered for systems and structures. Systems reliability analysis has progressed to a viable and proven methodology whereas this has yet to be fully achieved for large scale structures. Structural loading variants over the half-time of the plant are considered to be more difficult to analyse than for systems, even though a relatively crude model may be a necessary starting point. Various reliability characteristics and environmental conditions are considered which enter this problem. The rare event situation is briefly mentioned together with aspects of proof testing and normal and upset loading conditions. (orig.)

  8. Evaluation of conventional electric power generating industry quality assurance and reliability practices

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.T.; Lauffenburger, H.A.

    1981-03-01

    The techniques and practices utilized in an allied industry (electric power generation) that might serve as a baseline for formulating Quality Assurance and Reliability (QA and R) procedures for photovoltaic solar energy systems were studied. The study results provide direct near-term input for establishing validation methods as part of the SERI performance criteria and test standards development task.

  9. 75 FR 80391 - Electric Reliability Organization Interpretations of Interconnection Reliability Operations and...

    Science.gov (United States)

    2010-12-22

    ... transmission (G&T) cooperative or similar organization to accept compliance responsibility on behalf of its... be found on the Commission's Web site; see, e.g., the ``Quick Reference Guide for Paper Submissions... Electric Reliability Standards, Order No. 672, FERC Stats. & Regs. ] 31,204, order on reh'g, Order No. 672...

  10. Calculation of residual electricity mixes when accounting for the EECS (European Electricity Certificate System) - The need for a harmonised system

    International Nuclear Information System (INIS)

    Raadal, H. L.; Nyland, C. A.; Hanssen, O. J.

    2009-01-01

    According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO 2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe. (author)

  11. Reliability Evaluation for Optimizing Electricity Supply in a Developing Country

    OpenAIRE

    Mark Ndubuka NWOHU

    2007-01-01

    The reliability standards for electricity supply in a developing country, like Nigeria, have to be determined on past engineering principles and practice. Because of the high demand of electrical power due to rapid development, industrialization and rural electrification; the economic, social and political climate in which the electric power supply industry now operates should be critically viewed to ensure that the production of electrical power should be augmented and remain uninterrupted. ...

  12. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    Science.gov (United States)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  13. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and

  14. Scoping study on trends in the economic value of electricity reliability to the U.S. economy

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph; Koomey, Jonathan; Lehman, Bryan; Martin, Nathan; Mills, Evan; Webber, Carrie; Worrell, Ernst

    2001-06-01

    During the past three years, working with more than 150 organizations representing public and private stakeholders, EPRI has developed the Electricity Technology Roadmap. The Roadmap identifies several major strategic challenges that must be successfully addressed to ensure a sustainable future in which electricity continues to play an important role in economic growth. Articulation of these anticipated trends and challenges requires a detailed understanding of the role and importance of reliable electricity in different sectors of the economy. This report is intended to contribute to that understanding by analyzing key aspects of trends in the economic value of electricity reliability in the U.S. economy. We first present a review of recent literature on electricity reliability costs. Next, we describe three distinct end-use approaches for tracking trends in reliability needs: (1) an analysis of the electricity-use requirements of office equipment in different commercial sectors; (2) an examination of the use of aggregate statistical indicators of industrial electricity use and economic activity to identify high reliability-requirement customer market segments; and (3) a case study of cleanrooms, which is a cross-cutting market segment known to have high reliability requirements. Finally, we present insurance industry perspectives on electricity reliability as an example of a financial tool for addressing customers' reliability needs.

  15. Information and management system for the secondary electricity distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, M. (Rudnik i Termoelectrana Gacko u Osnivanju (Yugoslavia))

    1988-07-01

    Emphasizes the importance of a reliable and continuous secondary electrical distribution network for surface coal mine productivity. Interruptions in equipment operation caused by mechanical and electrical failures should be eliminated without delay. Effective communication systems should lead to reliable management and high productivity in mines. It is suggested that mines be divided into four groups according to their sensitivity to supply interruptions, and provided with remotely controlled signalling devices linked to main and auxiliary dispatching stations equipped with micro-computers. Productivity may be increased by some 50-70% and supply costs decreased by some 35% if appropriate electrical distribution systems are used. A sketch of a secondary electrical supply network is attached. 11 refs.

  16. Demand Response as a System Reliability Resource

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Lewis, Nancy Jo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Watson, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Kiliccote, Sila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Auslander, David [Univ. of California, Berkeley, CA (United States); Paprotny, Igor [Univ. of California, Berkeley, CA (United States); Makarov, Yuri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-12-31

    The Demand Response as a System Reliability Resource project consists of six technical tasks: • Task 2.1. Test Plan and Conduct Tests: Contingency Reserves Demand Response (DR) Demonstration—a pioneering demonstration of how existing utility load-management assets can provide an important electricity system reliability resource known as contingency reserve. • Task 2.2. Participation in Electric Power Research Institute (EPRI) IntelliGrid—technical assistance to the EPRI IntelliGrid team in developing use cases and other high-level requirements for the architecture. • Task 2.3. Research, Development, and Demonstration (RD&D) Planning for Demand Response Technology Development—technical support to the Public Interest Energy Research (PIER) Program on five topics: Sub-task 1. PIER Smart Grid RD&D Planning Document; Sub-task 2. System Dynamics of Programmable Controllable Thermostats; Sub-task 3. California Independent System Operator (California ISO) DR Use Cases; Sub-task 4. California ISO Telemetry Requirements; and Sub-task 5. Design of a Building Load Data Storage Platform. • Task 2.4. Time Value of Demand Response—research that will enable California ISO to take better account of the speed of the resources that it deploys to ensure compliance with reliability rules for frequency control. • Task 2.5. System Integration and Market Research: Southern California Edison (SCE)—research and technical support for efforts led by SCE to conduct demand response pilot demonstrations to provide a contingency reserve service (known as non-spinning reserve) through a targeted sub-population of aggregated residential and small commercial customers enrolled in SCE’s traditional air conditioning (AC) load cycling program, the Summer Discount Plan. • Task 2.6. Demonstrate Demand Response Technologies: Pacific Gas and Electric (PG&E)—research and technical support for efforts led by PG&E to conduct a demand response pilot demonstration to provide non

  17. Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, Richard; Feliachi, Ali

    2008-09-24

    Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

  18. Electric markets and services of the system

    International Nuclear Information System (INIS)

    Carbajo, A.

    2007-01-01

    Electricity cannot be stored in significant quantities and requires generation and demand be balanced instantly in order to control the frequency. This means that the electric system must be equipped with specific devices in order to ensure this dynamic balance. Of the services required by the electric system, some are mandatory for the generators, while others are voluntary, these last ones being those supplied under market schemes. On the other hand, the commitment of the Spanish electric system to incorporate a significant volume of renewable energy, due to its intermittent properties, demands that these adjustment services use a greater volume of this energy in order to ensure the reliability of the system at all times. Finally, securing the Iberian electric market implies that there might be variations in these services - not only in the volume but also in their characteristics. (Author)

  19. Research on reliability management systems for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Maki, Nobuo

    2000-01-01

    Investigation on a reliability management system for Nuclear Power Plants (NPPs) has been performed on national and international archived documents as well as on current status of studies at Idaho National Engineering and Environmental Laboratory (INEEL), US NPPs (McGuire, Seabrook), a French NPP (St. Laurent-des-Eaux), Japan Atomic Energy Research Institute (JAERI), Central Research Institute of Electric Power Industries (CRIEPI), and power plant manufacturers in Japan. As a result of the investigation, the following points were identified: (i) A reliability management system is composed of a maintenance management system to inclusively manage maintenance data, and an anomalies information and reliability data management system to extract data from maintenance results stored in the maintenance management system and construct a reliability database. (ii) The maintenance management system, which is widely-used among NPPs in the US and Europe, is an indispensable system for the increase of maintenance reliability. (iii) Maintenance management methods utilizing reliability data like Reliability Centered Maintenance are applied for NPP maintenance in the US and Europe, and contributing to cost saving. Maintenance templates are effective in the application process. In addition, the following points were proposed on the design of the system: (i) A detailed database on specifications of facilities and components is necessary for the effective use of the system. (ii) A demand database is indispensable for the application of the methods. (iii) Full-time database managers are important to maintain the quality of the reliability data. (author)

  20. 76 FR 16240 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits

    Science.gov (United States)

    2011-03-23

    ... identified by the Commission. \\5\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693... reliability of the interconnection by ensuring that the bulk electric system is assessed during the operations... responsibility for SOLs. Further, Bulk-Power System reliability practices assign responsibilities for analyzing...

  1. Impacts of Demand-Side Management on Electrical Power Systems: A Review

    Directory of Open Access Journals (Sweden)

    Hussein Jumma Jabir

    2018-04-01

    Full Text Available Electricity demand has grown over the past few years and will continue to grow in the future. The increase in electricity demand is mainly due to industrialization and the shift from a conventional to a smart-grid paradigm. The number of microgrids, renewable energy sources, plug-in electric vehicles and energy storage systems have also risen in recent years. As a result, future electricity grids have to be revamped and adapt to increasing load levels. Thus, new complications associated with future electrical power systems and technologies must be considered. Demand-side management (DSM programs offer promising solutions to these issues and can considerably improve the reliability and financial performances of electrical power systems. This paper presents a review of various initiatives, techniques, impacts and recent developments of the DSM of electrical power systems. The potential benefits derived by implementing DSM in electrical power networks are presented. An extensive literature survey on the impacts of DSM on the reliability of electrical power systems is also provided for the first time. The research gaps within the broad field of DSM are also identified to provide directions for future work.

  2. Calculation of Residual Electricity Mixes when Accounting for the EECS (European Electricity Certificate System — the Need for a Harmonised System

    Directory of Open Access Journals (Sweden)

    Ole Jørgen Hanssen

    2009-07-01

    Full Text Available According to the Electricity Directive, suppliers of electricity must disclose their electricity portfolio with regards to energy source and environmental impact. This paper gives some examples of disclosure systems and residual electricity mixes in Norway, Sweden and Finland, compared to an approach based on a common regional disclosure. Disclosures based on the E-TRACK standard are presented, as well as the variation in CO2 emissions from different residual mixes. The results from this study clearly show that there is a need for a harmonised, transparent and reliable system for the accounting of electricity disclosure in Europe.

  3. Automated Energy Distribution and Reliability System Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Buche, D. L.; Perry, S.

    2007-10-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  4. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  5. Determination of the Level of Influence of Various Factors on the Reliability of Power System

    Directory of Open Access Journals (Sweden)

    Victor Popescu

    2014-09-01

    Full Text Available Consumers supply with qualitative electric power is one of the priority requirements imposed to power systems. Currently, in electricity networks take place a number of planned and unplanned disconnections, which interrupt the power and affect consumers, causing economic damage. To ensure the quality of power supply it is essential to know the factors that influence the reliability of power systems, which have a visible impact on the variation of reliability of equipment installed in power systems. This paper is devoted to problems of calculation and analysis of power systems reliability and estimation of the impact of various factors that influence the supply of consumers.

  6. Reliability Issues in Stirling Radioisotope Power Systems

    Science.gov (United States)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  7. Alternative electrical transmission systems and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.

    1977-08-01

    A general description is provided of electrical transmission systems as an aid in determining their environmental impacts. Alternating current, direct current, overhead systems, underground systems, and water crossings are treated. The cost, performance, reliability, safety, and environmental impact of these systems are compared.

  8. The Challenge Posed by Geomagnetic Activity to Electric Power Reliability: Evidence From England and Wales

    Science.gov (United States)

    Forbes, Kevin F.; St. Cyr, O. C.

    2017-10-01

    This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.

  9. 18-month outlook : an assessment of the reliability of the Ontario Electricity System

    International Nuclear Information System (INIS)

    2005-01-01

    This paper provides an 18 month forecast of the Ontario electricity system, as well as an outline of activities and recent developments relating to the issue of reliability. An additional aim of the paper was to identify potentially adverse conditions that may require adjustment or coordination of maintenance plans for generation and transmission equipment. Requests for proposals (RFPs) for renewable generation within the specified time-frame were also discussed, as well as the return to service of Ontario Power Generation's Pickering Unit 1. Reduced reserve levels for the summer of 2005 were anticipated, and details of forecasted peak demand, generator maintenance, new generation and price-responsive demand adjustments and forced outage rates were presented. It was suggested that adequate market mechanisms were in place to manage reserve levels. Developments concerning the new Parkway Transformer station were reviewed. A resource outlook was provided. Available resources were expected to exceed planning requirements with the exception of 6 weeks in the summer of 2005. A projected capacity increase was also anticipated, due to the return of Pickering 1 and an additional 515 MW in the fall of 2005. Price-responsive demands were forecasted to exceed 650 MW due to increases in dispatchable load. It was suggested that in order to ensure power demand during peak periods, imports may be required under extreme weather conditions, combined with the possible deferral or cancellation of generation maintenance. Transmission impacts due to shutdowns were discussed. Voltage system requirements were reviewed, along with details of the installation of additional shunt capacitors and transformer controls. The electricity market was reviewed in the context of current overall economic conditions. Data forecasting normal peak demand was presented for the entire outlook period. 19 tabs., 10 figs

  10. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  11. Distribution System Reliability Analysis for Smart Grid Applications

    Science.gov (United States)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  12. Apples to Apples: Equivalent-Reliability Power Systems Across Diverse Resource Mix Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, Gordon W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sigler, Devon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Wesley B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-28

    Electricity market research is highly price sensitive, and prices are strongly influenced by balance of supply and demand. This work looks at how to combine capacity expansion models and reliability assessment tools to assess equivalent-reliability power systems across diverse resource mix scenarios.

  13. Reliable computer systems.

    Science.gov (United States)

    Wear, L L; Pinkert, J R

    1993-11-01

    In this article, we looked at some decisions that apply to the design of reliable computer systems. We began with a discussion of several terms such as testability, then described some systems that call for highly reliable hardware and software. The article concluded with a discussion of methods that can be used to achieve higher reliability in computer systems. Reliability and fault tolerance in computers probably will continue to grow in importance. As more and more systems are computerized, people will want assurances about the reliability of these systems, and their ability to work properly even when sub-systems fail.

  14. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  15. Scoping study on trends in the economic value of electricity reliability to the U.S. economy; TOPICAL

    International Nuclear Information System (INIS)

    Eto, Joseph; Koomey, Jonathan; Lehman, Bryan; Martin, Nathan; Mills, Evan; Webber, Carrie; Worrell, Ernst

    2001-01-01

    During the past three years, working with more than 150 organizations representing public and private stakeholders, EPRI has developed the Electricity Technology Roadmap. The Roadmap identifies several major strategic challenges that must be successfully addressed to ensure a sustainable future in which electricity continues to play an important role in economic growth. Articulation of these anticipated trends and challenges requires a detailed understanding of the role and importance of reliable electricity in different sectors of the economy. This report is intended to contribute to that understanding by analyzing key aspects of trends in the economic value of electricity reliability in the U.S. economy. We first present a review of recent literature on electricity reliability costs. Next, we describe three distinct end-use approaches for tracking trends in reliability needs: (1) an analysis of the electricity-use requirements of office equipment in different commercial sectors; (2) an examination of the use of aggregate statistical indicators of industrial electricity use and economic activity to identify high reliability-requirement customer market segments; and (3) a case study of cleanrooms, which is a cross-cutting market segment known to have high reliability requirements. Finally, we present insurance industry perspectives on electricity reliability as an example of a financial tool for addressing customers' reliability needs

  16. Transmission reliability faces future challenges

    International Nuclear Information System (INIS)

    Beaty, W.

    1993-01-01

    The recently published Washington International Energy Group's 1993 Electric Utility Outlook states that nearly one-third (31 percent) of U.S. utility executives expect reliability to decrease in the near future. Electric power system stability is crucial to reliability. Stability analysis determines whether a system will stay intact under normal operating conditions, during minor disturbances such as load fluctuations, and during major disturbances when one or more parts of the system fails. All system elements contribute to reliability or the lack of it. However, this report centers on the transmission segment of the electric system. The North American Electric Reliability Council (NERC) says the transmission systems as planned will be adequate over the next 10 years. However, delays in building new lines and increasing demands for transmission services are serious concerns. Reliability concerns exist in the Mid-Continent Area Power Pool and the Mid-America Interconnected Network regions where transmission facilities have not been allowed to be constructed as planned. Portions of the transmission systems in other regions are loaded at or near their limits. NERC further states that utilities must be allowed to complete planned generation and transmission as scheduled. A reliable supply of electricity also depends on adhering to established operating criteria. Factors that could complicate operations include: More interchange schedules resulting from increased transmission services. Increased line loadings in portions of the transmission systems. Proliferation of non-utility generators

  17. Reliability assessment of distribution system with the integration of renewable distributed generation

    International Nuclear Information System (INIS)

    Adefarati, T.; Bansal, R.C.

    2017-01-01

    Highlights: • Addresses impacts of renewable DG on the reliability of the distribution system. • Multi-objective formulation for maximizing the cost saving with integration of DG. • Uses Markov model to study the stochastic characteristics of the major components. • The investigation is done using modified RBTS bus test distribution system. • Proposed approach is useful for electric utilities to enhance the reliability. - Abstract: Recent studies have shown that renewable energy resources will contribute substantially to future energy generation owing to the rapid depletion of fossil fuels. Wind and solar energy resources are major sources of renewable energy that have the ability to reduce the energy crisis and the greenhouse gases emitted by the conventional power plants. Reliability assessment is one of the key indicators to measure the impact of the renewable distributed generation (DG) units in the distribution networks and to minimize the cost that is associated with power outage. This paper presents a comprehensive reliability assessment of the distribution system that satisfies the consumer load requirements with the penetration of wind turbine generator (WTG), electric storage system (ESS) and photovoltaic (PV). A Markov model is proposed to access the stochastic characteristics of the major components of the renewable DG resources as well as their influence on the reliability of a conventional distribution system. The results obtained from the case studies have demonstrated the effectiveness of using WTG, ESS and PV to enhance the reliability of the conventional distribution system.

  18. Reliability of solid-state lighting electrical drivers subjected to WHTOL accelerated aging

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Sakalauku, Peter; Davis, Lynn

    2014-05-27

    An investigation of a solid-state lighting (SSL) luminaire with the focus on the electronic driver which has been exposed to a standard wet hot temperature operating life (WHTOL) of 85% RH and 85°C in order to assess reliability of prolonged exposer to a harsh environment has been conducted. SSL luminaires are beginning introduced as head lamps in some of today's luxury automobiles and may also be fulfilling a variety of important outdoor applications such as overhead street lamps, traffic signals and landscape lighting. SSL luminaires in these environments are almost certain to encounter excessive moisture from humidity and high temperatures for a persistent period of time. The lack of accelerated test methods for LEDs to assess long-term reliability prior to introduction into the marketplace, a need for SSL physics based PHM modeling indicators for assessment and prediction of LED life, as well as the U.S. Department of Energy's R&D roadmap to replace todays lighting with SSL luminaires makes it important to increase the understanding of the reliability of SSL devices, specifically, in harsh environment applications. In this work, a set of SSL electrical drivers were investigated to determine failure mechanisms that occur during prolonged harsh environment applications. Each driver consists of four aluminum electrolytic capacitors (AECs) of three different types and was considered the weakest component inside the SSL electrical driver. The reliability of the electrical driver was assessed by monitoring the change in capacitance and the change in equivalent series resistance for each AEC, as well as monitoring the luminous flux of the SSL luminaire or the output of the electrical driver. The luminous flux of a pristine SSL electrical driver was also monitored in order to detect minute changes in the electrical drivers output and to aid in the investigation of the SSL luminaires reliability. The failure mechanisms of the electrical drivers have been

  19. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  20. Puget Sound Area Electric Reliability Plan : Final Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-04-01

    A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, and during certain conditions, there is more demand for power in the Puget Sound area than the transmission system and existing generation can reliably supply. This high demand, called peak demand occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both.

  1. RTE - 2013 Reliability Report

    International Nuclear Information System (INIS)

    Denis, Anne-Marie

    2014-01-01

    RTE publishes a yearly reliability report based on a standard model to facilitate comparisons and highlight long-term trends. The 2013 report is not only stating the facts of the Significant System Events (ESS), but it moreover underlines the main elements dealing with the reliability of the electrical power system. It highlights the various elements which contribute to present and future reliability and provides an overview of the interaction between the various stakeholders of the Electrical Power System on the scale of the European Interconnected Network. (author)

  2. 78 FR 38851 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Science.gov (United States)

    2013-06-28

    ... either: Provide little protection for Bulk-Power System reliability or are redundant with other aspects... for retirement either: (1) Provide little protection for Bulk-Power System reliability or (2) are... to assure reliability of the Bulk-Power System and should be withdrawn. We have identified 41...

  3. Final Report to the National Energy Technology Laboratory on FY09-FY13 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Mesa, AZ (United States)

    2015-11-04

    The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This report provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.

  4. System for the reliability analysis of the electric energy supply; Sistema para el analisis de confiabilidad del suministro de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Perales, Favio; Martinez, Javier; Huesca, Francisco; Garcia, Norma; Nieva, Rolando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    A computer tool, developed for the reliability evaluation of the electric energy supply, considering the faults in the generation and transmission systems, is presented. The application of the tool in planning the expansion and operation of the electric systems, the methodology of the solution employed and the various functions it accounts for, are described. At the end some illustrative examples of its applications by means of the studies with a model of representative characteristics of the interconnected national system. [Espanol] Se presenta una herramienta computacional desarrollada para evaluar la confiabilidad del suministro de energia electrica, considerando las fallas en los sistemas de generacion y transmision. Se describen las aplicaciones de la herramienta en la planeacion de la expansion y de la operacion de sistemas electricos, la metodologia de solucion empleada y las diversas funciones con que cuenta. Al final se presentan algunos ejemplos ilustrativos de sus aplicaciones mediante estudios con un modelo de caracteristicas representativas del sistema interconectado nacional.

  5. System for the reliability analysis of the electric energy supply; Sistema para el analisis de confiabilidad del suministro de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Perales, Favio; Martinez, Javier; Huesca, Francisco; Garcia, Norma; Nieva, Rolando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    A computer tool, developed for the reliability evaluation of the electric energy supply, considering the faults in the generation and transmission systems, is presented. The application of the tool in planning the expansion and operation of the electric systems, the methodology of the solution employed and the various functions it accounts for, are described. At the end some illustrative examples of its applications by means of the studies with a model of representative characteristics of the interconnected national system. [Espanol] Se presenta una herramienta computacional desarrollada para evaluar la confiabilidad del suministro de energia electrica, considerando las fallas en los sistemas de generacion y transmision. Se describen las aplicaciones de la herramienta en la planeacion de la expansion y de la operacion de sistemas electricos, la metodologia de solucion empleada y las diversas funciones con que cuenta. Al final se presentan algunos ejemplos ilustrativos de sus aplicaciones mediante estudios con un modelo de caracteristicas representativas del sistema interconectado nacional.

  6. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Tempe, AZ (United States); Lampis, Anna Rosa [Arizona State Univ., Tempe, AZ (United States)

    2018-01-16

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such as renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting

  7. Empowering Variable Renewables - Options for Flexible Electricity Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, Hugo [Renewable Energy Unit, International Energy Agency, Paris (France)

    2008-07-01

    A flexible electricity system is one that can respond reliably, and rapidly, to large fluctuations in supply and demand. Flexibility is already present in all power systems, in order to manage fluctuations in demand, and it is crucial for high performance and economic and reliable operation. This paper looks at measures to increase flexibility. but careful cost/benefit analysis is essential, and specific national and regional circumstances will influence the choice of option(s).

  8. North American Electric Reliability Council (NERC) Reliability Coordinators

    Data.gov (United States)

    Department of Homeland Security — ERC is an international regulatory authority that works to improve the reliability of the bulk power system in North America. NERC works with many different regional...

  9. Potential of reversible solid oxide cells as electricity storage system

    OpenAIRE

    Di Giorgio, Paolo; Desideri, Umberto

    2016-01-01

    Electrical energy storage (EES) systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES), and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC) working in both ...

  10. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    Science.gov (United States)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  11. Automated Energy Distribution and Reliability System (AEDR): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Buche, D. L.

    2008-07-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  12. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  13. 75 FR 15371 - Time Error Correction Reliability Standard

    Science.gov (United States)

    2010-03-29

    ... Electric Reliability Council of Texas (ERCOT) manages the flow of electric power to 22 million Texas customers. As the independent system operator for the region, ERCOT schedules power on an electric grid that... Coordinating Council (WECC) is responsible for coordinating and promoting bulk electric system reliability in...

  14. Using VIIRS Day/Night Band to Measure Electricity Supply Reliability: Preliminary Results from Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Michael L. Mann

    2016-08-01

    Full Text Available Unreliable electricity supplies are common in developing countries and impose large socio-economic costs, yet precise information on electricity reliability is typically unavailable. This paper presents preliminary results from a machine-learning approach for using satellite imagery of nighttime lights to develop estimates of electricity reliability for western India at a finer spatial scale. We use data from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar Partnership (SNPP satellite together with newly-available data from networked household voltage meters. Our results point to the possibilities of this approach as well as areas for refinement. With currently available training data, we find a limited ability to detect individual outages identified by household-level measurements of electricity voltage. This is likely due to the relatively small number of individual outages observed in our preliminary data. However, we find that the approach can estimate electricity reliability rates for individual locations fairly well, with the predicted versus actual regression yielding an R2 > 0.5. We also find that, despite the after midnight overpass time of the SNPP satellite, the reliability estimates derived are representative of daytime reliability.

  15. Development of Probabilistic Reliability Models of Photovoltaic System Topologies for System Adequacy Evaluation

    OpenAIRE

    Ahmad Alferidi; Rajesh Karki

    2017-01-01

    The contribution of solar power in electric power systems has been increasing rapidly due to its environmentally friendly nature. Photovoltaic (PV) systems contain solar cell panels, power electronic converters, high power switching and often transformers. These components collectively play an important role in shaping the reliability of PV systems. Moreover, the power output of PV systems is variable, so it cannot be controlled as easily as conventional generation due to the unpredictable na...

  16. Reliability analysis with the simulator S.ESCAF of a very complex sequential system: the electrical power supply system of a nuclear reactor

    International Nuclear Information System (INIS)

    Blot, M.

    1987-06-01

    The reliability analysis of complex sequential systems, in which the order of arrival of the events must be taken into account, can be very difficult, because the use of the classical modelling technique of Markov diagrams leads to an important limitation on the number of components which can be handled. The desk-top apparatus S.ESCAF, which electronically simulates very closely the behaviour of the system being studied, and is very easy to use, even by a non specialist in electronics, allows one to avoid these inconveniences and to enlarge considerably the analysis possibilities. This paper shows the application of the S.ESCAF method to the electrical power supply system of a nuclear reactor. This system requires the simulation of more than forty components with about sixty events such as failure, repair and refusal to start. A comparison of times necessary to perform the analysis by these means and by other methods is described, and the advantages of S.ESCAF are presented

  17. Learning from the blackouts. Transmission system security in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Electricity market reform has fundamentally changed the environment for maintaining reliable and secure power supplies. Growing inter-regional trade has placed new demands on transmission systems, creating a more integrated and dynamic network environment with new real-time challenges for reliable and secure transmission system operation. Despite these fundamental changes, system operating rules and practices remain largely unchanged. The major blackouts of 2003 and 2004 raised searching questions about the appropriateness of these arrangements. Management of system security needs to be transformed to maintain reliable electricity services in this more dynamic operating environment. These challenges raise fundamental issues for policymakers. This publication presents case studies drawn from recent large-scale blackouts in Europe, North America, and Australia. It concludes that a comprehensive, integrated policy response is required to avoid preventable large-scale blackouts in the future.

  18. States of Cybersecurity: Electricity Distribution System Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Ivonne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ingram, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Maurice [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-16

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.

  19. Development of Probabilistic Reliability Models of Photovoltaic System Topologies for System Adequacy Evaluation

    Directory of Open Access Journals (Sweden)

    Ahmad Alferidi

    2017-02-01

    Full Text Available The contribution of solar power in electric power systems has been increasing rapidly due to its environmentally friendly nature. Photovoltaic (PV systems contain solar cell panels, power electronic converters, high power switching and often transformers. These components collectively play an important role in shaping the reliability of PV systems. Moreover, the power output of PV systems is variable, so it cannot be controlled as easily as conventional generation due to the unpredictable nature of weather conditions. Therefore, solar power has a different influence on generating system reliability compared to conventional power sources. Recently, different PV system designs have been constructed to maximize the output power of PV systems. These different designs are commonly adopted based on the scale of a PV system. Large-scale grid-connected PV systems are generally connected in a centralized or a string structure. Central and string PV schemes are different in terms of connecting the inverter to PV arrays. Micro-inverter systems are recognized as a third PV system topology. It is therefore important to evaluate the reliability contribution of PV systems under these topologies. This work utilizes a probabilistic technique to develop a power output model for a PV generation system. A reliability model is then developed for a PV integrated power system in order to assess the reliability and energy contribution of the solar system to meet overall system demand. The developed model is applied to a small isolated power unit to evaluate system adequacy and capacity level of a PV system considering the three topologies.

  20. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  1. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  2. RTE - 2015 Reliability Report. Summary

    International Nuclear Information System (INIS)

    2016-01-01

    Every year, RTE produces a reliability report for the past year. This report includes a number of results from previous years so that year-to-year comparisons can be drawn and long-term trends analysed. The 2015 report underlines the major factors that have impacted on the reliability of the electrical power system, without focusing exclusively on Significant System Events (ESS). It describes various factors which contribute to present and future reliability and the numerous actions implemented by RTE to ensure reliability today and in the future, as well as the ways in which the various parties involved in the electrical power system interact across the whole European interconnected network

  3. An application of the fault tree analysis for the power system reliability estimation

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2007-01-01

    The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)

  4. 78 FR 38311 - Reliability Technical Conference Agenda

    Science.gov (United States)

    2013-06-26

    ... issues related to the reliability of the Bulk-Power System. The agenda for this conference is attached... Reliability Technical Docket No. AD13-6-000 Conference. North American Electric Docket No. RC11-6-004 Reliability Corporation. North American Electric Docket No. RR13-2-000 Reliability Corporation. Not...

  5. System Reliability Engineering

    International Nuclear Information System (INIS)

    Lim, Tae Jin

    2005-02-01

    This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.

  6. The future of GPS-based electric power system measurements, operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Rizy, D.T. [Oak Ridge National Lab., TN (United States); Wilson, R.E. [Western Area Power Administration, Golden, CO (United States); Martin, K.E.; Litzenberger, W.H. [Bonneville Power Administration, Portland, OR (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Overholt, P.N. [Dept. of Energy, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  7. Dependent systems reliability estimation by structural reliability approach

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2014-01-01

    Estimation of system reliability by classical system reliability methods generally assumes that the components are statistically independent, thus limiting its applicability in many practical situations. A method is proposed for estimation of the system reliability with dependent components, where...... the leading failure mechanism(s) is described by physics of failure model(s). The proposed method is based on structural reliability techniques and accounts for both statistical and failure effect correlations. It is assumed that failure of any component is due to increasing damage (fatigue phenomena...... identification. Application of the proposed method can be found in many real world systems....

  8. Introduction of Electrical System Simulation and Analysis Used in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Sang Hak; Jeong, Woo Sung

    2015-01-01

    The purpose of this paper is to introduce the simulation methods and tools to analyse and predict the performance of the electric power distribution system for nuclear power plants (NPPs) in Korea. Electrical System design engineers are to evaluate the load flow, bus voltage profiles, short circuit levels, motor starting, and fast bus transfer under various plant operating conditions and to verify the adequacy of power distribution System for a reliable power supply to plant loads under various disturbances which could jeopardize a safe and reliable operation of nuclear power plants. (authors)

  9. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  10. A model for reliability avaliation of the electrical supply source of the 1A3 and 1A4 control rods assemblies of Angra I reactor

    International Nuclear Information System (INIS)

    Yang, T.

    1978-01-01

    The reliability of the electrical power supply to the 4.16KV buses for the safety system operation of a nuclear power plant was studied. Particularly, Angra Unit I system was focused. Initially, reliability of each electrical supply source was estimated. Using a probabilistic approach based on the Markov processes, the system reliability was evaluated in terms of frequency and duration of loss of power supply and of the system failure probability evolution when one or more sources remained unavailable. Based on these results, certain reactor operating rules were proposed concerning later shutdown of the plant without compromising the nuclear reactor safety. A sensitivity analysis was also performed to show the different reliability parameter influences on final results. This analysis showed that the diesel system performs an important role in the power supply for a nuclear power plant [pt

  11. Designing a sustainable electric system for the 21. Century. 5 sessions

    International Nuclear Information System (INIS)

    1995-01-01

    The UNIPEDE (International Union of Producers and Distributors of Electrical Energy) conference is composed of 97 communications grouped in 5 sessions which titles and main themes are: opportunities to increase electricity use for sustainable development (energy efficiency improvement, technology substitution, environmental issues); electric system expansion and integration to meet growing competition (interconnected systems, electricity transfer, distribution system upgrade, system reliability, superconductive systems); power producers and global climate change issues (electricity generation, renewable energies, combined cycle, rational energy use, reduction of emissions, efficiency improvements); technology for supplying electricity in developing and transitional economies development strategies, financial factor and international investments, technology transfer and implementation, transmission systems); power industry structure, regulatory policies and technological innovation (demand side management, deregulation, competitive energy markets, legislative and economic policy changes). 48 communications were considered in the INIS scope, 41 in the ETDE scope and 7 out of scope

  12. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  13. LED system reliability

    NARCIS (Netherlands)

    Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.

    2011-01-01

    This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific

  14. Decentralized supply of electricity is a favorable development. Analysis of system options and effects

    International Nuclear Information System (INIS)

    Faber, A.; Ros, J.; De Boer-Meulman, P.; In 't Groen, B.

    2010-01-01

    Decentralised electricity systems can provide a significant contribution to the development of environment-friendly techniques such as solar power and electric vehicles. However, there are also some obstacles and uncertainties. Not only does the balancing of supply and demand constitute an important challenge; the development of smart grids is also crucial to the improvement of reliability and system efficiency of the decentralized grids. Especially the distribution of investment costs is a decisive factor for the success rate of decentralized electricity systems. What is more, it is still uncertain whether an extensive decentralized system would have a higher score in cleanliness, affordability and reliability than a future central system. The system variants can be distinguished based on the deployment of six possible energy technologies for the future: PV (solar power), micro-CHP, small-scale wind energy in the built environment (urban wind), heat pumps, electric vehicles and air-conditioning. [nl

  15. A reliability assessment methodology for the VHTR passive safety system

    International Nuclear Information System (INIS)

    Lee, Hyungsuk; Jae, Moosung

    2014-01-01

    The passive safety system of a VHTR (Very High Temperature Reactor), which has recently attracted worldwide attention, is currently being considered for the design of safety improvements for the next generation of nuclear power plants in Korea. The functionality of the passive system does not rely on an external source of an electrical support system, but on the intelligent use of natural phenomena. Its function involves an ultimate heat sink for a passive secondary auxiliary cooling system, especially during a station blackout such as the case of the Fukushima Daiichi reactor accidents. However, it is not easy to quantitatively evaluate the reliability of passive safety for the purpose of risk analysis, considering the existing active system failure since the classical reliability assessment method cannot be applied. Therefore, we present a new methodology to quantify the reliability based on reliability physics models. This evaluation framework is then applied to of the conceptually designed VHTR in Korea. The Response Surface Method (RSM) is also utilized for evaluating the uncertainty of the maximum temperature of nuclear fuel. The proposed method could contribute to evaluating accident sequence frequency and designing new innovative nuclear systems, such as the reactor cavity cooling system (RCCS) in VHTR to be designed and constructed in Korea.

  16. Puget Sound area electric reliability plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  17. Feasibility Study of a Simulation Driven Approach for Estimating Reliability of Wind Turbine Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2018-01-01

    Recent field data indicates that pitch systems account for a substantial part of a wind turbines down time. Reducing downtime means increasing the total amount of energy produced during its lifetime. Both electrical and fluid power pitch systems are employed with a roughly 50/50 distribution. Fluid...... power pitch systems generally show higher reliability and have been favored on larger offshore wind turbines. Still general issues such as leakage, contamination and electrical faults make current systems work sub-optimal. Current field data for wind turbines present overall pitch system reliability...... and the reliability of component groups (valves, accumulators, pumps etc.). However, the failure modes of the components and more importantly the root causes are not evident. The root causes and failure mode probabilities are central for changing current pitch system designs and operational concepts to increase...

  18. Reliability Approach of a Compressor System using Reliability Block ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... This paper presents a reliability analysis of such a system using reliability ... Keywords-compressor system, reliability, reliability block diagram, RBD .... the same structure has been kept with the three subsystems: air flow, oil flow and .... and Safety in Engineering Design", Springer, 2009. [3] P. O'Connor ...

  19. RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM

    International Nuclear Information System (INIS)

    Ramirez, N.

    2004-01-01

    A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF

  20. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  1. Comparison of different reliability improving investment strategies of Finnish medium-voltage distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Laagland, H.

    2012-07-01

    The electricity distribution sector in Finland is highly regulated and the return on investments in distribution networks is low. Low profits don't make the electricity distribution sector attractive to outside investors. During the second regulatory period of 2008-2011 incentives are included into the Finnish regulation model which allows higher profits for the network owners for right allocated network investments leading to lower operation and interruption costs. The goal of the thesis is to find cost-effective medium-voltage distribution system investment strategies for the Finnish power distribution companies with respect to the incentives of the second regulatory period. In this work the sectionalisation concept is further developed by deriving equations for a homogeneous electricity distribution system for the economical and reliability indices as a function of the number of sectionalisation zones. The cost-effective medium-voltage distribution system investment strategies are found by studying the technical and economic interaction of feeder automation on different network structures. Ten feeder automation schemes have been applied to six urban/rural area generic feeders and two real rural area feeders of a distribution company in western Finland. The analytical approach includes modelling of the feeders and feeder functions and calculation of the economical and reliability indices. The following investment areas are included: different electricity distribution systems, new substation, new switching station, central earth-fault current compensation, cabling and feeder automation. The value of the results of this work is that they reveal the influence that feeder automation has on the reliability and economy of different distribution structures. This created transparency enables a national and/or distribution company network investment strategy to optimise the economic benefits of investments. (orig.)

  2. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  3. Optimisation of electrical system for offshore wind farms via genetic algorithm

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    An optimisation platform based on genetic algorithm (GA) is presented, where the main components of a wind farm and key technical specifications are used as input parameters and the electrical system design of the wind farm is optimised in terms of both production cost and system reliability....... The power losses, wind power production, initial investment and maintenance costs are considered in the production cost. The availability of components and network redundancy are included in the reliability evaluation. The method of coding an electrical system to a binary string, which is processed by GA......, is developed. Different GA techniques are investigated based on a real example offshore wind farm. This optimisation platform has been demonstrated as a powerful tool for offshore wind farm design and evaluation....

  4. 78 FR 63036 - Transmission Planning Reliability Standards

    Science.gov (United States)

    2013-10-23

    ... Reliability Standards for the Bulk Power System, 130 FERC ] 61,200 (2010). \\8\\ Mandatory Reliability Standards... electric system operations across normal and contingency conditions. We also find that Reliability Standard... Reliability Standards for the Bulk Power System, 131 FERC ] 61,231 at P 21. Comments 24. NERC supports the...

  5. Reliability constrained generation expansion planning with consideration of wind farms uncertainties in deregulated electricity market

    International Nuclear Information System (INIS)

    Hemmati, Reza; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin

    2013-01-01

    Highlights: • Generation expansion planning is presented in deregulated electricity market. • Wind farm uncertainty is modeled in the problem. • The profit of each GENCO is maximized and also the safe operation of system is satisfied. • Salve sector is managed as an optimization programming and solved by using PSO technique. • Master sector is considered in pool market and Cournot model is used to simulate it. - Abstract: This paper addresses reliability constrained generation expansion planning (GEP) in the presence of wind farm uncertainty in deregulated electricity market. The proposed GEP aims at maximizing the expected profit of all generation companies (GENCOs), while considering security and reliability constraints such as reserve margin and loss of load expectation (LOLE). Wind farm uncertainty is also considered in the planning and GENCOs denote their planning in the presence of wind farm uncertainty. The uncertainty is modeled by probability distribution function (PDF) and Monte-Carlo simulation (MCS) is used to insert uncertainty into the problem. The proposed GEP is a constrained, nonlinear, mixed-integer optimization programming and solved by using particle swarm optimization (PSO) method. In this paper, Electricity market structure is modeled as a pool market. Simulation results verify the effectiveness and validity of the proposed planning for maximizing GENCOs profit in the presence of wind farms uncertainties in electricity market

  6. A robust flexible-probabilistic programming method for planning municipal energy system with considering peak-electricity price and electric vehicle

    International Nuclear Information System (INIS)

    Yu, L.; Li, Y.P.; Huang, G.H.; An, C.J.

    2017-01-01

    Highlights: • A robust flexible probabilistic programming method is developed for planning MES. • Multiple uncertainties with various violations and satisfaction levels are examined. • Solutions of considering peak electricity prices and electric vehicles are analyzed. • RFPP-MES can better improve energy system reliability and abate pollutant emission. - Abstract: Effective electric power systems (EPS) planning with considering electricity price of 24-h time is indispensable in terms of load shifting, pollutant mitigation and energy demand-supply reliability as well as reducing electricity expense of end-users. In this study, a robust flexible probabilistic programming (RFPP) method is developed for planning municipal energy system (MES) with considering peak electricity prices (PEPs) and electric vehicles (EVs), where multiple uncertainties regarded as intervals, probability distributions and flexibilities as well as their combinations can be effectively reflected. The RFPP-MES model is then applied to planning Qingdao’s MES, where electrical load of 24-h time is simulated based on Monte Carlo. Results reveal that: (a) different time intervals lead to changes of energy supply patterns, the energy supply patterns would tend to the transition from self-supporting dominated (i.e. in valley hours) to outsourcing-dominated (i.e. in peak hours); (b) 15.9% of total imported electricity expense would be reduced compared to that without considering PEPs; (c) with considering EVs, the CO_2 emissions of Qingdao’s transportation could be reduced directly and the reduction rate would be 2.5%. Results can help decision makers improve energy supply patterns, reduce energy system costs and abate pollutant emissions as well as adjust end-users’ consumptions.

  7. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-06-13

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.

  8. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    International Nuclear Information System (INIS)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design

  9. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

  10. The reliability assessment of the electromagnetic valve of high-speed electric multiple units braking system based on two-parameter exponential distribution

    Directory of Open Access Journals (Sweden)

    Jianwei Yang

    2016-06-01

    Full Text Available In order to solve the reliability assessment of braking system component of high-speed electric multiple units, this article, based on two-parameter exponential distribution, provides the maximum likelihood estimation and Bayes estimation under a type-I life test. First of all, we evaluate the failure probability value according to the classical estimation method and then obtain the maximum likelihood estimation of parameters of two-parameter exponential distribution by performing and using the modified likelihood function. On the other hand, based on Bayesian theory, this article also selects the beta and gamma distributions as the prior distribution, combines with the modified maximum likelihood function, and innovatively applies a Markov chain Monte Carlo algorithm to parameters assessment based on Bayes estimation method for two-parameter exponential distribution, so that two reliability mathematical models of the electromagnetic valve are obtained. Finally, through type-I life test, the failure rates according to maximum likelihood estimation and Bayes estimation method based on Markov chain Monte Carlo algorithm are, respectively, 2.650 × 10−5 and 3.037 × 10−5. Compared with the failure rate of a electromagnetic valve 3.005 × 10−5, it proves that the Bayes method can use a Markov chain Monte Carlo algorithm to estimate reliability for two-parameter exponential distribution and Bayes estimation is more closer to the value of electromagnetic valve. So, by fully integrating multi-source, Bayes estimation method can preferably modify and precisely estimate the parameters, which can provide a certain theoretical basis for the safety operation of high-speed electric multiple units.

  11. HEMP emergency planning and operating procedures for electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. (Electrotek Concepts, Inc., Knoxville, TN (United States))

    1991-01-01

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  12. Safety analyses of the electrical systems on VVER NPP

    International Nuclear Information System (INIS)

    Andel, J.

    2004-01-01

    Energoprojekt Praha has been the main entity responsible for the section on 'Electrical Systems' in the safety reports of the Temelin, Dukovany and Mochovce nuclear power plants. The section comprises 2 main chapters, viz. Offsite Power System (issues of electrical energy production in main generators and the link to the offsite transmission grid) and Onsite Power Systems (AC and DC auxiliary system, both normal and safety related). In the chapter on the off-site system, attention is paid to the analysis of transmission capacity of the 400 kV lines, analysis of transient stability, multiple fault analyses, and probabilistic analyses of the grid and NPP power system reliability. In the chapter on the on-site system, attention is paid to the power balances of the electrical sources and switchboards set for various operational and accident modes, checks of loading and function of service and backup sources, short circuit current calculations, analyses of electrical protections, and analyses of the function and sizing of emergency sources (DG sets and UPS systems). (P.A.)

  13. IEEE guide for general principles of reliability analysis of nuclear power generating station protection systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals

  14. A study on a reliability assessment methodology for the VHTR safety systems

    International Nuclear Information System (INIS)

    Lee, Hyung Sok

    2012-02-01

    The passive safety system of a 300MWt VHTR (Very High Temperature Reactor)which has attracted worldwide attention recently is actively considered for designing the improvement in the safety of the next generation nuclear power plant. The passive system functionality does not rely on an external source of the electrical support system,but on an intelligent use of the natural phenomena, such as convection, conduction, radiation, and gravity. It is not easy to evaluate quantitatively the reliability of the passive safety for the risk analysis considering the existing active system failure since the classical reliability assessment method could not be applicable. Therefore a new reliability methodology needs to be developed and applied for evaluating the reliability of the conceptual designed VHTR in this study. The preliminary evaluation and conceptualization are performed using the concept of the load and capacity theory related to the reliability physics model. The method of response surface method (RSM) is also utilized for evaluating the maximum temperature of nuclear fuel in this study. The significant variables and their correlation are considered for utilizing the GAMMA+ code. The proposed method might contribute to designing the new passive system of the VHTR

  15. Design requirement for electrical system of an advanced research reactor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S.

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system

  16. Design requirement for electrical system of an advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system.

  17. 78 FR 58492 - Generator Verification Reliability Standards

    Science.gov (United States)

    2013-09-24

    ... power capability that is available for planning models and bulk electric system reliability assessments... of generator equipment needed to support Bulk-Power System reliability and enhance coordination of... support Bulk-Power System reliability and will ensure that accurate data is verified and made available...

  18. Challenges to China's transition to a low carbon electricity system

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Williams, Jim; Ding Jianhua; Hu Junfeng

    2011-01-01

    We examine the challenges to China's transition to a low carbon electricity system, in which renewable energy would play a significant role. China's electricity system currently lacks the flexibility in planning, operations, and pricing to respond to conflicting pressures from demand growth, rising costs, and environmental mandates in a way that simultaneously maintains reliability, decarbonizes the system, and keeps prices within acceptable bounds. Greater flexibility crucially requires the ability to more systematically and transparently manage and allocate costs. This will require re-orientating sector institutions still rooted in central planning, and strengthening independent regulation. Some of the necessary changes require fundamental political and legal reforms beyond the scope of energy policy. However, the system's flexibility can still be increased through the development of traditional planning and regulatory tools and approaches, such as an avoided cost basis for energy efficiency investments, more integrated planning to improve the coordination of generation, transmission, and demand-side investments, and a transparent ratemaking process. The judicious application of OECD electricity sector experience and skills can support these developments. - Research highlights: → China's electricity system currently lacks the flexibility to integrate renewables and reduce CO 2 emissions on a large scale at an acceptable cost and level of reliability. → The challenges to increased flexibility are more institutional than technological. → Chinese government agencies need new approaches to basic power system planning and ratemaking. → OECD countries can help address these challenges through the transfer of 'soft' technologies.

  19. Calculating system reliability with SRFYDO

    Energy Technology Data Exchange (ETDEWEB)

    Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory

    2010-01-01

    SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.

  20. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  1. Sensitivity analysis in electric system expansion planning study using DECADES

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.

    1998-01-01

    To cover the increasing electricity demand as a key economic and social factor of development, it is necessary to have adequate expansion police. The delay in installation of certain capabilities produces electricity deficit. In other hand, construction of oversized capacities generates excessive costs. Therefore it is important to acquire or develop adequate methodologies according to the country specific conditions to carry out electric expansion planning studies. The goal is to chose optimal solutions in order to reach sustainable development using owns energy resources and preserving the environment. In the paper the Decades methodology is used for electricity system expansion planning. Premises and main assumptions for the calculations are presented. Some electric system expansion cases are evaluated. We also present the results of a sensibility study varying the discount rate, loss of load probability energy not served cost, fuel availability and fuel and investment costs. The reliability criteria currently not used in Cuban electric system are evaluated. We discuss the results and display the conclusions and recommendations

  2. Puget Sound area electric reliability plan: Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin

  3. Reliability optimization using multiobjective ant colony system approaches

    International Nuclear Information System (INIS)

    Zhao Jianhua; Liu Zhaoheng; Dao, M.-T.

    2007-01-01

    The multiobjective ant colony system (ACS) meta-heuristic has been developed to provide solutions for the reliability optimization problem of series-parallel systems. This type of problems involves selection of components with multiple choices and redundancy levels that produce maximum benefits, and is subject to the cost and weight constraints at the system level. These are very common and realistic problems encountered in conceptual design of many engineering systems. It is becoming increasingly important to develop efficient solutions to these problems because many mechanical and electrical systems are becoming more complex, even as development schedules get shorter and reliability requirements become very stringent. The multiobjective ACS algorithm offers distinct advantages to these problems compared with alternative optimization methods, and can be applied to a more diverse problem domain with respect to the type or size of the problems. Through the combination of probabilistic search, multiobjective formulation of local moves and the dynamic penalty method, the multiobjective ACSRAP, allows us to obtain an optimal design solution very frequently and more quickly than with some other heuristic approaches. The proposed algorithm was successfully applied to an engineering design problem of gearbox with multiple stages

  4. Optimization and Control of Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  5. 18 CFR 39.11 - Reliability reports.

    Science.gov (United States)

    2010-04-01

    ... Electric Reliability Organization shall conduct assessments of the adequacy of the Bulk-Power System in... assessments as determined by the Commission of the reliability of the Bulk-Power System in North America and... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Reliability reports. 39...

  6. Environmental assessment for the electric utility system distribution, replacements and upgrades at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment evaluates the environmental effects resulting from the distribution of new electrical service, replacement of inadequate or aging equipment, and upgrade of the existing electrical utility system at Lawrence Livermore National Laboratory. The projects assessed herein do not impact cultural or historic resources, sensitive habitats or wetlands and are not a source of air emissions. The potential environmental effects that do result from the action are fugitive dust and noise from construction and the disposal of potentially contaminated soil removed from certain limited areas of the LLNL site as a result of trenching for underground transmission lines. The actions described in this assessment represent an improved safety and reliability to the existing utility system. Inherent in the increased reliability and upgrades is a net increase in electrical capacity, with future expansion reserve. As with any electrical device, the electrical utility system has associated electric and magnetic fields that present a potential source of personnel exposure. The potential is not increased, however, beyond that which already exists for the present electrical utility system

  7. Systems reliability analysis: applications of the SPARCS System-Reliability Assessment Computer Program

    International Nuclear Information System (INIS)

    Locks, M.O.

    1978-01-01

    SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex Systems, Version 2) is a PL/1 computer program for assessing (establishing interval estimates for) the reliability and the MTBF of a large and complex s-coherent system of any modular configuration. The system can consist of a complex logical assembly of independently failing attribute (binomial-Bernoulli) and time-to-failure (Poisson-exponential) components, without regard to their placement. Alternatively, it can be a configuration of independently failing modules, where each module has either or both attribute and time-to-failure components. SPARCS-2 also has an improved super modularity feature. Modules with minimal-cut unreliabiliy calculations can be mixed with those having minimal-path reliability calculations. All output has been standardized to system reliability or probability of success, regardless of the form in which the input data is presented, and whatever the configuration of modules or elements within modules

  8. Thermal Management and Reliability of Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant

    2016-08-03

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, and in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.

  9. How to design electrical systems with central control capability for industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Cigolini, S.; Galati, G.; Lionetto, P.F.; Stiz, M. (Siemens, Milan (Italy) Centro Elettrotecnico Sperimentale Italiano, Milan (Italy))

    1991-12-01

    The modern centralized control system, incorporating microprocessors, constitutes an extremely efficacious instrument for the management of an industrial plant's electrical system and provides the performance, reliability, flexibility and safety features required by today's technologically advanced plant processes. The use of intelligent centralized control systems, capable of autonomous operation and dialoguing with industrial plant electrical systems, simplifies the design of the overall plant. This paper reviews the main design criteria for the automated systems and gives examples of some suitable commercially available intelligent systems.

  10. 77 FR 26714 - Transmission Planning Reliability Standards

    Science.gov (United States)

    2012-05-07

    ... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g... Standards for the Bulk Power System, 130 FERC ] 61,200 (2010) (March 2010 Order). \\12\\ Mandatory Reliability... excluded from future planning assessments and its potential impact to bulk electric system reliability...

  11. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kozak, Joseph P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Major, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tomerlin, Jeff J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  12. Reliability Prediction Of System And Component Of Process System Of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Sitorus Pane, Jupiter

    2001-01-01

    The older the reactor the higher the probability of the system and components suffer from loss of function or degradation. This phenomenon occurred because of wear, corrosion, and fatigue. Study on component reliability was generally performed deterministically and statistically. This paper would describe an analysis of using statistical method, i.e. regression Cox, in order to predict the reliability of the components and their environmental influence's factors. The result showed that the dynamics, non safety related, and mechanic components have higher risk of failure, whereas static, safety related, and electric have lower risk of failures. The relative risk value for variable of components dynamics, quality, dummy 1 and dummy 2 are of 1.54, 1.59, 1.50, and 0.83 compare to other components type with each variable. Component with the higher risk have lower reliability than lower one

  13. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  14. Evaluation of the reliability of electric power transmission systems; Evaluacion de confiabilidad de sistemas de transmision de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Vega Ortiz, Miguel

    1989-07-01

    In this thesis it is attacked the problem of Reliability Evaluation of the Electrical Power Transmission Systems for aims of its integral planning. Once described the problem the indexes that measure the electric power systems reliability are presented. Later the methods to evaluate the transmission nets, such as the Contingencies Enumeration, the Monte Carlo, the one of Markov and the methods for complex systems such as the Minimum Interruptions, are described. This last one is widely developed for the advantages that its application presents in the planning of large and complex networks. The method of minimum interruptions consists of two big steps: To determine the minimum interruptions for the load points and to calculate the reliability indexes in base of the minimum interruptions. The conventional algorithms for the determination of minimum interruptions consider a problem for each load point in an independent form going through a determination of minimum tracks. In this type of algorithms the CPU time and the space in memory required grow exponentially for the case of large transmission systems, which represents a strong restriction for its application. In order to solve this problem a methodology was established in which the system is modeled by means of a grapho and the minimum interruptions are determined with an algorithm based on the construction of cycles in the dual grapho. With these interruptions the connectivity and the capacity of the network is evaluated, obtaining the reliability indexes for each bus and the system. These indexes are calculated with the equivalent representation for complex systems of series parallel connections defined by the minimum interruptions. One of the fundamental objectives in this study is to integrate the reliability to the planning process, with the concept of the expected value of the non-supplied energy and its penalty cost. In order to demonstrate the capacity, effectiveness and rapidity of the new implemented

  15. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jun [University of Denver; Gao, Wenzhong [University of Denver; Zheng, Xinhu [University of Minnesota; Yang, Liuqing [Colorado State University; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver

    2017-09-01

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logic and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.

  16. Analysis of performance reliability of electrical and electronic equipment of car-tractor

    Directory of Open Access Journals (Sweden)

    Kravchenko О.Р.

    2016-08-01

    Full Text Available The analysis of the operational reliability of electrical and electronic equipment of vehicles, trucks Mercedes-Benz Actros 1844 LS and Volvo FH 1242, conducting international cargo transportation is performed. It is established that the equipment is reliable, which meets modern requirements, but where there is a violation of the resolution. The reason for repair work is constructive and operational factors. Distribution of efficiency and overall performance of operational reliability is retrieved. Items with more bounce are found. Common factors of violation of efficiency cars, trucks in operation, are largely different stages in warranty runs are obtained.

  17. The use of reliability analysis techniques applied to nuclear power station emergency core cooling systems

    International Nuclear Information System (INIS)

    Danielsen, A.; Snaith, E.R.

    1975-01-01

    A reliability investigation carried out by the Safety and Reliability Services of the UKAEA, and the SSEB, of the essential system/reactor coolant system for a large nuclear power station is described. In AGR type reactors, after all reactor shutdown conditions, it is necessary to restore forced gas circulation and sufficient boiler feed to maintain the heat removal capacity of the boilers. The coolant requirements are provided by several independent mechanical systems of primary coolant fans, feedwater pumps, and valves integrated with electrical power sources, switchgear, and automatic control equipment. Reliability is treated as one aspect of system performance and quantified in terms of failure to meet a specific objective. Based on the reliability performance of the constituent components the optimum system configuration is determined together with the preferred plant operating procedures and maintenance requirements. (author)

  18. Reliability of Power Units in Poland and the World

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2015-09-01

    Full Text Available One of a power system’s subsystems is the generation subsystem consisting of power units, the reliability of which to a large extent determines the reliability of the power system and electricity supply to consumers. This paper presents definitions of the basic indices of power unit reliability used in Poland and in the world. They are compared and analysed on the basis of data published by the Energy Market Agency (Poland, NERC (North American Electric Reliability Corporation – USA, and WEC (World Energy Council. Deficiencies and the lack of a unified national system for collecting and processing electric power equipment unavailability data are also indicated.

  19. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  20. Transmission embedded cost allocation methodology with consideration of system reliability

    International Nuclear Information System (INIS)

    Hur, D.; Park, J.-K.; Yoo, C.-I.; Kim, B.H.

    2004-01-01

    In a vertically integrated utility industry, the cost of reliability, as a separate service, has not received much rigorous analysis. However, as a cornerstone of restructuring the industry, the transmission service pricing must change to be consistent with, and supportive of, competitive wholesale electricity markets. This paper focuses on the equitable allocation of transmission network embedded costs including the transmission reliability cost based on the contributions of each generator to branch flows under normal conditions as well as the line outage impact factor under a variety of load levels. A numerical example on a six-bus system is given to illustrate the applications of the proposed methodology. (author)

  1. Reliability analysis of an LCL tuned track segmented bi-directional inductive power transfer system

    DEFF Research Database (Denmark)

    Asif Iqbal, S. M.; Madawala, U. K.; Thrimawithana, D. J.

    2013-01-01

    Bi-directional Inductive Power Transfer (BDIPT) technique is suitable for renewable energy based applications such as electric vehicles (EVs), for the implementation of vehicle-to-grid (V2G) systems. Recently, more efforts have been made by researchers to improve both efficiency and reliability...... of renewable energy systems to further enhance their economical sustainability. This paper presents a comparative reliability study between a typical BDIPT system and an individually controlled segmented BDIPT system. Steady state thermal simulation results are provided for different output power levels...... for a 1.5 kW BDIPT system in a MATLAB/Simulink environment. Reliability parameters such as failure rate and mean time between failures (MTBF) are compared between the two systems. A nonlinear programming (NP) model is developed for optimizing charging schedule for a stationery EV. A case study of EV...

  2. Reliability assessment of emergency exhaust system in a pool-type research reactor

    International Nuclear Information System (INIS)

    Khan, S.A.

    1991-01-01

    The reliability of an extract system in a swimming-pool-type research reactor has been assessed. A global fault-tree analysis technique has been utilized. The basic event reliability data is based on both generic and reactor specific informations. The unavailability of the extract system is quantified in terms of the unavailability of the various functional requirements of the system. The unavailability is expressed as the probability of failure on demand. The computer system unavailability is determined from the minimal cutsets of the system. It is found that only three events have a major contribution to the top event, i.e., failures of compressed air supply, electric power supply and solenoid valve. A sensitivity analysis is performed to show the effects of variations in the data values of the dominant cutsets. An uncertainty analysis was also performend on the fault tree. The evaluations show that the reactor extract system lacks diversity and redundance in most of its components. It is tolerant of most minor degradations, as these are taken care of by the operating policies and procedures. However, it can not tolerate common cause failures, e.g. simultaneous compressed air and electric power supply failure. Based upon the results obtained, some recommendations are made. (orig.)

  3. Electrical machines diagnosis

    CERN Document Server

    Trigeassou, Jean-Claude

    2013-01-01

    Monitoring and diagnosis of electrical machine faults is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives.This book provides a survey of the techniques used to detect the faults occurring in electrical drives: electrical, thermal and mechanical faults of the electrical machine, faults of the static converter and faults of the energy storage unit.Diagnosis of faults occurring in electrical drives is an essential part of a global monitoring system used to improve reliability and serviceability. This diagnosis is perf

  4. Staff Report to the Secretary on Electricity Markets and Reliability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    Energy Secretary Rick Perry issued a memo in April of 2017 requesting a study and directing his staff to develop a report to include an assessment of the reliability and resilience of the electric grid and an overview of the evolution of electricity markets. Various factors have emerged over the past 15 years which have impacted power supply and demand in different ways. This study, prepared by experts throughout the Department, contains a comprehensive analysis of these factors and the corresponding data, and presents a series of recommendations meant to inform and guide policy makers, regulators, and the general public. Potential areas for further research are also presented.

  5. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  6. Increasing the reliability of electric energy supply to consumers in ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Barta, Ioan; Hanes, Marian . E-mail electrica@romag.ro

    2004-01-01

    Full text: This work aims at achieving an analysis of time evolution of the status of electrical installations, their performances and reliability, at describing the refurbishment measures adopted, at assessing the efficiency of these measures and also to suggest solutions for improving the reliability in the electric energy supply of ROMAG-PROD Heavy Water Plant. The analysis started from the original design, the manner the electrical installations were mounted, the technological level of this equipment and gives an evaluation of the deficiencies and the evolution of incidents occurred during the operation period. On the basis of the experience gathered one advances new items for equipment renewing and refurbishment of electric installations which together with the existing ones would ensure an electric energy supply more secure and efficient, leading directly to a more safe and efficient operation of the ROMAG-PROD Heavy Water Plant. In this work the incidents of electric energy nature which occurred are analyzed, the equipment which generated events identified and measures to solve these problems proposed

  7. 18 CFR 40.2 - Mandatory Reliability Standards.

    Science.gov (United States)

    2010-04-01

    ...-POWER SYSTEM § 40.2 Mandatory Reliability Standards. (a) Each applicable user, owner or operator of the Bulk-Power System must comply with Commission-approved Reliability Standards developed by the Electric... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mandatory Reliability...

  8. Natural-gas-powered thermoelectricity as a reliability factor in the Brazilian electric sector

    International Nuclear Information System (INIS)

    Fernandes, E.; Oliveira, J.C.S. de; de Oliveira, P.R.; Alonso, P.S.R.

    2008-01-01

    The introduction of natural-gas-powered thermoelectricity into the Brazilian generation sector can be considered as a very complex energy, economic, regulatory and institutional revision. Brazil is a country with very specific characteristics in electricity generation, as approximately 80% of the generating capacity is based on hydroelectricity, showing strong dependency on rain and management of water reservoirs. A low rate of investment in the Brazilian Electricity Industry in the period of 1995-2000, associated with periods of low rainfall, led to a dramatic lowering of the water stocks in the reservoirs. With this scenario and the growing supply of natural gas, both from within Brazil and imported, natural gas thermal electric plants became a good option to diversify the electrical supply system. In spite of the Brazilian Government's efforts to install such plants, the country was faced with severe electricity rationing in 2001. The objective of this work is to show the need to continue with the implementation of natural gas thermal electricity projects, in a manner that allows flexibility and guarantees greater working reliability for the entire Brazilian electricity sector. Taking into account the world trend towards renewable energy, the perspectives of usage of biofuels in the Brazilian Energy Matrix and in electrical energy generation are also analyzed. The very issue of electrical power efficiency in Brazil and its challenges and strategic proposals from the standpoint of Government Programs and results provided so far are presented. The technological constraints in order to put on stream the thermal electric plants are also analyzed. The article concludes with a positive perspective of the usage of natural gas as to be the third pillar in the Brazilian Energy Matrix for the years to come

  9. Extension planning for electrical energy supply systems

    International Nuclear Information System (INIS)

    Bieselt, R.

    1975-01-01

    In the future as well as in the past, and in particular in the next decade a considerable increase in electrical energy demand can be expected. To satisfy this demand in a reliable and sufficient manner will force the utilities to invest large sums of money for the operation and the extension of power generation and distribution plants. The size of these investments justifies the search for more and more comprehensive and at the same time more detailed planning methods. With the help of system analysis a planning model for the electricity supply industry of a major supply area will be designed. (orig./RW) [de

  10. 46 CFR 169.619 - Reliability.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Reliability. 169.619 Section 169.619 Shipping COAST... Electrical Steering Systems § 169.619 Reliability. (a) Except where the OCMI judges it impracticable, the... be below that necessary for the safe navigation of the vessel. (c) The strength and reliability of...

  11. 78 FR 7773 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Science.gov (United States)

    2013-02-04

    ... Board of Trustees Meetings, Board of Trustees Compliance Committee, Corporate Governance and Human Resources Committee, and Standards Oversight and Technology Committee Meetings. Hotel del Coronado, 1500... Association, Inc. v. Western Electric Coordinating Council and North American Electric Reliability Corporation...

  12. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  13. INCREASING RELIABILITY OF STEPPED AUTOMATIC STARTING AND RHEOSTAT BREAKING SYSTEM OF ELECTRIC TRAINS ER9T AND EPL9T

    Directory of Open Access Journals (Sweden)

    N. H. Visin

    2010-06-01

    Full Text Available The article examines transitional processes in the power circuit of tractive motors and their influence on the work of stepped automatic starting of electric trains ER9T and EPL9T. The recommendations for increasing the reliability of operation of multiple-unit rolling stock are proposed.

  14. Radiation durability and functional reliability of polymeric materials in space systems

    International Nuclear Information System (INIS)

    Haruvy, Y.

    1990-01-01

    Polymeric materials are preferred for the light-weight construction of space-systems. Materials in space systems are required to fulfill a complete set of specifications, at utmost reliability, throughout the whole period of service in space, while being exposed to the hazardous influence of the space environment. The major threats of the space environment in orbits at the geostationary altitude (GSO) arise from ionizing radiations, the main constituents of which are highly energetic protons (affecting mainly the surface) and fast electrons (which produce the main threat to the electronic components). The maximum dose of ionizing radiation (within the limits of uncertainty of the calculations) at the surface of a material mounted on a space system, namely the ''Skin-Dose'', is ca. 2500 Mrads/yr. Space systems such as telecommunication satellites are planned to serve for prolonged periods of 30 years and longer. The cumulative predicted dose of ionizing-radiation over such periods presents a severe threat of chemical degradation to most of the polymeric construction materials commonly utilized in space systems. The reliability of each of the polymeric materials must be evaluated in detail, considering each of the relevant typical threats, such as ionizing-radiation, UV radiation, meteoroides flux, thermal cycling and ultra-high vacuum. For each of the exposed materials, conservation of the set of functional characteristics such as mechanical integrity, electrical and thermo-optical properties, electrical conductivity, surface charging and outgassing properties, which may cause contamination of neighboring systems, is evaluated. The reliability of functioning of the materials exposed to the space environment can thus be predicted, utilizing data from the literature, experimental results reported from space flights and laboratory simulations, and by chemical similarity of untested polymers to others. (author)

  15. System Statement of Tasks of Calculating and Providing the Reliability of Heating Cogeneration Plants in Power Systems

    Science.gov (United States)

    Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.

    2018-01-01

    A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.

  16. 78 FR 44909 - Regional Reliability Standard BAL-002-WECC-2-Contingency Reserve

    Science.gov (United States)

    2013-07-25

    ...\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242...-002-WECC-2 (Contingency Reserve). The North American Electric Reliability Corporation (NERC) and... (Technical Information), Office of Electric Reliability, Division of Reliability Standards, Federal Energy...

  17. Automating a spacecraft electrical power system using expert systems

    Science.gov (United States)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  18. A Survey of Wireless Communications for the Electric Power System

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  19. Electric power supply and demand 1979 to 1988 for the contiguous United States as projected by the Regional Electric Reliability Councils in their April 1, 1979 long-range coordinated planning reports to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Savage, N.; Graban, W.

    1979-12-01

    Information concerning bulk electric power supply and demand is summarized and reviewed. Electric-utility power-supply systems are composed of power sources, transmission and distribution facilities, and users of electricity. In the United States there are three such systems of large geographic extent that together cover the entire country. Subjects covered are: energy forecasts, peak demand forecasts, generating-capacity forecasts, purchases and sales of capacity, and transmission. Extensive data are compiled in 17 tables. Information in two appendices includes a general description of the Regional Electric Reliability Councils and US generating capacity as of June 30, 1979. 3 figures, 17 tables.

  20. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  1. Information Support of Optimal Control of Modes of Electric Systems with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Michalina Gryniewicz-Jaworska

    2017-12-01

    Full Text Available To provide necessary quality of electric energy and reliable supply and reduce environmental contamination as a result of energy units operation, renewable sources of energy (RSE, in particular solar electric stations (SES, wind electric stations (WES and small hydropower stations (SHES are intensively developed. The paper considers the conditions of optimality of renewable sources of energy (RSE functioning in electric systems, controllability of which is limited by the impact of non-stable weather conditions. The influence of control system information support on the efficiency of RSE usage is shown.

  2. Electrical energy market management in deregulated power system

    International Nuclear Information System (INIS)

    Abady, A. F.; Niknam, T.

    2003-01-01

    For many decades, vertically integrated electric utilities monopolized the way they control, sell and distribute electricity to customers in their service territories. In this monopoly, each utility managed three main components of the system: generation, transmission and distribution. Analogous to perceived competitions in airline, communication and natural gas industries which demonstrated that vertically integrated monopolies could not provide services as efficiently as competitive firms, the electric power industry plans to improve its efficiency by providing a more reliable energy at least cost to customers. A competition is guaranteed by establishing a restructured environment in which customers could choose to buy from different suppliers and change suppliers as they wish in order to pay market base rates. This paper is dealing with progressive approach of restructuring in power and introduce ISO, its functions and model of electrical energy markets

  3. Reliability and optimization of structural systems

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1987-01-01

    The proceedings contain 28 papers presented at the 1st working conference. The working conference was organized by the IFIP Working Group 7.5. The proceedings also include 4 papers which were submitted, but for various reasons not presented at the working conference. The working conference was attended by 50 participants from 18 countries. The conference was the first scientific meeting of the new IFIP Working Group 7.5 on 'Reliability and Optimization of Structural Systems'. The purpose of the Working Group 7.5 is to promote modern structural system optimization and reliability theory, to advance international cooperation in the field of structural system optimization and reliability theory, to stimulate research, development and application of structural system optimization and reliability theory, to further the dissemination and exchange of information on reliability and optimization of structural system optimization and reliability theory, and to encourage education in structural system optimization and reliability theory. (orig./HP)

  4. Market system infrastructure: a major issue for the power system reliability

    International Nuclear Information System (INIS)

    Passelergue, J.Ch.

    2005-01-01

    The restructuring and opening of the electricity market made more complex the power system operation. While the system operator does not own anymore the generation assets, a perfect coordination with the market players is critical to guarantee the power system operation reliability. The market platforms, which are the main links between the system operator and the market players, must include communication means guaranteeing an uninterrupted service. The data-processing infrastructure must thus be designed to ensure the market system accessibility, as well as the effective exchange of data. Moreover, the market systems must facilitate the market operation and monitoring. They must allow the definition of a business process that, on the one hand, allows sequencing the users' actions, and that, on the other hand, provides the errors detected during the data-processing. Lastly, the market systems must facilitate the putting in place and follow-up by the market operator of operational procedures covering all the situations the operator can have to face. (author)

  5. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  6. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  7. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  8. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia; Grelle, Austin

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), a systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.

  9. French power system reliability report 2008

    International Nuclear Information System (INIS)

    Tesseron, J.M.

    2009-06-01

    The reliability of the French power system was fully under control in 2008, despite the power outage in the eastern part of the Provence-Alpes-Cote d'Azur region on November 3, which had been dreaded for several years, since it had not been possible to set up a structurally adequate network. Pursuant to a consultation meeting, the reinforcement solution proposed by RTE was approved by the Minister of Energy, boding well for greater reliability in future. Based on the observations presented in this 2008 Report, RTE's Power System Reliability Audit Mission considers that no new recommendations are needed beyond those expressed in previous reliability reports and during reliability audits. The publication of this yearly report is in keeping with RTE's goal to promote the follow-up over time of the evolution of reliability in its various aspects. RTE thus aims to contribute to the development of reliability culture, by encouraging an improved assessment by the different players (both RTE and network users) of the role they play in building reliability, and by advocating the taking into account of reliability and benchmarking in the European organisations of Transmission System Operators. Contents: 1 - Brief overview of the evolution of the internal and external environment; 2 - Operating situations encountered: climatic conditions, supply / demand balance management, operation of interconnections, management of internal congestion, contingencies affecting the transmission facilities; 3 - Evolution of the reliability reference guide: external reference guide: directives, laws, decrees, etc, ETSO, UCTE, ENTSO-E, contracting contributing to reliability, RTE internal reference guide; 4 - Evolution of measures contributing to reliability in the equipment field: intrinsic performances of components (generating sets, protection systems, operation PLC's, instrumentation and control, automatic frequency and voltage controls, transmission facilities, control systems, load

  10. 77 FR 59745 - Delegation of Authority Regarding Electric Reliability Organization's Budget, Delegation...

    Science.gov (United States)

    2012-10-01

    ...; Order No. 766] Delegation of Authority Regarding Electric Reliability Organization's Budget, Delegation... rule. SUMMARY: The Commission is issuing this Final Rule to revise its delegations of authority to... delegation agreements, and ERO policies and procedures. DATES: This rule is effective October 1, 2012. FOR...

  11. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  12. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  13. Reliability and maintainability assessment factors for reliable fault-tolerant systems

    Science.gov (United States)

    Bavuso, S. J.

    1984-01-01

    A long term goal of the NASA Langley Research Center is the development of a reliability assessment methodology of sufficient power to enable the credible comparison of the stochastic attributes of one ultrareliable system design against others. This methodology, developed over a 10 year period, is a combined analytic and simulative technique. An analytic component is the Computer Aided Reliability Estimation capability, third generation, or simply CARE III. A simulative component is the Gate Logic Software Simulator capability, or GLOSS. The numerous factors that potentially have a degrading effect on system reliability and the ways in which these factors that are peculiar to highly reliable fault tolerant systems are accounted for in credible reliability assessments. Also presented are the modeling difficulties that result from their inclusion and the ways in which CARE III and GLOSS mitigate the intractability of the heretofore unworkable mathematics.

  14. Concept report: Microprocessor control of electrical power system

    Science.gov (United States)

    Perry, E.

    1977-01-01

    An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.

  15. Establishment of windows-based load management system for electricity cost savings in competitive electricity markets

    International Nuclear Information System (INIS)

    Chung, K.H.; Kim, B.H.; Hur, D.

    2007-01-01

    For electricity markets to function in a truly competitive and efficient manner, it is not enough to focus solely on improving the efficiencies of power supply. To recognize price-responsive load as a reliability resource, the customer must be provided with price signals and an instrument to respond to these signals, preferably automatically. This paper attempts to develop the Windows-based load management system in competitive electricity markets, allowing the user to monitor the current energy consumption or billing information, to analyze the historical data, and to implement the consumption strategy for cost savings with nine possible scenarios adopted. Finally, this modeling framework will serve as a template containing the basic concepts that any load management system should address. (author)

  16. A Review on the Faults of Electric Machines Used in Electric Ships

    OpenAIRE

    Dionysios V. Spyropoulos; Epaminondas D. Mitronikas

    2013-01-01

    Electric propulsion systems are today widely applied in modern ships, including transport ships and warships. The ship of the future will be fully electric, and not only its propulsion system but also all the other services will depend on electric power. The robust and reliable operation of the ship’s power system is essential. In this work, a review on the mechanical and electrical faults of electric machines that are used in electric ships is presented.

  17. Equipment design for reliability testing of protection system

    International Nuclear Information System (INIS)

    Situmorang, Johnny; Tjahjono, H.; Santosa, A. Z.; Tjahjani, S.DT.; Ismu, P.H; Haryanto, D.; Mulyanto, D.; Kusmono, S

    1999-01-01

    The equipment for reliability testing of cable of protection system has been designed as a a furnace with the electric heater have a 4 kW power, and need time 10 minute to reach the designed maximum temperature 3000C. The dimension of furnace is 800 mm diameter and 2000 mm length is isolated use rockwool isolator and coated by aluminium. For the designed maximum temperature the surface temperature is 78 0c. Assemble of specimens is arranged horizontally in the furnace. The failure criteria will be defined based on the behaviour of the load circuit in each line of cable specimens

  18. Reliability considerations of a fuel cell backup power system for telecom applications

    Science.gov (United States)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  19. Optimization of Reliability Centered Maintenance Bassed on Maintenance Costs and Reliability with Consideration of Location of Components

    Directory of Open Access Journals (Sweden)

    Mahdi Karbasian

    2011-03-01

    Full Text Available The reliability of designing systems such as electrical and electronic circuits, power generation/ distribution networks and mechanical systems, in which the failure of a component may cause the whole system failure, and even the reliability of cellular manufacturing systems that their machines are connected to as series are critically important. So far approaches for improving the reliability of these systems have been mainly based on the enhancement of inherent reliability of any system component or increasing system reliability based on maintenance strategies. Also in some of the resources, only the influence of the location of systems' components on reliability is studied. Therefore, it seems other approaches have been rarely applied. In this paper, a multi criteria model has been proposed to perform a balance among a system's reliability, location costs, and its system maintenance. Finally, a numerical example has been presented and solved by the Lingo software.

  20. Cost/benefit assessment in electric power systems

    International Nuclear Information System (INIS)

    Oteng-Adjei, J.

    1990-01-01

    The basic function of a modern power system is to satisfy the system load requirements as economically as possible and with a reasonable assurance of continuity and quality. The question of what is reasonable can be examined in terms of the costs and the worth to the consumer associated with providing an adequate supply. The process of preparing reliability worth estimates based on customer cost-of-interruption data is presented. These data can be derived for a particular utility service area and are used to determine appropriate customer damage functions. These indicators can be used with the basic loss of energy expectation (LOEE) index to obtain a factor that can be utilized to relate the customer losses to the worth of electric service reliability. This factor is designated as the interrupted energy assessment rate (IEAR). The developed IEAR values can be utilized in both generating capacity and composite generation and transmission system assessment. Methods for using these estimates in power system optimization at the planning stages are described and examples are used to illustrate the procedures. 106 refs., 77 figs., 64 tabs

  1. Application of fault tree analysis for customer reliability assessment of a distribution power system

    International Nuclear Information System (INIS)

    Abdul Rahman, Fariz; Varuttamaseni, Athi; Kintner-Meyer, Michael; Lee, John C.

    2013-01-01

    A new method is developed for predicting customer reliability of a distribution power system using the fault tree approach with customer weighted values of component failure frequencies and downtimes. Conventional customer reliability prediction of the electric grid employs the system average (SA) component failure frequency and downtime that are weighted by only the quantity of the components in the system. These SA parameters are then used to calculate the reliability and availability of components in the system, and eventually to find the effect on customer reliability. Although this approach is intuitive, information is lost regarding customer disturbance experiences when customer information is not utilized in the SA parameter calculations, contributing to inaccuracies when predicting customer reliability indices in our study. Hence our new approach directly incorporates customer disturbance information in component failure frequency and downtime calculations by weighting these parameters with information of customer interruptions. This customer weighted (CW) approach significantly improves the prediction of customer reliability indices when applied to our reliability model with fault tree and two-state Markov chain formulations. Our method has been successfully applied to an actual distribution power system that serves over 2.1 million customers. Our results show an improved benchmarking performance on the system average interruption frequency index (SAIFI) by 26% between the SA-based and CW-based reliability calculations. - Highlights: ► We model the reliability of a power system with fault tree and two-state Markov chain. ► We propose using customer weighted component failure frequencies and downtimes. ► Results show customer weighted values perform superior to component average values. ► This method successfully incorporates customer disturbance information into the model.

  2. System reliability developments in structural engineering

    International Nuclear Information System (INIS)

    Moses, F.

    1982-01-01

    Two major limitations occur in present structural design code developments utilizing reliability theory. The notional system reliabilities may differ significantly from calibrated component reliabilities. Secondly, actual failures are often due to gross errors not reflected in most present code formats. A review is presented of system reliability methods and further new concepts are developed. The incremental load approach for identifying and expressing collapse modes is expanded by employing a strategy to identify and enumerate the significant structural collapse modes. It further isolates the importance of critical components in the system performance. Ductile and brittle component behavior and strength correlation is reflected in the system model and illustrated in several examples. Modal combinations for the system reliability are also reviewed. From these developments a system factor can be addended to component safety checking equations. Values may be derived from system behavior by substituting in a damage model which accounts for the response range from component failure to collapse. Other strategies are discussed which emphasize quality assurance during design and in-service inspection for components whose behavior is critical to the system reliability. (Auth.)

  3. Reliability of electronic systems

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2001-01-01

    Reliability techniques have been developed subsequently as a need of the diverse engineering disciplines, nevertheless they are not few those that think they have been work a lot on reliability before the same word was used in the current context. Military, space and nuclear industries were the first ones that have been involved in this topic, however not only in these environments it is that it has been carried out this small great revolution in benefit of the increase of the reliability figures of the products of those industries, but rather it has extended to the whole industry. The fact of the massive production, characteristic of the current industries, drove four decades ago, to the fall of the reliability of its products, on one hand, because the massively itself and, for other, to the recently discovered and even not stabilized industrial techniques. Industry should be changed according to those two new requirements, creating products of medium complexity and assuring an enough reliability appropriated to production costs and controls. Reliability began to be integral part of the manufactured product. Facing this philosophy, the book describes reliability techniques applied to electronics systems and provides a coherent and rigorous framework for these diverse activities providing a unifying scientific basis for the entire subject. It consists of eight chapters plus a lot of statistical tables and an extensive annotated bibliography. Chapters embrace the following topics: 1- Introduction to Reliability; 2- Basic Mathematical Concepts; 3- Catastrophic Failure Models; 4-Parametric Failure Models; 5- Systems Reliability; 6- Reliability in Design and Project; 7- Reliability Tests; 8- Software Reliability. This book is in Spanish language and has a potentially diverse audience as a text book from academic to industrial courses. (author)

  4. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  5. Research on the full life cycle management system of smart electric energy meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  6. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  7. Reliability issues : a Canadian perspective

    International Nuclear Information System (INIS)

    Konow, H.

    2004-01-01

    A Canadian perspective of power reliability issues was presented. Reliability depends on adequacy of supply and a framework for standards. The challenges facing the electric power industry include new demand, plant replacement and exports. It is expected that demand will by 670 TWh by 2020, with 205 TWh coming from new plants. Canada will require an investment of $150 billion to meet this demand and the need is comparable in the United States. As trade grows, the challenge becomes a continental issue and investment in the bi-national transmission grid will be essential. The 5 point plan of the Canadian Electricity Association is to: (1) establish an investment climate to ensure future electricity supply, (2) move government and industry towards smart and effective regulation, (3) work to ensure a sustainable future for the next generation, (4) foster innovation and accelerate skills development, and (5) build on the strengths of an integrated North American system to maximize opportunity for Canadians. The CEA's 7 measures that enhance North American reliability were listed with emphasis on its support for a self-governing international organization for developing and enforcing mandatory reliability standards. CEA also supports the creation of a binational Electric Reliability Organization (ERO) to identify and solve reliability issues in the context of a bi-national grid. tabs., figs

  8. 18 CFR 40.3 - Availability of Reliability Standards.

    Science.gov (United States)

    2010-04-01

    ... Reliability Standards. 40.3 Section 40.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT MANDATORY RELIABILITY STANDARDS FOR THE BULK-POWER SYSTEM § 40.3 Availability of Reliability Standards. The Electric Reliability...

  9. TQC works in newly-built nuclear power plant and main electric power system plannings

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa; Kawakatsu, Tadashi; Hashimoto, Yasuo

    1985-01-01

    In the Kansai Electric Power Co., Inc., TQC has been introduced to solve such major problems in nuclear power generation as the securing of nuclear power reliability, the suppression of rises in the costs, the reduction in long periods of power failure and the promotion in siting of nuclear power plants. It is thus employed as a means of the ''creation of a slim and tough business constitution''. The state of activities in Kansai Electric are described in quality assurance of a newly-built nuclear power plant and in raising the reliability of the main electric power system to distribute the generated nuclear power and further the future prospects are explained. (Mori, K.)

  10. Design of power converter in DFIG wind turbine with enhanced system-level reliability

    DEFF Research Database (Denmark)

    Zhou, Dao; Zhang, Guanguan; Blaabjerg, Frede

    2017-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms...... margin. It can be seen that the B1 lifetime of the grid-side converter and the rotor-side converter deviates a lot by considering the electrical stresses, while they become more balanced by using an optimized reliable design. The system-level lifetime significantly increases with an appropriate design...

  11. Reliability of Power Units in Poland and the World

    OpenAIRE

    Józef Paska

    2015-01-01

    One of a power system’s subsystems is the generation subsystem consisting of power units, the reliability of which to a large extent determines the reliability of the power system and electricity supply to consumers. This paper presents definitions of the basic indices of power unit reliability used in Poland and in the world. They are compared and analysed on the basis of data published by the Energy Market Agency (Poland), NERC (North American Electric Reliability Corporation – USA), ...

  12. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.

    Science.gov (United States)

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur

    2017-09-22

    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Challenges to China's transition to a low carbon electricity system

    Energy Technology Data Exchange (ETDEWEB)

    Kahrl, Fredrich, E-mail: fkahrl@berkeley.edu [Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA 94720 (United States); Williams, Jim [Energy and Environmental Economics, Inc., 101 Montgomery Street, 16th Floor, San Francisco, CA 94104 (United States); Monterey Institute of International Studies, 460 Pierce Street, Monterey, CA 93940 (United States); Ding Jianhua [Energy and Environmental Economics, Inc., 101 Montgomery Street, 16th Floor, San Francisco, CA 94104 (United States); Hu Junfeng [School of Economics and Business Administration, North China Electric Power University, Beijing 102206 (China)

    2011-07-15

    We examine the challenges to China's transition to a low carbon electricity system, in which renewable energy would play a significant role. China's electricity system currently lacks the flexibility in planning, operations, and pricing to respond to conflicting pressures from demand growth, rising costs, and environmental mandates in a way that simultaneously maintains reliability, decarbonizes the system, and keeps prices within acceptable bounds. Greater flexibility crucially requires the ability to more systematically and transparently manage and allocate costs. This will require re-orientating sector institutions still rooted in central planning, and strengthening independent regulation. Some of the necessary changes require fundamental political and legal reforms beyond the scope of energy policy. However, the system's flexibility can still be increased through the development of traditional planning and regulatory tools and approaches, such as an avoided cost basis for energy efficiency investments, more integrated planning to improve the coordination of generation, transmission, and demand-side investments, and a transparent ratemaking process. The judicious application of OECD electricity sector experience and skills can support these developments. - Research Highlights: > China's electricity system currently lacks the flexibility to integrate renewables and reduce CO{sub 2} emissions on a large scale at an acceptable cost and level of reliability. > The challenges to increased flexibility are more institutional than technological. > Chinese government agencies need new approaches to basic power system planning and ratemaking. > OECD countries can help address these challenges through the transfer of 'soft' technologies.

  14. Exploitation examination of reliability of coal dust systems

    International Nuclear Information System (INIS)

    Dojchinovski, Ilija; Trajkovski, Kole

    1997-01-01

    Designers and operators wish is, long, failure free operation at designed parameters of every system. Always we know the system start up time, but we don't know how long this system will operate successfully. Because of that in this article is given a method how, step by step, to determine the reliability of the system. Reliability parameters are obtained from experimental and operational data. When reliability parameters are determined then it is very easy to compare reliability of similar systems, for example excavators, or different systems, such as truck and rubber band transport system. Practical use of the theory of reliability is by purchasing of the systems when manufacturers have to have and present reliability parameters and on this way we can decide which system satisfies our needs regarding the quality-price-reliability. Reliability can be practically used in system operation where: 1) system reliability is maintained with proper start, use and shutdown of the system; 2) a system reliability is maintained with good maintenance organization; 3) a system reliability is maintained with innovations and improvements with final purpose removing of the imperfections experienced through the operation. Reliability is very important parameter in power generation plants. (Author)

  15. Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Elliston, Ben; Diesendorf, Mark; MacGill, Iain

    2012-01-01

    As a part of a program to explore technological options for the transition to a renewable energy future, we present simulations for 100% renewable energy systems to meet actual hourly electricity demand in the five states and one territory spanned by the Australian National Electricity Market (NEM) in 2010. The system is based on commercially available technologies: concentrating solar thermal (CST) power with thermal storage, wind, photovoltaic (PV), existing hydro and biofuelled gas turbines. Hourly solar and wind generation data are derived from satellite observations, weather stations, and actual wind farm outputs. Together CST and PV contribute about half of total annual electrical energy supply. A range of 100% renewable energy systems for the NEM are found to be technically feasible and meet the NEM reliability standard. The principal challenge is meeting peak demand on winter evenings following overcast days when CST storage is partially charged and sometimes wind speeds are low. The model handles these circumstances by combinations of an increased number of gas turbines and reductions in winter peak demand. There is no need for conventional base-load power plants. The important parameter is the reliability of the whole supply-demand system, not the reliability of particular types of power plants. - Highlights: ► We simulate 100% renewable electricity in the Australian National Electricity Market. ► The energy system comprises commercially available technologies. ► A range of 100% renewable electricity systems meet the reliability standard. ► Principal challenge is meeting peak demand on winter evenings. ► The concept of ‘base-load’ power plants is found to be redundant.

  16. Reliability through markets in Ontario : submission by the Independent Electricity Market Operator to the Minister of Energy's Consultation Process

    International Nuclear Information System (INIS)

    2003-01-01

    For the past five years, Ontario has invested $1 billion to restructure and open its electricity market to competition. In recent months, and in response to residential consumers pricing concerns, the Independent Electricity Market Operator (IMO) transferred credits to local distribution companies allowing them to issue $75 rebates to all affected customers as of December 1, 2002, and to bill low-volume and other designated customers at a rate of 4.3 cents per kilowatt hour for the commodity portion of their bills. This report addresses the concern that price responsiveness will be lost for those parts of the market with fixed prices. It was noted that the reliability of the power system could be placed at risk if the range of customers with fixed prices is broadened. Fixed prices would also jeopardize the province's ability to attract new supply and enhance competition in the electricity sector. The IMO believes that price responsiveness in the wholesale market is crucial to the reliability of the electricity system and recommends that a plan for any additional fixed pricing should include a clearly defined phase-out over the period ending in 2006 as new supply comes on-line. The IMO emphasizes that the lack of price responsiveness to the market, particularly in peak energy demand periods, is equivalent to adding hundreds of MW to the load. The report presents lessons learned in other jurisdictions and highlights noteworthy considerations such as the market power mitigation agreement, improving competition, a phased-in approach, and demand side initiatives

  17. Incorporating reliability evaluation into the uncertainty analysis of electricity market price

    International Nuclear Information System (INIS)

    Kang, Chongqing; Bai, Lichao; Xia, Qing; Jiang, Jianjian; Zhao, Jing

    2005-01-01

    A novel model and algorithm for analyzing the uncertainties in electricity market is proposed in this paper. In this model, bidding decision is formulated as a probabilistic model that takes into account the decision-maker's willingness to bid, risk preferences, the fluctuation of fuel-price, etc. At the same time, generating unit's uncertain output model is considered by its forced outage rate (FOR). Based on the model, the uncertainty of market price is then analyzed. Taking the analytical results into consideration, not only the reliability of the power system can be conventionally analyzed, but also the possible distribution of market prices can be easily obtained. The probability distribution of market prices can be further used to calculate the expected output and the sales income of generating unit in the market. Based on these results, it is also possible to evaluate the risk involved by generating units. A simple system with four generating units is used to illustrate the proposed algorithm. The proposed algorithm and the modeling technique are expected to helpful to the market participants in making their economic decisions

  18. Advances in reliability and system engineering

    CERN Document Server

    Davim, J

    2017-01-01

    This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.

  19. Automated Energy Distribution and Reliability System: Validation Integration - Results of Future Architecture Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Buche, D. L.

    2008-06-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  20. Reliability of large and complex systems

    CERN Document Server

    Kolowrocki, Krzysztof

    2014-01-01

    Reliability of Large and Complex Systems, previously titled Reliability of Large Systems, is an innovative guide to the current state and reliability of large and complex systems. In addition to revised and updated content on the complexity and safety of large and complex mechanisms, this new edition looks at the reliability of nanosystems, a key research topic in nanotechnology science. The author discusses the importance of safety investigation of critical infrastructures that have aged or have been exposed to varying operational conditions. This reference provides an asympt

  1. Power system reliability memento; Memento de la surete du systeme electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The reliability memento of the French power system (national power transmission grid) is an educational document which purpose is to point out the role of each one as regards power system operating reliability. This memento was first published in 1999. Extensive changes have taken place since then. The new 2002 edition shows that system operating reliability is as an important subject as ever: 1 - foreword; 2 - system reliability: the basics; 3 - equipment measures taken in order to guarantee the reliability of the system; 4 - organisational and human measures taken to guarantee the reliability of the system; appendix 1 - system operation: basic concepts; appendix 2 - guiding principles governing the reliability of the power system; appendix 3 - international associations of transmission system operators; appendix 4 - description of major incidents.

  2. Reliability evaluation of power systems

    CERN Document Server

    Billinton, Roy

    1996-01-01

    The Second Edition of this well-received textbook presents over a decade of new research in power system reliability-while maintaining the general concept, structure, and style of the original volume. This edition features new chapters on the growing areas of Monte Carlo simulation and reliability economics. In addition, chapters cover the latest developments in techniques and their application to real problems. The text also explores the progress occurring in the structure, planning, and operation of real power systems due to changing ownership, regulation, and access. This work serves as a companion volume to Reliability Evaluation of Engineering Systems: Second Edition (1992).

  3. Design for reliability in power electronics in renewable energy systems – status and future

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede; Ma, Ke

    2013-01-01

    Advances in power electronics enable efficient and flexible interconnection of renewable sources, loads and electric grids. While targets concerning efficiency of power converters are within reach, recent research endeavors to predict and improve their reliability to ensure high availability, low...... maintenance costs, and herefore, low Levelized-Cost-of-Energy (LCOE) of renewable energy systems. This paper presents the prior-art Design for Reliability (DFR) process for power converters and addresses the paradigm shift to Physics-of-Failure (PoF) approach and mission profile based analysis. Moreover...

  4. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  5. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  6. System reliability of corroding pipelines

    International Nuclear Information System (INIS)

    Zhou Wenxing

    2010-01-01

    A methodology is presented in this paper to evaluate the time-dependent system reliability of a pipeline segment that contains multiple active corrosion defects and is subjected to stochastic internal pressure loading. The pipeline segment is modeled as a series system with three distinctive failure modes due to corrosion, namely small leak, large leak and rupture. The internal pressure is characterized as a simple discrete stochastic process that consists of a sequence of independent and identically distributed random variables each acting over a period of one year. The magnitude of a given sequence follows the annual maximum pressure distribution. The methodology is illustrated through a hypothetical example. Furthermore, the impact of the spatial variability of the pressure loading and pipe resistances associated with different defects on the system reliability is investigated. The analysis results suggest that the spatial variability of pipe properties has a negligible impact on the system reliability. On the other hand, the spatial variability of the internal pressure, initial defect sizes and defect growth rates can have a significant impact on the system reliability.

  7. Reliability Estimation for Digital Instrument/Control System

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaguang; Sydnor, Russell [U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

    2011-08-15

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method.

  8. Reliability Estimation for Digital Instrument/Control System

    International Nuclear Information System (INIS)

    Yang, Yaguang; Sydnor, Russell

    2011-01-01

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method

  9. 78 FR 24107 - Version 5 Critical Infrastructure Protection Reliability Standards

    Science.gov (United States)

    2013-04-24

    ...-Power System.\\6\\ In Order No. 706, the Commission approved eight CIP Reliability Standards (CIP-002-1... documentation requirements to allow entities to focus on the reliability and security of the Bulk Power System... reliability of the bulk electric system. Requirement R1 includes controls to protect data that would be useful...

  10. The development of the Czech Republic electric industry - Reliable, safe and responsible source mix

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Miroslav; Jez, Jiri; Ptacek, Jiri

    2010-09-15

    The paper focuses on the development of the Czech Republic electric industry in close perspective and the prediction of its expected future in period up to 2030. The goal of the paper is to specify methods and procedures applied within periodic assessment of Czech electric power sector balance outlook for the State authorities. A necessity to respect economic recession and politicization of the issue of power sector development has invoked that these items are added to commonly used procedures. A key criterion is the reliable and safe electricity supply by adequate source mix for acceptable prices and environmental aspects.

  11. To an optimal electricity supply system. Possible bottlenecks in the development to an optimal electricity supply system in northwest Europe

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; De Joode, J.; Scheepers, M.J.J.

    2006-02-01

    It is uncertain how the electricity system in Europe, and in particular northwest Europe and the Netherlands, will develop in the next fifteen years. The main objective of this report is to identify possible bottlenecks that may hamper the northwest European electricity system to develop into an optimal system in the long term (until 2020). Subsequently, based on the identified bottlenecks, the report attempts to indicate relevant market response and policy options. To be able to identify possible bottlenecks in the development to an optimal electricity system, an analytical framework has been set up with the aim to identify possible (future) problems in a structured way. The segments generation, network, demand, balancing, and policy and regulation are analysed, as well as the interactions between these segments. Each identified bottleneck is assessed on the criteria reliability, sustainability and affordability. Three bottlenecks are analysed in more detail: (1) The increasing penetration of distributed generation (DG) and its interaction with the electricity network. Dutch policy could be aimed at: (a) Gaining more insight in the costs and benefits that result from the increasing penetration of DG; (b) Creating possibilities for DSOs to experiment with innovative (network management) concepts; (c) Introducing locational signals; and (d) Further analyse the possibility of ownership unbundling; (2) The problem of intermittency and its implications for balancing the electricity system. Dutch policy could be aimed at: (a) Creating the environment in which the market is able to respond in an efficient way; (b) Monitoring market responses; (c) Market coupling; and (d) Discussing the timing of the gate closure; and (3) Interconnection and congestion issues in combination with generation. Dutch policy could be aimed at: (a) Using the existing interconnection capacity as efficient as possible; (b) Identifying the causes behind price differences; and (c) Harmonise market

  12. 78 FR 72755 - Version 5 Critical Infrastructure Protection Reliability Standards

    Science.gov (United States)

    2013-12-03

    ... impact on Bulk-Power System reliability. However, the Commission is concerned that the proposed language... focus on the reliability and security of the Bulk Power System.'' \\26\\ Accordingly, NERC requests that...-002-5 through CIP-011-1, submitted by the North American Electric Reliability Corporation (NERC), the...

  13. Non-contact magnetic coupled power and data transferring system for an electric vehicle

    International Nuclear Information System (INIS)

    Matsuda, Y.; Sakamoto, H.

    2007-01-01

    We have developed a system which transmits electric power and communication data simultaneously in a non-contact method using a magnetic coupling coil. Already, we are developing the fundamental technology of a non-contact charging system, and this is applied in electric shavers, electric toothbrushes, etc. Moreover, basic experiments are being conducted for applying this non-contact charging system to electric equipments such as an electric vehicle (EV), which is a zero emission vehicle and environmentally excellent and will be the transportation means of the next generation. The technology can also be applied in other electronic equipment, etc. However, since the power supply route for these individual devices is independent, the supply system is complicated. EV also has to perform the transmission of electric power and the transmission of information (data), such as the amount of the charge, in a separate system, and thus is quite complicated. In this study, by performing simultaneously the transmission of electric power and information (data) using magnetic coupling technology in which it does not contact, the basic experiment aimed at attaining and making unification of a system simple was conducted, and the following good results were obtained: (1) Electric power required for load can be transmitted easily by non-contact. (2) A signal can easily be transmitted bidirectionally by non-contact. (3) This system is reliable, and is widely applicable

  14. The spanish electric system operation. The contribution of nuclear generation

    International Nuclear Information System (INIS)

    Duvison, M. R.; Torre, M. de la

    2009-01-01

    Operation of an electric system encloses the collection of activities which extend from affective generation dispatch to issuing instruction for network manoeuvring along with international exchange scheduling. Based on the market mechanisms that apply to energy transactions, these tasks guarantee the security of supply end consumers, which is the final goal of the System Operators actions. In Spain this function is executed by Red Electrica de Espana (REE) since 1985, after being constituted as the first Transmission and System Operator (TSO) in the world. Additionally the variations to Law 54/1997 introduced by law 17/2007 also assign REE the function of sole transmission owner in the Spanish electric system. In order to achieve the aforementioned goal, nuclear energy plays in Spain a fundamental role in electric generation thanks to its high availability rate, the predictability of its fuel recharges, its high operational reliability, its geographical location, the stability of its costs and the security of supply given by the possibility of on-site fuel storage in the power plant. (Author)

  15. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  16. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  17. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  18. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  19. A sequential Monte Carlo model of the combined GB gas and electricity network

    International Nuclear Information System (INIS)

    Chaudry, Modassar; Wu, Jianzhong; Jenkins, Nick

    2013-01-01

    A Monte Carlo model of the combined GB gas and electricity network was developed to determine the reliability of the energy infrastructure. The model integrates the gas and electricity network into a single sequential Monte Carlo simulation. The model minimises the combined costs of the gas and electricity network, these include gas supplies, gas storage operation and electricity generation. The Monte Carlo model calculates reliability indices such as loss of load probability and expected energy unserved for the combined gas and electricity network. The intention of this tool is to facilitate reliability analysis of integrated energy systems. Applications of this tool are demonstrated through a case study that quantifies the impact on the reliability of the GB gas and electricity network given uncertainties such as wind variability, gas supply availability and outages to energy infrastructure assets. Analysis is performed over a typical midwinter week on a hypothesised GB gas and electricity network in 2020 that meets European renewable energy targets. The efficacy of doubling GB gas storage capacity on the reliability of the energy system is assessed. The results highlight the value of greater gas storage facilities in enhancing the reliability of the GB energy system given various energy uncertainties. -- Highlights: •A Monte Carlo model of the combined GB gas and electricity network was developed. •Reliability indices are calculated for the combined GB gas and electricity system. •The efficacy of doubling GB gas storage capacity on reliability of the energy system is assessed. •Integrated reliability indices could be used to assess the impact of investment in energy assets

  20. Fujian electric system analysis and nuclear power planning

    International Nuclear Information System (INIS)

    Lin Jianwen; Fu Qiang; Cheng Ping

    1994-11-01

    The objective of the study is to conduct a long term electric expansion planning and nuclear power planning for Fujian Province. The Wien Automatic System Planning Package (WASP-III) is used to optimize the electric system. Probabilistic Simulation is one of the most favorite techniques for middle and long term generation and production cost planning of electric power system. The load duration curve is obtained by recording the load data of a time interval into a monotone non-increasing sense. Polynomial function is used to describe the load duration curve (LDC), and this LDC is prepared for probabilistic simulation in WASP-III. WASP-III is a dynamic optimizing module in the area of supply modelling. It could find out the economically optimal expansion plan for a power generating system over a period of up to thirty years, with the constraints given by the planners. The optimum is evaluated in terms of minimum discounted total costs. Generating costs, amount of energy not served and reliability of the system are analyzed in the system expansion planning by using the probabilistic simulation method. The following conclusions can be drawn from this study. Hydro electricity is the cheapest one of all available technologies and resources. After the large hydro station is committed at the end of 1995, more base load power plants are needed in the system. Coal-fired power plants with capacity of 600 MWe will be the most competitive power plants in the future of the system. At the end of the studying period, about half of the stalled capacity will be composed of these power plants. Nuclear power plants with capacity of 600 MWe are suitable for the system after the base load increases to a certain level. Oil combustion units will decrease the costs of the system. (12 tabs., 6 figs.)

  1. 76 FR 42534 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits; System...

    Science.gov (United States)

    2011-07-19

    ... Reliability Operating Limits; System Restoration Reliability Standards AGENCY: Federal Energy Regulatory... data necessary to analyze and monitor Interconnection Reliability Operating Limits (IROL) within its... Interconnection Reliability Operating Limits, Order No. 748, 134 FERC ] 61,213 (2011). \\2\\ The term ``Wide-Area...

  2. Improved reliability of power modules

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, Laurent

    2014-01-01

    Power electronic systems play an increasingly important role in providing high-efficiency power conversion for adjustable-speed drives, power-quality correction, renewable-energy systems, energy-storage systems, and electric vehicles. However, they are often presented with demanding operating...... environments that challenge the reliability aspects of power electronic techniques. For example, increasingly thermally stressful environments are seen in applications such as electric vehicles, where ambient temperatures under the hood exceed 150 °C, while some wind turbine applications can place large...

  3. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  4. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed

    2015-01-01

    of the electrical system, opens new horizons for microgrid applications integrated into electrical power systems. The hierarchical control structure consists of primary, secondary, and tertiary levels for microgrids that mimic the behavior of the mains grid is reviewed. The main objective of this paper is to give......The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability...... in three classes. This analysis is extended focusing mainly on the three classes of configurations grid-forming, grid-feeding, and grid-supporting. The paper ends up with an overview and a discussion of the control structures and strategies to control distribution power generation system (DPGS) units...

  5. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  6. Predictive analysis on the electric energy distribution systems reliability: applying the synerGEE system; Analisis predictivo de la confiabilidad en los sistemas de distribucion de energia electrica: aplicando el sistema synerGEE

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Andrade, Carlos

    2008-12-15

    Electrical distribution systems ought to deliver electric power as economical as possible with an acceptable degree of service quality and continuity. Nevertheless, their faults represent one of the main causes of customer's unavailability. At the moment, a wide range of determinist criteria in the improvement of systems reliability based on past behavior are used, but they do not respond to the stochastic nature of system behavior, and are applied without an adequate balance between reliability and economy. In order to obtain this balance a minimum cost planning methodology that considers the predictive analysis of different investment alternatives in addition to the past behavior of the system is required, which guarantees that the economic resource available and limited will be used to gather the greater possible reliability degree. In this work this problem is approached with the fundamentals and methodologies needed to assess the design effects and operative criteria over the main reliability indexes used by the main utilities around the world, with emphasis on the need to optimize economical resources. The use of the system SynerGEETM, is investigated, probing it as a useful tool for the predictive reliability analysis. Due to the lack of experience that exists in Mexico with this type of analysis, distribution engineers has to become familiar with the concepts of the reliability engineering, their application to establish distribution systems models, and acquiring the ability to use the modern simulation tools, allowing them to evaluate the behavior of these systems with enough analytical rigor. In this sense a serial of well known study cases are presented to help them in this labor. [Spanish] Los sistemas de distribucion de energia electrica deben satisfacer la demanda de energia electrica de la forma mas economica posible, con un grado de calidad y continuidad aceptable. Sin embargo, sus fallas son una de las principales causas de indisponibilidad en

  7. Reliable actuators for twin rotor MIMO system

    Science.gov (United States)

    Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.

    2017-11-01

    Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.

  8. 77 FR 64920 - Revisions to Reliability Standard for Transmission Vegetation Management

    Science.gov (United States)

    2012-10-24

    ... reliability of the Bulk Electric System.'' NERC defines ``System Operating Limit'' as ``[t]he value (such as... values or gives reason to revisit the Reliability Standard. Accordingly, consistent with the activity...] Revisions to Reliability Standard for Transmission Vegetation Management AGENCY: Federal Energy Regulatory...

  9. 77 FR 49441 - Electricity Advisory Committee

    Science.gov (United States)

    2012-08-16

    ... recommendations to the Assistant Secretary for Electricity Delivery and Energy Reliability on programs to modernize the Nation's electric power system. Additionally, the renewal of the EAC has been determined to be... Energy Reliability, Department of Energy. ACTION: Notice of Renewal. SUMMARY: Pursuant to Section 14(a)(2...

  10. Pervasive Electricity Distribution System

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Tahir

    2017-06-01

    Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.

  11. Towards Reliable Integrated Services for Dependable Systems

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Ravn, Anders Peter; Izadi-Zamanabadi, Roozbeh

    Reliability issues for various technical systems are discussed and focus is directed towards distributed systems, where communication facilities are vital to maintain system functionality. Reliability in communication subsystems is considered as a resource to be shared among a number of logical c...... applications residing on alternative routes. Details are provided for the operation of RRRSVP based on reliability slack calculus. Conclusions summarize the considerations and give directions for future research....... connections and a reliability management framework is suggested. We suggest a network layer level reliability management protocol RRSVP (Reliability Resource Reservation Protocol) as a counterpart of the RSVP for bandwidth and time resource management. Active and passive standby redundancy by background...

  12. Towards Reliable Integrated Services for Dependable Systems

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Ravn, Anders Peter; Izadi-Zamanabadi, Roozbeh

    2003-01-01

    Reliability issues for various technical systems are discussed and focus is directed towards distributed systems, where communication facilities are vital to maintain system functionality. Reliability in communication subsystems is considered as a resource to be shared among a number of logical c...... applications residing on alternative routes. Details are provided for the operation of RRRSVP based on reliability slack calculus. Conclusions summarize the considerations and give directions for future research....... connections and a reliability management framework is suggested. We suggest a network layer level reliability management protocol RRSVP (Reliability Resource Reservation Protocol) as a counterpart of the RSVP for bandwidth and time resource management. Active and passive standby redundancy by background...

  13. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  14. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  15. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  16. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  17. MYRRHA cryogenic system study on performances and reliability requirements

    International Nuclear Information System (INIS)

    Junquera, T.; Chevalier, N.R.; Thermeau, J.P.; Medeiros Romao, L.; Vandeplassche, D.

    2015-01-01

    A precise evaluation of the cryogenic requirements for accelerator-driven system such as the MYRRHA project has been performed. In particular, operation temperature, thermal losses, and required cryogenic power have been evaluated. A preliminary architecture of the cryogenic system including all its major components, as well as the principles for the cryogenic fluids distribution has been proposed. A detailed study on the reliability aspects has also been initiated. This study is based on the reliability of large cryogenic systems used for accelerators like HERA, LHC or SNS Linac. The requirements to guarantee good cryogenic system availability can be summarised as follows: 1) Mean Time Between Maintenance (MTBM) should be > 8 000 hours; 2) Valves, heat exchangers and turbines are particularly sensitive elements to impurities (dust, oil, gases), improvements are necessary to keep a minimal level in these components; 3) Redundancy studies for all elements containing moving/vibrating parts (turbines, compressors, including their respective bearings and seal shafts) are necessary; 4) Periodic maintenance is mandatory: oil checks, control of screw compressors every 10.000-15.000 hours, vibration surveillance programme, etc; 5) Special control and maintenance of utilities equipment (supply of cooling water, compressed air and electrical supply) is necessary; 6) Periodic vacuum checks to identify leakage appearance such as insulation vacuum of transfer lines and distribution boxes are necessary; 7) Easily exchangeable cold compressors are required

  18. Analysis of licensee event reports related to nuclear generating station onsite electrical system malfunctions, 1976-1978

    International Nuclear Information System (INIS)

    Bickel, J.H.; Abbott, E.C.

    1981-07-01

    This report summarizes the evaluation requested by the ACRS of 1177 LERS, submitted over a three year period, which related to onsite electrical system malfunctions. The evaluation was carried out for the purposes of identifying specific failure modes and consequences, evaluating the assumptions used in WASH-1400 on the reliability of electrical equipment, and identifying specific sequences which are significant to plant safety. The analysis performed provides a more specific identification of onsite electrical system failure modes, sequences, and consequences than was established in WASH-1400

  19. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  20. Evaluation of Smart Grid Technologies Employed for System Reliability Improvement: Pacific Northwest Smart Grid Demonstration Experience

    Energy Technology Data Exchange (ETDEWEB)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    2017-06-01

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’s t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.

  1. APR1400 Electrical Power System Conformance to SECY-91-078

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Che-Wung; Kim, Yun-Ho [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the APR1400 electric power system for NRC-DC was described. In addition, the conformance to SECY 91-078 was evaluated. Enclosure 1 of the SECY provides an overview of the issue and states that the staff concludes that feeding the safety buses from the offsite power sources through non-safety buses or from a common transformer winding with non-safety loads is not the most reliable configuration. Such an arrangement increases the difficulty in properly regulating voltage at the safety buses, subjects the safety loads to transients caused by the non-safety loads, and adds additional failure points between the offsite power sources and safety loads. Therefore, it is the staff’s position that at least one offsite circuit to each redundant safety division should be supplied directly from one of the offsite power sources with no intervening non-safety buses, in such a manner that the offsite source can power the safety buses upon a failure of any non-safety bus. The APR1400 does not have an intervening nonsafety bus in the current offsite to onsite electrical configuration; however, the design does include nonsafety and safety buses coming from the same secondary side 4.16 kV transformer winding. Nevertheless, the APR1400 has designed the electrical interface system between offsite and onsite power with enhanced reliability measures to ensure that the nonsafety system will not impact the safety loads. The design complies with GDC 17 and also conforms to SECY-91-078.

  2. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  3. 18 CFR 292.308 - Standards for operating reliability.

    Science.gov (United States)

    2010-04-01

    ... reliability. 292.308 Section 292.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying... may establish reasonable standards to ensure system safety and reliability of interconnected...

  4. Reliability and protection against failure in computer systems

    International Nuclear Information System (INIS)

    Daniels, B.K.

    1979-01-01

    Computers are being increasingly integrated into the control and safety systems of large and potentially hazardous industrial processes. This development introduces problems which are particular to computer systems and opens the way to new techniques of solving conventional reliability and availability problems. References to the developing fields of software reliability, human factors and software design are given, and these subjects are related, where possible, to the quantified assessment of reliability. Original material is presented in the areas of reliability growth and computer hardware failure data. The report draws on the experience of the National Centre of Systems Reliability in assessing the capability and reliability of computer systems both within the nuclear industry, and from the work carried out in other industries by the Systems Reliability Service. (author)

  5. STRUCTURAL FLUCTUATIONS, ELECTRICAL RESPONSE AND THE RELIABILITY OF NANOSTRUCTURES (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Rous; Ellen D. Williams; Michael S. Fuhrer

    2006-07-31

    The goal of the research supported by DOE-FG02-01ER45939 was to synthesize a number of experimental and theoretical approaches to understand the relationship between morphological fluctuations, the electrical response and the reliability (failure) of metallic nanostructures. The primary focus of our work was the study of metallic nanowires which we regard as prototypical of nanoscale interconnects. Our research plan has been to link together these materials properties and behaviors by understanding the phenomenon of, and the effects of electromigration at nanometer length scales. The thrust of our research has been founded on the concept that, for nanostructures where the surface-to-volume ratio is necessarily high, surface diffusion is the dominant mass transport mechanism that governs the fluctuations, electrical properties and failure modes of nanostructures. Our approach has been to develop experimental methods that permit the direct imaging of the electromagnetic distributions within nanostructures, their structural fluctuations and their electrical response. This experimental research is complemented by a parallel theoretical and computational program that describes the temporal evolution of nanostructures in response to current flow.

  6. Photovoltaic performance and reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mrig, L. [ed.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  7. Exact reliability quantification of highly reliable systems with maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)

    2010-12-15

    When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.

  8. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  9. Failure and Reliability Analysis for the Master Pump Shutdown System

    International Nuclear Information System (INIS)

    BEVINS, R.R.

    2000-01-01

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function

  10. Electrical Market Management Considering Power System Constraints in Smart Distribution Grids

    Directory of Open Access Journals (Sweden)

    Poria Hasanpor Divshali

    2016-05-01

    Full Text Available Rising demand, climate change, growing fuel costs, outdated power system infrastructures, and new power generation technologies have made renewable distribution generators very attractive in recent years. Because of the increasing penetration level of renewable energy sources in addition to the growth of new electrical demand sectors, such as electrical vehicles, the power system may face serious problems and challenges in the near future. A revolutionary new power grid system, called smart grid, has been developed as a solution to these problems. The smart grid, equipped with modern communication and computation infrastructures, can coordinate different parts of the power system to enhance energy efficiency, reliability, and quality, while decreasing the energy cost. Since conventional distribution networks lack smart infrastructures, much research has been recently done in the distribution part of the smart grid, called smart distribution grid (SDG. This paper surveys contemporary literature in SDG from the perspective of the electricity market in addition to power system considerations. For this purpose, this paper reviews current demand side management methods, supply side management methods, and electrical vehicle charging and discharging techniques in SDG and also discusses their drawbacks. We also present future research directions to tackle new and existing challenges in the SDG.

  11. Electrical system architecture

    Science.gov (United States)

    Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  12. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  13. Recent Advances in System Reliability Signatures, Multi-state Systems and Statistical Inference

    CERN Document Server

    Frenkel, Ilia

    2012-01-01

    Recent Advances in System Reliability discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications.  The topics include: concepts and different definitions of signatures (D-spectra),  their  properties and applications  to  reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state system reliability analysis; methods for cost-reliability and cost-availability analysis of multi-state systems; optimal replacement and protection strategy; and statistical inference. Recent Advances in System Reliability presents many examples to illustrate the theoretical results. Real world multi-state systems...

  14. Electric distribution systems

    CERN Document Server

    Sallam, A A

    2010-01-01

    "Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--

  15. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  16. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues

    2017-07-01

    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  17. Reliability evaluation for offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Blåbjerg, Frede; Chen, Zhe

    2005-01-01

    In this paper, a new reliability index - Loss Of Generation Ratio Probability (LOGRP) is proposed for evaluating the reliability of an electrical system for offshore wind farms, which emphasizes the design of wind farms rather than the adequacy for specific load demand. A practical method...... to calculate LOGRP of offshore wind farms is proposed and evaluated....

  18. Overview of system reliability analyses for PSA

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2012-01-01

    Overall explanations are given for many matters relating to system reliability analysis. Systems engineering, Operations research, Industrial engineering, Quality control are briefly explained. Many system reliability analysis methods including advanced methods are introduced. Discussions are given for FMEA, reliability block diagram, Markov model, Petri net, Bayesian network, goal tree success tree, dynamic flow graph methodology, cell-to-cell mapping technique, the GO-FLOW and others. (author)

  19. How reliably can climate change and mitigation policy impacts on electric utilities be assessed?

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Kopp, R.J.; Palmer, K.; De Witt, D.

    1993-01-01

    Numerous mechanisms link climate change and electric utilities. Electricity generation releases radiatively active trace substances (RATS). Significant changes in atmospheric concentration of RATS can lead to a change in regional and global climate regimes. Mitigation action designed to prevent or limit climate change is possible through curbing emissions. Climate change and related mitigation actions impact on electric utilities. Foresight in electric utility planning requires reliable predictions of how the utilities may be affected in the decades ahead. In this paper the impacts of climate change and mitigation policies are noted, and our ability to assess these is reviewed. To this end a suite of models exploring supply and demand questions have been developed. The overall conclusion of the study is that the demand-side uncertainties dominate other unknowns and need to be better characterized and understood. (author)

  20. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  1. IT use in electric utilities - today and tomorrow

    International Nuclear Information System (INIS)

    Persson, Maria

    1998-01-01

    A survey of the present and future use of IT-systems in British electric utilities is presented. Systems for Asset Management, Reliability Centered Maintenance, Customer Databases etc are discussed. A few utilities are studied more closely (Eastern Electricity, London Electricity, Scottish Power and Yorkshire Electricity)

  2. Choosing the right system to manage electricity derivatives

    International Nuclear Information System (INIS)

    Vasey, G.

    1998-01-01

    The alternatives available and the considerations entering into the choice of the right system to manage electricity derivatives are reviewed. The choice of system will be influenced by a variety of factors, among them : (1) business issues, (2) business processes, (3) functionality, (4) technology, (5) integration into the enterprise, and (6) internal and external competition. The system chosen will need to be integrated into the enterprise. Beyond that,it will need executive commitment, dedicated internal resources, qualified assistance from the vendor, willingness to revisit the business processes and make changes when needed, and training and more training. Some factors to take into account when choosing a system vendor are also discussed. Among these good fit to business, system performance, flexibility, reliability, and customization capacity are the most important

  3. Design of fuel cell powered data centers for sufficient reliability and availability

    Science.gov (United States)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  4. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  5. Electric vehicles in Danish power system with large penetration of wind power

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    Electric vehicles (EVs) provide a unique opportunity for reducing the CO2 emissions from the transport sector. At the same time, EVs have the potential to play an important role in the economical and reliable operation of an electricity system with high penetration of renewable energy. An analysi......). The managing structure of V2G adopting virtual power plant (VPP) technology is proposed. © 2011 State Grid Electric Power Research Institute Press....... is made of the potential for using EVs in Denmark, and the benefits of the electric power system with high wind power generation by intelligent charging and discharging of EVs are enumerated. Based on the analysis, important technological gaps are identified, and the corresponding research and development...... initiatives of the recently established EDISON program are described. Moreover, the latest development of the EDISON program is treated, that is, EDISON as a research consortium to design a new model for the Danish power system with high penetration of wind power and EVs with vehicle to grid (V2G...

  6. Aerospace reliability applied to biomedicine.

    Science.gov (United States)

    Lalli, V. R.; Vargo, D. J.

    1972-01-01

    An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.

  7. Reliability evaluation of a natural circulation system

    International Nuclear Information System (INIS)

    Jafari, Jalil; D'Auria, Francesco; Kazeminejad, Hossein; Davilu, Hadi

    2003-01-01

    This paper discusses a reliability study performed with reference to a passive thermohydraulic natural circulation (NC) system, named TTL-1. A methodology based on probabilistic techniques has been applied with the main purpose to optimize the system design. The obtained results have been adopted to estimate the thermal-hydraulic reliability (TH-R) of the same system. A total of 29 relevant parameters (including nominal values and plausible ranges of variations) affecting the design and the NC performance of the TTL-1 loop are identified and a probability of occurrence is assigned for each value based on expert judgment. Following procedures established for the uncertainty evaluation of thermal-hydraulic system codes results, 137 system configurations have been selected and each configuration has been analyzed via the Relap5 best-estimate code. The reference system configuration and the failure criteria derived from the 'mission' of the passive system are adopted for the evaluation of the system TH-R. Four different definitions of a less-than-unity 'reliability-values' (where unity represents the maximum achievable reliability) are proposed for the performance of the selected passive system. This is normally considered fully reliable, i.e. reliability-value equal one, in typical Probabilistic Safety Assessment (PSA) applications in nuclear reactor safety. The two 'point' TH-R values for the considered NC system were found equal to 0.70 and 0.85, i.e. values comparable with the reliability of a pump installed in an 'equivalent' forced circulation (active) system having the same 'mission'. The design optimization study was completed by a regression analysis addressing the output of the 137 calculations: heat losses, undetected leakage, loop length, riser diameter, and equivalent diameter of the test section have been found as the most important parameters bringing to the optimal system design and affecting the TH-R. As added values for this work, the comparison has

  8. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  9. Cost benefit justification of nuclear plant reliability improvement

    International Nuclear Information System (INIS)

    El-Sayed, M.A.H.; Abdelmonem, N.M.

    1986-01-01

    Nuclear power costs are evaluated on the bases of general ground rules (a) vary from time to time (b) vary from country to another (c) even vary from one reactor type to another. The main objective of an electric utility is to provide the electric energy to the different consummers at the lowest possible cost with reasonable reliability level. Rapid increase of the construction costs and fuel prices in recent years have stimulated a great deal of interest in improving the reliability and productivity of new and existing power plants. One of the most important areas is the improvement of the secondary steam loop and the reactor cooling system. The method for evaluating the reliability of steam loop and cooling system utilizes the cut-set technique. The developed method can be easily used to show to what extent the overall reliability of the nuclear plant is affected by the possible failures in the steam and cooling subsystem. The cost reliability trade-off analysis is used to evaluate alternative schemes in the design with a view towards meeting a high reliability goal. Based on historical or estimated failure and repair rate, the reliability of the alternate scheme can be calculated

  10. Fuel cell electric vehicle as a power plant : Fully renewable integrated transport and energy system design and analysis for smart city areas

    NARCIS (Netherlands)

    Oldenbroek, V.D.W.M.; Verhoef, L.A.; van Wijk, A.J.M.

    2017-01-01

    Reliable and affordable future zero emission power, heat and transport systems require efficient and versatile energy storage and distribution systems. This paper answers the question whether for city areas, solar and wind electricity together with fuel cell electric vehicles as energy generators

  11. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Science.gov (United States)

    2010-08-18

    ... adversely impact on the reliability of the U.S. electric power supply system. Copies of this application... DEPARTMENT OF ENERGY [OE Docket No. EA-370] Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application...

  12. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  13. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  14. Security attack detection algorithm for electric power gis system based on mobile application

    Science.gov (United States)

    Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan

    2017-05-01

    Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.

  15. Development of a new electric battery electric power storage system. Results of the 12-year R and D; Shingata denchi denryoku chozo system kaihatsu. 12 nenkan no kenkyu kaihatsu no seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper described the results of the R and D which have been continued for 12 years on a new electric battery electric power storage system (load leveling function). The electric batteries for study were Na-S, Zn-Cl, Zn-Br, and redox type. Charge/discharge operation of 211 times was conducted of a pilot plant with a Na-S battery 1,000kW and 8-hour capacity. The overall efficiency of system was 71.5-76.0%, and the energy efficiency of battery was 86%. As a whole, the performance was able to be confirmed which can fulfil a developmental target. The system overall efficiency of 65.9% and battery efficiency of 76.1% were obtained. The experiment on battery life was carried out at plant together with the pilot operation. The mean life of Na-S battery was estimated at 800 cycles, and that of Zn-Br battery at 500-800 cycles. The effectiveness of the new electric battery electric power storage system was technically verified. For the future commercialization, studies on the following are needed: enhancement of reliability, easiness in maintenance/inspection, size reduction, cost reduction, etc. (NEDO)

  16. Evaluation of reliability of on-site A.C. power systems based on maintenance records

    Energy Technology Data Exchange (ETDEWEB)

    Basso, G.; Pia, S. [ENEA/TERM/VAOEC, C.R.E. Casaccla via Anguillarese, 00100 Roma/Rome (Italy); Fusari, W. [ENEL, Rome (Italy); Soressi, G.; Vaccari, G. [ENEL, Centro di Ricerca Termica e Nucl., Via Rubattino, 54, 1-20134 Mllano/Milan (Italy)

    1986-02-15

    To the end of ascertain in what extent the evaluation of reliability of emergency diesel generators (D.G.) can be improved by means of a deeper knowledge of their operating history a study has been carried-out on 21 D.G. sets: 4 D.G. of the Caorso nuclear plant (BWR, 870 MWe) and 17 D.G. in service at 6 steam-electric fossil-fuelled plants. The major points of interest resulting from this study are: 1) reliability assessments of A.C. on-site power Systems, made on the basis of outcomes of surveillance tests, may lead to results which overestimate the real performance. 2) the unreliability of a redundant System of stand-by components is determined in large extent by unavailabilities due to scheduled and unscheduled maintenance, latent failures, tests. (authors)

  17. Evaluation of reliability of on-site A.C. power systems based on maintenance records

    International Nuclear Information System (INIS)

    Basso, G.; Pia, S.; Fusari, W.; Soressi, G.; Vaccari, G.

    1986-01-01

    To the end of ascertain in what extent the evaluation of reliability of emergency diesel generators (D.G.) can be improved by means of a deeper knowledge of their operating history a study has been carried-out on 21 D.G. sets: 4 D.G. of the Caorso nuclear plant (BWR, 870 MWe) and 17 D.G. in service at 6 steam-electric fossil-fuelled plants. The major points of interest resulting from this study are: 1) reliability assessments of A.C. on-site power Systems, made on the basis of outcomes of surveillance tests, may lead to results which overestimate the real performance. 2) the unreliability of a redundant System of stand-by components is determined in large extent by unavailabilities due to scheduled and unscheduled maintenance, latent failures, tests. (authors)

  18. User's guide to the Reliability Estimation System Testbed (REST)

    Science.gov (United States)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  19. Demand participation in the restructured Electric Reliability Council of Texas market

    International Nuclear Information System (INIS)

    Zarnikau, Jay W.

    2010-01-01

    Does an electricity market which has been restructured to foster competition provide greater opportunities for demand response than a traditional regulated utility industry? The experiences of the restructured Electric Reliability Council of Texas (ERCOT) market over the past eight years provide some hope that it is possible to design a competitive market which will properly value and accommodate demand response. While the overall level of demand response in ERCOT is below the levels enjoyed prior to restructuring, there have nonetheless been some promising advances, including the integration of demand-side resources into competitive markets for ancillary services. ERCOT's experiences demonstrate that the degree of demand participation in a restructured market is highly sensitive to the market design. But even in a market which has been deregulated to a large degree, regulatory intervention and special demand-side programs may be needed in order to bolster demand response. (author)

  20. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    Science.gov (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  1. Reliability demonstration of imaging surveillance systems

    International Nuclear Information System (INIS)

    Sheridan, T.F.; Henderson, J.T.; MacDiarmid, P.R.

    1979-01-01

    Security surveillance systems which employ closed circuit television are being deployed with increasing frequency for the protection of property and other valuable assets. A need exists to demonstrate the reliability of such systems before their installation to assure that the deployed systems will operate when needed with only the scheduled amount of maintenance and support costs. An approach to the reliability demonstration of imaging surveillance systems which employ closed circuit television is described. Failure definitions based on industry television standards and imaging alarm assessment criteria for surveillance systems are discussed. Test methods which allow 24 hour a day operation without the need for numerous test scenarios, test personnel and elaborate test facilities are presented. Existing reliability demonstration standards are shown to apply which obviate the need for elaborate statistical tests. The demonstration methods employed are shown to have applications in other types of imaging surveillance systems besides closed circuit television

  2. Reliable LED Lighting Technologies: Key Factors and Procurement Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Arquit Niederberger, Anne

    2015-10-08

    Abstract— Lighting systems have the ability to transform the economic and educational infrastructure of disadvantaged communities, and eradicating “light poverty” has become one of the primary goals of the International Year of Light 2015. Solid-state lighting (SSL) technology, based on light-emitting diode (LED) light sources, has emerged as the next generation of lighting technology, with a current global market penetration of roughly 5%. This paper will report on recent research on understanding SSL lighting system reliability (failure modes, environmental stressors, electrical power quality); discuss the implications of SSL technology reliability for providing lighting services; and suggest practical approaches to ensure SSL reliability to benefit humanity. Among the key findings from this work is that LED sources can be extremely reliable, withstanding a broad range of environmental stresses without failure. Nonetheless, SSL lighting systems can have a negative impact on electrical power reliability, as well as on the affordability of lighting services, without attention to the quality of the accompanying power infrastructure. It is therefore critical to ensure that the performance of the power supply electronics used in lighting systems is matched to the quality of the power source, when evaluating energy efficient lighting choices.

  3. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  4. Field reliability of electronic systems

    International Nuclear Information System (INIS)

    Elm, T.

    1984-02-01

    This report investigates, through several examples from the field, the reliability of electronic units in a broader sense. That is, it treats not just random parts failure, but also inadequate reliability design and (externally and internally) induced failures. The report is not meant to be merely an indication of the state of the art for the reliability prediction methods we know, but also as a contribution to the investigation of man-machine interplay in the operation and repair of electronic equipment. The report firmly links electronics reliability to safety and risk analyses approaches with a broader, system oriented view of reliability prediction and with postfailure stress analysis. It is intended to reveal, in a qualitative manner, the existence of symptom and cause patterns. It provides a background for further investigations to identify the detailed mechanisms of the faults and the remedical actions and precautions for achieving cost effective reliability. (author)

  5. Nuclear plant reliability data system. 1979 annual reports of cumulative system and component reliability

    International Nuclear Information System (INIS)

    1979-01-01

    The primary purposes of the information in these reports are the following: to provide operating statistics of safety-related systems within a unit which may be used to compare and evaluate reliability performance and to provide failure mode and failure rate statistics on components which may be used in failure mode effects analysis, fault hazard analysis, probabilistic reliability analysis, and so forth

  6. Performance issues for a changing electric power industry

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Extremely cold weather created record demands for electricity in the eastern two-thirds of the United States during the week of January 16, 1994. Fuel-related problems, mostly the result of transportation constraints resulting from ice accumulation on roads and water-ways, and unexpected generating capacity outages at utilities and nonutilities resulted in demand not being met. Some utilities asked nonessential customers along with State governments and a portion of the Federal Government to shut down. Two electric control areas, the Pennsylvania-New Jersey-Maryland Interconnection (PJM) and Virginia Electric & Power Company (VEPCO), instituted rolling blackouts. This disturbance was reported widely in the press and, along with other disturbances, peaked renewed interest in the reliability of the electric power system. The renewed interest in reliability has coincided with substantial changes that are beginning to occur in the structure and competitiveness of the electric power industry. Juxtaposing the question of reliability and the issue of changing industry structure leads to the central concern of this report: What effect, if any, will the changing structure of the industry have on the reliability of the system?

  7. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...

  8. Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls

    Energy Technology Data Exchange (ETDEWEB)

    Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

    2008-02-01

    This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

  9. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    Science.gov (United States)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced

  10. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  11. System reliability effects in wind turbine blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian

    2012-01-01

    from reliability point of view. The present paper discusses the specifics of system reliability behavior of laminated composite sandwich panels, and solves an example system reliability problem for a glass fiber-reinforced composite sandwich structure subjected to in-plane compression.......Laminated composite sandwich panels have a layered structure, where individual layers have randomly varying stiffness and strength properties. The presence of multiple failure modes and load redistribution following partial failures are the reason for laminated composites to exhibit system behavior...

  12. Reliable computer systems design and evaluatuion

    CERN Document Server

    Siewiorek, Daniel

    2014-01-01

    Enhance your hardware/software reliabilityEnhancement of system reliability has been a major concern of computer users and designers ¦ and this major revision of the 1982 classic meets users' continuing need for practical information on this pressing topic. Included are case studies of reliablesystems from manufacturers such as Tandem, Stratus, IBM, and Digital, as well as coverage of special systems such as the Galileo Orbiter fault protection system and AT&T telephone switching processors.

  13. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  14. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  15. ARCHITECTURE AND RELIABILITY OF OPERATING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Stanislav V. Nazarov

    2018-03-01

    Full Text Available Progress in the production technology of microprocessors significantly increased reliability and performance of the computer systems hardware. It cannot be told about the corresponding characteristics of the software and its basis – the operating system (OS. Some achievements of program engineering are more modest in this field. Both directions of OS improvement (increasing of productivity and reliability are connected with the development of effective structures of these systems. OS functional complexity leads to the multiplicity of the structure, which is further enhanced by the specialization of the operating system depending on scope of computer system (complex scientific calculations, real time, information retrieval systems, systems of the automated and automatic control, etc. The functional complexity of the OS leads to the complexity of its architecture, which is further enhanced by the specialization of the operating system, depending on the computer system application area (complex scientific calculations, real-time, information retrieval systems, automated and automatic control systems, etc.. That fact led to variety of modern OS. It is possible to estimate reliability of different OS structures only as results of long-term field experiment or simulation modeling. However it is most often unacceptable because of time and funds expenses for carrying out such research. This survey attempts to evaluate the reliability of two main OS architectures: large multi-layered modular core and a multiserver (client-server system. Represented by continuous Markov chains which are explored in the stationary mode on the basis of transition from systems of the differential equations of Kolmogorov to system of the linear algebraic equations, models of these systems are developed.

  16. Reliability of operating WWER monitoring systems

    International Nuclear Information System (INIS)

    Yastrebenetsky, M.A.; Goldrin, V.M.; Garagulya, A.V.

    1996-01-01

    The elaboration of WWER monitoring systems reliability measures is described in this paper. The evaluation is based on the statistical data about failures what have collected at the Ukrainian operating nuclear power plants (NPP). The main attention is devoted to radiation safety monitoring system and unit information computer system, what collects information from different sensors and system of the unit. Reliability measures were used for decision the problems, connected with life extension of the instruments, and for other purposes. (author). 6 refs, 6 figs

  17. Reliability of operating WWER monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebenetsky, M A; Goldrin, V M; Garagulya, A V [Ukrainian State Scientific Technical Center of Nuclear and Radiation Safety, Kharkov (Ukraine). Instrumentation and Control Systems Dept.

    1997-12-31

    The elaboration of WWER monitoring systems reliability measures is described in this paper. The evaluation is based on the statistical data about failures what have collected at the Ukrainian operating nuclear power plants (NPP). The main attention is devoted to radiation safety monitoring system and unit information computer system, what collects information from different sensors and system of the unit. Reliability measures were used for decision the problems, connected with life extension of the instruments, and for other purposes. (author). 6 refs, 6 figs.

  18. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  19. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  20. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  1. Reliability Growth in Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  2. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  3. 78 FR 44475 - Protection System Maintenance Reliability Standard

    Science.gov (United States)

    2013-07-24

    ... that the performance or product has some reliability-related value, then the requirement will have...] Protection System Maintenance Reliability Standard AGENCY: Federal Energy Regulatory Commission, Energy... Commission proposes to approve a revised Reliability Standard, PRC-005- 2--Protection System Maintenance, to...

  4. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  5. Reliability of thermal-hydraulic passive safety systems

    International Nuclear Information System (INIS)

    D'Auria, F.; Araneo, D.; Pierro, F.; Galassi, G.

    2014-01-01

    The scholar will be informed of reliability concepts applied to passive system adopted for nuclear reactors. Namely, for classical components and systems the failure concept is associated with malfunction of breaking of hardware. In the case of passive systems the failure is associated with phenomena. A method for studying the reliability of passive systems is discussed and is applied. The paper deals with the description of the REPAS (Reliability Evaluation of Passive Safety System) methodology developed by University of Pisa (UNIPI) and with results from its application. The general objective of the REPAS methodology is to characterize the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems

  6. Reliability of the electric power supply in the safety apparatus of nuclear power plants: a comparative analysis

    International Nuclear Information System (INIS)

    Cruz, L.A.

    1992-01-01

    This paper discusses the risk of total loss of electric power supply to the Class 1E system. Two alternatives are focused: a system with two off-site and two onsite power supplies emergency power supply, as recommended by the American Regulations, and a system with only one off-site and four on-site power supplies, applicable when two off-site are not available. To allow the fact that the equipment can be repaired, the method proper involves use of the Markov model, with which one can find, for each configuration of the system, the change over time of the probability of a simultaneous failure of all power sources. The sensitivity of each parameter is studied in each case and, on the basis of the results of the study, the author conclude that the system with two off-site power supplies is preferable in all alternatives analysed, although the system with one off-site power supply can be adopted with high reliability diesel-generators. (author)

  7. Impact of nuclear fuel performance and reliability in a deregulated electricity market

    International Nuclear Information System (INIS)

    Barnoski, M.; Kaiser, B.

    1997-01-01

    US nuclear plants are now placing a great deal of importance on fuel performance and reliability because of their direct effect on a plant's capacity factor, availability, operating flexibility, outage duration, and worker exposure. This is reflected by utilities making fuel reliability a principal vendor evaluation criterion and making fuel performance an important bonus/penalty provision. Defect-free fuel, combined with ever improving design features, makes it possible for plants to operate at higher outputs while reducing operating and maintenance costs. Higher electrical output at lower cost is essential for US nuclear plants to meet the expected competition in a deregulated market. Through continued investment in manufacturing improvements and a vigilant, systematic design process, ABB's nuclear fuel has contributed to helping its nuclear utility customers reduce their cost of doing business. (author) 1 fig., 1 tab

  8. Design of modern vehicle electrical systems based on co-simulation and a model library; Entwurf moderner Bordnetze mittels Co-Simulation und Modellbibliothek

    Energy Technology Data Exchange (ETDEWEB)

    Zehetner, Josef; Lu, Di Wenpu; Watzenig, Daniel [Virtual Vehicle Research Center, Graz (Austria)

    2013-08-15

    The complexity of vehicle electrical and electronic systems, components, and functions is growing as they become increasingly networked with each other and with the internet. Vehicle electrical systems developers can manage this complexity now and in the future by employing simulation as a central tool in designing powerful and reliable vehicle electrical systems. Bosch Engineering offers a powerful simulation tool to support the design of vehicle power nets from initial requirements to final series approval, now being used also for hybrid and electric drive train development. (orig.)

  9. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  10. Estimation of Faults in DC Electrical Power System

    Science.gov (United States)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  11. Electrically induced spontaneous emission in open electronic system

    Science.gov (United States)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  12. Enhancing our integrated electricity system : an opportunity to build on success

    International Nuclear Information System (INIS)

    Turk, E.; Egan, T.M.

    2009-04-01

    The North American electricity grids are interconnected. The quantity of electricity exported from Canada between 1999-2008 has typically been 6 to 10 percent of production. At the same time, electricity imports to Canada have increased over time. This paper presented opportunities for bilateral engagement between Canada and the United States to meet the challenges facing the electricity sector. It highlighted 3 areas for cooperation, notably transmission, generation technology development, and regulatory efficiency initiatives. The trading relationship could be enhanced in the following 3 areas: (1) through infrastructure development, (2) through reliability and security cooperation, and (3) through a drive for environmental performance improvement. This paper also reviewed the benefits associated with cooperation on mechanisms to reduce carbon dioxide emissions; cooperation on the more efficient use of resources; cooperation on new technology applications; and cooperation aimed at maximizing the environmental performance of existing assets. The North American Electric Reliability Corporation (NERC) ensures the reliability of this integrated grid. However, oversight is necessary, and NERC's actions are overseen by the Federal Energy Regulatory Commission (FERC) in the United States and Canada, where both federal and provincial governments exercise authority. 5 figs

  13. Reliability of structural systems subject to fatigue

    International Nuclear Information System (INIS)

    Rackwitz, R.

    1984-01-01

    Concepts and computational procedures for the reliability calculation of structural systems subject to fatigue are outlined. Systems are dealt with by approximately computing componential times to first failure. So-called first-order reliability methods are then used to formulate dependencies between componential failures and to evaluate the system failure probability. (Author) [pt

  14. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  15. 2017 NREL Photovoltaic Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

  16. Reliability and diagnostic of modular systems

    Directory of Open Access Journals (Sweden)

    J. Kohlas

    2014-01-01

    Full Text Available Reliability and diagnostic are in general two problems discussed separately. Yet the two problems are in fact closely related to each other. Here, this relation is considered in the simple case of modular systems. We show, how the computation of reliability and diagnostic can efficiently be done within the same Bayesian network induced by the modularity of the structure function of the system.

  17. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  18. Reliability worth assessment of radial systems with distributed generation

    OpenAIRE

    Bellart Llavall, Francesc Xavier

    2010-01-01

    With recent advances in technology, utilities generation (DG) on the distribution systems. Reliability worth is very important in power system planning and operation. Having a DG ensures reli increase the reliability worth. This research project presents the study of a radial distribution system and the impact of placing DG in order to increase the reliability worth. where a DG have to be placed. The reliability improvement is measured by different reliability indices tha...

  19. Reliability of the quench protection system for the LHC superconducting elements

    International Nuclear Information System (INIS)

    Vergara Fernandez, A.; Rodriguez-Mateos, F.

    2004-01-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed

  20. Reliability of the quench protection system for the LHC superconducting elements

    Science.gov (United States)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  1. Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems

    International Nuclear Information System (INIS)

    Johansson, Jonas; Hassel, Henrik; Zio, Enrico

    2013-01-01

    Society depends on services provided by critical infrastructures, and hence it is important that they are reliable and robust. Two main approaches for gaining knowledge required for designing and improving critical infrastructures are reliability analysis and vulnerability analysis. The former analyses the ability of the system to perform its intended function; the latter analyses its inability to withstand strains and the effects of the consequent failures. The two approaches have similarities but also some differences with respect to what type of information they generate about the system. In this view, the main purpose of this paper is to discuss and contrast these approaches. To strengthen the discussion and exemplify its findings, a Monte Carlo-based reliability analysis and a vulnerability analysis are considered in their application to a relatively simple, but representative, system the IEEE RTS96 electric power test system. The exemplification reveals that reliability analysis provides a good picture of the system likely behaviour, but fails to capture a large portion of the high consequence scenarios, which are instead captured in the vulnerability analysis. Although these scenarios might be estimated to have small probabilities of occurrence, they should be identified, considered and treated cautiously, as probabilistic analyses should not be the only input to decision-making for the design and protection of critical infrastructures. The general conclusion that can be drawn from the findings of the example is that vulnerability analysis should be used to complement reliability studies, as well as other forms of probabilistic risk analysis. Measures should be sought for reducing both the vulnerability, i.e. improving the system ability to withstand strains and stresses, and the reliability, i.e. improving the likely behaviour

  2. The reliability of nuclear power plant safety systems

    International Nuclear Information System (INIS)

    Susnik, J.

    1978-01-01

    A criterion was established concerning the protection that nuclear power plant (NPP) safety systems should afford. An estimate of the necessary or adequate reliability of the total complex of safety systems was derived. The acceptable unreliability of auxiliary safety systems is given, provided the reliability built into the specific NPP safety systems (ECCS, Containment) is to be fully utilized. A criterion for the acceptable unreliability of safety (sub)systems which occur in minimum cut sets having three or more components of the analysed fault tree was proposed. A set of input MTBF or MTTF values which fulfil all the set criteria and attain the appropriate overall reliability was derived. The sensitivity of results to input reliability data values was estimated. Numerical reliability evaluations were evaluated by the programs POTI, KOMBI and particularly URSULA, the last being based on Vesely's kinetic fault tree theory. (author)

  3. Reliability 'H' scheme of HV/MV substations

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Substations (HV/MV connect transmission and distribution systems with consumers of electric energy. The selective search method was used for calculation of substation reliability, where all arrangement elements were grouped into blocks. Subject of the analysis was H-arrangements comprising air-insulated switchgears on the high voltage side of HV/MV substations with different number of feeder and transformer bays and diverse scope of the installed switching equipment. Failure rate and duration were used as main HV/MV substation equipment reliability indices. A large number of arrangements were classified into groups, and within a group the arrangements were ranked with the use of multiple criteria. It is shown that the reliability of the electricity transit depends on the equipment of field for the transit of electricity, which favors poorly equipped field. On the other hand, the reliability of transformation of the full power depends mostly on the equipment in coupling field. It is essential that in the coupling field, there are at least two disconnectors. Installation of the switch in the coupling field is meaningful only with appropriate protection, because it further improves reliability. Conclusions are drawn for phased construction and expansion of the single pole diagram with an additional field for the transmission line.

  4. Time domain series system definition and gear set reliability modeling

    International Nuclear Information System (INIS)

    Xie, Liyang; Wu, Ningxiang; Qian, Wenxue

    2016-01-01

    Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.

  5. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  6. Influence Of Inspection Intervals On Mechanical System Reliability

    International Nuclear Information System (INIS)

    Zilberman, B.

    1998-01-01

    In this paper a methodology of reliability analysis of mechanical systems with latent failures is described. Reliability analysis of such systems must include appropriate usage of check intervals for latent failure detection. The methodology suggests, that based on system logic the analyst decides at the beginning if a system can fail actively or latently and propagates this approach through all system levels. All inspections are assumed to be perfect (all failures are detected and repaired and no new failures are introduced as a result of the maintenance). Additional assumptions are that mission time is much smaller, than check intervals and all components have constant failure rates. Analytical expressions for reliability calculates are provided, based on fault tree and Markov modeling techniques (for two and three redundant systems with inspection intervals). The proposed methodology yields more accurate results than are obtained by not using check intervals or using half check interval times. The conventional analysis assuming that at the beginning of each mission system is as new, give an optimistic prediction of system reliability. Some examples of reliability calculations of mechanical systems with latent failures and establishing optimum check intervals are provided

  7. Electrical distribution system management

    International Nuclear Information System (INIS)

    Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.

    1990-01-01

    This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers

  8. Did Geomagnetic Activity Challenge Electric Power Reliability During Solar Cycle 23? Evidence from the PJM Regional Transmission Organization in North America

    Science.gov (United States)

    Forbes, Kevin F.; Cyr, Chris St

    2012-01-01

    During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.

  9. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  10. Estimator's electrical man-hour manual

    CERN Document Server

    Page, John S

    1999-01-01

    This manual's latest edition continues to be the best source available for making accurate, reliable man-hour estimates for electrical installation. This new edition is revised and expanded to include installation of electrical instrumentation, which is used in monitoring various process systems.

  11. CADRIGS--computer aided design reliability interactive graphics system

    International Nuclear Information System (INIS)

    Kwik, R.J.; Polizzi, L.M.; Sticco, S.; Gerrard, P.B.; Yeater, M.L.; Hockenbury, R.W.; Phillips, M.A.

    1982-01-01

    An integrated reliability analysis program combining graphic representation of fault trees, automated data base loadings and reference, and automated construction of reliability code input files was developed. The functional specifications for CADRIGS, the computer aided design reliability interactive graphics system, are presented. Previously developed fault tree segments used in auxiliary feedwater system safety analysis were constructed on CADRIGS and, when combined, yielded results identical to those resulting from manual input to the same reliability codes

  12. Preliminary investigation on reliability assessment of passive safety system

    International Nuclear Information System (INIS)

    Huang Changfan; Kuang Bo

    2012-01-01

    The reliability evaluation of passive safety system plays an important part in probabilistic safety assessment (PSA) of nuclear power plant applying passive safety design, which depends quantitatively on reliabilities of passive safety system. According to the object of reliability assessment of passive safety system, relevant parameters are identified. Then passive system behavior during accident scenarios are studied. A practical example of this method is given for the case of reliability assessment of AP1000 passive heat removal system in loss of normal feedwater accident. Key and design parameters of PRHRS are identified and functional failure criteria are established. Parameter combinations acquired by Latin hyper~ cube sampling (LHS) in possible parametric ranges are input and calculations of uncertainty propagation through RELAP5/MOD3 code are carried out. Based on the calculations, sensitivity assessment on PRHRS functional criteria and reliability evaluation of the system are presented, which might provide further PSA with PRHR system reliability. (authors)

  13. Systems reliability in high risk situations

    International Nuclear Information System (INIS)

    Hunns, D.M.

    1974-12-01

    A summary is given of five papers and the discussion of a seminar promoted by the newly-formed National Centre of Systems Reliability. The topics covered include hazard analysis, reliability assessment, and risk assessment in both nuclear and non-nuclear industries. (U.K.)

  14. System Reliability of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Čizmar, Dean

    2011-01-01

    The present paper considers the evaluation of timber structures with the focus on robustness due to connection ductility. The robustness analysis is based on the structural reliability framework applied to a simplified mechanical system. The structural timber system is depicted as a parallel system....... An evaluation method of the ductile behaviour is introduced. For different ductile behaviours, the system reliability is estimated based on Monte Carlo simulation. A correlation between the strength of the structural elements is introduced. The results indicate that the reliability of a structural timber system...

  15. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  16. 78 FR 26349 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Science.gov (United States)

    2013-05-06

    ... Standards Oversight and Technology Committee Meetings Sheraton Boston Hotel, 39 Dalton Street, Boston, MA, 02199. May 8 (7:00 a.m.-5:00 p.m.) and May 9 (8:00 a.m.-1:00 p.m.), 2013 Further information regarding... American Electric Reliability Corporation For further information, please contact Jonathan First, 202-502...

  17. Reliability engineering for nuclear and other high technology systems

    International Nuclear Information System (INIS)

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  18. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  19. Foundations for a time reliability correlation system to quantify human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.; Fragola, J.R.

    1988-01-01

    Time reliability correlations (TRCs) have been used in human reliability analysis (HRA) in conjunction with probabilistic risk assessment (PRA) to quantify post-initiator human failure events. The first TRCs were judgmental but recent data taken from simulators have provided evidence for development of a system of TRCs. This system has the equational form: t = tau R X tau U , where the first factor is the lognormally distributed random variable of successful response time, derived from the simulator data, and the second factor is a unitary lognormal random variable to account for uncertainty in the model. The first random variable is further factored into a median response time and a factor to account for the dominant type of behavior assumed to be involved in the response and a second factor to account for other influences on the reliability of the response

  20. Reliability and availability requirements analysis for DEMO: fuel cycle system

    International Nuclear Information System (INIS)

    Pinna, T.; Borgognoni, F.

    2015-01-01

    The Demonstration Power Plant (DEMO) will be a fusion reactor prototype designed to demonstrate the capability to produce electrical power in a commercially acceptable way. Two of the key elements of the engineering development of the DEMO reactor are the definitions of reliability and availability requirements (or targets). The availability target for a hypothesized Fuel Cycle has been analysed as a test case. The analysis has been done on the basis of the experience gained in operating existing tokamak fusion reactors and developing the ITER design. Plant Breakdown Structure (PBS) and Functional Breakdown Structure (FBS) related to the DEMO Fuel Cycle and correlations between PBS and FBS have been identified. At first, a set of availability targets has been allocated to the various systems on the basis of their operating, protection and safety functions. 75% and 85% of availability has been allocated to the operating functions of fuelling system and tritium plant respectively. 99% of availability has been allocated to the overall systems in executing their safety functions. The chances of the systems to achieve the allocated targets have then been investigated through a Failure Mode and Effect Analysis and Reliability Block Diagram analysis. The following results have been obtained: 1) the target of 75% for the operations of the fuelling system looks reasonable, while the target of 85% for the operations of the whole tritium plant should be reduced to 80%, even though all the tritium plant systems can individually reach quite high availability targets, over 90% - 95%; 2) all the DEMO Fuel Cycle systems can reach the target of 99% in accomplishing their safety functions. (authors)

  1. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  2. Final report : impacts analysis for cyber attack on electric power systems (National SCADA Test Bed FY08).

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Laurence R.; Richardson, Bryan T.; Stamp, Jason Edwin; LaViolette, Randall A.

    2009-02-01

    To analyze the risks due to cyber attack against control systems used in the United States electrical infrastructure, new algorithms are needed to determine the possible impacts. This research is studying the Reliability Impact of Cyber ttack (RICA) in a two-pronged approach. First, malevolent cyber actions are analyzed in terms of reduced grid reliability. Second, power system impacts are investigated using an abstraction of the grid's dynamic model. This second year of esearch extends the work done during the first year.

  3. Electric organ discharges and electric images during electrolocation

    Science.gov (United States)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  4. Electric Drive Discrete Control System with Automatic Switching-On Reserve for Autonomous Settlement

    Directory of Open Access Journals (Sweden)

    Tsytovich L.I.

    2015-08-01

    Full Text Available The paper aims at developing of control the water supply system’s electric drives for autonomous settlement. The system provides automatic switching to a reserve control channel at refusal of any of the functional elements of the working regulation channel. Usually, such systems have a test signal generator and analyzer to system response to their impact. This result to an increase in the structural redundancy of the system, increase its cost and increase the requirements for the staff qualification. A specific feature of the system is its ability to self-diagnosis of catastrophic malfunctions of scheme’s components and an automatic switching-on the reserve control channels, without applying any test signals to the whole complex of electrical equipment. Multi-zone integrating regulator with frequency-pulse-width modulation realizes this technical solution. Control system structure and signals timing diagrams are presented. The construction principle of adaptive interval-code synchronization device with improved noise stability to control the voltage regulators serving for smooth start-up of asynchronous motors of water pumps is considered as well. Such solution allowing increase noise stability and reliability work of the system in conditions of limited power electrical networks, which is characteristic for the autonomous settlements. The article may be of interest to specialists in the field of power electronics and information electronics, electric drives and process automation.

  5. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  6. RTE - Reliability report 2016

    International Nuclear Information System (INIS)

    2017-06-01

    Every year, RTE produces a reliability report for the past year. This document lays out the main factors that affected the electrical power system's operational reliability in 2016 and the initiatives currently under way intended to ensure its reliability in the future. Within a context of the energy transition, changes to the European interconnected network mean that RTE has to adapt on an on-going basis. These changes include the increase in the share of renewables injecting an intermittent power supply into networks, resulting in a need for flexibility, and a diversification in the numbers of stakeholders operating in the energy sector and changes in the ways in which they behave. These changes are dramatically changing the structure of the power system of tomorrow and the way in which it will operate - particularly the way in which voltage and frequency are controlled, as well as the distribution of flows, the power system's stability, the level of reserves needed to ensure supply-demand balance, network studies, assets' operating and control rules, the tools used and the expertise of operators. The results obtained in 2016 are evidence of a globally satisfactory level of reliability for RTE's operations in somewhat demanding circumstances: more complex supply-demand balance management, cross-border schedules at interconnections indicating operation that is closer to its limits and - most noteworthy - having to manage a cold spell just as several nuclear power plants had been shut down. In a drive to keep pace with the changes expected to occur in these circumstances, RTE implemented numerous initiatives to ensure high levels of reliability: - maintaining investment levels of euro 1.5 billion per year; - increasing cross-zonal capacity at borders with our neighbouring countries, thus bolstering the security of our electricity supply; - implementing new mechanisms (demand response, capacity mechanism, interruptibility, etc.); - involvement in tests or projects

  7. Cyber security for greater service reliability

    Energy Technology Data Exchange (ETDEWEB)

    Vickery, P. [N-Dimension Solutions Inc., Richmond Hill, ON (Canada)

    2008-05-15

    Service reliability in the electricity transmission and distribution (T and D) industry is being challenged by increased equipment failures, harsher climatic conditions, and computer hackers who aim to disrupt services by gaining access to transmission and distribution resources. This article discussed methods of ensuring the cyber-security of T and D operators. Weak points in the T and D industry include remote terminal units; intelligent electronic devices; distributed control systems; programmable logic controllers; and various intelligent field devices. An increasing number of interconnection points exist between an operator's service control system and external systems. The North American Electric Reliability Council (NERC) standards specify that cyber security strategies should ensure that all cyber assets are protected, and that access points must be monitored to detect intrusion attempts. The introduction of new advanced metering initiatives must also be considered. Comprehensive monitoring systems should be available to support compliance with cyber security standards. It was concluded that senior management should commit to a periodic cyber security re-assessment program in order to keep up-to-date.

  8. 76 FR 66220 - Automatic Underfrequency Load Shedding and Load Shedding Plans Reliability Standards

    Science.gov (United States)

    2011-10-26

    .... I. Background A. Underfrequency Load Shedding 4. An interconnected electric power system must... generation and load within an interconnected electric power system is shown in the frequency of the system.\\4... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g...

  9. Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement

    OpenAIRE

    R. A. Swief; T. S. Abdel-Salam; Noha H. El-Amary

    2018-01-01

    This paper presents an efficient Cuckoo Search Optimization technique to improve the reliability of electrical power systems. Various reliability objective indices such as Energy Not Supplied, System Average Interruption Frequency Index, System Average Interruption, and Duration Index are the main indices indicating reliability. The Cuckoo Search Optimization (CSO) technique is applied to optimally place the protection devices, install the distributed generators, and to determine the size of ...

  10. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  11. A computational Bayesian approach to dependency assessment in system reliability

    International Nuclear Information System (INIS)

    Yontay, Petek; Pan, Rong

    2016-01-01

    Due to the increasing complexity of engineered products, it is of great importance to develop a tool to assess reliability dependencies among components and systems under the uncertainty of system reliability structure. In this paper, a Bayesian network approach is proposed for evaluating the conditional probability of failure within a complex system, using a multilevel system configuration. Coupling with Bayesian inference, the posterior distributions of these conditional probabilities can be estimated by combining failure information and expert opinions at both system and component levels. Three data scenarios are considered in this study, and they demonstrate that, with the quantification of the stochastic relationship of reliability within a system, the dependency structure in system reliability can be gradually revealed by the data collected at different system levels. - Highlights: • A Bayesian network representation of system reliability is presented. • Bayesian inference methods for assessing dependencies in system reliability are developed. • Complete and incomplete data scenarios are discussed. • The proposed approach is able to integrate reliability information from multiple sources at multiple levels of the system.

  12. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  13. Reliability assessment of restructured power systems using reliability network equivalent and pseudo-sequential simulation techniques

    International Nuclear Information System (INIS)

    Ding, Yi; Wang, Peng; Goel, Lalit; Billinton, Roy; Karki, Rajesh

    2007-01-01

    This paper presents a technique to evaluate reliability of a restructured power system with a bilateral market. The proposed technique is based on the combination of the reliability network equivalent and pseudo-sequential simulation approaches. The reliability network equivalent techniques have been implemented in the Monte Carlo simulation procedure to reduce the computational burden of the analysis. Pseudo-sequential simulation has been used to increase the computational efficiency of the non-sequential simulation method and to model the chronological aspects of market trading and system operation. Multi-state Markov models for generation and transmission systems are proposed and implemented in the simulation. A new load shedding scheme is proposed during generation inadequacy and network congestion to minimize the load curtailment. The IEEE reliability test system (RTS) is used to illustrate the technique. (author)

  14. Introduction of composite reliability evaluation in power system operation planning; Introducao da confiabilidade composta no planejamento da operacao eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Mello, J C.O. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Schilling, M T; Gomes, P [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper gives an overview of an ongoing, detailed and first-hand investigation about the current reliability levels of the Brazilian power system, as seen from the electrical operation planning point-of-view. A set of practical results are presented and commented. (author) 41 refs., 4 figs., 4 tabs.

  15. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  16. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  17. Reliability Evaluation Of The City Transport Buses Under Actual Conditions

    Directory of Open Access Journals (Sweden)

    Rymarz Joanna

    2015-12-01

    Full Text Available The purpose of this paper was to present a reliability comparison of two types of city transport buses. Case study on the example of the well-known brands of city buses: Solaris Urbino 12 and Mercedes-Benz 628 Conecto L used at Municipal Transport Company in Lublin was presented in details. A reliability index for the most failure parts and complex systems for the period of time failures was determined. The analysis covered damages of the following systems: engine, electrical system, pneumatic system, brake system, driving system, central heating and air-conditioning and doors. Reliability was analyzed based on Weibull model. It has been demonstrated, that during the operation significant reliability differences occur between the buses produced nowadays.

  18. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  19. System 80+ Design and Licensing : Improving Plant Reliability

    International Nuclear Information System (INIS)

    Newman, Robert E.

    1989-01-01

    The U. S. nuclear industry is striving to improve plant reliability and availability through improved plant design, component designs and plant maintenance. In an effort to improve safety and to demonstrate that commercial nuclear power is economically competitive with other energy sources, the utilities, nuclear vendors, architect engineers and constructors, and component suppliers are all participating in an industry-wide effort to develop improved Light Water Reactor (LWR) designs that are based upon the many years of successful LWR operation. In an age when the world faces the environmental pressures of the greenhouse effect and acid rain, electricity generated from nuclear energy must play an increasing role in the energy picture of Korea, the United States and the rest of the world. This paper discusses the plant availability requirement that has been established by the industry-wide effort mentioned above. After briefly describing Combustion Engineering's program for development of the System 80 Plus standard design and the participation of the Korea Advanced Energy Research Institute (KAERI) in the program, the paper then describes the design features that are being incorporated into System 80+. The industry ALRR Program has established a very ambitious criterion of 87% for the plant availability of future nuclear units. To satisfy such a requirement, the next generation of nuclear plants will include a great many design improvements that reflect the hundreds of years of operating experience that we have accrued. C-ESA's System 80+ will include a number of design changes that improve operating margins and make the plant easier to operate and maintain. Not surprisingly, there is a great deal of overlap between improved safety and improved reliability. In the end, our design will satisfy the future needs of the utilities, the regulators, and the public. C-E is very pleased that KAERI is working with US to achieve these important goals

  20. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  1. Telecommunications system reliability engineering theory and practice

    CERN Document Server

    Ayers, Mark L

    2012-01-01

    "Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"

  2. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  3. The electricity certificate system, 2008

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The electricity certificate system is now in its sixth year. Since the start, both the system and the market have developed, and have undergone a number of changes. In January 2007, the Swedish Energy Agency published a report on the system, 'The electricity certificate system, 2006', to provide easily accessible information on the development of the system and to improve general understanding of it. With the passing of another year, it is now time for the third edition, 'The electricity certificate system, 2008', describing the market status of the electricity certificate system, with statistics from 2003 to 2007. This year's special theme chapter describes current support systems for renewable electricity production throughout the EU. The report also contains expanded information and statistics on biofuels, together with a new chapter that describes planned expansion of renewable electricity production up to 2012. The chapter on consumers' contribution to renewable electricity production has also been updated. A new feature this year is provided in the form of a number of tables at the end of the report, complementing the text. Through annual publication of the report, we hope to create a means of continuously developing the statistical material and analyses, in order to assist those involved in the market, and all other interested persons, to follow achievement of the objectives set out in the Government's Bill No. 205/06:154, 'Renewable electricity with green certificates'. We welcome views on the content and presentation of the report in order further to improve it. The target for the certificate system is to increase, by 2016, the annual production of electricity from renewable sources by 17 TWh relative to its production in 2002. So far, the actual production of renewable electricity is less than the indicative stage target for 2007. Nevertheless, progress is regarded as good, as there are many planned projects

  4. Competitiveness through cooperation between electricity and information technology. TESLA - Information technology and electric power systems technology programme 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The electricity markets are being opened up to competition all round the world. To succeed in competition electricity sellers want new information technology tools to use in managing the sale of electricity. The network companies are aiming to step up utilization of their distribution capacity and to optimize power quality and the reliability of supply. Consumers need solutions with which they can manage their own power consumption and tendering sellers. The Nordic countries have been the first to deregulate their electricity markets. This head start in time is being made use of to generate a head start in technology. Tekes has initiated a technology programme for the years 1998 to 2002, named TESLA - Information Technology and Electric Power Systems, to promote the competitiveness of the Finnish electricity industry in changing conditions. The objective of the programme is to adapt information technology extensively to power distribution and thus develop the potential for Finland`s electricity industry to succeed on world markets. At the moment power distribution technology forms about one third of Finland`s energy technology exports. The programme is also aimed at developing new data transfer and data processing applications for companies in information technology clusters. For Finnish parties in the electricity markets the programme will produce ways and means of (1) improving management and use of distribution networks, (2) implementing competition in electricity sales, and (3) increasing the efficiency of electricity use

  5. Reliability Modeling of Electromechanical System with Meta-Action Chain Methodology

    Directory of Open Access Journals (Sweden)

    Genbao Zhang

    2018-01-01

    Full Text Available To establish a more flexible and accurate reliability model, the reliability modeling and solving algorithm based on the meta-action chain thought are used in this thesis. Instead of estimating the reliability of the whole system only in the standard operating mode, this dissertation adopts the structure chain and the operating action chain for the system reliability modeling. The failure information and structure information for each component are integrated into the model to overcome the given factors applied in the traditional modeling. In the industrial application, there may be different operating modes for a multicomponent system. The meta-action chain methodology can estimate the system reliability under different operating modes by modeling the components with varieties of failure sensitivities. This approach has been identified by computing some electromechanical system cases. The results indicate that the process could improve the system reliability estimation. It is an effective tool to solve the reliability estimation problem in the system under various operating modes.

  6. ANALYSIS OF RELIABILITY OF NONRECTORABLE REDUNDANT POWER SYSTEMS TAKING INTO ACCOUNT COMMON FAILURES

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2014-01-01

    Full Text Available Reliability Analysis of nonrestorable redundant power Systems of industrial plants and other consumers of electric energy was carried out. The main attention was paid to numbers failures influence, caused by failures of all elements of System due to one general reason. Noted the main possible reasons of common failures formation. Two main indicators of reliability of non-restorable systems are considered: average time of no-failure operation and mean probability of no-failure operation. Modeling of failures were carried out by mean of division of investigated system into two in-series connected subsystems, one of them indicated independent failures, but the other indicated common failures. Due to joined modeling of single and common failures resulting intensity of failures is the amount incompatible components: intensity statistically independent failures and intensity of common failures of elements and system in total.It is shown the influence of common failures of elements on average time of no-failure operation of system. There is built the scale of preference of systems according to criterion of  average time maximum of no-failure operation, depending on portion of common failures. It is noticed that such common failures don’t influence on the scale of preference, but  change intervals of time, determining the moments of systems failures and excepting them from the number of comparators. There were discussed two problems  of conditionally optimization of  systems’  reservation choice, taking into account their reliability and cost. The first problem is solved due to criterion of minimum cost of system providing mean probability of no-failure operation, the second problem is solved due to criterion of maximum of mean probability of no-failure operation with cost limitation of system.

  7. Heroic Reliability Improvement in Manned Space Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    System reliability can be significantly improved by a strong continued effort to identify and remove all the causes of actual failures. Newly designed systems often have unexpected high failure rates which can be reduced by successive design improvements until the final operational system has an acceptable failure rate. There are many causes of failures and many ways to remove them. New systems may have poor specifications, design errors, or mistaken operations concepts. Correcting unexpected problems as they occur can produce large early gains in reliability. Improved technology in materials, components, and design approaches can increase reliability. The reliability growth is achieved by repeatedly operating the system until it fails, identifying the failure cause, and fixing the problem. The failure rate reduction that can be obtained depends on the number and the failure rates of the correctable failures. Under the strong assumption that the failure causes can be removed, the decline in overall failure rate can be predicted. If a failure occurs at the rate of lambda per unit time, the expected time before the failure occurs and can be corrected is 1/lambda, the Mean Time Before Failure (MTBF). Finding and fixing a less frequent failure with the rate of lambda/2 per unit time requires twice as long, time of 1/(2 lambda). Cutting the failure rate in half requires doubling the test and redesign time and finding and eliminating the failure causes.Reducing the failure rate significantly requires a heroic reliability improvement effort.

  8. Summary of the workshop robustness of electrical systems - Conclusions and recommendations

    International Nuclear Information System (INIS)

    2015-01-01

    : Simulation of asymmetric 3-phase electrical faults (one/two-open-phase issue); Development of standardised transient voltage wave forms for use in qualifying onsite electric system components. (These wave forms could replace or supplement the present lightning and switching impulse test wave forms used); Reliability and robustness of new battery designs relied upon in SBO scenarios - In coordination with WGRISK the following developments in PSA modeling should be given priority for improvement: Investigation on the use of PSA tools to improve insights in the role of different electrical power sources in reduction of CDF or mitigation of severe accidents; Improved and consistent methods to determine the available coping time in case of SBO to know the time in which critical functions are to be restored to prevent a severe accident (to be done also in coordination with the CSNI Working Group on Analysis and Management of Accidents (WGAMA))

  9. Electric transmission technology

    International Nuclear Information System (INIS)

    Shah, K.R.

    1990-01-01

    Electric transmission technology has matured and can transmit bulk power more reliably and economically than the technology 10 years ago.In 1882, Marcel Depres transmitted 15 kW electric power at 2 kV, using a constant direct current; present transmission voltages have risen to ± 600 kV direct current (DC) and 765 kV alternating current (AC), and it is now possible to transmit bulk electric power at voltages as high as ± 1000 kV DC and 1500 kV AC. Affordable computer systems are now available to optimize transmission reliably. New materials have reduced the bulk of insulation for lines and equipment. New conducting materials and configurations have reduced losses in transmission. Advances in line structures and conductor motion, understanding of flashover characteristics of insulators and air-gaps and electrical performance of lines have resulted in more compact urban transmission lines. (author). 15 refs., 7 tabs., 11 figs

  10. Nuclear Power as an Option in Electrical Generation Planning for Small Economy and Electricity Grid

    International Nuclear Information System (INIS)

    Tomsic, Z.

    2012-01-01

    Implementing a NPP in countries with relatively small total GDP (small economy) and usually with small electricity grid face two major problems and constrains: the ability to obtain the considerable financial resources required on reasonable terms and to connect large NPP to small electricity grid. Nuclear generation financing in developing countries involves complex issues that need to be fully understood and dealt with by all the parties involved. The main topics covered by paper will be the: special circumstances related to the financing of NPP, costs and economic feasibility of NPP, conventional approaches for financing power generation projects in developing countries, alternative approaches for mobilizing financial resources. The safe and economic operation of a nuclear power plant (NPP) requires the plant to be connected to an electrical grid system that has adequate capacity for exporting the power from the NPP, and for providing a reliable electrical supply to the NPP for safe start-up, operation and normal or emergency shut-down of the plant. Connection of any large new power plant to the electrical grid system in a country may require significant modification and strengthening of the grid system, but for NPPs there may be added requirements to the structure of the grid system and the way it is controlled and maintained to ensure adequate reliability. Paper shows the comparative assesment of differrent base load technologies as an option in electrical generation planning for small economy and electricity grid.(author).

  11. Strategic bidding of generating units in competitive electricity market with considering their reliability

    International Nuclear Information System (INIS)

    Soleymani, S.; Ranjbar, A.M.; Shirani, A.R.

    2008-01-01

    In the restructured power systems, they are typically scheduled based on the offers and bids to buy and sell energy and ancillary services (AS) subject to operational and security constraints. Generally, no account is taken of unit reliability when scheduling it. Therefore generating units have no incentive to improve their reliability. This paper proposes a new method to obtain the equilibrium points for reliability and price bidding strategy of units when the unit reliability is considered in the scheduling problem. The proposed methodology employs the supply function equilibrium (SFE) for modeling a unit's bidding strategy. Units change their bidding strategies and improve their reliability until Nash equilibrium points are obtained. GAMS (general algebraic modeling system) language has been used to solve the market scheduling problem using DICOPT optimization software with mixed integer non-linear programming. (author)

  12. 2015 NREL Photovoltaic Module Reliability Workshops

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  13. 2016 NREL Photovoltaic Module Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  14. Optimal Wind Power Uncertainty Intervals for Electricity Market Operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Zhou, Zhi; Botterud, Audun; Zhang, Kaifeng

    2018-01-01

    It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixed integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.

  15. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  16. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  17. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  18. Addressing the reliability issues of intelligent well systems

    International Nuclear Information System (INIS)

    Drakeley, Brian; Douglas, Neil

    2000-01-01

    New Technology receives its fair share of 'risk aversion' both in good and not so good economic times from oil and gas operators evaluating application opportunities. This paper presents details of a strategy developed and implemented to bring to market an Intelligent Well system designed from day one to maximize system reliability, while offering the customer a high degree of choice in system functionality. A team of engineers and scientists skilled in all aspects of Reliability Analysis and Assessment analyzed the Intelligent Well system under development, gathered reliability performance data from other sources and using various analytical techniques developed matrices of system survival probability estimates for various scenarios. Interaction with the system and design engineers has been an on-going process as designs are modified to maximize reliability predictions and extensive qualification test programs developed from the component to the overall system level. The techniques used in the development project will be presented. A comparative model now exists that facilitates the evaluation of future design alternative considerations and also contains databases that can be readily updated with actual field data etc. (author)

  19. The impact of faulty response of overload protection systems on the reliability of electricity supply

    International Nuclear Information System (INIS)

    Schweigert, J.; Schnuerer, G.

    1988-01-01

    Protection equipment of the engineered safety system which is to prevent the triggering of actions via signals from the reactor protection system is to be made so reliable that it has no impact on the non-availability of the supplied systems. Design and functional mode of the various overload protection equipment and the relevant switching device and combinations are explained together with the requirements such as choice, design, and adjustment of the protection equipment, followed by a survey of possible causes of faulty response of overload protection device and of the means and measures available for improvement. The now presented version of September 1987 of the 'overload protection report deals basically with all main topics of the Juli 1985 version, but has been updated and extended by material taking into account practice-oriented data on the new developments in convoy power plant design. (orig./HP) [de

  20. Design for Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya

    2017-01-01

    Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...

  1. Development of nuclear power plant management system for Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Akiyoshi, Tatsuo; Tanimoto, Kazuo; Ogura, Kazuhito; Ibi, Yuji; Kawasaki, Michiyuki

    2002-01-01

    The Kyushu Electric Power Co., Ltd. progresses development of the nuclear power plant management system using IT under aims at upgrading of efficiency, level, and reliability on maintenance and administration business under five years planning since 1999 fiscal year. The outline of the system are explained in this paper. As a result of preparation on power station net work and personal computers set in all of company, an environment capable of using these infrastructures and introducing large scale systems on transverse business over every groups of each power station could be established. (G.K.)

  2. Ultra-Reliable Communication in 5G Wireless Systems

    DEFF Research Database (Denmark)

    Popovski, Petar

    2014-01-01

    —Wireless 5G systems will not only be “4G, but faster”. One of the novel features discussed in relation to 5G is Ultra-Reliable Communication (URC), an operation mode not present in today’s wireless systems. URC refers to provision of certain level of communication service almost 100 % of the time....... Example URC applications include reliable cloud connectivity, critical connections for industrial automation and reliable wireless coordination among vehicles. This paper puts forward a systematic view on URC in 5G wireless systems. It starts by analyzing the fundamental mechanisms that constitute......-term URC (URC-S). The second dimension is represented by the type of reliability impairment that can affect the communication reliability in a given scenario. The main objective of this paper is to create the context for defining and solving the new engineering problems posed by URC in 5G....

  3. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  4. FURAX: assistance tools for the qualitative and quantitative analysis of systems reliability

    International Nuclear Information System (INIS)

    Moureau, R.

    1995-01-01

    FURAX is a set of tools for the qualitative and quantitative safety analysis of systems functioning. It is particularly well adapted to the study of networks (fluids, electrical..), i.e. systems in which importance is functionally given to a flux. The analysis is based on modeling which privileges these fluxes (skeleton representation of the system for a network, functional diagram for a non single-flux system) and on the representation of components support systems. Qualitative analyses are based on the research for possible flux ways and on the technical domain knowledge. The results obtained correspond to a simplified failure mode analysis, to fault-trees relative to the events expected by the user and to minimum sections. The possible calculations on these models are: tree calculations, Markov diagram calculations of the system reliability, and probabilistic calculation of a section viewed as a tree, as a well-ordered sequence of failures, or as the absorbing state of a Markov diagram. (J.S.). 6 refs

  5. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  6. ANALYSIS OF ENERGY EFFICIENCY OF OPERATING MODES OF ELECTRICAL SYSTEMS WITH THE TRACTION LOADS

    Directory of Open Access Journals (Sweden)

    V. E. Bondarenko

    2017-03-01

    Full Text Available Innovative scenarios of reliable energy supply of transportation process aimed at reducing the specific energy consumption and increase energy efficiency of the systems of electric traction. The paper suggests innovative energy saving directions in traction networks of railways and new circuit solutions accessing traction substations in energy systems networks, ensure energy security of the transportation process. To ensure the energy security of rail transport special schemes were developed to propose the concept of external power traction substations, which would increase the number of connections to the networks of 220 – 330 kV, as well as the creation of transport and energy corridors, development of its own supply of electric networks of 110 kV substations and mobile RP-110 kV of next generation. Therefore, the investment program of the structures owned by the Ukrainian Railways (Ukrzaliznytsia need to be synchronized in their technological characteristics, as well as the criteria of reliability and quality of power supply with the same external energy investment programs. It is found that without any load on left or right supplying arm one of two less loaded phases of traction transformer begins generating specific modes in the supplying three-phase line. Thus, modes of mobile substation cause leakage in one of the phases of the supply line of traction transformers of active-capacitive current, and as a result generating energy in the main power line of 154 kV, which is fixed and calculated by electricity meters. For these three phase mode supply network is necessary to use 1st algorithm, i.e. taking into account the amount of electricity as the energy in all phases. For effective application of reactive power compensation devices in the AC traction power supply systems it is proposed to develop regulatory documentation on necessity of application and the order of choice of parameters and placement of compensation systems taking into

  7. Demand for electrical energy

    International Nuclear Information System (INIS)

    Bergougnoux, J.; Fouquet, D.

    1983-01-01

    The different utilizations of electric energy are reviewed in the residential and tertiary sectors, in the industry. The competitive position of electricity in regard to other fuels has been strengthned by the sudden rise in the price of oil in 1973-1974 and 1979-1980. The evolution of electricity prices depended on the steps taken to adjust the electricity generation system. The substitution of electricity applications for hydro-carbons is an essential point of energy policy. The adjustment at all times, at least cost and most reliability, of the supply of electricity to the demand for it is a major problem in the design and operation of electric systems. National demand for power at a given moment is extremely diversified. Electricity consumption presents daily and seasonal variations, and variations according to the different sectors. Forecasting power requirements is for any decision on operation or investment relating to an electrical system. Load management is desirable (prices according to the customers, optional tariffs for ''peak-day withdrawal''). To conclude, prospects for increased electricity consumption are discussed [fr

  8. Reliability and Maintenance for Offshore Wind Turbines and Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines are in some countries contributing significantly the production of electricity and wave energy devices have the potential to be developed in a similarway. For both offshore wind turbines and wave energy devices reliability is a key issue since costs to operation and maintenance may...... be significant contributors to the Levelized Cost Of Energy and OM costs are highly dependent on the reliability of the components implying that it is important to focus on increasing the reliability as much as is economically reasonable. This paper describes basic aspects for reliability analysis of wind...... turbines and wave energy devices with special focus on structural components. The reliability assessment needs include the effects of the control system and possible faults due to failure of electrical/mechanical components and e.g. loss of grid connection. The target reliability level for wind turbine...

  9. The contribution of instrumentation and control software to system reliability

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1984-01-01

    Advanced instrumentation and control systems are usually implemented using computers that monitor the instrumentation and issue commands to control elements. The control commands are based on instrument readings and software control logic. The reliability of the total system will be affected by the software design. When comparing software designs, an evaluation of how each design can contribute to the reliability of the system is desirable. Unfortunately, the science of reliability assessment of combined hardware and software systems is in its infancy. Reliability assessment of combined hardware/software systems is often based on over-simplified assumptions about software behavior. A new method of reliability assessment of combined software/hardware systems is presented. The method is based on a procedure called fault tree analysis which determines how component failures can contribute to system failure. Fault tree analysis is a well developed method for reliability assessment of hardware systems and produces quantitative estimates of failure probability based on component failure rates. It is shown how software control logic can be mapped into a fault tree that depicts both software and hardware contributions to system failure. The new method is important because it provides a way for quantitatively evaluating the reliability contribution of software designs. In many applications, this can help guide designers in producing safer and more reliable systems. An application to the nuclear power research industry is discussed

  10. New Brunswick electricity market rules : summary

    International Nuclear Information System (INIS)

    2004-02-01

    The electricity market rules for New Brunswick were reviewed with particular reference to two broad classifications. The first classification is based on the roles and responsibilities of the system operator (SO) in facilitating the Bilateral Contract market, as well as the role of market participants in participating in the Bilateral Contract market. The second classification is based on the roles and responsibilities of each of the SO, market participants and transmitters in maintaining the reliability of the integrated electricity system and ensuring a secure supply of electricity for consumers in New Brunswick. The market rules consist of 10 chapters entitled: (1) introduction to the market rules and administrative rules of general application, (2) market participation and the use of the SO-controlled grid, (3) market administration, (4) technical and connection requirements, testing and commissioning, (5) system reliability, (6) operational requirements, (7) settlement, (8) connection of new or modified facilities, (9) transmission system planning, investment and operation, and (10) definitions and interpretation

  11. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  12. System Reliability for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    E). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves...... are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks...... in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects....

  13. Parts and Components Reliability Assessment: A Cost Effective Approach

    Science.gov (United States)

    Lee, Lydia

    2009-01-01

    System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.

  14. Electricity disclosure in the Nordic countries. Prestudy focussing on the customer perspective

    International Nuclear Information System (INIS)

    Gode, Jenny; Axelsson, Ulrik

    2007-04-01

    Electricity disclosure is required by the EU Directive concerning the internal market in electricity. According to the directive electricity suppliers shall make available to final customers the contribution of each energy source to the overall fuel mix and at least reference to existing sources where information on CO 2 emissions and the radioactive waste resulting from the electricity produced can be found. The information shall be reliable. The systems for electricity disclosure implemented or planned to be implemented differs among the Nordic countries and some countries currently apply some kind of transitional solutions. The systems applied at present cannot be easily combined, but extensive changes would only be needed in the Finnish system. Regulations for the Swedish system are also needed. Multiple counting (counting of e.g. environmental attributes more than once) occurs in all Nordic systems and at Nordic level as well. The Finnish system does not make corrections of environmental attributes from the electricity mix; Sweden and Norway currently apply transitional preliminary systems where the risk of multiple counting is obvious and Denmark does not yet fully apply the rules set up in their implemented system. However, in Sweden, Norway and Denmark it is likely that reliable systems will be implemented and applied - presumed that regulations for the Swedish system will be implemented according to previous plans. Multiple counting at Nordic level is a result of partly national multiple counting and partly due to application of different tracking systems, rules for import and export of electricity and attributes as well as rules and basis for correction of the residual (a residual is not at all used in Finland). Ten business customers have been interviewed regarding their opinions, requirements and desires with respect to electricity disclosure, but a clear picture has not emerged from these interviews. Several customers pay extra for some kind of green

  15. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  16. Simple and reliable procedure for the evaluation of short-term dynamic processes in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D P

    1986-10-01

    An efficient approach is presented to the solution of the short-term dynamics model in power systems. It consists of an adequate algebraic treatment of the original system of nonlinear differential equations, using linearization, decomposition and Cauchy's formula. The simple difference equations obtained in this way are incorporated into a model of the electrical network, which is of a low order compared to the ones usually used. Newton's method is applied to the model formed in this way, which leads to a simple and reliable iterative procedure. The characteristics of the procedure developed are demonstrated on examples of transient stability analysis of real power systems. 12 refs.

  17. An integrated reliability management system for nuclear power plants

    International Nuclear Information System (INIS)

    Kimura, T.; Shimokawa, H.; Matsushima, H.

    1998-01-01

    The responsibility in the nuclear field of the Government, utilities and manufactures has increased in the past years due to the need of stable operation and great reliability of nuclear power plants. The need to improve the reliability is not only for the new plants but also for those now running. So, several measures have been taken to improve reliability. In particular, the plant manufactures have developed a reliability management system for each phase (planning, construction, maintenance and operation) and these have been integrated as a unified system. This integrated reliability management system for nuclear power plants contains information about plant performance, failures and incidents which have occurred in the plants. (author)

  18. Assessment of power reliability and improvement potential by using ...

    African Journals Online (AJOL)

    This paper presents the use of smart reclosers for improving reliability of a distribution system of one of the major cities of Ethiopia. As frequent power interruptions are posing a huge problem to the life of the people and the economy, finding a solution to the problem is very essential. Electric reliability has affected social well ...

  19. Historical records of the electric power and cooling water systems for the experimental facilities in the I.P.P. (1964-1983)

    International Nuclear Information System (INIS)

    Kitajima, Miyoshi.

    1984-01-01

    Twenty years have passed, since experimental studies began in the IPP. This is a status report on the electric power and cooling water systems in this Institute. Historical records on consumption of the electric power and cooling water for experimental facilities are summarized, also. Valuable stories obtained through operation, control and periodic inspection of these systems are described, which will be helpful for construction of new systems in future. Finally problems on safety, reliability, and economy are commented. (author)

  20. A strategic review of electricity systems models

    International Nuclear Information System (INIS)

    Foley, A.M.; O Gallachoir, B.P.; McKeogh, E.J.; Hur, J.; Baldick, R.

    2010-01-01

    Electricity systems models are software tools used to manage electricity demand and the electricity systems, to trade electricity and for generation expansion planning purposes. Various portfolios and scenarios are modelled in order to compare the effects of decision making in policy and on business development plans in electricity systems so as to best advise governments and industry on the least cost economic and environmental approach to electricity supply, while maintaining a secure supply of sufficient quality electricity. The modelling techniques developed to study vertically integrated state monopolies are now applied in liberalised markets where the issues and constraints are more complex. This paper reviews the changing role of electricity systems modelling in a strategic manner, focussing on the modelling response to key developments, the move away from monopoly towards liberalised market regimes and the increasing complexity brought about by policy targets for renewable energy and emissions. The paper provides an overview of electricity systems modelling techniques, discusses a number of key proprietary electricity systems models used in the USA and Europe and provides an information resource to the electricity analyst not currently readily available in the literature on the choice of model to investigate different aspects of the electricity system. (author)