WorldWideScience

Sample records for electricity generating units

  1. AIR POLLUTION: Emissions from Older Electricity Generating Units

    National Research Council Canada - National Science Library

    2002-01-01

    .... While fossil fuels-coal, natural gas, and oil-account for more than two thirds of our electricity, generating units that burn these fuels are major sources of airborne emissions that pose human...

  2. An examination of electricity generation by utility organizations in the Southeast United States

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2016-01-01

    This study examined the impact of climatic variability on electricity generation in the Southeast United States. The relationship cooling degree days (CDD) and heating degree days (HDD) shared with electricity generation by fuel source was explored. Using seasonal autoregressive integrated weighted average (ARIMA) and seasonal simple exponentially smoothed models, retrospective time series analysis was run. The hypothesized relationship between climatic variability and total electricity generation was supported, where an ARIMA model including CDDs as a predictor explained 57.6% of the variability. The hypothesis that climatic variability would be more predictive of fossil fuel electricity generation than electricity produced by clean energy sources was partially supported. The ARIMA model for natural gas indicated that CDDS were the only predictor for the fossil fuel source, and that 79.4% of the variability was explained. Climatic variability was not predictive of electricity generation from coal or petroleum, where simple seasonal exponentially smoothed models emerged. However, HDDs were a positive predictor of hydroelectric electricity production, where 48.9% of the variability in the clean energy source was explained by an ARIMA model. Implications related to base load electricity from fossil fuels, and future electricity generation projections relative to extremes and climate change are discussed. - Highlights: • Models run to examine impact of climatic variability on electricity generation. • Cooling degree days explained 57.6% of variability in total electricity generation. • Climatic variability was not predictive of coal or petroleum generation. • Cooling degree days explained 79.4% of natural gas generation. • Heating degree days were predictive of nuclear and hydroelectric generation.

  3. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    International Nuclear Information System (INIS)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  4. Experimental study of camel powered electricity generation unit

    Science.gov (United States)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  5. Liberalisation of the electricity sector and development of distributed generation: Germany, United Kingdom and France

    International Nuclear Information System (INIS)

    Menanteau, Ph.

    2003-01-01

    Historically, electricity systems have been made up of small local networks gradually becoming incorporated to benefit from the diversity of demand and the economies of scale in electricity generation that are possible with large interconnected systems. Today, this logic would seem to have certain limits, now that the benefits related to the size of production units appear to have been exhausted and in view of the growing difficulties in developing new transmission infrastructures. At the same time, there have been considerable improvements in the technical and economic performance of modular generating techniques, which are now enjoying significant development under the effect of electricity sector liberalization and policies to reduce greenhouse gas emissions. The aim of the present paper is to analyse the effect of electricity sector liberalization on the development of distributed generation, and more specifically to examine the conditions in which these new electricity generating technologies can be diffused in a liberalized framework. The paper looks first at how competition has affected the electricity market. This analysis is followed by an examination of the problems of integrating distributed generation into electricity systems. In the third part of the paper, three brief case studies highlight the principal differences between Germany, the United Kingdom and France in the field of distributed generation. This brief analysis reveals that the institutional framework in which distributed generation must operate and the price signals given to electricity sector actors play as big a part as traditional incentives, certificates, bidding systems or guaranteed feed-in tariffs in driving the deployment process. (author)

  6. Emissions implications of downscaled electricity generation scenarios for the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Nsanzineza, Rene; O’Connell, Matthew; Brinkman, Gregory; Milford, Jana B.

    2017-10-01

    This study explores how emissions from electricity generation in the Western Interconnection region of the U.S. might respond in circa 2030 to contrasting scenarios for fuel prices and greenhouse gas (GHG) emissions fees. We examine spatial and temporal variations in generation mix across the region and year using the PLEXOS unit commitment and dispatch model with a production cost model database adapted from the Western Electricity Coordinating Council. Emissions estimates are computed by combining the dispatch model results with unit-specific, emissions-load relationships. Wind energy displaces natural gas and coal in scenarios with relatively expensive natural gas or with GHG fees. Correspondingly, annual emissions of NOx, SO2, and CO2 are reduced by 20-40% in these cases. NOx emissions, which are a concern as a precursor of ground-level ozone, are relatively high and consistent across scenarios during summer, when peak electricity loads occur and wind resources in the region are comparatively weak. Accounting for the difference in start-up versus stabilized NOx emissions rates for natural gas plants had little impact on region-wide emissions estimates due to the dominant contribution from coal-fired plants, but would be more important in the vicinity of the natural gas units.

  7. Geothermal electric power generation in Iceland for the proposed Iceland/United Kingdom HVDC power link

    International Nuclear Information System (INIS)

    Hammons, T.J.; Palmason, G.; Thorhallsson, S.

    1991-01-01

    The paper reviews geothermal electric power potential in Iceland which could economically be developed to supplement hydro power for the proposed HVDC Power Link to the United Kingdom, and power intensive industries in Iceland, which are envisaged for development at this time. Technically harnessable energy for electricity generation taking account of geothermal resources down to an assumed base depth, temperature distribution in the crust, probable geothermal recovery factor, and accessibility of the field, has been assessed. Nineteen known high-temperature fields and 9 probable fields have been identified. Technically harnessable geo-heat for various areas is indicated. Data on high temperature fields suitable for geothermal electric power generation, and on harnessable energy for electric power generation within volcanic zones, is stated, and overall assessments are made. The paper then reviews how the potential might be developed, discussing preference of possible sites, and cost of the developments at todays prices. Cost of geothermal electric power generation with comparative costs for hydro generation are given. Possible transmission system developments to feed the power to the proposed HVDC Link converter stations are also discussed

  8. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    Science.gov (United States)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  9. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion...

  10. Comparative costs of coal and nuclear-generated electricity in the united states

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1987-01-01

    This paper compares the future first-year operating costs and lifetime levelized costs of producing baseload coal- and nuclear-generated electricity under schedules shorter than those recently experienced at U.S. plants. Nuclear appears to have a clear economic advantage. Coal is favorable only when it is assumed that the units will operate at very low capacity factors and/or when the capital cost differential between nuclear and coal is increased far above the recent historical level. Nuclear is therefore a cost-competitive electric energy option for utilities and should be considered as an alternative to coal when large baseload capacity is required. (author)

  11. The impact of liberalization on the scope of efficiency improvement in electricity-generating portfolios for the United States and Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Krey, B.; Zweifel, P. [Socioeconomic Institute, Zurich (Switzerland)

    2008-09-15

    In this study, Markowitz mean-variance portfolio theory is applied to electricity-generating technologies of the United States and Switzerland. Both an investor (focused on changes in return) and a current user (focused on return in levels) view are adopted to determine efficient frontiers of electricity generation technologies in terms of expected return and risk as of 2003. Since shocks in generation costs per kWh (the inverse of returns) are correlated, Seemingly Unrelated Regression Estimation (SURE) is used to filter out the systematic components of the covariance matrix. Results suggest that risk-averse investors and risk-neutral current users in the United States are considerably closer to their efficiency frontier than their Swiss counterparts. This may be due to earlier and more thorough deregulation of electricity markets in the United States. (orig.)

  12. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00025; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  13. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  14. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  15. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  16. Natural gas and electricity generation in New South Wales

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    In its Profile of the Australian Electricity Industry, ABARE noted that NSW was the first State in Australia to unbundle the operations of its State owned electricity industry. The process commenced in 1991, when the Electricity Commission of NSW was renamed Pacific Power and reorganised into six generation and transmission sectors. The power generation fuel mix for NSW in 1999-2000 was as follows: black coal, 97 percent and natural gas, 3 percent. NSW has also imported some brown coal generated electricity from Victoria in recent years. The import of cheap brown coal power from this State due to a marked increase in the availability of brown coal base-load generators in the Latrobe Valley forced some surplus black coal generating capacity in NSW to be withdrawn from the marketplace. Four generating units were closed down in 1998 two 500 MW units at Liddell and two 300 MW units at Munmorah. Further prospects for natural gas are reported to be good; its share in the thermal electricity generation market is forecasted to rise from 3 percent in 1999-2000 to 12 percent in 2014-1015

  17. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  18. The Issue of Unit Constraints and the Non-Confiscatory Electricity Market

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Rahmati, Iman; Bak, Claus Leth

    2017-01-01

    Security constraint unit commitment is devised to drive the generation unit schedule in a deregulated environment. Generation bids, transmission system constraints and generation unit constraints are thoroughly considered in this optimization problem. It is acceptable that the transmission system...... normal condition constraints may affect the economic opportunities of the generation companies in the electricity market. Transmission system limitations are the inherent limits of the market environment but this is not true for the generation unit constraints. It means that the generation unit...... constraint of a certain player should not affect the economic opportunities of the rivals. If this happen, generation units can claim to the electricity market regulatory board. In this paper the effect of generation unit constraint on the market outcome is discussed. A fair mechanism is introduced in which...

  19. Future trends in electrical energy generation economics in the United States

    Science.gov (United States)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  20. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  1. Method for controlling a nuclear fueled electric power generating unit and interfacing the same with a load dispatching system

    International Nuclear Information System (INIS)

    Mueller, N.P.; Meyer, C.E.

    1984-01-01

    A pressurized water reactor (PWR) nuclear fueled, electric power generating unit is controlled through the use of on-line calculations of the rapid, step and ramp, power change capabilities of the unit made from measured values of power level, axial offset, coolant temperature and rod position taking into account operator generated, safety and control, and balance of plant limits. The power change capabilities so generated may be fed to an automatic dispatch system which provides closed loop control of a power grid system. (author)

  2. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controls can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key

  3. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  4. Generation unit selection via capital asset pricing model for generation planning

    Energy Technology Data Exchange (ETDEWEB)

    Romy Cahyadi; K. Jo Min; Chung-Hsiao Wang; Nick Abi-Samra [College of Engineering, Ames, IA (USA)

    2003-11-01

    The USA's electric power industry is undergoing substantial regulatory and organizational changes. Such changes introduce substantial financial risk in generation planning. In order to incorporate the financial risk into the capital investment decision process of generation planning, this paper develops and analyses a generation unit selection process via the capital asset pricing model (CAPM). In particular, utilizing realistic data on gas-fired, coal-fired, and wind power generation units, the authors show which and how concrete steps can be taken for generation planning purposes. It is hoped that the generation unit selection process will help utilities in the area of effective and efficient generation planning when financial risks are considered. 20 refs., 14 tabs.

  5. Electrical generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1976-01-01

    A nuclear heart pacer having a heat-to-electricity converter including a solid-state thermoelectric unit embedded in rubber which is compressed to impress hydrostatic precompression on the unit is described. The converter and the radioactive heat source are enclosed in a container which includes the electrical circuit components for producing and controlling the pulses; the converter and components being embedded in rubber. The portions of the rubber in the converter and in the container through which heat flows between the radioactive primary source and the hot junction and between the cold junction and the wall of the container are of thermally conducting silicone rubber. The 238 Pu primary radioactive source material is encapsuled in a refractory casing of WC-222 (T-222) which in turn is encapsuled in a corrosion-resistant casing of platinum rhodium, a diffusion barrier separating the WC-222 and the Pt--Rh casings. The Pt--Rh casing is in a closed basket of tantalum. The tantalum protects the Pt--Rh from reacting with other materials during cremation of the host, if any. The casings and basket suppress the transmission of hard x rays generated by the alpha particles from the 238 Pu. The outside casing of the pacer is typically of titanium but its surface is covered by an electrically insulating coating, typically epoxy resin, except over a relatively limited area for effective electrical grounding to the body of the host. It is contemplated that the pacer will be inserted in the host with the exposed titanium engaging a non-muscular region of the body

  6. 76 FR 388 - Southern Nuclear Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice...

    Science.gov (United States)

    2011-01-04

    ... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance... Web site http://www.regulations.gov . Because your comments will not be edited to remove any... will not edit their comments to remove any identifying or contact information, and therefore, they...

  7. Economic impacts of electricity liberalization on the status of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Hattori, Toru

    2015-01-01

    This paper discusses the economic impact of electricity liberalization on the status of nuclear power generation in the United States. Nuclear power plants have been treated equally with other types of power plants in the liberalized electricity market. The existing nuclear power plants were thought to be competitive in liberalized wholesale electricity market. Competitive pressure from the market also facilitated efficiency improvement among the existing nuclear power plants. Although it was difficult to build new reactor, the U.S. nuclear power generators expanded capacity through up rates. In recent years, however, nuclear power plants suffer from the decline in wholesale power prices and some of them are forced to retire early. Although there are some market design issues that could be improved to maintain the efficient nuclear power plants in competitive environment, it is now argued that some additional arrangements to mitigate the investment risks of the nuclear power plants are necessary. (author)

  8. Generation unit selection via capital asset pricing model for generation planning

    Energy Technology Data Exchange (ETDEWEB)

    Cahyadi, Romy; Jo Min, K. [College of Engineering, Ames, IA (United States); Chunghsiao Wang [LG and E Energy Corp., Louisville, KY (United States); Abi-Samra, Nick [Electric Power Research Inst., Palo Alto, CA (United States)

    2003-07-01

    The electric power industry in many parts of U.S.A. is undergoing substantial regulatory and organizational changes. Such changes introduce substantial financial risk in generation planning. In order to incorporate the financial risk into the capital investment decision process of generation planning, in this paper, we develop and analyse a generation unit selection process via the capital asset pricing model (CAPM). In particular, utilizing realistic data on gas-fired, coal-fired, and wind power generation units, we show which and how concrete steps can be taken for generation planning purposes. It is hoped that the generation unit selection process developed in this paper will help utilities in the area of effective and efficient generation planning when financial risks are considered. (Author)

  9. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Science.gov (United States)

    2011-05-24

    ... Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice of Consideration of Issuance..., http://www.regulations.gov . Because your comments will not be edited to remove any identifying or... received from other persons for submission to the NRC inform those persons that the NRC will not edit their...

  10. Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario

    International Nuclear Information System (INIS)

    Ayres, M.; McRae, M.; Stogran, M.

    2004-08-01

    This report provides a comparison of the lifetime cost of constructing, operating and decommissioning new generation suitable for supplying baseload power by early in the next decade. New baseload generation options in Ontario are nuclear, coal-fired steam turbines or combined cycle gas turbines (CCGT). Nuclear and coal-fired units are characterised by high capital costs and low operating costs. As such, they are candidates for baseload operation only. Gas-fired generation is characterised by lower capital costs and higher operating costs and thus may meet the requirements for operation as peaking and/or baseload generation. The comparison of baseload generating technologies is made by reference to the estimated levelised unit electricity cost (LUEC). The LUEC can be thought of as a 'supply cost', where the unit cost is the price needed to recover all costs over the period. It is determined by finding the price that sets the sum of all future discounted cash flows (net present value, or NPV) to zero. It can also be thought of as representing the constant real wholesale price of electricity that meets the financing cost, debt repayment, income tax and cash flow constraints associated with the construction operation and decommissioning of a generating plant. Levelised unit cost comparisons are usually made with different sets of financing assumptions. This report considers two base cases, which we describe as 'merchant' and 'public' financing. The term 'merchant plant' is used to refer to ones that are built and operated by private investors. These investors pay for their capital through debt and by raising equity, and thus pay return on equity and interest on debt throughout their lifetime. These projects include income taxes, both provincial and federal. Publicly financed projects typically are not subject to income taxes or to the same constraints on raising finance through issuing debt and equity. However, they are constrained to provide a rate of return. The

  11. Reliability payments to generation capacity in electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Pringles, Rolando; Larisson, Carlos; Garcés, Francisco

    2014-01-01

    Electric power is a critical input to modern economies. Generation adequacy and security of supply in power systems running under competition are currently topics of high concern for consumers, regulators and governments. In a market setting, generation investments and adequacy can only be achieved by an appropriate regulatory framework that sets efficient remuneration to power capacity. Theoretically, energy-only electricity markets are efficient and no additional mechanism is needed. Nonetheless, the energy-only market design suffers from serious drawbacks. Therefore, jointly with the evolution of electricity markets, many remunerating mechanisms for generation capacity have been proposed. Explicit capacity payment was the first remunerating approach implemented and perhaps still the most applied. However, this price-based regulation has been applied no without severe difficulties and criticism. In this paper, a new reliability payment mechanism is envisioned. Capacity of each generating unit is paid according to its effective contribution to overall system reliability. The proposed scheme has many attractive features and preserves the theoretical efficiency properties of energy-only markets. Fairness, incentive compatibility, market power mitigation and settlement rules are investigated in this work. The article also examines the requirements for system data and models in order to implement the proposed capacity mechanism. A numerical example on a real hydrothermal system serves for illustrating the practicability of the proposed approach and the resulting reliability payments to the generation units. - Highlights: • A new approach for remunerating supply reliability provided by generation units is proposed. • The contribution of each generating unit to lessen power shortfalls is determined by simulations. • Efficiency, fairness and incentive compatibility of the proposed reliability payment are assessed

  12. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric power generating unit

    International Nuclear Information System (INIS)

    Tuley, C.R.; Bauman, D.A.; Neuner, J.A.; Feilchenfeld, M.M.; Greenberg, L.

    1984-01-01

    An inadvertent approach to criticality in a nuclear fueled electric power generating unit is detected and an alarm is generated through on-line monitoring of the neutron flux. The difficulties of accurately measuring the low levels of neutron flux in a subcritical reactor are overcome by the use of a microcomputer which continuously generates average flux count rate signals for incremental time periods from thousands of samples taken during each such period and which serially stores the average flux count rate signals for a preselected time interval. At the end of each incremental time period, the microcomputer compares the latest average flux count rate signal with the oldest, and preferably each of the intervening stored values, and if it exceeds any of them by at least a preselected multiplication factor, an alarm is generated. (author)

  13. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  14. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  15. Availability of own electricity generation in processing units of small wood

    Directory of Open Access Journals (Sweden)

    R. M. Nogueira

    2014-03-01

    Full Text Available The self power generation can be an alternative, to the industries, in view of the low quality of energy supply by conventional network, especially in industries that generate waste with energy potential. Thus, the objective of this study was to compare, economically, self power generating using wood waste as fuel, with the receipt of electricity by conventional network in a small timber industry. It was determined the values of energy consumption by each equipment that is a part of industry and, based on encountered values, it was determined the actual cost of its generation, comparing its values with the prices of energy by conventional network. Based on these results can be noted that the purchase of electricity by conventional network is the most economically advantageous when compared with self power generation under the conditions studied in this work, however, even with the economic advantage of obtaining energy from the network, the generation itself becomes a sustainable alternative from the environmental and social standpoint.

  16. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  17. Optimal electricity generation system expansion and nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Yakushau, A.; Mikhalevich, A.

    2000-01-01

    After having declared independence, the Republic of Belarus was forced to import 90% of fuel consumed and 25% of electricity. The deficit of peak electric capacity reached 40%. The imported fuel covers the last years because the drop in the production reduced the energy consumption in the Republic but not the needs of the energy sector. Annual payments for imported fuel and electricity are equal to the sum of an annual state budget of Belarus (about 1.5 billion USD) and current debts were not lower 300 million. Comparative analysis of the different scenarios of the electricity generation system expansion showed that an optimum way for electricity generation is installation of the combine cycle units and construction nuclear power plants. The results of the study also showed that the option based on replacement of deficit of the electricity generation by the way of the construction combine cycle units with capacities 450 MW turned out to be the best solution among non nuclear options. (author)

  18. Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, M.; McRae, M.; Stogran, M.

    2004-08-15

    This report provides a comparison of the lifetime cost of constructing, operating and decommissioning new generation suitable for supplying baseload power by early in the next decade. New baseload generation options in Ontario are nuclear, coal-fired steam turbines or combined cycle gas turbines (CCGT). Nuclear and coal-fired units are characterised by high capital costs and low operating costs. As such, they are candidates for baseload operation only. Gas-fired generation is characterised by lower capital costs and higher operating costs and thus may meet the requirements for operation as peaking and/or baseload generation. The comparison of baseload generating technologies is made by reference to the estimated levelised unit electricity cost (LUEC). The LUEC can be thought of as a 'supply cost', where the unit cost is the price needed to recover all costs over the period. It is determined by finding the price that sets the sum of all future discounted cash flows (net present value, or NPV) to zero. It can also be thought of as representing the constant real wholesale price of electricity that meets the financing cost, debt repayment, income tax and cash flow constraints associated with the construction operation and decommissioning of a generating plant. Levelised unit cost comparisons are usually made with different sets of financing assumptions. This report considers two base cases, which we describe as 'merchant' and 'public' financing. The term 'merchant plant' is used to refer to ones that are built and operated by private investors. These investors pay for their capital through debt and by raising equity, and thus pay return on equity and interest on debt throughout their lifetime. These projects include income taxes, both provincial and federal. Publicly financed projects typically are not subject to income taxes or to the same constraints on raising finance through issuing debt and equity. However, they are

  19. Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States

    Science.gov (United States)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.

    2015-12-01

    The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.

  20. Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States

    International Nuclear Information System (INIS)

    Ackerman, Frank; Fisher, Jeremy

    2013-01-01

    Water is required for energy supply, and energy is required for water supply, creating problems as demand for both resources grows. We analyze this “water–energy nexus” as it affects long-run electricity planning in the western United States. We develop four scenarios assuming: no new constraints; limits on carbon emissions; limits on water use; and combined carbon and water limits. We evaluate these scenarios through 2100 under a range of carbon and water prices. The carbon-reducing scenarios become cost-effective at carbon prices of about $50–$70 per ton of CO 2 , moderately high but plausible within the century. In contrast, the water-conserving scenarios are not cost-effective until water prices reach thousands of dollars per acre-foot, well beyond foreseeable levels. This is due in part to the modest available water savings: our most and least water-intensive scenarios differ by less than 1% of the region's water consumption. Under our assumptions, Western electricity generation could be reshaped by the cost of carbon emissions, but not by the cost of water, over the course of this century. Both climate change and water scarcity are of critical importance, but only in the former is electricity generation central to the problem and its solutions. - Highlights: • We model long-run electricity supply and demand for the western United States. • We evaluate the costs of carbon-reducing and water-conserving scenarios. • Carbon-reducing scenarios become cost-effective at carbon prices of $50–70 per ton CO 2 . • Water-conserving scenarios are only cost-effective above $4000/acre-foot of water. • Electricity planning is central to climate policy, but much less so to water planning

  1. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  2. Economic comparison of nuclear, coal, and oil-fired electric generation in the Chicago area

    International Nuclear Information System (INIS)

    Corey, G.R.

    1981-01-01

    The current and historical performances of 17 large nuclear and coal- and oil-fired steam-electric generating units now operated by Commonwealth Edison Company are examined, and the actual busbar costs of electricity generated by these units in recent years are summarized. Cost estimates for future steam-electric units are provided, and attempts are made to deal realistically with the effect of inflation. Social and regulatory constraints are seen to affect the economics of future units and the willingness of the industry to finance them. It is concluded that, given the uncertainties, utility managers have an incentive to diversify their sources of power generation when society seems to discourage such a course of action. 6 refs

  3. A Multi-Objective Unit Commitment Model for Setting Carbon Tax to Reduce CO2 Emission: Thailand's Electricity Generation Case

    Directory of Open Access Journals (Sweden)

    Nuchjarin Intalar

    2015-07-01

    Full Text Available Carbon tax policy is a cost-effective instrument for emission reduction. However, setting the carbon tax is one of the challenging task for policy makers as it will lead to higher price of emission-intensive sources especially the utility price. In a large-scale power generation system, minimizing the operational cost and the environmental impact are conflicting objectives and it is difficult to find the compromise solution. This paper proposes a methodology of finding a feasible carbon tax rate on strategic level using the operational unit commitment model. We present a multi-objective mixed integer linear programming model to solve the unit commitment problem and consider the environmental impacts. The methodology of analyzing of the effect of carbon tax rates on the power generation, operating cost, and CO2 emission is also provided. The trade-off relationship between total operating cost and total CO2 emission is presented in the Pareto-optimal curve to analyze the feasible carbon tax rate that is influencing on electricity operating cost. The significant outcome of this paper is a modeling framework for the policy makers to determine the possible carbon tax that can be imposed on the electricity generation.

  4. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  5. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Science.gov (United States)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  6. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects

  7. Electric utilities deregulation and its impact on nuclear power generating stations

    International Nuclear Information System (INIS)

    Trehan, N.K.

    1998-01-01

    Under restructuring and deregulation, it is not clear as to who would have the responsibility, and what obligations the market participants would have to ensure that the electrical system reliability (stability) is maintained. Due to the dynamic nature of the electrical grid, especially with the implementation of restructuring and deregulation, vulnerabilities exist which may impact the reliability (stability) of the offsite electrical power system. In a nuclear power generating unit, an offsite electric power system and an onsite electric power system are required to permit the functioning of structures, systems, and components which are important to safety. The safety function for each system is to provide sufficient capacity and capability to assure that the containment integrity is maintained during power operation or in the event of a postulated accident. Analyses performed by the applicants must verify that the electrical grid remains stable in the event of a loss of the nuclear unit generator, the largest other unit on the grid or the most critical transmission line. The stability of the electric grid is assumed in the safety analyses and a change in it would impact those analyses. However, it may impact the availability of a stable electric power to the safety buses because of the limited number of available transmission lines. This paper discusses electrical power generation and demand, reserve margins, power transfer capability, development of new innovative technologies to compensate for lack of the construction of transmission lines, legislation for the formulation of a self regulation organization (SRO), grid disturbances that may lead to a voltage collapse, and the vulnerabilities which may impact the availability of a stable power to the nuclear power generating stations

  8. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    International Nuclear Information System (INIS)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-01-01

    Greenhouse gas (CO 2 , CH 4 and N 2 O, hereinafter GHG) and criteria air pollutant (CO, NO x , VOC, PM 10 , PM 2.5 and SO x , hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  9. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  10. Size matters: Installed maximal unit size predicts market life cycles of electricity generation technologies and systems

    International Nuclear Information System (INIS)

    Li, N.

    2008-01-01

    The electricity generation technologies and systems are complex and change in very dynamic fashions, with a multitude of energy sources and prime movers. Since an important concept in generator design is the 'economies of scale', we discover that the installed maximal unit size (capacity) of the generators is a key 'envelope-pushing' characteristic with logistical behaviors. The logistical wavelet analysis of the max unit sizes for different fuels and prime movers, and the cumulative capacities, reveals universal quantitative features in the aggregate evolution of the power industry. We extract the transition times of the max sizes (spanning 10-90% of the saturation limits) for different technologies and systems, and discover that the max size saturation in the 90-99% range precedes the saturation of cumulative capacities of the corresponding systems in the US. While these universal laws are still empirical, they give us a simple yet elegant framework to examine the evolution of the power industry and markets in predictive, not just descriptive, terms. Such laws give us a quantitative tool to spot trends and predict future development, invaluable in planning and resource allocation based on intrinsic technology and system market life cycles

  11. External costs from electricity generation of China up to 2030 in energy and abatement scenarios

    International Nuclear Information System (INIS)

    Zhang, Qingyu; Weili, Tian; Yumei, Wei; Yingxu, Chen

    2007-01-01

    This paper presents estimated external costs of electricity generation in China under different scenarios of long-term energy and environmental policies. Long-range Energy Alternatives Planning (LEAP) software is used to develop a simple model of electricity demand and to estimate gross electricity generation in China up to 2030 under these scenarios. Because external costs for unit of electricity from fossil fuel will vary in different government regulation periods, airborne pollutant external costs of SO 2 , NO x , PM 10 , and CO 2 from fired power plants are then estimated based on emission inventories and environmental cost for unit of pollutants, while external costs of non-fossil power generation are evaluated with external cost for unit of electricity. The developed model is run to study the impact of different energy efficiency and environmental abatement policy initiatives that would reduce total energy requirement and also reduce external costs of electricity generation. It is shown that external costs of electricity generation may reduce 24-55% with three energy policies scenarios and may further reduce by 20.9-26.7% with two environmental policies scenarios. The total reduction of external costs may reach 58.2%. (author)

  12. Least cost analysis of Belarus electricity generation system with focus on nuclear option

    International Nuclear Information System (INIS)

    Mikhalevich, A.; Yakushau, A.

    2004-01-01

    A basic feature of the Belarus electricity system is that about 50% of the installed power capacity is used to produce heat for the central heating supply system. The Republic has one of the most developed districts heating system in Europe. The installation started in 1930, and developed very fast after 1945. Co-generation of electricity and thermal energy in central power plants has played a fundamental role in the local economy. Presently, Belarus electricity generation system includes: Total installed capacities of condensing turbines 3665 MW; Total installed capacities of co-generation turbines 3889 MW. It is expected that in 2020 in accordance with electricity demand forecast peak load demand will be equaled approximately 9500 MW. Taking into account that operation time of 60 % existent co-generation turbine and 70 % of condensing turbine can be extended up to 2020 during the period 2005 - 2020 it is necessity to install about 1500 MW of new co-generation units and about 2000 MW of condensing turbines. To select the least cost scenario for electricity generation system expansion improved computer code WASP-IV for Windows had been used. As far code WASP-IV do not allow finding out optimal solution for electricity generation system with high share of co-generation directly the methodology of application of this program for this case had been developed. Methodology is based on utilization of code WASP-IV for simulation condensing turbines and module BALANCE for modeling co-generation part of the system. The scenarios for the electricity system expansion plan included only conventional technologies. Presently, the works connected with the preparedness for NPP construction in the Republic including site survey for NPP are being carried out. The first stage of siting process according to the IAEA classification has been completed. It was based on a set of criteria answered to A Safety Guide of the IAEA Site Survey for Nuclear Power Plants and requirements to be

  13. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  14. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 30,399 MWH with the generator on line 334.5 hrs. Unit 2 generated 2,481,014 MWH with the generator on line 4,915.53 hrs. Information is presented concerning operations, shutdowns and power reductions, maintenance, power generation, modifications, changes to operational procedures, radiation exposures, and leak rate testing

  16. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  17. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  18. Improving nuclear generating station response for electrical grid islanding

    International Nuclear Information System (INIS)

    Chou, Q.B.; Kundur, P.; Acchione, P.N.; Lautsch, B.

    1989-01-01

    This paper describes problems associated with the performance characteristics of nuclear generating stations which do not have their overall plant control design functions co-ordinated with the other grid controls. The paper presents some design changes to typical nuclear plant controls which result in a significant improvement in both the performance of the grid island and the chances of the nuclear units staying on-line following the disturbance. This paper focuses on four areas of the overall unit controls and turbine governor controls which could be modified to better co-ordinate the control functions of the nuclear units with the electrical grid. Some simulation results are presented to show the performance of a typical electrical grid island containing a nuclear unit with and without the changes

  19. Production inefficiency of electricity markets with hydro generation

    International Nuclear Information System (INIS)

    Philpott, Andy; Guan, Ziming; Khazaei, Javad; Zakeri, Golbon

    2010-01-01

    Electricity market designs that decentralize decision making for participants can lead to inefficiencies in the presence of nonconvexity or missing markets. This has been shown in the case of unit-commitment problems that can make a decentralized market equilibrium less efficient than a centrally planned solution. Less attention has been focused on systems with large amounts of hydro-electric generation. We describe the results of an empirical study of the New Zealand wholesale electricity market that attempts to quantify production efficiency losses by comparing market outcomes with a counterfactual central plan. (author)

  20. Electricity generation from rice husk in Indian rice mills: potential and financial viability

    International Nuclear Information System (INIS)

    Kapur, T.; Kandpal, T.C.; Garg, H.P.

    1998-01-01

    Rice husk generated as a by-product of rice processing is an important energy resource. The availability of this resource in India has been assessed and the technologies for exploitation of its energy potential in the rice processing industry discussed. Nomographs have been developed for estimation of the husk required to meet the energy of parboiling, drying and milling operations. The unit cost of electricity using rice husk gasifier-based power generation systems has been calculated and its financial feasibility assessed in comparison with utility-supplied and diesel-generated electricity. With the cost and efficiency data assumed here, the unit cost of electricity produced by rice husk gasifier-dual fuel engine-generator system varies between Rs 2/kWh and Rs 7/kWh. (35 Rs approximates to SUS 1.). (author)

  1. Electricity generation from rice husk in Indian rice mills: potential and financial viability

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, T.; Kandpal, T.C.; Garg, H.P. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    1998-12-31

    Rice husk generated as a by-product of rice processing is an important energy resource. The availability of this resource in India has been assessed and the technologies for exploitation of its energy potential in the rice processing industry discussed. Nomographs have been developed for estimation of the husk required to meet the energy of parboiling, drying and milling operations. The unit cost of electricity using rice husk gasifier-based power generation systems has been calculated and its financial feasibility assessed in comparison with utility-supplied and diesel-generated electricity. With the cost and efficiency data assumed here, the unit cost of electricity produced by rice husk gasifier-dual fuel engine-generator system varies between Rs 2/kWh and Rs 7/kWh. (35 Rs approximates to SUS 1.). (author)

  2. Steam generator replacement at Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kimura, S.; Dodo, Takashi; Negishi, Kazuo

    1995-01-01

    Eleven nuclear units are in operation at the Kansai Electric Power Co., Inc.. In seven of them, Mihama-1·2·3, Takahama-1·2, and Ohi-1·2, comparatively long duration for tube inspection and repair have been required during late annual outages. KEPCO decided to replace all steam generators in these 7 units with the latest model which was improved upon the past degradation experiences, as a result of comprehensive considerations including public confidence in nuclear power generation, maintenability, and economic efficiency. This report presents the design improvements in new steam generators, replacement techniques, and so on. (author)

  3. Method for protecting an electric generator

    Science.gov (United States)

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  4. Westinghouse AP1000 Electrical Generation Costs - Meeting Marketplace Requirements

    International Nuclear Information System (INIS)

    Paulson, C. Keith

    2002-01-01

    The re-emergence of nuclear power as a leading contender for new base-load electrical generation is not an occurrence of happenstance. The nuclear industry, in general, and Westinghouse, specifically, have worked diligently with the U.S. power companies and other nuclear industry participants around the world to develop future plant designs and project implementation models that address prior problem areas that led to reduced support for nuclear power. In no particular order, the issues that Westinghouse, as an engineering and equipment supply company, focused on were: safety, plant capital costs, construction schedule reductions, plant availability, and electric generation costs. An examination of the above criteria quickly led to the conclusion that as long as safety is not compromised, simplifying plant designs can lead to positive progress of the desired endpoints for the next and later generations of nuclear units. The distinction between next and later generations relates to the readiness of the plant design for construction implementation. In setting requirement priorities, one axiom is inviolate: There is no exception, nor will there be, to the Golden Rule of business. In the electric power generation industry, once safety goals are met, low generation cost is the requirement that rules, without exception. The emphasis in this paper on distinguishing between next and later generation reactors is based on the recognition that many designs have been purposed for future application, but few have been able to attain the design pedigree required to successfully meet the requirements for next generation nuclear units. One fact is evident: Another generation of noncompetitive nuclear plants will cripple the potential for nuclear to take its place as a major contributor to new electrical generation. Only two plant designs effectively meet the economic tests and demonstrate both unparalleled safety and design credibility due to extensive progress toward engineering

  5. Centralized electricity generation in Africa

    International Nuclear Information System (INIS)

    Jaujay, J.

    2000-01-01

    In Africa, over 90 per cent of the suburban and rural populations do not have access to electricity, even if it represents the engine and consequence of change on the continent. A global approach represents the best way to meet the extensive needs of the continent. The author briefly reviewed the recent projects implemented in Africa to meet the increasing demand. Diesel generators were used to satisfy demand in small electrical sectors (less than 1000 MW), hydroelectricity or combustion turbines were used for medium electrical sectors (1000 to 5000 MW). A discussion of the technologies followed, touching on diesel electric stations and combustion turbines. Both methods meet environmental standards as they apply to emission control and noise control. The choice between the two technologies must be based on required unit power, site isolation, access to gas, and the cost of available combustibles. Hydroelectric power has great potential in the sub-Sahara region, and the challenges faced by each project are similar: difficulty in finding the required financing, meeting the environmental constraints, and the distribution of the energy. A modular nuclear reactor project for the generation of electricity is being developed by ESKOM Enterprises, in association with the British Nuclear Fuel Limited and PECCO and progress will be closely monitored. Decision makers must ensure that appropriate decisions are made in a reasonable time frame to allow sufficient time to develop a project to implementation. Demand requirements must be examined closely, technology adequately selected in order to come up with a financing plan. 4 tabs

  6. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  7. Stochastic optimal generation bid to electricity markets with emissions risk constraints.

    Science.gov (United States)

    Heredia, F-Javier; Cifuentes-Rubiano, Julián; Corchero, Cristina

    2018-02-01

    There are many factors that influence the day-ahead market bidding strategies of a generation company (GenCo) within the framework of the current energy market. Environmental policy issues are giving rise to emission limitation that are becoming more and more important for fossil-fueled power plants, and these must be considered in their management. This work investigates the influence of the emissions reduction plan and the incorporation of the medium-term derivative commitments in the optimal generation bidding strategy for the day-ahead electricity market. Two different technologies have been considered: the high-emission technology of thermal coal units and the low-emission technology of combined cycle gas turbine units. The Iberian Electricity Market (MIBEL) and the Spanish National Emissions Reduction Plan (NERP) defines the environmental framework for dealing with the day-ahead market bidding strategies. To address emission limitations, we have extended some of the standard risk management methodologies developed for financial markets, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), thus leading to the new concept of Conditional Emission at Risk (CEaR). This study offers electricity generation utilities a mathematical model for determining the unit's optimal generation bid to the wholesale electricity market such that it maximizes the long-term profits of the utility while allowing it to abide by the Iberian Electricity Market rules as well as the environmental restrictions set by the Spanish National Emissions Reduction Plan. We analyze the economic implications for a GenCo that includes the environmental restrictions of this National Plan as well as the NERP's effects on the expected profits and the optimal generation bid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The nuclear electricity generating industry in England and Wales post-privatisation

    International Nuclear Information System (INIS)

    Johnson, C.B.

    1992-01-01

    This paper presents an overview of the new legal framework within which the nuclear generating industry has operated in England and Wales since 31 March 1990. It describes the formation of Nuclear Electric plc and the licensing arrangements, including the various obligations which have been placed upon Nuclear Electric by virtue of its Generation Licence. The impact of competition law is outlined, together with the commercial arrangements including electricity pooling and some of the other more important agreements which Nuclear Electric has entered into. Finally, the Paper discusses some of the constraints under which Nuclear Electric operates, and summarises Government policy towards nuclear power and its future prospects in the United Kingdom. (author)

  9. Spot markets vs. long-term contracts - modelling tools for regional electricity generating utilities

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-01-01

    A properly organised market for electricity requires that some information will be available for all market participants. Also a range of generally available modelling tools are necessary. This paper describes a set of simple models based on published data for analyses of the long-term revenues of regional utilities with combined heat and power generation (CHP), who will operate a competitive international electricity market and a local heat market. The future revenues from trade on the spot market is analysed using a load curve model, in which marginal costs are calculated on the basis of short-term costs of the available units and chronological hourly variations in the demands for electricity and heat. Assumptions on prices, marginal costs and electricity generation by the different types of generating units are studied for selected types of local electricity generators. The long-term revenue requirements to be met by long-term contracts are analysed using a traditional techno-economic optimisation model focusing on technology choice and competition among technologies over 20.30 years. A possible conclusion from this discussion is that it is important for the economic and environmental efficiency of the electricity market that local or regional generators of CHP, who are able to react on price signals, do not conclude long-term contracts that include fixed time-of-day tariff for sale of electricity. Optimisation results for a CHP region (represented by the structure of the Danish electricity and CHP market in 1995) also indicates that a market for CO 2 tradable permits is unlikely to attract major non-fossil fuel technologies for electricity generation, e.g. wind power. (au)

  10. Feasibility of free piston generation unit for electrical power provision

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.; Roskilly, A.; Shaw, R.; French, C. [Newcastle Univ. (United Kingdom)

    2000-07-01

    Free piston linear engines offer the capability of providing power without the need to convert reciprocating motion into rotary motion. This allows for the utilisation of higher peak pressures during the combustion process and thus improves efficiency. The objective of this paper is to outline the potential benefits of a Free Piston Generator (FPG) and discuss the feasibility of this technology as a potential platform for electrical power provision. (authors)

  11. Generating unit maintenance scheduling under competitive market environments

    International Nuclear Information System (INIS)

    Jin Ho Kim; Jong Bae Park; Jong Keun Park; Yeung Han Chun

    2005-01-01

    A novel approach to a generating unit maintenance scheduling problem in competitive electricity markets is presented in this paper. The objective is to develop a game-theoretic framework for analyzing strategic behaviors of generating companies (Gencos) from the standpoint of the generating unit maintenance scheduling (GMS) game and for obtaining the equilibrium solution for the GMS game. The GMS problem is formulated as a dynamic non-cooperative game with complete information. The players correspond to profit maximizing individual Gencos, and the payoff of each player is defined as the profits from the energy market. The optimal schedule is defined by Nash equilibrium (equilibriums) of the game. Numerical results for two-Genco system are used to demonstrate that the proposed framework can be successfully applied to analyzing the strategic behaviors of each Genco and to obtaining the corresponding Nash equilibrium. The result indicates that generating unit maintenance schedule is one of the major strategic behaviors whereby Genco maximize their profits in a competitive market environment. (author)

  12. Safety evaluation report related to steam generator repair at H.B. Robinson Steam Electric Plant, Unit No. 2. Docket No. 50-261

    International Nuclear Information System (INIS)

    1983-11-01

    A Safety Evaluation Report was prepared for the H.B. Robinson Steam Electric Plant Unit No. 2 by the Office of Nuclear Reactor Regulation. This report considers the safety aspects of the proposed steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2. The report focuses on the occupational radiation exposure associated with the proposed repair program. It concludes that there is reasonable assurance that the health and safety on the public will not be endangered by the conduct of the proposed action, such activities will be conducted in compliance with the Commission's regulations, and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public

  13. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1988-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This seventh supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 6, and documents completion of several Unit 1 license conditions

  14. Electromechanically generating electricity with a gapped-graphene electric generator

    Science.gov (United States)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  15. Potential reduction of carbon dioxide emissions from the use of electric energy storage on a power generation unit/organic Rankine system

    International Nuclear Information System (INIS)

    Mago, Pedro J.; Luck, Rogelio

    2017-01-01

    Highlights: • A power generation organic Rankine cycle with electric energy storage is evaluated. • The potential carbon dioxide emissions reduction of the system is evaluated. • The system performance is evaluated for a building in different climate zones. • The system emissions and cost are compared with those of conventional systems. • Use of carbon emissions cap and trade programs on the system is evaluated. - Abstract: This paper evaluates the potential carbon dioxide emissions reduction from the implementation of electric energy storage to a combined power generation unit and an organic Rankine cycle relative to a conventional system that uses utility gas for heating and utility electricity for electricity needs. Results indicate that carbon dioxide emission reductions from the operation of the proposed system are directly correlated to the ratio of the carbon dioxide emission conversion factor for electricity to that of the fuel. The location where the system is installed also has a strong influence on the potential of the proposed system to save carbon dioxide emissions. Finally, it is shown that by using carbon emissions cap and trade programs, it is possible to establish a frame of reference to compare/exchange operational cost gains with carbon dioxide emission reductions/gains.

  16. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  17. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-09-15

    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  18. Investigation of Electricity Generation by Using Gamma Radiation from Spent Fuels

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung Yim

    2015-01-01

    The purpose of this study is to investigate the electric power generation with scale spent fuel. OrigenArp has analyzed gamma radiation environment of spent fuel assembly, MCNPX has analyzed the scintillator behavior, and experimental work has analyzed the electric output of photovoltaic cell. Gamma radiation environment analysis result indicates gamma source rapidly decreases for the early storage period. Scintillator analysis result calculates the photon flux distribution which enters photovoltaic cell. Photovoltaic cell experiment calculates electric current, voltage current generation per each system unit. Generated electric power can be used to cope with existing safety system (i.e. storage monitoring system) under severe accident or to operate security system under external invasion situation (i.e. passive physical barrier system). Several researchers have shown that converting radiation energy into electric energy is possible. Karl Scharf studied the direct electric conversion of radiation energy by using photovoltaic cells. Researchers in University of Massachusetts Lowell have studied radiation-electric energy conversion by using gadolinium oxide scintillator and dye sensitized solar cell (DSSCs) and N. Horuichi et al. studied radiation-electric energy conversion by using inorganic scintillators and amorphous and crystal photovoltaic cells

  19. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  20. Principles of tariff determination for NPP electric power generation

    International Nuclear Information System (INIS)

    Ratnikov, B.E.; Gitel'man, L.D.; Artemov, Yu.N.; Fiantsev, V.S.

    1988-01-01

    Foundations of price-setting and order of accounting arrangement for NPP electric power are considered. NPP tariffs are established proceeding from standard costs of power generation. The standards are differentiated as to NPP groups, depending on technical, regional and natural geographic factors, taking into account the facility type, unit capacity and the number of similar NPP units. The conclusion is made that under conditions of NPP economic independence expansion and creation of prerequisites for going over to self-financing principles and also due to the qualitatively new stage of nuclear power generation development the level of efficiency, forseen by the tariffs, should be increased

  1. Electricity market design for generator revenue sufficiency with increased variable generation

    International Nuclear Information System (INIS)

    Levin, Todd; Botterud, Audun

    2015-01-01

    We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, and hourly unit commitment and dispatch in a power system. The impact of increasing wind power capacity on the optimal generation mix and generator profitability is analyzed for a test case that approximates the electricity market in Texas (ERCOT). We analyze three market policies that may support resource adequacy: Operating Reserve Demand Curves (ORDC), Fixed Reserve Scarcity Prices (FRSP) and fixed capacity payments (CP). Optimal expansion plans are comparable between the ORDC and FRSP implementations, while capacity payments may result in additional new capacity. The FRSP policy leads to frequent reserves scarcity events and corresponding price spikes, while the ORDC implementation results in more continuous energy prices. Average energy prices decrease with increasing wind penetration under all policies, as do revenues for baseload and wind generators. Intermediate and peak load plants benefit from higher reserve prices and are less exposed to reduced energy prices. All else equal, an ORDC approach may be preferred to FRSP as it results in similar expansion and revenues with less extreme energy prices. A fixed CP leads to additional new flexible NGCT units, but lower profits for other technologies. - Highlights: • We model three market policies for resource adequacy in power systems with wind. • Unit expansion is comparable between ORDCs and fixed reserves scarcity pricing. • ORDCs lead to a more continuous spectrum of energy prices and fewer price spikes. • Revenues for baseload generators generally decrease with increasing wind penetration. • Capacity payments lead to additional NGCT units and lower energy prices.

  2. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  3. Potential CO{sub 2} reduction by fuel substitution to generate electricity in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Masjuki, H.H.; Mahlia, T.M.I.; Choudhury, I.A.; Saidur, R. [University of Malaysia, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineers

    2002-04-01

    Because of changing fossil fuel prices, sources and environmental consciousness, Malaysian utilities have been forced to change the type of energy sources to generate electricity. This new policy of electricity generation companies will change fuel use gradually from 70% gas, 15% coal, 10% hydro and 5% petroleum in the year 2000 to 40% gas, 30% hydro, 29% coal and only 1% petroleum in the year of 2020. These changes tend to reduce CO{sub 2} emission. This study predicts the potential CO{sub 2} reduction due to these changes. The calculation is based on CO{sub 2} emission for unit electricity generated and the changing type of fuel percentages for electricity generation in Malaysia. The study found that the substitution will reduce CO{sub 2} emission from power plants in this country.

  4. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  5. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States.

    Science.gov (United States)

    Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I

    2017-03-01

    Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ

  6. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  7. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). This sixth supplement of NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. These areas are performance testing, reactor cooling hydraulics, loose parts monitoring, and electric power systems

  8. Exploration of dispatch model integrating wind generators and electric vehicles

    NARCIS (Netherlands)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, H.P.; Shariat Torbaghan, S.

    2016-01-01

    In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This

  9. Fast Lagrangian relaxation for constrained generation scheduling in a centralized electricity market

    International Nuclear Information System (INIS)

    Ongsakul, Weerakorn; Petcharaks, Nit

    2008-01-01

    This paper proposes a fast Lagrangian relaxation (FLR) for constrained generation scheduling (CGS) problem in a centralized electricity market. FLR minimizes the consumer payment rather than the total supply cost subject to the power balance, spinning reserve, transmission line, and generator operating constraints. FLR algorithm is improved by new initialization of Lagrangian multipliers and adaptive adjustment of Lagrangian multipliers. The adaptive subgradient method using high quality initial feasible multipliers requires much less number of iterations to converge, leading to a faster computational time. If congestion exists, the alleviating congestion index is proposed for congestion management. Finally, the unit decommitment is performed to prevent excessive spinning reserve. The FLR for CGS is tested on the 4 unit and the IEEE 24 bus reliability test systems. The proposed uniform electricity price results in a lower consumer payment than system marginal price based on uniformly fixed cost amortized allocation, non-uniform price, and electricity price incorporating side payment, leading to a lower electricity price. In addition, observations on objective functions, pricing scheme comparison and interpretation of Lagrangian multipliers are provided. (author)

  10. Cernavoda NPP Unit 1 - a plant of several generations

    International Nuclear Information System (INIS)

    Rotaru, I.; Metes, M.; Anghelescu, M.S.

    2000-01-01

    Cernavoda NPP Unit 1, the first nuclear power unit in Romania, has a long and tormented history. It represents a rather unique case in Eastern Europe. The project started well before 1989 (the construction phase lasted 17 years and generations were involved in its completion), but it is effectively based on western technology (Candu). Meanwhile, the national nuclear program underwent many changes, affecting the lives and careers of Romanian nuclear professionals. Finally, on December 2 nd 1996, the unit began its c ommercial operation , being operated at its nominal power rating of 706 MW e . It now provides a reliable source of electricity for Romanian economy, supplying to the national grid about 10% of the country's average annual demand. The paper reflects some aspects related to the shift of generations during the project's development, including the present stage. The operational performances achieved 'in service' by Cernavoda NPP Unit 1 up to the end of 1999 , are also presented. Reference to the electrical energy production, performance indicators, production costs, nuclear safety, radiation protection, radioactive wastes, nuclear fuel consumption and nuclear fuel performances are included. Comparisons are performed with similar indicators reported by other worldwide nuclear power plants, in order to assess our results. (authors)

  11. Framing scenarios of electricity generation and gas use: EPRI report series on gas demands for power generation. Final report

    International Nuclear Information System (INIS)

    Thumb, S.; Glover, W.; Hughes, W.R.

    1996-07-01

    Results of three EPRI projects have been combined to analyze power industry consumption of gas and other generating fuels. The report's capstone is a scenario analysis of power industry generation and fuel consumption. The Utility Fuel Consumption Model (UFCM), developed for the project, predicts generating capacity and generation by region and fuel through 2015, based on load duration curves, generation dispatch, and expected capacity additions. Scenarios embody uncertain factors, such as electricity demand growth, fuel switching, coal-gas competition, the merit order of gas-coal dispatch, and retirement of nuclear units, that substantially affect gas consumption. Some factors, especially electricity demand have very large effects. The report includes a consistent database on NUG (non-utility generation) capacity and generation and assesses historical and prospective trends in NUG generation. The report shows that NUG capacity growth will soon decline substantially. The study assesses industry capability for price-induced fuel switching from gas to oil and coal, documenting conversions of coal units to dual coal-gas capability and determining that gas-to-oil switching remains a strong influence on fuel availability and gas prices, though regulation and taxation have increased trigger prices for switching. 61 tabs

  12. Electricity generation cost

    International Nuclear Information System (INIS)

    Bald, M.

    1984-01-01

    Also questions of efficiency play a part in the energy discussion. In this context, the economic evaluation of different energy supply variants is of importance. Especially with regard to the generation of electric power there have been discussions again and again during the last years on the advantage of the one or the other kind of electric power generation. In the meantime, a large number of scientific studies has been published on this topic which mainly deal with comparisons of the costs of electric power generated by hard coal or nuclear energy, i.e. of those energy forms which still have the possibilities of expansion. The following part shows a way for the evaluation of efficiency comparisons which starts from simplified assumptions and which works with arithmetical aids, which don't leave the area of the fundamental operations. The general comprehensibility is paid for with cuts on ultimate analytical and arithmetical precision. It will, however, turn out that the results achieved by this method don't differ very much from those which have been won by scientific targets. (orig./UA) [de

  13. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  14. Survey of regulatory agency review of generating unit performance

    International Nuclear Information System (INIS)

    Roach, E.M. Jr.; Tarletz, D.B.

    1985-01-01

    Regulatory agencies across the country are being called upon increasingly to monitor the management of electric utilities. Such activity, which once was relatively rare, is now common. Most frequently this oversight centers around the operating performance of generating units, both nuclear and fossil. There are, perhaps, several reasons for this increased interest in the efficient operation of generating units: increased fuel costs and fuel cost differentials, increased lead times and costs for construction of new generating units, and increased dependence on existing units because of construction programs being revised to meet decreased load growth. The monitoring of generating units has taken the form of after the fact evaluation of performance on a case-by-case basis and the implementation of productivity incentive programs. Performance standards are used in these contexts both to measure the adequacy of unit performance and to implement incentives in the form of rewards or penalties. The standard used may be a subjective test of prudent performance or some numerical index of plant performance, e.g., equivalent availability, capacity factor or heat rate. Some of the activity by regulators is reviewed in applying subjective and numerical standards and the considerations involved in applying such standards are discussed

  15. Expanding exports, increasing smog : Ontario Power Generation's and Hydro One's strategies to continue coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    Gibbons, J.

    2002-06-01

    The production of coal-fired electricity increased by approximately 150 per cent in Ontario between 1995 and 2000. As a result, the smog-causing emissions generated by the five coal-fired power plants operated by Ontario Power Generation caused an increase in smog and worsened air quality in the province as well as affecting air quality as far afield as the Atlantic provinces. Between 2002 and 2005, it is expected that the Pickering and Bruce nuclear plants will be returned to service, making the electricity generated by the coal plants surplus to Ontario's needs. Increasing this surplus are the planned natural gas generating stations. Ontario Power Generation is planning on using this surplus to export it to the United States rather than phasing out its reliance on coal. The increase in exports to the United States Northeast and Midwest is planned with Hydro One, already busy increasing its transmission capacity to the United States by 1,000 megawatt (MW). This plan involves laying 975 MW submarine cable from the Nanticoke Generating Station (operated by Ontario Power Generation) under Lake Erie to Pennsylvania, Ohio, or both states. At the moment, the exports are constrained by the government emissions limits imposed by the Ontario government on sulphur dioxide and nitrogen oxides. This constraint could be removed if Ontario Power Generation decides to pay further for pollution controls for sulphur dioxide and nitrogen oxides at its coal stations. Unfortunately, increasing the exports would also result in emissions increases for 28 other uncapped pollutants such as lead, mercury and arsenic. The author recommended that the Ontario government ban non-emergency coal-fired electricity exports to improve air quality in the province. refs., 8 figs

  16. Electricity and generator availability in LMIC hospitals: improving access to safe surgery.

    Science.gov (United States)

    Chawla, Sagar; Kurani, Shaheen; Wren, Sherry M; Stewart, Barclay; Burnham, Gilbert; Kushner, Adam; McIntyre, Thomas

    2018-03-01

    Access to reliable energy has been identified as a global priority and codified within United Nations Sustainable Goal 7 and the Electrify Africa Act of 2015. Reliable hospital access to electricity is necessary to provide safe surgical care. The current state of electrical availability in hospitals in low- and middle-income countries (LMICs) throughout the world is not well known. This study aimed to review the surgical capacity literature and document the availability of electricity and generators. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding electricity and generator availability were extracted. Estimated percentages for individual countries were calculated. Of 76 articles identified, 21 reported electricity availability, totaling 528 hospitals. Continuous electricity availability at hospitals providing surgical care was 312/528 (59.1%). Generator availability was 309/427 (72.4%). Estimated continuous electricity availability ranged from 0% (Sierra Leone and Malawi) to 100% (Iran); estimated generator availability was 14% (Somalia) to 97.6% (Iran). Less than two-thirds of hospitals providing surgical care in 21 LMICs have a continuous electricity source or have an available generator. Efforts are needed to improve electricity infrastructure at hospitals to assure safe surgical care. Future research should look at the effect of energy availability on surgical care and patient outcomes and novel methods of powering surgical equipment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. ASP - Grid connections of large power generating units; ASP - Anslutning av stoerre produktionsanlaeggningar till elnaetet

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aake; Larsson, Richard [Vattenfall Power Consultants, Stockholm (Sweden)

    2006-12-15

    Grid connections of large power generating units normally require more detailed studies compared to small single units. The required R and D-level depends on the specific characteristics of the production units and the connecting grid. An inquiry for a grid connection will raise questions for the grid owner regarding transmission capability, losses, fault currents, relay protection, dynamic stability etc. Then only a few larger wind farms have been built, the experiences from these types of grid connections are limited and for that reason it can be difficult to identify issues appropriate for further studies. To ensure that electric power generating units do not have unacceptable impact on the grid, directions from the Swedish TSO (Svenska Kraftnaet) have been stated. The directions deal, for example, with power generation in specific ranges of voltage level and frequency and the possibility to remain connected to the grid when different faults occur. The requirements and the consequences of these directions are illustrated. There are three main issues that should be considered: Influence on the power flow from generating units regarding voltage level, currents, losses etc.; Different types of electric systems in generating units contribute to different levels of fault currents. For that reason the resulting fault current levels have to be studied; It is required that generating units should remain connected to the grid at different modes of operation and faults. These modes have to be verified. Load flow and dynamic studies normally demand computer models. Comprehensive models, for instance of wind farms, can bee difficult to design and normally large computer capacity is required. Therefore simplified methods to perform relevant studies are described. How to model an electric power generating unit regarding fault currents and dynamic stability is described. An inquiry for a grid connection normally brings about a discussion concerning administration. To make it

  18. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  19. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  20. Validation of a methodology for the study of generation cost of electric power for nuclear power plants

    International Nuclear Information System (INIS)

    Ortega C, R.F.; Martin del Campo M, C.

    2004-01-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  1. Financing the next generation of new reactors in the united states. Panel Discussion

    International Nuclear Information System (INIS)

    Turner, Kyle; Simard, Ron; Tran, K.C.; Kelly, Patrick; Green, Barrett E.; Quinn, Edward L.; Stamos, John

    2001-01-01

    Full text of publication follows: With the California energy shortage and new growth forecasts in the United States, significant new base-load generation will be needed in the near future to meet electricity demands. New figures for growth in electricity demand for the United States rose significantly because of Internet and related business expansion. Lack of sufficient natural gas supplies to support new generation in some regions is causing a renewed interest in building new nuclear plants. Speakers will address the current status of available and near-term design options including both the U.S. Department of Energy Generation III and IV design packages, infrastructure challenges, and financial models that show that nuclear is competitive with alternatives and a prudent and profitable investment. (authors)

  2. A comprehensive study of economic unit commitment of power systems integrating various renewable generations and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Yang, Zhile; Li, Kang; Niu, Qun; Xue, Yusheng

    2017-01-01

    Highlights: • A new UCsRP problem with flexible integrations is established. • A novel multi-zone sampling method is proposed for scenarios generation. • A meta-heuristic solving tool is introduced for solving the UCsRP problem. • A comprehensive study is conducted considering multiple weathers and seasons. • The economic effects of various scenarios are evaluated and compared. - Abstract: Significant penetration of renewable generations (RGs) and mass roll-out of plug-in electric vehicles (PEVs) will pay a vital role in delivering the low carbon energy future and low emissions of greenhouse gas (GHG) that are responsible for the global climate change. However, it is of considerable difficulties to precisely forecast the undispatchable and intermittent wind and solar power generations. The uncoordinated charging of PEVs imposes further challenges on the unit commitment in modern grid operations. In this paper, all these factors are comprehensively investigated for the first time within a novel hybrid unit commitment framework, namely UCsRP, which considers a wide range of scenarios in renewable generations and demand side management of dispatchable PEVs load. UCsRP is however an extremely challenging optimisation problem not only due to the large scale, mixed integer and nonlinearity, but also due to the double uncertainties relating to the renewable generations and PEV charging and discharging. In this paper, a meta-heuristic solving tool is introduced for solving the UCsRP problem. A key to improve the reliability of the unit commitment is to generate a range of scenarios based on multiple distributions of renewable generations under different prediction errors and extreme predicted value conditions. This is achieved by introducing a novel multi-zone sampling method. A comprehensive study considering four different cases of unit commitment problems with various weather and season scenarios using real power system data are conducted and solved, and smart

  3. Future development of the electricity systems with distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Bayod-Rujula, Angel A. [Department of Electrical Engineering, Centro Politecnico Superior, University of Zaragoza, C/Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-03-15

    Electrical power systems have been traditionally designed taking energy from high-voltage levels, and distributing it to lower voltage level networks. There are large generation units connected to transmission networks. But in the future there will be a large number of small generators connected to the distribution networks. Efficient integration of this distributed generation requires network innovations. A development of active distribution network management, from centralised to more distributed system management, is needed. Information, communication, and control infrastructures will be needed with increasing complexity of system management. Some innovative concepts such as microgrids and virtual utilities will be presented. (author)

  4. Thermo-electrical systems for the generation of electricity

    International Nuclear Information System (INIS)

    Bitschi, A.; Froehlich, K.

    2010-01-01

    This article takes a look at theoretical models concerning thermo-electrical systems for the generation of electricity and demonstrations of technology actually realised. The potentials available and developments are discussed. The efficient use of energy along the whole generation and supply chain, as well as the use of renewable energy sources are considered as being two decisive factors in the attainment of a sustainable energy supply system. The large amount of unused waste heat available today in energy generation, industrial processes, transport systems and public buildings is commented on. Thermo-electric conversion systems are discussed and work being done on the subject at the Swiss Federal Institute of Technology in Zurich is discussed. The findings are discussed and results are presented in graphical form

  5. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  6. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  7. Column Generation for Transmission Switching of Electricity Networks with Unit Commitment

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, Andy B.

    2011-01-01

    This paper presents the problem of finding the minimum cost dispatch and commitment of power generation units in a transmission network with active switching.We use the term active switching to denote the use of switches to optimize network topology in an operational context. We propose a Dantzig...

  8. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  9. Comparative risk assessment for electricity generation

    International Nuclear Information System (INIS)

    Thoene, E.; Kallenbach, U.

    1988-01-01

    The following conclusions are drawn: There is no 'zero-risk option' in electricity generation. Risk comparison meets with considerable problems relating to available data and methods. Taking into account the existing uncertainties, technology ranking in terms of risks involved cannot be done, but the major risk elements of the various electricity generating systems can be clearly identified. The risks defined cannot be interpreted so as to lead to an abolishment of certain techniques due to risks involved, particularly if one sees the risks from electricity generation in relation to other health hazards. The use of coal for electricity generation clearly ranks top with regard to occupational risks and hazards to public health. (orig./HP) [de

  10. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    International Nuclear Information System (INIS)

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated open-quotes cost-of-serviceclose quotes pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices

  11. Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia

    Science.gov (United States)

    Susanto, H.; Suria, T.; Pranolo, S. H.

    2018-03-01

    The gaseous fuel from biomass gasification might reduce the consumption of diesel fuel by 70%. The investment cost of the whole unit with a capacity of 45 kWe was about IDR 220 million in 2008 comprised of 24% for gasification unit, 54% for diesel engine and electric generator, 22% for transportation of the whole unit from Bandung to the site in South Borneo. The gasification unit was made in local workshop in Bandung, while the diesel-generator was purchased also in a local market. To anticipate the development of biomass based electricity in remote areas, an economic analysis has been made for implementations in 2019. A specific investment cost of 600 USD/kW has been estimated taking account to the escalation and capacity factors. Using a discounted factor of 11% and biomass cost in the range of 0.03-0.07 USD/kg, the production cost of electricity would be in the range of 0.09-0.16 USD/kWh. This production cost was lower than that of diesel engine fueled with full oil commonly implemented in many remote areas in Indonesia at this moment. This production cost was also lower than the Feed in Tariff in some regions established by Indonesian government in 2017.

  12. An electrical dynamo that is a new technology over the generation of electricity by induction

    International Nuclear Information System (INIS)

    Hickox, B.

    1991-01-01

    This invention describes a different device for generating a type alternating electrical power. In the paper an electrical generator is described with one or more nonconductive cylinders mounted for rotation about an axis and containing at lest four pairs of permanent magnets, longitudinally spaced within the cylinder and angularly offset from each other in a helical array. Each of the magnets in each pair is radially disposed in the cylinder opposite the other and separated from the other at the cylinder axis with like poles facing each other. An electrical secondary is provided within the magnetic field of the magnets in the cylinder. A ring magnetic is oriented with an axis parallel to the cylinder axis an is relatively moveable there along. The magnetic fields acting between the ring magnet and the magnets in the cylinder rotates the cylinder to induce electrical current in the generatory secondary. A working model of this device has been constructed and tested. Other researchers are currently building and testing other similar units and various embodiments and applications of this device. This device warrants further testing and closer study

  13. Replacement of steam generators at arkansas nuclear one, unit-2 (ano-2)

    International Nuclear Information System (INIS)

    Wilson, R.M.; Buford, A.

    2001-01-01

    The Arkansas Nuclear One, Unit-2 steam generators, originally supplied by Combustion Engineering, began commercial operation in 1980 producing a gross electrical output of 958 MW. After several years of successful operation, the owner decided that the tube degradation rates of the original steam generators were too high for the plant to meet the performance requirements for the full 40-year license period. The contract to supply replacement steam generators (RSGs) was awarded to Westinghouse Electric Company in 1996. Installation of these RSGs took place in the last months of 2000. This paper compares the design features of the original and re-placement steam generators with emphasis on design and reliability enhancements achieved. (author)

  14. Electrical motor/generator drive apparatus and method

    Science.gov (United States)

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  15. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  16. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  17. Electricity market opening and electricity generation system's expansion in Slovenia

    International Nuclear Information System (INIS)

    Kosnjek, Z.; Vidmar, M.; Bregar, Z.

    2000-01-01

    Slovenia is rapidly adopting the European Union (EU) legislation to make itself ready to be admitted the fifteen EU member countries. In the area of energy or electricity supply industry, Slovenia has consequently enforced the Energy law, which in its essence follows the idea of the Directive 96/92/EC. Globally, the Directive defines common rules of the internal electricity market within EU. Any EU member country is responsible for assuring a competitive electricity market and implementing corresponding instruments as foreseen by the Directive. The share of the national market opening is calculated on the basis of eligible customers' consumption versus the overall consumption in a particular member country. Also, the Directive defines the rate of the electricity market opening. It is interesting to note that the EU member countries have been opening their national electricity markets at a greater speed than specified by the Directive. The overall Slovenian Electricity Supply Industry shall have to adapt itself to new imperatives, whereby the greatest changes will by all means take place in the area of electricity generation. As the reaction of eligible domestic market customers is quite unpredictable, the direct electricity import from foreign countries can only be estimated on a variant basis. EU countries that have deregulated their electricity market have been, step by step, gaining valuable experiences. The majority of them show a considerable pressure on having prices of the EPS generation sector reduced. A similar development can by all means be expected in Slovenia, too. it is expected that the major burden of the electricity market liberalisation and electric power interconnecting within EU will be carried by the EPS generation sector. The analyses of developed variants show that the burden, imposed by the transition onto the market economy, will be predominantly carried by the coal fired electricity supply industry. Further development of electricity

  18. Draft environmental statement related to steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2, (Docket No. 50-261)

    International Nuclear Information System (INIS)

    1983-09-01

    The staff has considered the environmental impacts and economic costs of the proposed steam generator repair at the H.B. Robinson Steam Electric Plant Unit No. 2 along with reasonable alternatives to the proposed action. The staff has concluded that the proposed repair will not significantly affect the quality of the human environment and that there are no preferable alternatives to the proposed action. Furthermore, any impacts from the repair program are outweighted by its benefits

  19. FIND: Douglas Point Nuclear Generating Station, Units 1 and 2

    International Nuclear Information System (INIS)

    Moore, M.M.

    1975-12-01

    This index is presented as a guide to microfiche items 1 through 136 in Docket 50448, which was assigned to Potomac Electric Power Company's Application for Licenses to construct and operate Douglas Point Nuclear Generating Station, Units 1 and 2. Information received from August, 1973 through July, 1975 is included

  20. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  1. Combined hydro-wind generation bids in a pool-based electricity market

    International Nuclear Information System (INIS)

    Angarita, Jorge L.; Usaola, Julio; Martinez-Crespo, Jorge

    2009-01-01

    Present regulatory trends are promoting the direct participation of wind energy in electricity markets. The final result of these markets sets the production scheduling for the operation time, including a power commitment from the wind generators. However, wind resources are uncertain, and the final power delivered usually differs from the initial power committed. This imbalance produces an overcost in the system, which must be paid by those who produce it, e.g., wind generators among others. As a result, wind farm revenue decreases, but it could increase by allowing wind farms to submit their bids to the markets together with a hydro generating unit, which may easily modify its production according to the expected imbalance. This paper presents a stochastic optimization technique that maximizes the joint profit of hydro and wind generators in a pool-based electricity market, taking into account the uncertainty of wind power prediction. (author)

  2. REDUNDANT ELECTRIC MOTOR DRIVE CONTROL UNIT DESIGN USING AUTOMATA-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Yuri Yu. Yankin

    2014-11-01

    Full Text Available Implementation of redundant unit for motor drive control based on programmable logic devices is discussed. Continuous redundancy method is used. As compared to segregated standby redundancy and whole system standby redundancy, such method provides preservation of all unit functions in case of redundancy and gives the possibility for continuous monitoring of major and redundant elements. Example of that unit is given. Electric motor drive control channel block diagram contains two control units – the major and redundant; it also contains four power supply units. Control units programming was carried out using automata-based approach. Electric motor drive control channel model was developed; it provides complex simulation of control state-machine and power converter. Through visibility and hierarchy of finite state machines debug time was shortened as compared to traditional programming. Control state-machine description using hardware description language is required for its synthesis with FPGA-devices vendor design software. This description was generated automatically by MATLAB software package. To verify results two prototype control units, two prototype power supply units, and device mock-up were developed and manufactured. Units were installed in the device mock-up. Prototype units were created in accordance with requirements claimed to deliverable hardware. Control channel simulation and tests results in the perfect state and during imitation of major element fault are presented. Automata-based approach made it possible to observe and debug control state-machine transitions during simulation of transient processes, occurring at imitation of faults. Results of this work can be used in development of fault tolerant electric motor drive control channels.

  3. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  4. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050

    International Nuclear Information System (INIS)

    Macknick, J; Sattler, S; Clemmer, S; Rogers, J; Averyt, K

    2012-01-01

    The power sector withdraws more freshwater annually than any other sector in the US. The current portfolio of electricity generating technologies in the US has highly regionalized and technology-specific requirements for water. Water availability differs widely throughout the nation. As a result, assessments of water impacts from the power sector must have a high geographic resolution and consider regional, basin-level differences. The US electricity portfolio is expected to evolve in coming years, shaped by various policy and economic drivers on the international, national and regional level; that evolution will impact power sector water demands. Analysis of future electricity scenarios that incorporate technology options and constraints can provide useful insights about water impacts related to changes to the technology mix. Utilizing outputs from the regional energy deployment system (ReEDS) model, a national electricity sector capacity expansion model with high geographical resolution, we explore potential changes in water use by the US electric sector over the next four decades under various low carbon energy scenarios, nationally and regionally. (letter)

  5. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  6. Impact of competitive electricity market on renewable generation technology choice and policies in the United States

    International Nuclear Information System (INIS)

    Sarkar, Ashok

    1999-01-01

    Market objectives based on private value judgments will conflict with social policy objectives toward environmental quality in an emerging restructured electricity industry. This might affect the choice of renewables in the future generation mix. The US electricity industry's long-term capacity planning and operations is simulated for alternative market paradigms to study this impact. The analysis indicates that the share of renewable energy generation sources would decrease and emissions would increase considerably in a more competitive industry, with greater impact occurring in a monopoly market. Alternative environmental policy options can overcome market failures and help achieve appropriate levels of renewable generation. An evaluation of these policies indicate their varying cost-effectiveness, with higher levels of intervention necessary if market power exists. (Author)

  7. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  8. Gas in electricity generation [In New Zealand

    International Nuclear Information System (INIS)

    Devine, K.

    1995-01-01

    Gas is New Zealand's major thermal fuel for electricity generation. This paper describes what influences the volumes of gas burnt by ECNZ, and forecasts future gas demands for electricity generation. It also reviews the uncertainties associated with these forecasts and likely competition in building new electricity generating stations and outlines the strategy now being formulated to accommodate them. Because ECNZ's generation system is hydro-based, relatively small rapid changes in hydrological conditions can significantly affect the amount of gas used. This situation will change over time with major increases in thermal generation likely to be needed over the next 20 years. However, there are considerable uncertainties on gas supply and electricity demand levels in the long run, which will complicate investment and fuel decisions. (Author)

  9. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.

    Science.gov (United States)

    Peer, Rebecca A M; Garrison, Jared B; Timms, Craig P; Sanders, Kelly T

    2016-04-19

    The US power sector is a leading contributor of emissions that affect air quality and climate. It also requires a lot of water for cooling thermoelectric power plants. Although these impacts affect ecosystems and human health unevenly in space and time, there has been very little quantification of these environmental trade-offs on decision-relevant scales. This work quantifies hourly water consumption, emissions (i.e., carbon dioxide, nitrogen oxides, and sulfur oxides), and marginal heat rates for 252 electricity generating units (EGUs) in the Electric Reliability Council of Texas (ERCOT) region in 2011 using a unit commitment and dispatch model (UC&D). Annual, seasonal, and daily variations, as well as spatial variability are assessed. When normalized over the grid, hourly average emissions and water consumption intensities (i.e., output per MWh) are found to be highest when electricity demand is the lowest, as baseload EGUs tend to be the most water and emissions intensive. Results suggest that a large fraction of emissions and water consumption are caused by a small number of power plants, mainly baseload coal-fired generators. Replacing 8-10 existing power plants with modern natural gas combined cycle units would result in reductions of 19-29%, 51-55%, 60-62%, and 13-27% in CO2 emissions, NOx emissions, SOx emissions, and water consumption, respectively, across the ERCOT region for two different conversion scenarios.

  10. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1985-06-01

    The Safety Evaluation Report for the application filed by Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, as applicants and owners, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Burke County, Georgia, approximately 41.5 km (26 mi) south-southeast of Augusta, and on the Savannah River. Subject to favorable resolution of the items discussed in this report, the staff concludes that the applicant can operate the facility without endangering the health and safety of the public

  11. Strategic bidding of generating units in competitive electricity market with considering their reliability

    International Nuclear Information System (INIS)

    Soleymani, S.; Ranjbar, A.M.; Shirani, A.R.

    2008-01-01

    In the restructured power systems, they are typically scheduled based on the offers and bids to buy and sell energy and ancillary services (AS) subject to operational and security constraints. Generally, no account is taken of unit reliability when scheduling it. Therefore generating units have no incentive to improve their reliability. This paper proposes a new method to obtain the equilibrium points for reliability and price bidding strategy of units when the unit reliability is considered in the scheduling problem. The proposed methodology employs the supply function equilibrium (SFE) for modeling a unit's bidding strategy. Units change their bidding strategies and improve their reliability until Nash equilibrium points are obtained. GAMS (general algebraic modeling system) language has been used to solve the market scheduling problem using DICOPT optimization software with mixed integer non-linear programming. (author)

  12. Projected costs of generating electricity

    International Nuclear Information System (INIS)

    2005-01-01

    Previous editions of Projected Costs of Generating Electricity have served as the reference in this field for energy policy makers, electricity system analysts and energy economists. The study is particularly timely in the light of current discussions of energy policy in many countries. The joint IEA/NEA study provides generation cost estimates for over a hundred power plants that use a variety of fuels and technologies. These include coal-fired, gas-fired, nuclear, hydro, solar and wind plants. Cost estimates are also given for combined heat and power plants that use coal, gas and combustible renewables. Data and information for this study were provided by experts from 19 OECD member countries and 3 non-member countries. The power plants examined in the study use technologies available today and considered by participating countries as candidates for commissioning by 2010-2015 or earlier. Investors and other decision makers will also need to take the full range of other factors into account (such as security of supply, risks and carbon emissions) when selecting an electricity generation technology. The study shows that the competitiveness of alternative generation sources and technologies ultimately depends on many parameters: there is no clear-cut ''winner''. Major issues related to generation costs addressed in the report include: descriptions of state-of-the-art generation technologies; the methodologies for incorporating risk in cost assessments; the impact of carbon emission trading; and how to integrate wind power into the electricity grid. An appendix to the report provides country statements on generation technologies and costs. Previous studies in the series were published in 1983, 1986, 1990, 1993 and 1998. (author)

  13. Feed-in tariff and market electricity price comparison. The case of cogeneration units in Croatia

    International Nuclear Information System (INIS)

    Uran, Vedran; Krajcar, Slavko

    2009-01-01

    In August 2007, the Government of the Republic of Croatia instituted a feed-in tariff system, requiring the Croatian Electricity Market Operator (HROTE) to off-take the electricity produced from renewable energy sources or cogeneration units fueled by natural gas. Analysis of the off-take electricity price range, which depends on the net electrical output and electricity market trends, indicates that it is more cost effective for cogeneration units greater than 1 MW to sell their electricity on the exchange market. This was confirmed by developing a mathematical model to calculate the cost-effectiveness ratio of a cogeneration unit. This ratio represents the relation between the profit spread, i.e. the difference between the profit generated from selling the electricity on the exchange market and the profit made from dispatching the electricity to HROTE, as well as the total investment costs. The model can be applied for changes in certain parameters, such as the net electrical output, volatility and spot electricity price. The Monte Carlo method is used to obtain the most probable cost-effectiveness ratio and average future electricity price. Together with these two economic parameters and market price analysis, it is possible to calculate and calibrate an acceptable off-take electricity price. (author)

  14. Electricity generation and environmental externalities: Case studies, September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  15. Electrical system design and reliability at Ontario Hydro nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Royce, C. J. [Ontario Hydro, 700 University Avenue, Toronto, Ontario M5G 1X6 (Canada)

    1986-02-15

    This paper provides an overview of design practice and the predicted and actual reliability of electrical station service Systems at Ontario Nuclear Generating Stations. Operational experience and licensing changes have indicated the desirability of improving reliability in certain instances. For example, the requirement to start large emergency coolant injection pumps resulted in the turbine generator units in a multi-unit station being used as a back-up power supply. Results of reliability analyses are discussed. To mitigate the effects of common mode events Ontario Hydro adopted a 'two group' approach to the design of safety related Systems. This 'two group' approach is reviewed and a single fully environmentally qualified standby power supply is proposed for future use. (author)

  16. Draft Environmental Statement related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1984-10-01

    This Draft Environmental Statement contains an assessment of the environmental impact associated with the operation of the Vogtle Electric Generating Plant, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, part 51 (10 CFR 51), as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environmental impacts, environmental consequences and mitigating actions, and environmental and economic benefits and costs associated with station operation

  17. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  18. Regional projections of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors

  19. Fossil-fuel dependence and vulnerability of electricity generation: Case of selected European countries

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2009-01-01

    This paper analyses the diversity of fuel mix for electricity generation in selected European countries and investigates how the fuel bill has changed as a share of GDP between 1995 and 2005. The drivers of fuel-dependence-related vulnerability are determined using Laspeyres index decomposition. A 'what-if' analysis is carried out to analyse the changes in the vulnerability index due to changes in the drivers and a scenario analysis is finally used to investigate the future vulnerability in the medium term. The paper finds that the British and the Dutch electricity systems are less diversified compared to three other countries analysed. The gas dependence of the Dutch and Italian systems made them vulnerable but the vulnerability increased in all countries in recent years. Gas price and the level of dependence on gas for power generation mainly influenced the gas vulnerability. The United Kingdom saw a substantial decline in its coal vulnerability due to a fall in coal price and coal dependence in electricity generation. The scenario analysis indicates that UK is likely to face greater gas vulnerability in the future due to increased gas dependence in electricity generation and higher import dependence.

  20. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility

    International Nuclear Information System (INIS)

    Açıkkalp, Emin; Aras, Haydar; Hepbasli, Arif

    2014-01-01

    Highlights: • Advanced exergoenvironmental analysis was conducted for an electricity generating facility. • Exergy destructions and environmental effects were divided into parts. • Environmental relations between the components were determined. • Environmental improvement strategies of the system were determined. - Abstract: This paper presents conventional and advanced exergoenvironmental analyses of an electricity generation facility located in the Eskisehir Industry Estate Zone, Turkey. This facility consists of gas turbine and steam cycles, which generate electrical power of approximately 37 MW and 18 MW, respectively. Exergy efficiency of the system is 0.402 and exergy destruction rate of the system is 78.242 MW. Unit exergy cost of electrical power generated by the system is 25.66 $/GJ and total exergoeconomic factor of the system is 0.279. Conventional exergy analysis method was applied to the system first. Next, exergy environmental impacts of exergy destruction rate within the facility’s components were divided into four parts generally, as endogenous, exogenous, avoidable and unavoidable environmental impact of exergy destruction rate. Through this analysis, improvement potential of the environmental impacts of the components and the overall system and the environmental relations between the components were then determined. Finally, exergoenvironmental factor was determined as 0.277 and environmental impact of the electricity was 8.472 (Pts/h). The system has 33% development potential for environmental impacts while its components have weak relations because of big endogenous parts of environmental impacts (80%). It may be concluded that advanced exergoenvironmental analysis indicated that priority should be given to the GT and CC, while defining the improvement strategies

  1. Characterization and dissolution studies of Bruce Unit 3 steam generator secondary side deposits

    International Nuclear Information System (INIS)

    Semmler, J.

    1998-01-01

    The physical and chemical properties of secondary side steam generator deposits in the form of powder and flake obtained from Bruce Nuclear Generating Station A (BNGS A) Unit 3 were studied. The chemical phases present in both types of deposits, collected prior to the 1994 chemical cleaning during the pre-clean water lancing campaign, were magnetite (Fe 3 O 4 ), metallic copper (Cu), hematite (Fe 2 O 3 ) and cuprous oxide (Cu 2 O). The major difference between the chemical composition of the powder and the flake was the presence of zinc silicate (Zn 2 SiO 4 ) and several unidentified silicate phases containing Ca, Al, Mn, and Mg in the flake. The flake deposit had high hardness values, high electrical resistivity, low porosity and a lower dissolution rate in the EPRI-SGOG (Electric Power Research Institute-Steam Generator Owner's Group) chemical cleaning solvents compared to the powder deposit. Differences in the deposit properties after chemical cleaning of the Unit 3 steam generators and after laboratory cleaning were noted. The presence of silicates in the deposit inhibit magnetite dissolution

  2. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  3. An electricity generation planning model incorporating demand response

    International Nuclear Information System (INIS)

    Choi, Dong Gu; Thomas, Valerie M.

    2012-01-01

    Energy policies that aim to reduce carbon emissions and change the mix of electricity generation sources, such as carbon cap-and-trade systems and renewable electricity standards, can affect not only the source of electricity generation, but also the price of electricity and, consequently, demand. We develop an optimization model to determine the lowest cost investment and operation plan for the generating capacity of an electric power system. The model incorporates demand response to price change. In a case study for a U.S. state, we show the price, demand, and generation mix implications of a renewable electricity standard, and of a carbon cap-and-trade policy with and without initial free allocation of carbon allowances. This study shows that both the demand moderating effects and the generation mix changing effects of the policies can be the sources of carbon emissions reductions, and also shows that the share of the sources could differ with different policy designs. The case study provides different results when demand elasticity is excluded, underscoring the importance of incorporating demand response in the evaluation of electricity generation policies. - Highlights: ► We develop an electric power system optimization model including demand elasticity. ► Both renewable electricity and carbon cap-and-trade policies can moderate demand. ► Both policies affect the generation mix, price, and demand for electricity. ► Moderated demand can be a significant source of carbon emission reduction. ► For cap-and-trade policies, initial free allowances change outcomes significantly.

  4. Thermoacoustic magnetohydrodynamic electrical generator

    International Nuclear Information System (INIS)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid

  5. Regional impacts of expanding gas-fired electric generation in the Northeast U.S. and Eastern Canada

    International Nuclear Information System (INIS)

    Mitchell, G.K.

    2001-01-01

    For the purpose of this presentation, the author placed emphasis on the northeast United States, including New York, New England, plus Ontario, Quebec and the Maritime provinces in Canada. The entire region comes under the Northeast Power Coordinating Committee (NPCC) of the North American Electric Reliability Council (NERC). The objective of this Council is to assist with the coordination of electric supply as well as transmission planning and reliability of the utilities. The annual ten year forecast of electric supply, demand and fuel sources produced by the NERC formed the basis for the data presented. The deregulation of the electricity market in a few jurisdictions in the region resulted in the break-up of several electric utilities into their core components: generation, distribution and transmission. The generation sector is where the fastest break-up activity is taking place and merchant energy companies are emerging. Each of these merchant energy companies is competing against the other to effect sales into the wholesale power market through the building of at risk generation plants. The deregulation process is subjected to different processes and time tables depending on each state or provincial regulations. The construction of new power plants in the region is being driven by the merchant energy companies. They are building low capital cost and highly efficient natural gas combined-cycle base load plants as well as lower cost and moderately efficient natural gas/oil-fired simple-cycle peaking plants. This activity is mainly restricted to the United States, since hydroelectric power, coal and nuclear power are the main presence in Canada. New England experiences summer peaks while Canada has winter peak electric demand. To optimize intra-regional peak generation capacity sharing, there is an opportunity for the electric industry to move gas by wire, and a number of projects are being developed. It is expected that pipeline expansion will be lower in

  6. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  7. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  8. Inventory of power plants in the United States 1990. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. The Summary Statistics chapter contains aggregate capacity statistics at the national and various regional levels for operable electric generating units and planned electric generating unit additions. Aggregate capacity data at the national level are presented by energy source and by prime mover. Aggregate capacity data at the various regional levels are presented by prime energy source. Planned capacity additions in new units are summarized by year, 1991 through 2000. Additionally, this chapter contains a summary of electric generating unit retirements, by energy source and year, from 1991 through 2000. The chapter on Operable Electric Generating Units contains data about each operable electric generating unit and each electric generating unit that was retired from service during the year. Additionally, it contains a summary by energy source of electric generating unit capacity additions and retirements during 1990. Finally, the chapter on Projected Electric Generating Unit Additions contains data about each electric generating unit scheduled by electric utilities to start operation between 1991 and 2000. 11 figs., 22 tabs.

  9. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed

    2015-01-01

    of the electrical system, opens new horizons for microgrid applications integrated into electrical power systems. The hierarchical control structure consists of primary, secondary, and tertiary levels for microgrids that mimic the behavior of the mains grid is reviewed. The main objective of this paper is to give......The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability...... in three classes. This analysis is extended focusing mainly on the three classes of configurations grid-forming, grid-feeding, and grid-supporting. The paper ends up with an overview and a discussion of the control structures and strategies to control distribution power generation system (DPGS) units...

  10. Financing investment in new electricity generation capacity in Northwest Europe. Policy brief

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, O.; De Joode, J.; Koutstaal, P.R. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-05-15

    Current Northwest European electricity markets are designed as 'energy-only' markets. In an energy-only market the price received for electricity produced is set by the marginal generation unit and potentially leaves the owners of these units with 'missing money': i.e. money that is required to recover investment cost. With a much higher penetration of intermittent electricity sources such as wind and solar PV, these markets may not be capable of providing sufficient incentives for investment in generation capacity, because operating hours and scarcity rents for peak and mid-merit order capacity will be considerably reduced. There are a number of options available to address this missing money problem. First of all, options should be explored which focus on improving the existing electricity markets. These options include increasing flexibility in both supply and demand improving the profitability of investments, for example by means of removing (implicit) price caps and allowing for long-term contracts. Next to these options which can help increase the revenue for generation investments some form of capacity mechanism such as capacity payments or capacity markets could be introduced. These capacity mechanisms have attracted considerable attention in recent years, both in the literature and in the policy debate, with a number of countries considering the introduction of such mechanisms. However, unilateral introduction of capacity mechanisms in integrated electricity markets can have a considerable impact on cross border electricity flows and investment decisions. It might negatively affect security of supply in neighbouring countries and will result in price differences between consumers within a country which have to bear the costs of capacity mechanisms and those outside those countries. Moreover, unilateral capacity mechanisms can disrupt the functioning of the internal energy market. Before the implementation of capacity mechanisms

  11. Electricity generation using electromagnetic radiation

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-08-22

    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  12. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  13. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    Science.gov (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  14. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  15. Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis

    Directory of Open Access Journals (Sweden)

    Burcin Atilgan

    2016-01-01

    Full Text Available Turkey’s electricity mix is dominated by fossil fuels, but the country has ambitious future targets for renewable and nuclear energy. At present, environmental impacts of electricity generation in Turkey are unknown so this paper represents a first attempt to fill this knowledge gap. Taking a life cycle approach, the study considers eleven impacts from electricity generation over the period 1990–2014. All 516 power plants currently operational in Turkey are assessed: lignite, hard coal, natural gas, hydro, onshore wind and geothermal. The results show that the annual impacts from electricity have been going up steadily over the period, increasing by 2–9 times, with the global warming potential being higher by a factor of five. This is due to a four-fold increase in electricity demand and a growing share of fossil fuels. The impact trends per unit of electricity generated differ from those for the annual impacts, with only four impacts being higher today than in 1990, including the global warming potential. Most other impacts are lower from 35% to two times. These findings demonstrate the need for diversifying the electricity mix by increasing the share of domestically-abundant renewable resources, such as geothermal, wind, and solar energy.

  16. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  17. Nuclear and conventional baseload electricity generation cost experience

    International Nuclear Information System (INIS)

    1993-04-01

    The experienced costs of electricity generation by nuclear and conventional plants and the expected costs of future plants are important for evaluating the economic attractiveness of various power projects and for planning the expansion of electrical generating systems. The main objective of this report is to shed some light on recent cost experience, based on well authenticated information made available by the IAEA Member States participating in this study. Cost information was provided by Canada (Ontario Hydro), Czechoslovakia, Hungary, India, the Republic of Korea and Spain. Reference is also made to information received from Brazil, China, France, Russia and the United States of America. The part of the report that deals with cost experience is Section 2, where the costs of both nuclear and fossil fired plants are reviewed. Other sections give emphasis to the analysis of the major issues and relevant cost elements influencing the costs of nuclear power plants and to a discussion of cost projections. Many of the conclusions can also be applied to conventional plants, although they are usually less important than in the case of nuclear plants. 1 ref., figs and tabs

  18. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  19. Production function application attempt in electricity generation forecasting

    International Nuclear Information System (INIS)

    Kamrat, W.; Augusiak, A.

    1996-01-01

    A modified Cobb-Douglas production function is applied to evaluate level of electricity generation for medium and long term prognosis (up to 2010) in an easy and simple way. The test calculations have been done for hard coal fired power plants, based on generation data supplied in Main Statistical Office of Poland publications.The model of electricity generation is defined using data on capital of a typical productivity power plant and its employment for time series 1980-90. The test calculation results based on the parameters of Rosenbroock's optimization procedure of electricity generation model are presented. The method described is distinguished for its high accuracy as compared to classical methods despite the relatively short time series. It is suitable for studies in electricity generation policy . 1 tab

  20. The external costs of electricity generation: a comparison of generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemiroglu, E [Economics for the Environment Consultancy, London (United Kingdom)

    1995-12-01

    Electricity generation, like any economic activity, leads to costs that can be grouped in two categories: (a) private or internal and (b) external. Private costs are those paid by the buyers and sellers of energy within the market system. The external costs, however, are not included in the market price mechanism as they accrue to third parties other than the buyer and the seller. External costs include environmental external costs and non-environmental external costs. There are two conditions for the existence of external costs: (a) market failure, or the inability of markets to account for the cost of environmental impacts of energy generation and the market structure and (b) government or policy failure, or the policies that cause private generators to pay either higher or lower costs than they would if these interventions did not exist. A third reason can be added for the existence of non-environmental externalities: energy security, or certain costs faced by society as a result of over-reliance on imported energy. Section A introduces the concept of external costs and benefits. Section B looks at the environmental externalities of energy generation. The procedure is to develop the methodology to estimate what are known as externality adders, i.e. a monetary value for the environmental costs and benefits associated with selected generation technologies, expressed in pence per kilowatt-hour. The result is an `adder` because, in principle, the sum can be added to the private cost of generating electricity to obtain a measure of the `full` or `social` cost. The selected generation technologies are conventional coal, wind power, small-scale hydro, energy crops, incineration of municipal solid waste and energy recovery from landfill. The data reported are based on the application of the technologies in Scotland, but the methodology can be applied anywhere. Section C takes a brief look at the non-environmental externalities including the general theory and evidence

  1. The external costs of electricity generation: a comparison of generation technologies

    International Nuclear Information System (INIS)

    Ozdemiroglu, E.

    1995-01-01

    Electricity generation, like any economic activity, leads to costs that can be grouped in two categories: (a) private or internal and (b) external. Private costs are those paid by the buyers and sellers of energy within the market system. The external costs, however, are not included in the market price mechanism as they accrue to third parties other than the buyer and the seller. External costs include environmental external costs and non-environmental external costs. There are two conditions for the existence of external costs: (a) market failure, or the inability of markets to account for the cost of environmental impacts of energy generation and the market structure and (b) government or policy failure, or the policies that cause private generators to pay either higher or lower costs than they would if these interventions did not exist. A third reason can be added for the existence of non-environmental externalities: energy security, or certain costs faced by society as a result of over-reliance on imported energy. Section A introduces the concept of external costs and benefits. Section B looks at the environmental externalities of energy generation. The procedure is to develop the methodology to estimate what are known as externality adders, i.e. a monetary value for the environmental costs and benefits associated with selected generation technologies, expressed in pence per kilowatt-hour. The result is an 'adder' because, in principle, the sum can be added to the private cost of generating electricity to obtain a measure of the 'full' or 'social' cost. The selected generation technologies are conventional coal, wind power, small-scale hydro, energy crops, incineration of municipal solid waste and energy recovery from landfill. The data reported are based on the application of the technologies in Scotland, but the methodology can be applied anywhere. Section C takes a brief look at the non-environmental externalities including the general theory and evidence

  2. Electric power generator

    International Nuclear Information System (INIS)

    Carney, H.C.

    1977-01-01

    An electric power generator of the type employing a nuclear heat source and a thermoelectric converter is described wherein a transparent thermal insulating medium is provided inside an encapsulating enclosure to thermally insulate the heat source and thermoelectric generator. The heat source, the thermoelectric converter, and the enclosure are provided with facing surfaces which are heat-reflective to a substantial degree to inhibit radiation of heat through the medium of the encapsulating enclosure. Multiple reflective foils may be spaced within the medium as necessary to inhibit natural convection of heat and/or further inhibit radiation

  3. The steam generator repair project of the Donald C. Cook Nuclear Plant, Unit 2

    International Nuclear Information System (INIS)

    White, J.D.

    1993-01-01

    Donald C. Cook Nuclear Plant Unit 2 is part of a two unit nuclear complex located in southwestern Michigan and owned and operated by the Indiana Michigan Power Company. The Cook Nuclear Plant is a pressurized water reactor (PWR) plant with four Westinghouse Series 51 steam generators housed in an ice condenser containment. This paper describes the program undertaken by Indiana Michigan Power and the American Electric Power Service Corporation (AEPSC) to repair the Unit 2 steam generators. (Both Indiana Michigan Power and AEPSC arc subsidiaries of American Electric Power Company, Incorporated (AEP). AEPSC provides management and technical support services to Indiana Michigan Power and the other AEP operating companies.) Eddy current examinations, in a series of refueling and forced outages between November 1983 and July 1986 resulted in 763 (5.6%) plugged tubes. In order to maintain adequate reactor core cooling, a limit of 10% is placed on the allowable percentage of steam generator tubes that can be removed from service by plugging. Additionally, sections of tubes were removed for metallurgical analysis and confirmed that the degradation was due to intergranular stress corrosion cracking. In developing the decision on how to repair the steam generators, four alternative actions were considered for addressing these problems: retubing in place, sleeving, operating at 80% reactor power to lower temperature and thus reduce the rate of corrosion, replacing steam generator lower assemblies

  4. Electrical-Generation Scenarios for China

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Krakowski, R.A.

    2002-03-01

    The China Energy Technology Program (CETP) used both optimizing and simulation energy- economic-environmental (E3) models to assess tradeoffs in the electricity-generation sector for a range of fuel, transport, generation, and distribution options. The CETP is composed of a range of technical tasks or activities, including Energy Economics Modeling (EEM, optimizations), Electric Sector Simulation (ESS, simulations), Life Cycle Analyses (LCA, externalization) of energy systems, and Multi-Criteria Decision Analyses (MCDA, integration). The scope of CETP is limited to one province (Shandong), to one economic sector (electricity), and to one energy sector (electricity). This document describes the methods, approaches, limitations, sample results, and future/needed work for the EEM ( optimization-based modeling) task that supports the overall goal of CETP. An important tool used by the EEM task is based on a Linear Programming (LP) optimization model that considers 17 electricity-generation technologies utilizing 14 fuel forms (type, composition, source) in a 7-region transportation model of China's electricity demand and supply system over the period 2000-2030; Shandong is one of the seven regions modeled. The China Regional Electricity Trade Model (CRETM) is used to examine a set of energy-environment-economy E3-driven scenarios to quantify related policy implications. The development of electricity production mixes that are optimized under realistically E3 constraints is determined through regional demands for electricity that respond to exogenous assumptions on income (GDP) and electricity prices through respective time-dependent elasticities. Constraints are applied to fuel prices, transportation limits, resource availability, introduction (penetration) rates of specific technology, and (where applicable) to local, regional, and countrywide emission rates of CO{sub 2}, SO{sub 2} and NO{sub x}. Importantly, future inter- regional energy flows are optimized with

  5. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  6. Technical Specifications: Vogtle Electric Generating Plant, Unit Nos. 1 and 2 (Docket Nos. 50-424 and 50-425): Appendix ''A'' to License Nos. NPF-68 and NPF-79

    International Nuclear Information System (INIS)

    1989-02-01

    The Vogtle Electric Generating Plant, Unit Nos. 1 and 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public

  7. Technical Specifications, Vogtle Electric Generating Plant, Unit Nos. 1 and 2 (Docket Nos. 50-424 and 50-425): Appendix ''A'' to License Nos. NPF-68 and NPF-81

    International Nuclear Information System (INIS)

    1989-03-01

    The Vogtle Electric Generating Plant, Unit Nos. 1 and 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public

  8. Envisioning a renewable electricity future for the United States

    International Nuclear Information System (INIS)

    Mai, Trieu; Mulcahy, David; Hand, M. Maureen; Baldwin, Samuel F.

    2014-01-01

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability. Four high renewable pathways are modeled and demonstrate the robustness and diversity of renewable options. We estimate 69–82% annual greenhouse gas emission reductions and 3%–30% incremental electricity price increases associated with reaching 80%-by-2050 renewable electricity relative to reference scenarios. This paper affirms and strengthens similar analysis from the Renewable Electricity Futures study by using an improved model and updated data to better reflect investment and dispatch decisions under current outlooks for the U.S. electricity sector. - Highlights: • We model high renewable electricity scenarios for the U.S. electricity sector. • The mix of technologies will depend on future costs and system conditions. • Integration challenges and flexibility options are presented. • We estimate an incremental electricity price increase of 3–30% to achieve 80% RE (renewable electricity). • We estimate 69–82% reduction in annual carbon emissions with 80% RE

  9. 18 CFR 801.12 - Electric power generation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made...

  10. Green electricity policies in the United States: case study

    International Nuclear Information System (INIS)

    Menz, Fredric C.

    2005-01-01

    While there has been interest in promoting the use of renewable energy in electricity production for a number of years in the United States, the market share of non-hydro renewable energy sources in electricity production has remained at about 2 percent over the past decade. The paper reviews the principal energy resources used for electricity production, considers the changing regulatory environment for the electricity industry, and describes government policies that have been used to promote green electricity in the United States, with an emphasis on measures adopted by state governments. Factors influencing the development of green power markets are also discussed, including underlying economic issues, public policy measures, the regulatory environment, external costs, and subsidies. Without significant increases in fossil fuel prices, much more stringent environmental regulations, or significant changes in electricity customer preferences, green electricity markets are likely to develop slowly in the United States

  11. Evolving Distributed Generation Support Mechanisms: Case Studies from United States, Germany, United Kingdom, and Australia

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-14

    This report expands on a previous National Renewable Energy Laboratory (NREL) technical report (Lowder et al. 2015) that focused on the United States' unique approach to distributed generation photovoltaics (DGPV) support policies and business models. While the focus of that report was largely historical (i.e., detailing the policies and market developments that led to the growth of DGPV in the United States), this report looks forward, narrating recent changes to laws and regulations as well as the ongoing dialogues over how to incorporate distributed generation (DG) resources onto the electric grid. This report also broadens the scope of Lowder et al. (2015) to include additional countries and technologies. DGPV and storage are the principal technologies under consideration (owing to market readiness and deployment volumes), but the report also contemplates any generation resource that is (1) on the customer side of the meter, (2) used to, at least partly, offset a host's energy consumption, and/or (3) potentially available to provide grid support (e.g., through peak shaving and load shifting, ancillary services, and other means).

  12. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  13. Use of mock-up training to reduce personnel exposure at the North Anna Unit 1 Steam Generator Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    Henry, H.G. [Virginia Power, Mineral, VA (United States); Reilly, B.P. [Bechtel Power Corp., Gaithersburg, MD (United States)

    1995-03-01

    The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supply system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.

  14. Power generation investment in electricity markets

    International Nuclear Information System (INIS)

    2003-01-01

    Most IEA countries are liberalizing their electricity markets, shifting the responsibility for financing new investment in power generation to private investors. No longer able to automatically pass on costs to consumers, and with future prices of electricity uncertain, investors face a much riskier environment for investment in electricity infrastructure. This report looks at how investors have responded to the need to internalize investment risk in power generation. While capital and total costs remain the parameters shaping investment choices, the value of technologies which can be installed quickly and operated flexibly is increasingly appreciated. Investors are also managing risk by greater use of contracting, by acquiring retail businesses, and through mergers with natural gas suppliers. While liberalization was supposed to limit government intervention in the electricity market, volatile electricity prices have put pressure on governments to intervene and limit such prices. This study looks at several cases of volatile prices in IEA countries' electricity markets, and finds that while market prices can be a sufficient incentive for new investment in peak capacity, government intervention into the market to limit prices may undermine such investment

  15. Mini-biomass electric generation

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  16. The projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2010-10-01

    This paper describes the outcomes from the joint report between the Nuclear Energy Agency and the International Energy Agency of the OECD on the projected costs of generating electricity. The study contains data on electricity generating costs for almost 200 power plants provided by 17 OECD member countries, 4 non-OECD countries and 4 industrial companies or industry organisations. The paper presents the projected costs of generating electricity calculated according to common methodological rules on the basis of the data provided by participating countries and organisations. Data were received for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. Cost estimates were also provided for combined heat and power plants, as well as for coal plants that include carbon capture. As in previous studies of the same series, all costs and benefits were discounted or capitalised to the date of commissioning in order to calculate the state of the electricity costs per MWh, based on plant operating lifetime data. In addition, the paper contains a discussion of a number of factors affecting the cost of capital, the outlook for carbon capture and storage and the working of electricity markets. (Author)

  17. Analysis of the energy portfolio for electricity generation

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.; Esquivel E, J.

    2016-09-01

    The planning of electricity generation systems considers several factors that must be taken into account in order to design systems that are economical, reliable and sustainable. For this purpose, the Financial Portfolio Theory is applicable to the energy portfolio or the diversification of electricity generation technologies, such as is the combined cycle, wind, thermoelectric and nuclear. This paper presents an application of the Portfolio Theory to the national energy system, based on the total generation costs for each technology, which allows determining the average variance portfolio and the respective share of each of the electricity generation technologies considered, obtaining a portfolio of electricity generation with the maximum possible return for the risk taken in the investments. This paper describes the basic aspects of the Portfolio Theory and its methodology, in which matrices are implemented for the solution of the resulting Lagrange system. (Author)

  18. Electricity Self-Generation Costs for Industrial Companies in Cameroon

    Directory of Open Access Journals (Sweden)

    Diboma Benjamin Salomon

    2010-07-01

    Full Text Available Industrial production in developing countries (DC is frequently perturbed by electric energy supply difficulties. To overcome this problem, generators are used in self-generation of energy, but this leads to an increase of electricity-related expenses. This article assesses the impact of electricity self-generation on Cameroonian industrial companies. The model described in this article is based on data collected through a survey of a representative sample of industrial companies and from numerous previous thematic and statistical studies. The results of our analyses show that expenses related to electricity in industrial companies in Cameroon have increased five times due to electricity rationing and untimely power cuts. The article also suggests some solutions to improve the electricity self-generation capacity of industrial companies.

  19. Natural gas and electricity generation in Queensland

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    The focus of this article is on electricity generation in Queensland. Black coal accounted for 97 percent, while natural gas made up only 1 percent of the fuel used in thermal power generation in 1997-98. The share of natural gas in thermal electricity generation is expected to rise to 21 percent by 2014-2015, because of the emphasis on natural gas in Queensland's new energy policy. Since 1973-1974, Queensland has led the way in electricity consumption, with an average annual growth rate of 6.8 percent but the average thermal efficiency has fallen from 38.0 percent in 1991-1992, to 36.6 percent in 1997-1998

  20. Regional impacts of expanding gas-fired electric generation in the northeast US and eastern Canada

    International Nuclear Information System (INIS)

    Mitchell, G.

    2002-01-01

    New York, New England, Ontario, Quebec and Canada's Maritime provinces come under the jurisdiction of the Northeast Power Coordinating Committee (NPCC) of the North American Electric Reliability Council (NERC). The objective of this Council is to assist with the coordination of electric supply, as well as transmission planning and reliability for the utilities. The annual ten year forecast of electric supply, demand and fuel sources produced by the NERC formed the basis for the data presented. The deregulation of the electricity market in a few jurisdictions in the region resulted in the break-up of several electric utilities into their core components, namely, generation, distribution and transmission. The generation sector is where the fastest break-up activity is taking place, and merchant energy companies are emerging. Each of these merchant energy companies is competing against the other to effect sales into the wholesale power market through the building of at risk generation plants. The deregulation process is subjected to different processes and time tables depending on each state or province regulations. The construction of new power plants in the region is being driven by the merchant energy companies. They are building low capital cost and highly efficient natural gas combined-cycle base load plants as well as lower cost and moderately efficient natural gas/oil-fired simple-cycle peaking plants. This activity is mainly restricted to the United States, since hydroelectric power, coal and nuclear power are the main presence in Canada. New England experiences summer peaks while Canada has winter peak electric demand. To optimize intra-regional peak generation capacity sharing, there is an opportunity for the electric industry to move gas by wire, and a number of projects are being developed. It is expected that pipeline expansion will be lower in Quebec and Ontario and result in more capacity expansions from the Maritimes combined with intra

  1. Electricity prices and generator behaviour in gross pool electricity markets

    International Nuclear Information System (INIS)

    O'Mahoney, Amy; Denny, Eleanor

    2013-01-01

    Electricity market liberalisation has become common practice internationally. The justification for this process has been to enhance competition in a market traditionally characterised by statutory monopolies in an attempt to reduce costs to end-users. This paper endeavours to see whether a pool market achieves this goal of increasing competition and reducing electricity prices. Here the electricity market is set up as a sealed bid second price auction. Theory predicts that such markets should result with firms bidding their marginal cost, thereby resulting in an efficient outcome and lower costs to consumers. The Irish electricity system with a gross pool market experiences among the highest electricity prices in Europe. Thus, we analyse the Irish pool system econometrically in order to test if the high electricity prices seen there are due to participants bidding outside of market rules or out of line with theory. Overall we do not find any evidence that the interaction between generator and the pool in the Irish electricity market is not efficient. Thus, the pool element of the market structure does not explain the high electricity prices experienced in Ireland. - Highlights: • We consider whether a gross pool achieves competitive behaviour. • We analyse the Irish pool system econometrically. • Results indicate the Irish pool system appears to work efficiently. • Generators appear to be bidding appropriately

  2. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  3. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  4. Implementing China's national energy conservation policies at state-owned electric power generation plants

    International Nuclear Information System (INIS)

    Zhao Xiaofan; Ortolano, Leonard

    2010-01-01

    China's 11th Five-Year Guideline identified energy conservation as one of the country's fundamental policies and established a mandatory target: 20% reduction in national average energy intensity by 2010. Despite the various policies, laws, and administrative reforms to support energy conservation, China fell behind schedule for meeting its conservation targets in 2006 and 2007. Using a combination of available literature and an interview-based case study, this paper examines the implementation of energy conservation and investigates impediments to achieving China's conservation goal in the electric power generation sector. Three key impediments are detailed: (1) municipal governments' incentives to overlook conservation-related central directives primarily because of budget pressures linked to financial decentralization, (2) procedural obstacles in the form of time required to obtain project approvals for high-efficiency power generation units, and (3) financial obstacles making it difficult for power generation enterprises to raise capital for energy conservation projects. An interview-based case study of a state-owned coal-fired electric power generation company demonstrates the influence of the aforementioned obstacles. While procedural obstacles are notable, they can be managed. However, electricity pricing reforms and/or stronger subsidy programs will be needed to address the financial obstacles facing Chinese power generation companies.

  5. Electric power industry deregulation in the United States: impacts on U.S. and Canadian markets

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G.R. [Putnam, Hayes and Bartlett, Inc., Cambridge, MA (United States)

    1996-10-01

    An overview of the restructuring and deregulation of the United States electric power industry and the implications for the North American natural gas industry was presented. Electric power restructuring and its effect on wholesale and retail competition was discussed. It was suggested that although in the short term electric power deregulation impacts negatively on the natural gas industry, the long term impacts are favourable. The short term impact on the natural gas industry will mean increased competition and downward pressure on gas prices. In contrast, the long term impact could mean increased reliance on gas for electric power generation and convergence of the electric power and natural gas industries.

  6. Identification of Synchronous Generator Electric Parameters Connected to the Distribution Grid

    Directory of Open Access Journals (Sweden)

    Frolov M. Yu.

    2017-04-01

    Full Text Available According to modern trends, the power grids with distributed generation will have an open system architecture. It means that active consumers, owners of distributed power units, including mobile units, must have free access to the grid, like when using internet, so it is necessary to have plug and play technologies. Thanks to them, the system will be able to identify the unit type and the unit parameters. Therefore, the main aim of research, described in the paper, was to develop and research a new method of electric parameters identification of synchronous generator. The main feature of the proposed method is that parameter identification is performed while the generator to the grid, so it fits in the technological process of operation of the machine and does not influence on the connection time of the machine. For the implementation of the method, it is not necessary to create dangerous operation modes for the machine or to have additional expensive equipment and it can be used for salient pole machines and round rotor machines. The parameter identification accuracy can be achieved by more accurate account of electromechanical transient process, and making of overdetermined system with many more numbers of equations. Parameter identification will be made with each generator connection to the grid. Comparing data obtained from each connection, the middle values can be find by numerical method, and thus, each subsequent identification will accurate the machine parameters.

  7. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  8. Electric trade in the United States 1990

    International Nuclear Information System (INIS)

    1992-01-01

    Electric Trade in the United States 1990 (ELECTRA) is the third in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data. The second report contained data for 1988. This report provides information on the industry during 1990

  9. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  10. Ukraine biosolids incineration project generates electricity while solving disposal problems

    Energy Technology Data Exchange (ETDEWEB)

    Kosanke, J. [Quality Recycling Ltd., Henderson, NC (United States)

    2008-07-15

    This article described an innovative Waste-to-Energy (WtE) system that is currently being installed in the city of Odessa in the Ukraine. The city has a population of 1 million and is a major seaport on the Black Sea. Sewage sludge will be used as a biomass fuel to power an electrical generation plant. The system includes a clean-burning rotary cascading bed combustor (RCBC) linked to a boiler and an electricity-generating steam turbine. The RCBC spins in order to keep fuel cascading for maximum combustion, and is expected to burn over 50,000 tons of dewatered sewage sludge per year while generating 33,507,000 kWh of electricity per individual location. Eleven systems will be installed at major sewage processing modules in the Ukraine. A pilot program is also being conducted to test and monitor the system under United States emissions and operational standards. The RCBC is also being used to combust fuels derived from municipal solid waste (MSW) at a site in Kansas. Other fuels that can be cleanly burned using the RCBC system included high sulfur bituminous coal; anthracite coal waste; carpet and carpet scrap, and tires and rubber wastes. Studies have demonstrated that some toxic wastes can be removed using the RCBC system. It was concluded that burning negative value fuels can allow some power plants to earn revenues from disposal fees. 3 figs.

  11. Coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    2001-03-01

    This report examines coal-fired electricity generation in Ontario and recommends actions to be taken by the provincial government to protect the environment. The recommendations are also designed to assist in making decisions about the environmental safeguards needed for a competitive electricity industry. The report examines air emissions from coal-fired generating plants in the larger context of air pollution in the province; summarizes background information on key air pollutants; provides an individual profile of all coal-fired power stations in the province; and benchmarks Ontario's emissions performance by comparing it with 19 nearby U.S. jurisdictions. Current and proposed environmental controls for fossil fuel power generation in the province are elaborated. Options for maximizing environmental performance and the framework for strengthening environmental protection are reviewed. The report also contains a series of findings and recommendations which are deemed necessary before the moratorium imposed on the sale of coal-fired electricity plants imposed in May 2000, can be lifted. tabs., figs

  12. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  13. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  14. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  15. Hybrid Systems of Distributed Generation with Renewable Sources: Modeling and Analysis of Their Operational Modes in Electric Power System

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2013-01-01

    Full Text Available The paper considers problems pertaining to modeling and simulation of operational hybrid system modes of the distributed generation comprising conventional sources – modular diesel generators, gas-turbine power units; and renewable sources – wind and solar power plants. Operational modes of the hybrid system have been investigated under conditions of electrical connection with electric power system and in case of its isolated operation. As a consequence

  16. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  17. Electricity trade: Generating benefits for British Columbians

    International Nuclear Information System (INIS)

    1994-01-01

    Electricity has been traded in British Columbia since the turn of the century. In 1988, the provincial government established the British Columbia Power Exchange Corporation (Powerex) to conduct electricity trade activities in order to make the most efficient use of the electrial system and generate benefits for British Columbians. The trade is made possible by an interconnected system linking producers and consumers in western Canada and the USA. Provincial participants in the trade include British Columbia Hydro, independent power producers, and cogenerators. Benefits of the electricity trade include generation of revenue from sale of surplus power, being able to buy electricity when the mainly hydroelectric provincial system is in a drought condition or when major shutdowns occur, and enabling postponement of development of new power projects. Powerex conducts its trade under provincial and federal permits and licenses. Different types of trade contracts are negotiated depending on the amount and availability of electricity and the kind of trade being conducted. Exchanges and coordination agreements allow transfer and return between utilities with no net export occurring, allowing balancing of loads between different reigons. Surplus electricity is bought or sold on a short- or long-term basis and on firm or non-firm terms. Electricity exports are not subsidized and are only allowed if the electricity is surplus to provincial needs and can be sold at a profit. A new provincial policy allows private industry to export long-term firm electricity; this involves construction of new private-sector generating facilities solely for the purpose of export. 1 fig

  18. Competitive Electricity Market Regulation in the United States: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Grid, Warwick (United Kingdom)

    2016-12-01

    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  19. The deployment of electricity generation from renewable energies in Germany and Spain: A comparative analysis based on a simple model

    International Nuclear Information System (INIS)

    Fernández Fernández, Pablo; Ortiz, Eunice Villicaña; Bernat, Jorge Xiberta

    2013-01-01

    The fulfilment of the aims set by the European Union in the deployment of renewable energy sources for electricity generation (RES-E) has counted and must continue to count on public funding from the member states, which promote private investment in this type of facilities. This funding guarantees a cost-oriented remuneration which, being higher than the market price means an additional cost to the electricity system. With the aim of minimizing the economic impact as the weight of RES-E in the electricity mix increases, the generation costs of renewable units must approach those of the market, which are expected to increase according to the fossil fuel price forecasts. The present study analyzes both the RES-E development and deployment in Spain and Germany, two pioneering countries worldwide and with very similar electricity systems. Based on their national action plans and a simple model, this analysis approaches the RES-E surcharge, comparing and contrasting the results obtained in both countries. - Highlights: ► Policies must be assessed according to the surcharge caused per unit generated. ► Surcharge evolution function fitted by an Erlang alike distribution. ► About two-third of the decade surcharge shall be devoted to units commissioned by 2010. ► Germany focused on technology development, while Spain on deployment

  20. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  1. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    International Nuclear Information System (INIS)

    Heath, Garvin A.; Nazaroff, William W.

    2007-01-01

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants - PM 2.5 , NO x and formaldehyde - directly emitted by five DG technologies - natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric

  2. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    Science.gov (United States)

    Heath, Garvin A.; Nazaroff, William W.

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric

  3. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1986-12-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-0737 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, and Supplement 3 was issued in August 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fourth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new items

  4. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, and Supplement 4 was issued in December 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fifth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued

  5. Cernavoda NPP Unit 1 - a plant of several generations

    International Nuclear Information System (INIS)

    Rotaru, I.; Metes, M.; Anghelescu, M.S.

    2001-01-01

    The paper reflects some key aspects related to the shift of generations during the project's development, including the present stage. Further, the place of Cernavoda NPP Unit 1 in the Romanian power sector and among other nuclear stations in the world is presented. The operational performances achieved 'in service' up to the end of 1999, with reference to the performance indicators for electrical energy production, nuclear safety, radiation protection, radioactive wastes and nuclear fuel are illustrated. For all of these items, comparisons are performed with similar indicators reported by other worldwide nuclear power plants, in order to assess our results. Finally, some comments about Cernavoda NPP Unit 2 project status and need to completion and commissioning it are included. (authors)

  6. Projected costs of electricity generation

    International Nuclear Information System (INIS)

    Cameron, R.

    2010-01-01

    This paper describes the outcomes of a study on the projected costs of generating electricity. It presents the latest data available on electricity generating costs for a wide variety of fuels and technologies, including coal, gas, nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal. The study reaches 2 key conclusions. First, at a 5% real interest rate, nuclear energy is the most competitive solution for base-load electricity generation followed by coal-fired plants without carbon capture and natural gas-fired combined plants. It should be noted that coal with carbon capture has not reached a commercial phase. Second, at a 10% interest rate, nuclear remains the most competitive in Asia and North America but in Europe, coal without carbon capture equipment, followed by coal with carbon capture equipment, and gas-fired combined cycle turbines are overall more competitive than nuclear energy. The results highlight the paramount importance of interest rates (this dependence is a direct consequence of the nuclear energy's high capital costs) and of the carbon price. For instance if we assume a 10% interest rate and a cost of 50 dollar per tonne of CO 2 , nuclear energy would become competitive against both coal and gas. (A.C.)

  7. Generation capacity expansion planning in deregulated electricity markets

    Science.gov (United States)

    Sharma, Deepak

    With increasing demand of electric power in the context of deregulated electricity markets, a good strategic planning for the growth of the power system is critical for our tomorrow. There is a need to build new resources in the form of generation plants and transmission lines while considering the effects of these new resources on power system operations, market economics and the long-term dynamics of the economy. In deregulation, the exercise of generation planning has undergone a paradigm shift. The first stage of generation planning is now undertaken by the individual investors. These investors see investments in generation capacity as an increasing business opportunity because of the increasing market prices. Therefore, the main objective of such a planning exercise, carried out by individual investors, is typically that of long-term profit maximization. This thesis presents some modeling frameworks for generation capacity expansion planning applicable to independent investor firms in the context of power industry deregulation. These modeling frameworks include various technical and financing issues within the process of power system planning. The proposed modeling frameworks consider the long-term decision making process of investor firms, the discrete nature of generation capacity addition and incorporates transmission network modeling. Studies have been carried out to examine the impact of the optimal investment plans on transmission network loadings in the long-run by integrating the generation capacity expansion planning framework within a modified IEEE 30-bus transmission system network. The work assesses the importance of arriving at an optimal IRR at which the firm's profit maximization objective attains an extremum value. The mathematical model is further improved to incorporate binary variables while considering discrete unit sizes, and subsequently to include the detailed transmission network representation. The proposed models are novel in the

  8. Use of Local Dynamic Electricity Prices for Indirect Control of DER Power Units

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Isleifsson, Fridrik Rafn

    2013-01-01

    the grid voltage. The algorithms generating the local prices are dynamically adjusted according to the actual realised responses to the dynamic prices. Results are presented from an adapted version of the control principle implemented and tested in DTUs experimental research power system, SYSLAB, including...... wind power, solar power, flexible load and electrical storage. The local power price generation is based on the actual Nord Pool DK2 Spot prices on hourly basis as the quasi-stationary global electricity price, and the local SYSLAB's power exchange with the national grid as basis for the dynamic price...... system. A challenge is to find a cheap, simple and robust way to requests the proper power regulation by the DER power units. The use of broadcasted, dynamic power prices and volunteer responses is one option. The paper presents a proposal for and an illustration of advanced generation of local, dynamic...

  9. Cooling of superconducting electric generators by liquid helium

    International Nuclear Information System (INIS)

    Nakayama, W.; Ogata, H.

    1987-01-01

    Superconducting generators have a great potential in future electric supply systems in increasing the efficiency of generators and in enhancing the stability of power network systems. Recognition of possible advantages over gas-cooled and water-cooled generators has led research institutes and manufacturers in several countries to wage substantial research and development efforts. The authors show the electric power capacities of the test generators already built, under construction, or in the planning stage. Since earlier attempts, steady improvements in the design of generators have been made, and experience of generator operation has been accumulated

  10. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...... each pole needs its own excitation coil, which limits the number of poles as each coil will take up too much space between the poles....

  11. Developing an optimal electricity generation mix for the UK 2050 future

    International Nuclear Information System (INIS)

    Sithole, H.; Cockerill, T.T.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Porter, R.T.J.; Pourkashanian, M.

    2016-01-01

    The UK electricity sector is undergoing a transition driven by domestic and regional climate change and environmental policies. Aging electricity generating infrastructure is set to affect capacity margins after 2015. These developments, coupled with the increased proportion of inflexible and variable generation technologies will impact on the security of electricity supply. Investment in low-carbon technologies is central to the UK meeting its energy policy objectives. The complexity of these challenges over the future development of the UK electricity generation sector has motivated this study which aims to develop a policy-informed optimal electricity generation scenario to assess the sector's transition to 2050. The study analyses the level of deployment of electricity generating technologies in line with the 80% by 2050 emission target. This is achieved by using an excel-based “Energy Optimisation Calculator” which captures the interaction of various inputs to produce a least-cost generation mix. The key results focus on the least-cost electricity generation portfolio, emission intensity, and total investment required to assemble a sustainable electricity generation mix. A carbon neutral electricity sector is feasible if low-carbon technologies are deployed on a large scale. This requires a robust policy framework that supports the development and deployment of mature and emerging technologies. - Highlights: • Electricity generation decarbonised in 2030 and nearly carbon neutral in 2050. • Nuclear, CCS and offshore wind are central in decarbonising electricity generation. • Uncertainty over future fuel and investment cost has no impact on decarbonisation. • Unabated fossil fuel generation is limited unless with Carbon Capture and Storage. • Decarbonising the electricity generation could cost about £213.4 billion by 2030.

  12. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    Science.gov (United States)

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  13. Alternative solutions for electricity generation

    International Nuclear Information System (INIS)

    Kuenstle, K.

    1976-01-01

    Ten illustrations - mainly comparitive ones - dealing with the possibilities of an economical energy conversion, in particular electricity generation, in the FRG are explained and commented upon. (UA) [de

  14. Geothermal power generation in the United States 1985 through 1989

    International Nuclear Information System (INIS)

    Rannels, J.E.; McLarty, L.

    1990-01-01

    The United States has used geothermal energy for the production of electricity since 1960 and has the largest installed capacity of any country in the world. During the 1980s, expansion at The Geysers and emergence of the hot water segment of the industry fueled explosive growth in generating capacity. In this paper geothermal development in the U.S. during the second half of the decade is reviewed, and development over the next five years is forecast

  15. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  16. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  17. Generation Companies’ Operative Strategies in the Spot Electricity Market

    Directory of Open Access Journals (Sweden)

    Tovar-Hernández J.H.

    2012-07-01

    Full Text Available In traditional regulation the obligation to meet the consumer demand was assumed, this guaranteed to generation companies the full recovery of their costs. However, in order to achieve greater efficiency, reduce the price of electricity, meet the continuously growing electricity consumption, and equalize prices in different regions, a new structure of the electricity industry has been created, where electric energy is traded through a market. Generation company’s future cash flows depend on day to day market participation, in order to satisfy all of their financial and economic requirements. In this paper, future cash flows required to fulfill with economic and financial commitments by a generation company immerse in this new market structure are studied. For this purpose, future cash flows are considered to be dependent on a single asset: electricity. Several scenarios with different fuel prices are generated in order to estimate the generation company’s future cash flows. The response of the competing generation companies is taken into account at each scenario. The fuel price changes are modelled using a concurrent binary tree.

  18. Sustainability evaluation of decentralized electricity generation

    International Nuclear Information System (INIS)

    Karger, Cornelia R.; Hennings, Wilfried

    2009-01-01

    Decentralized power generation is gaining significance in liberalized electricity markets. An increasing decentralization of power supply is expected to make a particular contribution to climate protection. This article investigates the advantages and disadvantages of decentralized electricity generation according to the overall concept of sustainable development. On the basis of a hierarchically structured set of sustainability criteria, four future scenarios for Germany are assessed, all of which describe different concepts of electricity supply in the context of the corresponding social and economic developments. The scenarios are developed in an explorative way according to the scenario method and the sustainability criteria are established by a discursive method with societal actors. The evaluation is carried out by scientific experts. By applying an expanded analytic hierarchy process (AHP), a multicriteria evaluation is conducted that identifies dissent among the experts. The results demonstrate that decentralized electricity generation can contribute to climate protection. The extent to which it simultaneously guarantees security of supply is still a matter of controversy. However, experts agree that technical and economic boundary conditions are of major importance in this field. In the final section, the article discusses the method employed here as well as implications for future decentralized energy supply. (author)

  19. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  20. Insuring unit failures in electricity markets

    International Nuclear Information System (INIS)

    Pineda, S.; Conejo, A.J.; Carrion, M.

    2010-01-01

    An electric energy producer participates in futures markets in the hope of hedging the risk of trading in the pool. However, this producer is required to supply the energy associated with all its signed forward contracts even if some of its units are forced out due to unexpected failures. In this case, the producer must purchase some of the energy needed to meet its futures market commitments in the pool, which may result in high losses if the pool prices happen to be higher than the forward contract prices. To mitigate these losses, the producer can take out insurance against the forced outages of its units. Using a stochastic programming model, this paper analyzes the convenience of signing an insurance against unit failure by an electric energy producer and its impact on forward contracting decisions. Results from a realistic case study are provided and analyzed.

  1. New electricity generating installations - Czech experience

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Zdarek, J.

    2004-01-01

    Economically and technically are analysed alternatives for new electricity generation installations (GEN 111+ NPPs, finalization of NPPs under construction, lifetime extension of existing NPPs, coal plants and gas plants). Described are experienced with NPP Temelin (lessons learned from its design, construction, start-up and resent operation and service experience) and new Czech Energy Policy, where the nuclear energy is an important source for electricity generation. Discussed is also impact of potential trading with CO 2 limits and strategy on minimization of dependence on energy from politically unstable regions. Underlined is important role of preparation of young generation for safe and reliable long term operation of NPPs. General recommendation is to orient on finalization of NPPs under construction, lifetime extension of existing NPPs and long term orientation on new generation of NPPs (GEN III+ and GEN IV). (author)

  2. Quantifying avoided fuel use and emissions from solar photovoltaic generation in the Western United States.

    Science.gov (United States)

    Denholm, Paul; Margolis, Robert M; Milford, James M

    2009-01-01

    The electric power system in the Western United States was simulated to evaluate the potential of solar photovoltaics (PV) in reducing fossil-fuel use and associated emissions. The simulations used a utility production cost model to evaluate a series of PV penetrations where up to 10% of the region's electricity is derived from PV. The analysis focused on California, which uses gas for a large fraction of its generation and Colorado, which derives most of its electricity from coal. PV displaces gas and electricity imports almost exclusively in California, with a displacement rate of about 6000-9000 kJ per kWh of PV energy generated. In Colorado, PV offsets mostly gas at low penetration, with increasing coal displacement during nonsummer months and at higher penetration. Associated reductions in CO2, NOx, and SO2 emissions are also calculated.

  3. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  4. Scenarios of Expansion to Electric Generation Capacity

    Directory of Open Access Journals (Sweden)

    José Somoza-Cabrera

    2017-06-01

    Full Text Available We show the building scenarios of expansion to electric generation capacity enough to supply the demand to 2050. We were using the LEAP facility (Long-range Energy Alternatives Planning System, to simulate dispatch of electricity at minimum cost. Finally, we show the cost-benefice analysis of the technologies availability, included externality and CO2 emission limited. However that we included the externals cost in this analysis, it results insufficient to closed gap between fossil and renewable technologies of electric generation. Nevertheless, in some opportunities the renewable options had very important participations in the minimal cost scenario of expansion.

  5. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  6. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.; Elcock, D.; Tidwell, V. C.; Hallett, K.; Macknick, J.; Wigmosta, M. S.; Tesfa, T. K. (Environmental Science Division); (Sandia National Laboratory); (National Renewable Energy Laboratory); (Pacific Northwest National Laboratory)

    2012-02-09

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) and the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power

  7. Electric trade in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  8. Electric trade in the United States 1994

    International Nuclear Information System (INIS)

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994

  9. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  10. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey

    Directory of Open Access Journals (Sweden)

    Zerrin Günkaya

    2016-10-01

    Full Text Available The aim of this paper was to determine how to change the environmental performance of electricity generation depending on the resources and their shares, in order to support decision-makers. Additionally, this paper presents an application of life cycle assessment (LCA methodology to determine the environmental burdens of electricity generation in Turkey. Electricity generation data in Turkey for the years 2012 and 2023 were used as a case study. The functional unit for electricity generation was 1 kWh. The LCA calculations were carried out using CML-IA (v3.00 data and the results were interpreted with respect to Monte Carlo simulation analysis (with the Monte Carlo function built in SimaPro 8.0.1 software. The results demonstrated that the fossil fuel consumption not only contributes to global warming, but it also has effects on the elemental basis of abiotic depletion due to raw material consumption for plant infrastructure. Additionally, it was observed that the increasing proportion of wind power in the electricity mix would also increase certain life cycle impacts (such as the elemental basis of abiotic depletion, human ecotoxicity, and terrestrial ecotoxicity in Turkey’s geography compared to increasing the share of other renewable energy sources, such as hydropower, geothermal, as well as solar.

  11. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  12. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-10-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This first supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued and provides the Advisory Committee on Reactor Safeguards letter dated August 13, 1985

  13. Life cycle assessment of electricity generation in Mexico

    International Nuclear Information System (INIS)

    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.

    2011-01-01

    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO 2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO 2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement. -- Highlights: → This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. → 129 million tonnes of CO 2 eq. per year are emitted from 225 TWh of electricity generated per year of which 87% is due to the combustion of fossil fuels. → Coal technologies generate 1094 g CO 2 eq./kWh, heavy fuel oil 964 g CO 2 eq./kWh, and gas 468 g CO 2 eq./kWh; by contrast, nuclear and hydro emit 12 g CO 2 eq./kWh. → Heavy fuel oil contributes most to the life cycle environmental impacts (59-97%). → The results show good agreement with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK.

  14. Estimation of requirements of eolic energy equivalent to the electric generation of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Garcia V, M.A.; Hernandez M, I.A.; Martin del Campo M, C.

    2004-01-01

    The advantages are presented that have the nuclear and eolic energy as for their low environmental impact and to the human health. An exercise is presented in the one that is supposed that the electric power generated by the Laguna Verde Nuclear Power plant (CNLV), with capacity of 1365 M W, it should be produced by eolic energy when in the years 2020 and 2025 the units 1 and 2 of the CNLV reach its useful life and be moved away. It is calculated the number of aero generators that would produce the electric power average yearly of the CNLV, that which is equal to install eolic parks with capacity of 2758 M W, without considering that it will also be invested in systems of back generation to produce electricity when the aero generators stops for lack of wind. (Author)

  15. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1989-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, Supplement 7 was issued in January 1988, and Supplement 8 was issued in February 1989. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This ninth supplement to NUREG-1137 provides recent information regarding resolution of conditional items following issuance of Supplement 8

  16. Hydropower Impacts on Electrical System Production Costs in the Southwest United States

    Directory of Open Access Journals (Sweden)

    Dominique M. Bain

    2018-02-01

    Full Text Available The Colorado River is an important natural resource for the Southwestern United States. Predicted climate change impacts include increased temperature, decreased rainfall and increased probability of drought in this region. Given the large amount of hydropower on the Colorado River and its importance to the bulk electricity system, this purpose of this study was to quantify the value hydropower in operating the electrical system, and examined changes in hydropower value and electricity costs under different possible future drought conditions and regional generation scenarios. The goal was to better understand how these scenarios affect operating costs of the bulk electrical system, as well as the value of the hydropower produced, and proposed a method for doing so. The calculated value of the hydroelectric power was nearly double the mean locational marginal price in the study area, about $73 to $75 for most scenarios, demonstrating a high value of the hydropower. In general, it was found that reduced water availability increased operating costs, and increased the value of the hydropower. A calculated value factor showed that when less hydroelectric power is available, the hydropower is more valuable. Furthermore, the value factor showed that the value of hydro increases with the addition of solar or the retirement of thermal generating resources.

  17. Electricity generation of 100 kva using biogas from swine and poultry slaughterhouse in Brazil

    International Nuclear Information System (INIS)

    Melegari de Souza; Samuel Nelson; Lenz, Anderson Miguel; Werncke, Iván; Antonelli, Jhonatas

    2015-01-01

    In Brazil, there is a wide availability of animal residues, since the growing of animals to slaughterhouse, which have been used in some, places the production of biogas and biofertilizers. Biogas is used for generating electricity for self-consumption and the surplus is inserted in the network of the local utility. The aim of the present work was to assess energetic efficiency and emissions of two engine-generator sets of 100 KVA running on biogas, produced from residues of a poultry slaughterhouse and swine fatten in. Load variation in the generators set was assessed in the SMCP system of protection and synchronism, by Woodword. The results showed an increase in the emission of nitrogen oxide, sulfur dioxide and exhaust gas temperature. The increase in the load of the generator led to a reduction in specific consumption and efficiency raise, with levels ranging from 6.12% with load of 10 kW to 20.91% with 70 kW. The average specific consumption was 0.76 m3.kWh-1 in the swine fattening biogas unit and 0.80 m3.kWh-1 in the slaughterhouse biogas unit with load of 70 kW. These results are important to the farmers and owners of slaughterhouse plan the electrical production itself from bio waste that are disposal in high quantities. (full text)

  18. Big Rock Point: 35 years of electrical generation

    International Nuclear Information System (INIS)

    Petrosky, T.D.

    1998-01-01

    On September 27, 1962, the 75 MWe boiling water reactor, designed and built by General Electric, of the Big Rock Point Nuclear Power Station went critical for the first time. The US Atomic Energy Commission (AEC) and the plant operator, Consumers Power, had designed the plant also as a research reactor. The first studies were devoted to fuel behavior, higher burnup, and materials research. The reactor was also used for medical technology: Co-60 radiation sources were produced for the treatment of more than 120,000 cancer patients. After the accident at the Three Mile Island-2 nuclear generating unit in 1979, Big Rock Point went through an extensive backfitting phase. Personnel from numerous other American nuclear power plants were trained at the simulator of Big Rock Point. The plant was decommissioned permanently on August 29, 1997 after more than 35 years of operation and a cumulated electric power production of 13,291 GWh. A period of five to seven years is estimated for decommissioning and demolition work up to the 'green field' stage. (orig.) [de

  19. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  20. Marble Hill Nuclear Generating Station, Units 1 and 2. License application, PSAR, general information

    International Nuclear Information System (INIS)

    1975-01-01

    An application is presented for two PWR reactors to be constructed in Salud Township, Jefferson County, Indiana, about six miles northeast of New Washington on the Ohio River. Each unit will have a rated core power level of 3411 MW(t) with a corresponding electrical output of 1130 MW(e). Mechanical draft cooling towers will be provided. The facility, which will replicate the Byron facility will be employed for the generation of electricity for transmission, sale for resale, and distribution

  1. An Introduction to Retail Electricity Choice in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengru [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Retail electricity choice in the United States allows end-use customers (including industrial, commercial, and residential customers) to buy electricity from competitive retail suppliers. This brochure offers an overview of retail electricity choice in the United States, and its impact on prices and renewable energy procurement. It concludes with three lessons learned from the U.S. retail market experience that may serve as a reference for other countries and regions taking steps towards retail electricity market liberalization.

  2. Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix

    International Nuclear Information System (INIS)

    Alves, Laura Araujo; Uturbey, Wadaed

    2010-01-01

    The main purpose of this paper is to emphasize the importance of including environmental degradation costs in the long-term planning of the Brazilian electricity sector. To this aim, environmental external costs associated to both hydro-power and thermal-power electricity generation are investigated. Monetary valuation methodologies are applied and environmental degradation costs, expressed in per kWh of generated energy, are obtained for the main types of generation sources of the Brazilian electricity matrix. Both local pollution due to particulate matter emissions and global warming effects are assessed. A classification of the sources from the point of view of their impact on the environment is given. Degradation costs associated to the installed capacity expansion in the Brazilian electricity sector during the time horizon 2007-2016 are estimated. These resulting costs represent lower boundary damage estimates associated only with the energy to be generated during the period. Results indicate that local pollution caused by a small number of plants could be even more costly to society than global warming and, also, show the importance of considering not only unitary damage costs but the participation of each source on the generated energy during the time horizon, as a guide to planning and policy making.

  3. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  4. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  5. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  6. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  7. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  8. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  9. Method for heating of the primary circuit of WWER electric power units at cold start-up

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Dimitrov, B.D.; Korkinova, M.I.

    1982-01-01

    The method increases the heating rate and shorten the start-up time of the electric power units. It comprises a primary stopping of the reactor core heating and provides a forced circulation of the heat-carrier through the circulation cycles of the primary circuit. The thermal energy is supplied in one or several steam generators in the secondary circuit of an NPP operating unit. 1 cl., 3 figs

  10. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  11. Understanding social acceptance of electricity generation sources

    International Nuclear Information System (INIS)

    Bronfman, Nicolás C.; Jiménez, Raquel B.; Arévalo, Pilar C.; Cifuentes, Luis A.

    2012-01-01

    Social acceptability is a determinant factor in the failure or success of the government's decisions about which electricity generation sources will satisfy the growing demand for energy. The main goal of this study was to validate a causal trust-acceptability model for electricity generation sources. In the model, social acceptance of an energy source is directly caused by perceived risk and benefit and also by social trust in regulatory agencies (both directly and indirectly, through perceived risk and benefit). Results from a web-based survey of Chilean university students demonstrated that data for energy sources that are controversial in Chilean society (fossil fuels, hydro, and nuclear power) fit the hypothesized model, whereas data for non conventional renewable energy sources (solar, wind, geothermal and tidal) did not. Perceived benefit had the greatest total effect on acceptability, thus emerging as a key predictive factor of social acceptability of controversial electricity generation sources. Further implications for regulatory agencies are discussed. - Highlights: ► We tested a causal trust-acceptability model for electricity generation sources in Chile. ► Data for controversial energy sources in the Chilean society (fossil fuels, hydro and nuclear power) fit the hypothesized model. ► Data for non conventional renewable energy sources did not fit the data. ► Perceived benefit showed the greatest total effect on acceptability.

  12. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-05-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This second supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open and confirmatory items

  13. Electricity Generation Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aabakken, Jorn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ganda, Francesco [Argonne National Lab. (ANL), Argonne, IL (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tarka, Thomas [National Energy Technology Lab. (NETL), Albany, OR (United States); Brewer, John [National Energy Technology Lab. (NETL), Albany, OR (United States); Schultz, Travis [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-01-01

    This report was developed by a team of national laboratory analysts over the period October 2015 to May 2016 and is part of a series of studies that provide background material to inform development of the second installment of the Quadrennial Energy Review (QER 1.2). The report focuses specifically on U.S. power sector generation. The report limits itself to the generation sector and does not address in detail parallel issues in electricity end use, transmission and distribution, markets and policy design, and other important segments. The report lists 15 key findings about energy system needs of the future.

  14. Impacts of demand response and renewable generation in electricity power market

    Science.gov (United States)

    Zhao, Zhechong

    This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating

  15. Is solar PV generated electricity cheap in South Africa?

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2015-07-01

    Full Text Available This presentation reflects on photovoltaic (PV) generated electricity in South Africa, and whether it is a cheaper alternative to current generated electricity in the country. It is projected that by 2019 the installed capacity of PV could...

  16. Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

    Directory of Open Access Journals (Sweden)

    Gorkem Sen

    2016-03-01

    Full Text Available Grid-enabled vehicles (GEVs such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H. In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

  17. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  18. Electricity generation with natural gas or with uranium?

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2009-10-01

    The program of works and investments of electric sector that actualize each year the Federal Commission of Electricity, include to the projects of electric power generating stations that will begin its commercial operation inside the horizon of the next ten years, in order to satisfy opportunely with appropriate reservation margins the demand of power and energy in the national interconnected system that grows year to year. In spite of its inherent advantages, in the electric sector prospective 2008-2017 are not considered explicitly to the nuclear power plants, except for the small amplification of capacity of nuclear power plant of Laguna Verde, that already is executing. In this context, the objective of this work is to present and to discuss arguments to favor and against the combined cycle and nuclear technologies, to indicate the risks and disadvantages in that it incurs the electric sector when leaning on so disproportionately on the fossil fuels for the electricity generation, in particular the natural gas, deferring to an indefinite future the installation of nuclear plants whose proven technology is economic, sure, clean and reliable and it contributes decisively to the national energy security. To mitigate the harmful effects of excessive dependence on natural gas to generate electric power, was propose alternatives to the expansion program of electric sector to year 2017, which would have as benefits the decrease of the annual total cost of electric power supply for public service, the significant reduction of natural gas imports and emissions reduction of CO 2 to the atmosphere. (Author)

  19. Inventory of Power Plants in the United States, October 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  20. Coalition of distributed generation units to virtual power players - a game theory approach

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago M; Santos, Gabriel

    2015-01-01

    and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis...... strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one...

  1. Liberalization of power generation sector in the Croatian electricity market

    International Nuclear Information System (INIS)

    Viskovic, Alfredo

    2005-01-01

    The electricity market liberalization and the restructuring of power utilities eventually leads to the establishment of a single electricity market in Europe, which is especially important for efficiency gains in electricity generation coupled with increased security of supply, economic competitiveness and fulfillment of environmental requirements. The European electricity market Directives as well as the Energy Community Treaty for South East Europe (legislative Menu) have remarkable impact on the restructuring of the Croatian power sector and the development of electricity generation. The Croatian model of restructuring includes legal un bundling (in the ownership of one holding company - Hrvatska Elektroprivreda (HEP)). The operation of HEP Group and its subsidiaries in the conditions of partially opened electricity market in an important element that shapes the interactions of competitive activities and regulated activities in the environment influenced by exogenous factors a thirteen percent electricity are controlled by the Energy Market Operator (MO), the Transmission System Operator (TSO) and the Energy Regulatory Agency (CERA). The introduction of eligible procedures and newly created operative procedures for power system operation, are creating completely new conditions for competition in the power generation sector, where almost all power plants are owned by HEP. New generating capacities in Croatia can be built through tendering and licensing procedures carried out by the Regulator. Electricity prices are still regulated by the Government (below the cost reflective level), there is a small share of industrial consumers and the annual electricity production is 12 TWh, with relatively large share of hydro plants. All these have implications on the development of the power generation sector in Croatia as well as on electricity market operation. The subject matter of this paper is an impact of power system restructuring and electricity market opening on the

  2. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  3. Electric Power Generation from Low to Intermediate Temperature Resourcces

    Energy Technology Data Exchange (ETDEWEB)

    Gosnold, William [Univ. of North Dakota, Grand Forks, ND (United States); Mann, Michael [Chemical Engineering Department, University of North Dakota, Grand Forks, ND (United States); Salehfar, Hossein [Univ. of North Dakota, Grand Forks, ND (United States)

    2017-03-20

    The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowing at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the

  4. The emergence of distributed generation in a liberalizing european electricity market

    International Nuclear Information System (INIS)

    Habay, P.; Pariente David, S.

    1999-01-01

    The liberalization, of the European electricity market accelerates the market entry of innovative small scale power generation and communication technologies applicable for a competitive power supply offering. The pressure of competition will push incumbent utilities as well as new entrants to tap any source of economic efficiencies in order to secure a competitive advantage and sufficient margins. The integration of a power generation unit on site or close to end-user premises without additional constraint for end-user is a potential source of economic efficiency. These systems enable to meet the needs of end-users at an attractive price and, beyond this, to free capacities for power exchange through the grid. These new practices lay the basis for distributed generation business which should experience significant growth in Europe over the next decade assuming that technologies meet efficiencies as announced. (authors)

  5. Present state of electric power business in United States and Europe

    International Nuclear Information System (INIS)

    Onishi, Kenichi

    2011-01-01

    This article reported present state of nuclear power and electric power business in United States and Europe after Fukushima Daiichi Accident. As for the trend of demand and supply of electric power and policy, the accident forced Germany possibly to proceed with phase-out of nuclear power, but France and United States to sustain nuclear power with no great change of energy policy at this moment. As for the trend of electric power market, there was not state in United States with liberalized retail market of electric power after rolling blackouts occurred in California State in the early 2000s. In Germany proceeding with renewable energy introduction, renewable electricity fed into the grid was paid for by the network operators at fixed tariffs and the costs passed on to electricity consumers were increasing. Renewable Portfolio Standards (RPS) in United States forced the state to introduction of renewable energy to some ratio, and Feed-in Tariff (FIT) introduced in EU in 1990s lead to introduction of a large amount of renewable electricity targeted in 2020. Huge amount of wind power introduction brought about several problems to solve such that excess electric power above domestic demand had bad effects on grids in neighboring region. Enforcement of power transmission lines was also needed with increase of maximum electric power as well as introduction of a large amount of renewable electricity. (T. Tanaka)

  6. Loss Allocation in a Distribution System with Distributed Generation Units

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, Arne Hejde; Sørensen, Poul Ejnar

    2007-01-01

    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed...... generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system...

  7. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units

    Energy Technology Data Exchange (ETDEWEB)

    Cagatay Bayindir, Kamil; Goezuekuecuek, Mehmet Ali; Teke, Ahmet [Cukurova University, Department of Electrical and Electronics Engineering, Balcali, Saricam, Adana (Turkey)

    2011-02-15

    The studies for hybrid electrical vehicle (HEV) have attracted considerable attention because of the necessity of developing alternative methods to generate energy for vehicles due to limited fuel based energy, global warming and exhaust emission limits in the last century. HEV incorporates internal composition engine, electric machines and power electronic equipments. In this study, overview of HEVs with a focus on hybrid configurations, energy management strategies and electronic control units are presented. Advantages and disadvantages of each configuration are clearly emphasized. The existing powertrain control techniques for HEVs are classified and comprehensively described. Electronic control units used in HEV configuration are also elaborated. The latest trends and technological challenges in the near future for HEVs are discussed. (author)

  8. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    Science.gov (United States)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  9. Managing Wind-based Electricity Generation and Storage

    Science.gov (United States)

    Zhou, Yangfang

    Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not

  10. Alberta electric industry annual statistics for 1998

    International Nuclear Information System (INIS)

    1999-06-01

    Tables containing data on electric energy generation and capacity for Alberta are provided for the following aspects: capacity and generation of power plants for 1998; capacity of power plants by type, unit, and energy resource for 1998; generating units approved for construction for 1998; generating units completed in 1998; transmission additions approved for construction and completed for 1998; net annual generating capacity and generation for 1988-1998; net monthly generation by plant for 1998; net annual generation by energy resource and type for 1988-1998; net monthly generation by energy resource and type for 1998; generation capacity reserve; relative capacity and generation by type of energy resource for 1998; capacity, generation and fuel consumption of isolated plants for 1998; other industrial on-site plant capacity and generation for 1998. Also listed are: energy resource consumption and energy conversion efficiency of thermal power plants for 1998; stack emissions from thermal generating plants for 1998; non-utility electric generators, wind and hydro for 1998; and hydroelectric energy utilization and conversion efficiency for 1998. Tables contain information on electric energy generation and capacity for hydroelectric energy stored in reservoirs in 1998; details of non-coincident net peak generation and load by utility operators for the Alberta electric system for 1998; and Alberta electric system generation and load at peak load hour for 1998. Further tables cover electric energy distribution for interchange and distribution for 1998 and 1981-1998; annual energy distribution to ultimate customers for 1988-1998 and to ultimate customers for 1998; and the number of electric utility customers in 1998. Final tables cover the transmission and distribution systems with data on: circuit km of such lines for 1988-1998; total circuit km of such lines by major electric utility for 1998 and number of rural electric utility customers for 1998

  11. Profiting from competition: Financial tools for electric generation companies

    Science.gov (United States)

    Richter, Charles William, Jr.

    work uses GP-Automata, a technique which combines genetic programming and finite state machines, to represent adaptive agents. We use a genetic algorithm to evolve these adaptive agents (each with its own bidding strategy) for use in a double auction. The agent's strategies may be judged by the amount of profit they produce and are tested by computerized agents repeatedly buying and selling electricity in an auction simulator. In addition to the obvious profit-maximization strategies, one can also design strategies which exhibit other types of trading behaviors. The resulting strategies can be used directly in on-line trading, or as realistic models of competitors in a trading simulator. In addition to developing double auction bidding strategies, we investigate and discuss methods of an energy trader's risk. This can be done using such financial vehicles as futures and options contracts or through the inclusion of risk while judging strategies used in the market simulations described above. We discuss the role of fuzzy logic in the competitive electric marketplace, including how it can be applied in developing bidding strategies. Since competition promises to drive the power system closer to its operating limits, improvements in measurement and system control will be important. We provide an example of using fuzzy logic to do automatic generation control and discuss extensions that would make it superior to traditional controllers. Since the GENCO's forte is primarily generating electricity, we examine unit commitment and discuss how to update it for the competitive environment. We discuss the role of unit commitment in developing bidding strategies, as well as, the role of bidding strategies in solving the unit commitment problem. Depending on the market structure adopted by a particular location, large amounts of bidding data may be available to regulators or market participants. Ideally, regulators could use this data to verify dig the market is efficient. Market

  12. Proposal of electric power generation from generators to water edge in the region of Sarapiqui

    International Nuclear Information System (INIS)

    Rodriguez Fallas, Cindy Veronica

    2013-01-01

    A proposed electric power generation is developed from generators to water edge in the region of Sarapiqui. The environmental characteristics, such as the hydrological network, hydrogeology, soil type, life zones, climatology, precipitation, temperature, evapotranspiration and water supply and demand, of rivers crossed by basin in the region of Sarapiqui, are determined by bibliographic consultations to implement the proposal. The most recent production statistics of the electric subsector of Costa Rica are described to reveal the growing annual demand and need for satisfaction. The zone of Sarapiqui is diagnosed as the right place to allow the generation of electric power from generators to water edge [es

  13. Electricity pricing model in thermal generating stations under deregulation

    International Nuclear Information System (INIS)

    Reji, P.; Ashok, S.; Moideenkutty, K.M.

    2007-01-01

    In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig

  14. Method to Calculate the Electricity Generated by a Photovoltaic Cell, Based on Its Mathematical Model Simulations in MATLAB

    Directory of Open Access Journals (Sweden)

    Carlos Morcillo-Herrera

    2015-01-01

    Full Text Available This paper presents a practical method for calculating the electrical energy generated by a PV panel (kWhr through MATLAB simulations based on the mathematical model of the cell, which obtains the “Mean Maximum Power Point” (MMPP in the characteristic V-P curve, in response to evaluating historical climate data at specific location. This five-step method calculates through MMPP per day, per month, or per year, the power yield by unit area, then electrical energy generated by PV panel, and its real conversion efficiency. To validate the method, it was applied to Sewage Treatment Plant for a Group of Drinking Water and Sewerage of Yucatan (JAPAY, México, testing 250 Wp photovoltaic panels of five different manufacturers. As a result, the performance, the real conversion efficiency, and the electricity generated by five different PV panels in evaluation were obtained and show the best technical-economic option to develop the PV generation project.

  15. Comparison of the performance, advantages and disadvantages of nuclear power generation compared to other clean sources of electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jônatas F.C. da; Neto, Rieder O., E-mail: jonatasfmata@yahoo.com.br, E-mail: rieder.neto@gmail.com [Universidade do Estado de Minas Gerais (UEMG), João Monlevade, MG (Brazil); Mesquita, Amir Z., E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Nowadays, there is an increase in the demand for electricity in emerging countries, such as India, China and Brazil. There are several alternatives to increase energy generation, and each country has followed certain strategies to achieve this goal. For a long time, developed countries, such as the United States, the United Kingdom and Germany, had focused their efforts on the use of thermoelectric generators through the combustion of non-renewable sources such as coal, natural gas and oil. These examples were followed, also, by the emerging countries. However, pollution levels, generated by these sources, have required the breakdown of this paradigm, and the consequent reversal of large investments in clean energy sources, such as hydraulics, solar and wind. Nucleo-electric energy is also considered a clean energy source, since it does not generate polluting gases during the processing of concentrated uranium in nuclear reactors. In addition, all radioactive waste occupying relatively small volumes and being stored in controlled deposits, in aspects of health, environment and safety. The objective of this article is to compare the performance, in economic, environmental and safety aspects, of nuclear power in relation to renewable energy sources. The results show that nuclear energy has become increasingly competitive in all these fields, justifying the growth of investments in new nuclear technologies. Therefore, the coexistence between the use of clean sources of electricity and the thermonuclear matrix will bring, for humanity, truly sustainable systems of energy generation. (author)

  16. Comparison of the performance, advantages and disadvantages of nuclear power generation compared to other clean sources of electricity

    International Nuclear Information System (INIS)

    Mata, Jônatas F.C. da; Neto, Rieder O.; Mesquita, Amir Z.

    2017-01-01

    Nowadays, there is an increase in the demand for electricity in emerging countries, such as India, China and Brazil. There are several alternatives to increase energy generation, and each country has followed certain strategies to achieve this goal. For a long time, developed countries, such as the United States, the United Kingdom and Germany, had focused their efforts on the use of thermoelectric generators through the combustion of non-renewable sources such as coal, natural gas and oil. These examples were followed, also, by the emerging countries. However, pollution levels, generated by these sources, have required the breakdown of this paradigm, and the consequent reversal of large investments in clean energy sources, such as hydraulics, solar and wind. Nucleo-electric energy is also considered a clean energy source, since it does not generate polluting gases during the processing of concentrated uranium in nuclear reactors. In addition, all radioactive waste occupying relatively small volumes and being stored in controlled deposits, in aspects of health, environment and safety. The objective of this article is to compare the performance, in economic, environmental and safety aspects, of nuclear power in relation to renewable energy sources. The results show that nuclear energy has become increasingly competitive in all these fields, justifying the growth of investments in new nuclear technologies. Therefore, the coexistence between the use of clean sources of electricity and the thermonuclear matrix will bring, for humanity, truly sustainable systems of energy generation. (author)

  17. Distributed Generation of Electricity and its Environmental Impacts

    Science.gov (United States)

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  18. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  19. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira; Aquino, Afonso Rodrigues de

    2007-01-01

    The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. Once outlined the environmental impacts from each form of electric energy generation, they were correlated and compared considering the area of the power plant implantation, the generation capacity, the efficiency, the power and the cost per kW. There is no totally clean form of electric energy generation. There is, however, generation without emission of gases responsible for the green house effect. Therefore, all forms of energy generation are important for a country; in other words, the best situation is the diversity of the energy matrix. (author)

  20. Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

    International Nuclear Information System (INIS)

    Farnoosh, Arash; Lantz, Frederic; Percebois, Jacques

    2013-12-01

    In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop a optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. (authors)

  1. Evolving Distributed Generation Support Mechanisms: Case Studies from United States, Germany, United Kingdom, and Australia (Chinese translation)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lowder, Travis R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This is the Chinese translation of NREL/TP-6A20-67613. This report expands on a previous National Renewable Energy Laboratory (NREL) technical report (Lowder et al. 2015) that focused on the United States' unique approach to distributed generation photovoltaics (DGPV) support policies and business models. While the focus of that report was largely historical (i.e., detailing the policies and market developments that led to the growth of DGPV in the United States), this report looks forward, narrating recent changes to laws and regulations as well as the ongoing dialogues over how to incorporate distributed generation (DG) resources onto the electric grid. This report also broadens the scope of Lowder et al. (2015) to include additional countries and technologies. DGPV and storage are the principal technologies under consideration (owing to market readiness and deployment volumes), but the report also contemplates any generation resource that is (1) on the customer side of the meter, (2) used to, at least partly, offset a host's energy consumption, and/or (3) potentially available to provide grid support (e.g., through peak shaving and load shifting, ancillary services, and other means).

  2. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    Science.gov (United States)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  3. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 3

    International Nuclear Information System (INIS)

    1986-08-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, and Supplement 2 was issued in May 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This third supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open items

  4. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  5. Unit installation and testing of demonstration of electric power generation using biogas from sewage treatment; Instalacao e testes de uma unidade de demonstracao de geracao de energia eletrica a partir de biogas de tratamento de esgoto

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Gonzalez Velazquez, Silvia Maria Stortini; Martins, Osvaldo Stella; Costa, David Freire da; Basaglia, Fernando [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], e-mail: suani@iee.usp.br, e-mail: sgvelaz@iee.usp.br, e-mail: omartins@iee.usp.br, e-mail: davidcosta@iee.usp.br, e-mail: basaglia@iee.usp.br; Bacic, Antonio Carlos K. [Companhia de Saneamento Basico do Estado de Sao Paulo (SABESP), SP (Brazil)], e-mail: acbacic@sabesp.com.br

    2004-07-01

    This article intend to discuss the electricity generation with 30 kW (ISO) micro turbines, using biogas generated by sewage treatment process at SABESP (Basic Sanitation Company of Sao Paulo State), located at Barueri, Brazil. This project, pioneer in Latin America, is being accomplished together with BUN - Biomass Users Network of Brazil (proponent), by CENBIO - Brazilian Reference Center on Biomass (executer), with patronage of FINEP / CT-ENERG (financial backer), by means of COVENAT No: 23.01.0653.00, regarding to ENERG-BIOG Project - 'Installation and Tests of an Electric Energy Generation Demonstration Unit from Biogas Sewage Treatment'. This plant operates with anaerobic digestion process, which has as mainly products biogas (composed mainly by methane) and sludge. Currently, part of the methane produced is burnt in a boiler used to increase digesters efficiency process. The rest of the methane is burnt in flare to reduce the impacts caused by gases emissions. An alternative to flare it is the biogas conversion into electricity through engines and micro turbines. Thus, this article presents the project results, related with the exploitation of sewer biogas for power generation, as well as bigger details about purification, compression and electricity generation systems (biogas micro turbine), used in the facility. (author)

  6. Estimation of the Levelised Electricity Generation Cost for a PWR-Power Plant and Preliminary Evaluation of National Participation

    International Nuclear Information System (INIS)

    Saba, G; Hainoun, A

    2008-01-01

    This work deals with the detailed economic evaluation of the Levelised discounted electricity generation costs (LDEGC) for a nuclear power plant with pressurized water reactor (PWR). The total generation costs are splited in base construction costs, supplementary costs, owner's costs, financial costs, fuel cycle costs and operation and maintenance costs. The evaluation covers also the sensitivity of the estimated energy unit cost to various factors (real annual discount rate, escalation rate, interest rate, load factor, ..) including the role of national participation, that depends upon the development of national infrastructure. For performing this study the IAEA's program package for economic bid evaluation (Bideval-3) has been employed. The program is designed to assist the user in the economic evaluation of bids for nuclear power plant (NPP). It follows the recommended method of determining the present worth value of all costs components for generated electricity unit. The performed study aims at developing national expertise in the field of bid evaluation for electric power plants with main emphasis on NPP. Additional goal is to convoying the technical and economic development of NPP technology that can help in supporting the decision maker with adequate information related to the future development of energy supply system and measures required for ensuring national energy supply security. (author)

  7. Flywheel and power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R.W.

    1992-10-28

    A power unit, e.g. for an electrically driven vehicle, incorporates a flywheel for storing kinetic energy and a battery for storing electrical energy. The battery is incorporated as a substantial part of the rotating mass of the flywheel. Preferably the unit further includes an electrical machine being a motor or generator or machine operable either as a motor or a generator for transferring energy between the battery and the flywheel and/or for the input or output of rotary energy therefrom or thereto. The motor may be used for powering the flywheel and may also operate in a regenerative mode for recharging the unit on de-acceleration of the vehicle. The unit of the invention may also be utilized as an electrical stored power source, e.g. wind or water driven. (author)

  8. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  9. Indoor unit for electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  10. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  11. Applied risk analysis to the future Brazilian electricity generation matrix

    Energy Technology Data Exchange (ETDEWEB)

    Maues, Jair; Fernandez, Eloi; Correa, Antonio

    2010-09-15

    This study compares energy conversion systems for the generation of electrical power, with an emphasis on the Brazilian energy matrix. The financial model applied in this comparison is based on the Portfolio Theory, developed by Harry Markowitz. The risk-return ratio related to the electrical generation mix predicted in the National Energy Plan - 2030, published in 2006 by the Brazilian Energy Research Office, is evaluated. The increase of non-traditional renewable energy in this expected electrical generating mix, specifically, residues of sugar cane plantations and wind energy, reduce not only the risk but also the average cost of the kilowatt-hour generated.

  12. Renewable energy sources for electricity generation in selected developed countries

    International Nuclear Information System (INIS)

    1992-05-01

    The objectives of this report are to analyze the present status and to assess the future of selected renewable energy sources (RE) other than hydropower, i.e. wind, solar, biomass, tidal and geothermal, already in use or expected to be used for electricity generation. The report focuses on grid connected technologies leaving stand-alone power plants unconsidered. This report provides recent information on environmental impacts, costs and technical potentials related to the implementation of electricity technologies using these energy sources. The study is limited to six OECD countries, i.e. Australia, the Federal Republic of Germany, Japan, Sweden, the United Kingdom and the United States of America. The situation in other OECD countries is addressed where appropriate, but no comprehensive information is provided. Nevertheless, efforts are made to determine the technical potential of the renewable energy sources for ''Rest of OECD''. The time horizons in this report are 2010 and 2030. While detailed information is provided for the period until 2010, the technical potential for 2030 is discussed only qualitatively. Scenario analysis and the design of national energy and electric systems assuming different sets of objectives and boundary conditions are outside the scope of this study. Nevertheless, the information given in this report should provide input data for such a systems analysis. All the information given in this report is based on literature surveys. Any figure given is contingent on the fact that it has appeared in a paper or a publicly available technical report. 251 refs, figs and tabs

  13. NDT developments in the CEGB [Central Electricity Generating Board] for turbine and generator rotor shafts

    International Nuclear Information System (INIS)

    Denby, D.

    1990-01-01

    In common with many utilities world-wide, the Central Electricity Generating Board (CEGB) has suffered problems of cracking in turbine and generator rotors, in a wide range of Units. The type of cracking that has stimulated most NDT development work is transverse cracking initiating at the outside of shafts, though axial cracking at turbine disc keyways has also required considerable effort. This paper describes current and recent developments of NDT techniques and equipment designed to provide early warning and assessment of service-induced cracks which could propagate to failure. The following developments are included: in-situ inspection of LP turbine rotor shafts by means of low-angle ultrasonic beams fired along the length of the shaft; techniques for detecting and measuring cracking in shrunk-on turbine disc keyways; a remote, in-situ technique for cracking initiating in the pole teeth of large generator rotors, aimed at detecting cracks while they are small enough for the rotor to be repaired; an in-situ technique for rapidly inspecting these same generator rotors for the presence of larger cracks, by an ultrasonic beam fired along the length of the shaft; ultrasonic in-situ inspection of generator rotor teeth directly under the shrunk-on end (retaining) rings

  14. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, A.

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design. [Author

  15. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, Andrew; Vogstad, Klaus; Flynn, Hilary

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design

  16. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  17. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  18. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana

    2017-01-01

    induction generator, the cage rotor induction generator, and the synchronous generator with DC or permanent magnet excitation. The operating principle, performance, optimal design, and the modeling and control of the machine-side converter for each kind of generator are adressed and evaluated. In view......The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...... of the fact that individual power rating of WTs has increased to around 10 MW, generator design and control technologies required to reach this power rating are discussed....

  19. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    OpenAIRE

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    The on-site generation of electricity can offer building owners and occupiers financial benefits as well as social benefits such as reduced grid congestion, improved energy efficiency, and reduced greenhouse gas emissions. Combined heat and power (CHP), or cogeneration, systems make use of the waste heat from the generator for site heating needs. Real-time optimal dispatch of CHP systems is difficult to determine because of complicated electricity tariffs and uncertainty in CHP equipment...

  20. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  1. Environmental evaluation of different forms of electric energy generation

    International Nuclear Information System (INIS)

    Guena, Ana Maria de Oliveira

    2007-01-01

    Electric energy has an important function in the modem world; it is fundamental for progress and development. The electricity discovery allowed improvements in several areas: health, water and food supply, quality of life and sanitary conditions, and contributed also to the establishment of the capitalist and consumption society. The use of oil as an energy generation source was the impulse for the industrial revolution and machines, motors and generators were developed contributing to the progress This also brought the pollutant gases emission (CO 2 , CO, SO x and NO x ) and other substances that had contributed to the greenhouse effect, the ozone hole and the acid rain, modifying the balance of the planet. The development and implementation of other forms of energy generation caused local changes, where they were installed, giving rise to environmental impacts. This work presents an evaluation about different forms of electrical energy generation and the environmental impacts relative to each one of them. Five forms of electric energy generation were considered: thermoelectric, nuclear, hydroelectric, wind and solar energy. The implementation and the development of the petroleum industry in the world and in Brazil are presented. The geology of the oil, its extraction and quality improvement, besides details of the functioning of three types of thermoelectric power plants - coal, gas and oil - are also discussed. The specific as well as the environmental impacts they have in common are highlighted. The impacts originated from the deactivation of each one of them are also pointed out. The discovery and the development of nuclear energy in Brazil and in the world as well as the functioning of a nuclear power plant, the impacts generated by its operation and decommissioning are presented. The history, functioning and development of hydroelectric energy generation in Brazil, characterized by the great plants, are related to environmental aspects The environmental

  2. Electric generator overhaul of the Ing. Carlos Ramirez Ulloa hydroelectric. Central project conclusions; Rehabilitacion de los generadores de la central hidroelectrica Ing. Carlos Ramirez Ulloa. Conclusiones del proyecto

    Energy Technology Data Exchange (ETDEWEB)

    Campuzano Martinez, Ignacio Roberto; Gonzalez Vazquez, Alejandro Esteban; Robles Pimentel, Edgar Guillermo; Esparza Saucedo, Marcos; Garcia Martinez, Javier; Sanchez Flores, Ernesto; Martinez Romero, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    The Hydroelectric Ing. Carlos Ramirez Ulloa Power Central has three 200 MW electric generators. The Central initiated its commercial operation in 1985. The electric generators had design problems that were properly corrected in an overhaul program that was initiated in 1996, with Unit 2 electric generator and completed in 1998 with Unit 1 electric generator. This paper presents the relevant aspects of the experience accumulated in the project. [Espanol] La central hidroelectrica Ing. Carlos Ramirez Ulloa cuenta con tres generadores de 200 MW cada uno. La central inicio su operacion comercial en 1985. Los generadores tenian problemas de diseno que fueron debidamente corregidos en un programa de rehabilitacion que inicio en 1996, con el generador de la unidad 2, y culmino en 1998 con el generador de la unidad 1. En este articulo se presentan los aspectos relevantes de la experiencia acumulada en el proyecto.

  3. Electric generator overhaul of the Ing. Carlos Ramirez Ulloa hydroelectric. Central project conclusions; Rehabilitacion de los generadores de la central hidroelectrica Ing. Carlos Ramirez Ulloa. Conclusiones del proyecto

    Energy Technology Data Exchange (ETDEWEB)

    Campuzano Martinez, Ignacio Roberto; Gonzalez Vazquez, Alejandro Esteban; Robles Pimentel, Edgar Guillermo; Esparza Saucedo, Marcos; Garcia Martinez, Javier; Sanchez Flores, Ernesto; Martinez Romero, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    The Hydroelectric Ing. Carlos Ramirez Ulloa Power Central has three 200 MW electric generators. The Central initiated its commercial operation in 1985. The electric generators had design problems that were properly corrected in an overhaul program that was initiated in 1996, with Unit 2 electric generator and completed in 1998 with Unit 1 electric generator. This paper presents the relevant aspects of the experience accumulated in the project. [Espanol] La central hidroelectrica Ing. Carlos Ramirez Ulloa cuenta con tres generadores de 200 MW cada uno. La central inicio su operacion comercial en 1985. Los generadores tenian problemas de diseno que fueron debidamente corregidos en un programa de rehabilitacion que inicio en 1996, con el generador de la unidad 2, y culmino en 1998 con el generador de la unidad 1. En este articulo se presentan los aspectos relevantes de la experiencia acumulada en el proyecto.

  4. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    Science.gov (United States)

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  5. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    Science.gov (United States)

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  6. The Relationship Between Electricity Price and Wind Power Generation in Danish Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    of competitive electricity markets in some ways, is chosen as the studied power system. The relationship between the electricity price (both the spot price and the regulation price) and the wind power generation in an electricity market is investigated in this paper. The spot price, the down regulation price...... and the up regulation price generally decreases when the wind power penetration in the power system increases. The statistical characteristics of the spot price for different wind power penetration are analyzed. The findings of this paper may be useful for wind power generation companies to make the optimal...... bidding strategy and may be also useful for the optimal operation of modern power systems with high wind power penetrations....

  7. Model-based investigation of the electricity market. Unit commitment and power plant investments

    International Nuclear Information System (INIS)

    Sun, Ninghong

    2013-01-01

    The German Federal Government published its energy concept in September 2010 with a description of the road into the era of renewable energies. Therefore, the future renewable energy installed in Germany is expected to consist mostly of wind and solar, which are subject to intermittency of supply and significant fluctuations. The growing portion of energy generation by fluctuating sources is turning to a big challenge for the power plant unit commitment and the investment decisions as well. In this thesis, a fundamental electricity market model with combined modeling of these two aspects is developed. This model is subsequently applied to the German electricity market to investigate what kind of power plant investments are indispensable, considering the steadily increasing portion of energy generation from fluctuating sources, to ensure a reliable energy supply in a cost-effective way in the future. In addition, current energy policy in Germany regarding the use of renewable energy and nuclear energy is analyzed.

  8. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  9. Evaluating experience with electricity generating GHG mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    2003-07-01

    Several programmes have been initiated to encourage the development of projects that mitigate emissions of greenhouse gases. Recent programmes have been undertaken at the national level, such as the Dutch five-track approach, including contracts with multilateral institutions, regional development banks, private banks, bilateral contracts with countries, participation in carbon funds and the ERUPT and CERUPT tenders, Japanese Clean Development Mechanism (CDM) feasibility studies, and the more recent Finnish, Austrian and Italian JI/CDM programmes. International programmes, such as the World Bank's Prototype Carbon Fund (and other WB carbon funds), have also been initiated. Individual projects not belonging to particular programmes have also been initiated under the pilot phase of 'activities implemented jointly' (AIJ) under the United Nations Framework Convention on Climate Change (UNFCCC), or developed as CDM or Joint Implementation (JI) projects. Some CDM project activities have been formally submitted to the CDM's Executive Board (EB), who approved the first set of baseline and monitoring methodologies for CDM project activities in July 2003. There is a large variety in the type of projects that have been put forward. These include energy, industry, forestry and waste projects. This paper will focus on CDM-type projects that generate grid-connected electricity for several reasons: demand for electricity is growing rapidly in many potential host countries; many projects in the electricity sector have been developed as potential CDM and JI projects; assessing additionality and baselines is arguably more difficult for projects in the electricity sector (where a range of project types may occur as part of business-as-usual activities) than for end-of-pipe projects such as landfill gas capture and flaring or decomposition of F-gases; much work has been done on assessing appropriate methods to determine baselines in the electricity sector, at the

  10. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  11. Achieving 33% renewable electricity generation by 2020 in California

    International Nuclear Information System (INIS)

    Walmsley, Michael R.W.; Walmsley, Timothy G.; Atkins, Martin J.

    2015-01-01

    This paper investigates the impacts of California, USA reaching its renewable electricity target of 33%, excluding large hydro, by 2020, which is set out in the state's RPS (Renewable Portfolio Standard). The emerging renewable electricity mix in California and surrounding states which form the WECC (Western Electricity Coordination Council) is analysed using the CEPA (Carbon Emission Pinch Analysis) and EROI (Energy Return on Energy Invested) methodologies. The reduction in emissions with increased renewables is illustrated and the challenge of maintaining high EROI levels for renewable generation is examined for low and high electricity demand growth. Results demonstrate that wind and solar PV collectively form an integral part of California reaching the 33% renewables target by 2020. Government interventions of tax rebates and subsidies, net electricity metering and a four tiered electricity price have accelerated the uptake of electricity generation from wind and solar PV. Residential uptake of solar PV is also reducing overall California electricity grid demand. Emphasis on new renewable generation is stimulating development of affordable wind and solar technology in California which has the added benefit of enhancing social sustainability through improved employment opportunities at a variety of technical levels. - Highlights: • CA (California, USA) aims to achieve 33% renewable electricity sales by 2020. • Carbon Emission Pinch Analysis is applied to the case study of CA. • Energy Return on Energy Invested analysis shows impacts of renewable energy uptake. • Solar PV and wind are the most cost and energy efficiency renewable resources in CA. • State government intervention is needed to reach the 33% renewable electricity goal.

  12. Obstacles to the penetration of electric generation markets by natural gas

    International Nuclear Information System (INIS)

    Schleede, G.R.

    1992-01-01

    This paper reviews and compares the advantages and disadvantages that electric power generators have in generating electricity from a variety of fuel sources. It then goes on to emphasize the use of natural gas and how it can become more competitive in the electric generation field. The paper is based primarily on experiences by the author during his employment with the New England Electric System (NEES). The author reviews the source of electricity for this utility and describes the percentages of each fuel source. It then goes on to specifically discuss the planned natural gas-fired projects in the utility system. The paper outlines the NEES strategy of diversification with respect to gas suppliers and describes the important considerations it used when planning for electric generation with gas. These include determining pressure requirements needed by the gas distribution system when the gas-generators come on-line; determining the placement of the generators within the overall system (i.e. peak load facilities, base load facilities, etc.); contracting flexibility because of the need to vary the amount of gas taken; and the ability to manage pipeline capacity and gas supplies when they are not needed

  13. The Hydroelectric Business Unit of Ontario Power Generation Inc

    International Nuclear Information System (INIS)

    Gaboury, J.

    2001-01-01

    The focus of this presentation was on the generation and sale of electricity. Prior to deregulation, companies that generated electricity had a readily available customer base to whom the electricity could be sold. The author discussed some of the changes affecting the industry as a result of deregulation of the electricity market in Ontario: the increasing number of companies, as well as the increased number of generators supplying power within the province. Currently 85 per cent of the generation in Ontario is met by Ontario Power Generation (OPG) and this percentage will decrease through de-control. De-control can be achieved in a variety of ways, either through the sale of assets, leases, asset swaps. The market rules dictate that OPG not control in excess of 35 per cent of the generation supply in Ontario, OPG is examining the situation. New supply being constructed or new interconnections with neighboring markets could affect the total assets that would have to be de-controlled. OPG has a mix of generation that includes hydroelectric, fossil, and nuclear, as well as a single wind turbine. Green power, defined as electricity generation deemed less intrusive environmentally than most traditional generation, includes wind, water, landfill gas, solar and others, and could affect the mix of generation. It is expected that there will be a niche market for green power, especially when one considers the reduction in emissions. It could represent a viable option for smaller startup companies, as less capital is required. The options for selling the power, either to the spot market or by entering into a bilateral contract with another customer, were explained

  14. Direct and indirect health and safety impacts of electrical generation options

    International Nuclear Information System (INIS)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1982-01-01

    This report is an analysis of the health and safety risks of seven electrical generation systems, all of which have the potential for commercial availability after the year 2000. The systems are compared on the basis of expected public and occupational deaths and lost workdays associated with average unit generation of 1000 MW(e) per year. The risks and associated uncertainties are estimated for all phases of the energy production cycle, including fuel extraction and processing, on-site construction and system operation and maintenance. Also included are the risks of direct and indirect component manufacture, materials production and energy inputs, all of which are major contributors to the risks of the more capital-intensive solar technologies. The potential significance of major health and safety issues that remain largely unquantifiable are also considered. (author)

  15. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    Ennison, I.; Dzobo, M.

    2011-01-01

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  16. Unbundling generation and transmission services for competitive electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those 'necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.' The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC's landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  17. Increasing penetration of renewable and distributed electricity generation and the need for different network regulation

    International Nuclear Information System (INIS)

    Joode, J. de; Jansen, J.C.; Welle, A.J. van der; Scheepers, M.J.J.

    2009-01-01

    The amount of decentralised electricity generation (DG) connected to distribution networks increases across EU member states. This increasing penetration of DG units poses potential costs and benefits for distribution system operators (DSOs). These DSOs are regulated since the business of electricity distribution is considered to be a natural monopoly. This paper identifies the impact of increasing DG penetration on the DSO business under varying parameters (network characteristics, DG technologies, network management type) and argues that current distribution network regulation needs to be improved in order for DSOs to continue to facilitate the integration of DG in the network. Several possible adaptations are analysed.

  18. Electric power supply and demand 1979 to 1988 for the contiguous United States as projected by the Regional Electric Reliability Councils in their April 1, 1979 long-range coordinated planning reports to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Savage, N.; Graban, W.

    1979-12-01

    Information concerning bulk electric power supply and demand is summarized and reviewed. Electric-utility power-supply systems are composed of power sources, transmission and distribution facilities, and users of electricity. In the United States there are three such systems of large geographic extent that together cover the entire country. Subjects covered are: energy forecasts, peak demand forecasts, generating-capacity forecasts, purchases and sales of capacity, and transmission. Extensive data are compiled in 17 tables. Information in two appendices includes a general description of the Regional Electric Reliability Councils and US generating capacity as of June 30, 1979. 3 figures, 17 tables.

  19. Resolution 369/012. It authorize to Vientos de Pastoral S.A. to generate a wind power electricity source by 150.0 MW generating station section, and their connection to National interconnected system

    International Nuclear Information System (INIS)

    2012-01-01

    It has been allowed the wind power generation electricity energy source as a the primary electricity source. This project was presented by the Vientos de Pastoral S.A company according to the opinion of the National Energy Regulatory Unit and the Energy and Water Services in relation with the requirements of the current rule

  20. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  1. Projected Costs of Generating Electricity

    International Nuclear Information System (INIS)

    Plante, J.

    1998-01-01

    Every 3 to 4 years, the NEA undertakes a study on projected costs of generating electricity in OECD countries. This started in 1983 and the last study (1997) has just be completed. All together 5 studies were performed, the first three dealing with nuclear and coal options, while the 1992 and 1997 included also the gas option. The goal of the study is to compare, country by country, generating costs of nuclear, coal-fired and gas-fired power plants that could be commissioned in the respondent countries by 2005-2010

  2. A three-stage short-term electric power planning procedure for a generation company in a liberalized market

    International Nuclear Information System (INIS)

    Nabona, Narcis; Pages, Adela

    2007-01-01

    In liberalized electricity markets, generation companies bid their hourly generation in order to maximize their profit. The optimization of the generation bids over a short-term weekly period must take into account the action of the competing generation companies and the market-price formation rules and must be coordinated with long-term planning results. This paper presents a three stage optimization process with a data analysis and parameter calculation, a linearized unit commitment, and a nonlinear generation scheduling refinement. Although the procedure has been developed from the experience with the Spanish power market, with minor adaptations it is also applicable to any generation company participating in a competitive market system. (author)

  3. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  4. A decision support system for generation expansion planning in competitive electricity markets

    International Nuclear Information System (INIS)

    Pereira, Adelino J.C.; Saraiva, Joao Tome

    2010-01-01

    This paper describes an approach to address the generation expansion-planning problem in order to help generation companies to decide whether to invest on new assets. This approach was developed in the scope of the implementation of electricity markets that eliminated the traditional centralized planning and lead to the creation of several generation companies competing for the delivery of power. As a result, this activity is more risky than in the past and so it is important to develop decision support tools to help generation companies to adequately analyse the available investment options in view of the possible behavior of other competitors. The developed model aims at maximizing the expected revenues of a generation company while ensuring the safe operation of the power system and incorporating uncertainties related with price volatility, with the reliability of generation units, with the demand evolution and with investment and operation costs. These uncertainties are modeled by pdf functions and the solution approach is based on Genetic Algorithms. Finally, the paper includes a Case Study to illustrate the application and interest of the developed approach. (author)

  5. A decision support system for generation expansion planning in competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Adelino J.C. [Departamento de Engenharia Electrotecnica, Instituto Superior de Engenharia de Coimbra, Instituto Politecnico de Coimbra, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Saraiva, Joao Tome [INESC Porto and Departamento de Engenharia Electrotecnica e Computadores, Faculdade de Engenharia da Universidade do Porto, Campus da FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)

    2010-07-15

    This paper describes an approach to address the generation expansion-planning problem in order to help generation companies to decide whether to invest on new assets. This approach was developed in the scope of the implementation of electricity markets that eliminated the traditional centralized planning and lead to the creation of several generation companies competing for the delivery of power. As a result, this activity is more risky than in the past and so it is important to develop decision support tools to help generation companies to adequately analyse the available investment options in view of the possible behavior of other competitors. The developed model aims at maximizing the expected revenues of a generation company while ensuring the safe operation of the power system and incorporating uncertainties related with price volatility, with the reliability of generation units, with the demand evolution and with investment and operation costs. These uncertainties are modeled by pdf functions and the solution approach is based on Genetic Algorithms. Finally, the paper includes a Case Study to illustrate the application and interest of the developed approach. (author)

  6. External Costs Associated with Electricity Generation in Lithuania: Impact of Ignalina NPP Closure

    International Nuclear Information System (INIS)

    Streimikiene, D.

    2000-01-01

    Sustainability and development have been founded on continuing growth in energy demand and distribution, and management of natural resources through proper allocation and efficiency. It is clear that the use of energy in all its forms and applications provides an enormous benefit to society. However, it is also associated with numerous environmental and social challenges, such as, e.g., the health effects of air pollution. These burdens are referred to as external costs, as they have not been included in the market price of energy. The purpose of externalities research is to quantify damages in order to allow rational decisions to be made that weigh the benefits of actions to reduce externalities against the costs of doing so. Ultimately, market failure could be reduced by internalization of the external costs during energy planning. The paper deals with the problems of external costs associated with electricity generation in Lithuania and evaluates the environmental impact related to increased atmospheric pollution when the first unit at Ignalina NPP will be closed in 2005. Simplified methodology for the evaluation of external costs based on Impact Pathway Approach developed by International Atomic Energy Agency was applied. Achieved results indicate that due to the increased atmospheric pollution the external costs associated with electricity generation in the case of the first unit closure at Ignalina NPP would amount to 130 million USD. (author)

  7. Expansion planning for electrical generating systems

    International Nuclear Information System (INIS)

    1984-01-01

    The guidebook outlines the general principles of electric power system planning in the context of energy and economic planning in general. It describes the complexities of electric system expansion planning that are due to the time dependence of the problem and the interrelation between the main components of the electric system (generation, transmission and distribution). Load forecasting methods are discussed and the principal models currently used for electric system expansion planning presented. Technical and economic information on power plants is given. Constraints imposed on power system planning by plant characteristics (particularly nuclear power plants) are discussed, as well as factors such as transmission system development, environmental considerations, availability of manpower and financial resources that may affect the proposed plan. A bibliography supplements the references that appear in each chapter, and a comprehensive glossary defines terms used in the guidebook

  8. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  9. Electric trade in the United States, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  10. Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

    International Nuclear Information System (INIS)

    Farnoosh, Arash; Lantz, Frederic; Percebois, Jacques

    2014-01-01

    In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop an optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. For instance, by decarbonizing half of its generation mix, Saudi Arabia can release around 0.5 Mb/d barrels of oil equivalent per day from 2020. Moreover, total power generation cost reduction can reach up to around 28% per year from 2030 if Saudi Arabia manages to attain the most optimal generation mix structure introduced in the model (50% of power from renewables and nuclear power plants and 50% from the fossil power plants). - Highlights: • We model the current and future power generation situation of Saudi Arabia. • We take into account the integration of the other alternative resources. • We consider different scenarios of power generation structure for the country. • Optimal generation mix can release considerable amount of oil for export

  11. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  12. Electricity generation projections of the world and Brazil

    International Nuclear Information System (INIS)

    Dias, Marcio Soares

    2002-01-01

    The world use of electricity is projected to increase by 9,570 billions kWh over a span of 20 years. Natural gas is expected to account for the largest increment in electricity generation. As a result of high oil and natural gas consumption fuel prices are projected to rise in nominal dollars over the forecast horizon. Higher capacity utilisation and fewer expected retirements of running nuclear plants have resulted in a revision of EIA's projected consumption of electricity from nuclear power. Projection of 3.6%/year in the electricity consumption in Brazil is lower than the historical correlation given by the GDP (5%) growth rate plus 1.2 to 1.7%. GDP and energy consumption growth rates for Brazil are projected to be higher than the world value, but are lower than the projected values for countries like Mexico and China. Trends in primary fuel prices and external dependence on fuel supply are important factors for the Brazilian investments on electricity generation due their impact on costs and standard of living. (author)

  13. A Comparison of Electricity Generation System Sustainability among G20 Countries

    Directory of Open Access Journals (Sweden)

    Jinchao Li

    2016-12-01

    Full Text Available Planning for electricity generation systems is a very important task and should take environmental and economic factors into account. This paper reviews the existing metrics and methods in evaluating energy sustainability, and we propose a sustainability assessment index system. The input indexes include generation capacity, generation cost, and land use. The output indexes include desirable and undesirable parts. The desirable outputs are total electricity generation and job creation. The undesirable outputs are external supply risk and external costs associated with the environment and health. The super-efficiency data envelopment analysis method is used to calculate the sustainability of electricity generation systems of 23 countries from 2005 to 2014. The three input indexes and three undesirable output indexes are used as the input variables. The two desirable outputs are used as the output variables. The results show that most countries’ electricity generation sustainability values have decreasing trends. In addition, nuclear and hydro generation have positive effects. Solar, wind, and fossil fuel generation have negative effects on sustainability.

  14. Electricity sales prospects for a landfill gas generator acting as a second tier supplier in England and Wales

    International Nuclear Information System (INIS)

    1996-01-01

    Following the liberalisation of the United Kingdom electricity market, there are now a growing number of companies trying to develop small generation projects based on a landfill gas fuel source. Because of their size they will typically be connected to the electricity distribution system and as such not using the transmission system -with all of the power typically being absorbed locally. In common with grid connected projects, these smaller 'embedded' generators must be able to: be connected to the system; have a market for their product; and be reasonably certain of the price they can receive for the power that they produce, in order to develop a business case and, if necessary raise finance for the scheme. Generators in England and Wales that have a capacity of less than 50MW do not need a Generation Licence, and as such have no 'natural' market for their power, even though it may be potentially more valuable than power sold by licensed generators into the Pool. The logical purchaser for this local power would normally be the host electricity supply company as they own and control the distribution network up to and including 132kV. (Author)

  15. Options of electric generation and sustainability

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2004-01-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  16. Modelling the impact of EVs on electricity generation, costs and CO2 emissions

    International Nuclear Information System (INIS)

    Calnan, P.; Deane, J.P.; Ó Gallachóir, B.P.

    2013-01-01

    This paper focuses on the impact of electric vehicles on electricity generation in Ireland in 2025 based on five alternative generation portfolios. The year 2025 was selected for assessment due to the information on the composition of the five generation portfolios from Eirgrid the system operator in Ireland being provided. Detailed market simulations were undertaken on the five possible generation portfolios to assess the impact of the Government targets for electric vehicles on the generation costs, emissions, generation stack and the cost to load of this additional demand. This paper also studied the impact between a standard and least cost electric vehicle loading regime to ascertain the benefits that could be achieved. The results show that gas will be the dominant source of electricity generation to load electric vehicles and that wind as an electricity source will experience a minor reduction in curtailment, with the least cost charging profile showing a more pronounced reduction. The capital benefits of the Standard and Least Cost EV load are found to be negligible. The portfolios studied generated CO 2 emissions per kilometre between 52 and 70 gCO 2 /km. All portfolios with the exception of coal were found to comply with EU regulation 443/2009. - Highlights: • This paper focuses on the impact of electric vehicles on electricity generation in Ireland in 2025. • It uses the PLEXOS software package by Energy Exemplar to model the Irish electricity market. • Government targets for electric vehicle penetration have a limited impact on the power system. • Electric vehicles will meet EU requirements in terms of emissions created per kilometre

  17. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  18. Inventory of power plants in the United States 1989. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-21

    This document is prepared annually by the Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units in operation and to provide a 10-year outlook of future generating unit additions by electric utilities in the United States (the 50 states and the District of Columbia). Data summarized in this report are useful to a wide audience including Congress, federal and state agencies, the electric utility industry, and the general public. The data presented in this report were assembled and published by the EIA, to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Summary Statistics; Operable Electric Generating Units; and Projected Electric Generating Unit Additions.

  19. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  20. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  1. Generating electric power for export from Atlantic Canada to the U.S

    International Nuclear Information System (INIS)

    Valentine, H.

    2009-01-01

    Hydroelectric power from Newfoundland-Labrador and Quebec has been imported to the northeastern United States for many years. Newfoundland's government has recently declared its intention to develop a Lower Churchill Falls hydroelectric power project. Electricity from the new project will be transported using an undersea power cable placed under the Strait of Belle Isle from Labrador to Newfoundland. A second undersea cable will transport power into Nova Scotia, New Brunswick, and the United States. The cable may also support the development of several other hydroelectric projects in New Brunswick and Nova Scotia. Studies have shown that the construction of 2 trans-isthmus power canals will reduce the extreme tidal height and raise the mass of water flowing into the Bay of Fundy. Kinetic turbines placed beneath the ocean surface across the entrances to the Bay of Fundy, Chignecto Bay, and the Minas Basin will generate up to 500 MW of power. Power generation from off-peak periods can be stored using pumped hydraulic storage installations. It was concluded that the projects may become viable within 10 to 30 years. 4 figs

  2. Gas supply planning for new gas-fired electricity generation facilities

    International Nuclear Information System (INIS)

    Slocum, J.C.

    1990-01-01

    This paper explores several key issues in gas supply planning for new gas fired electric generation facilities. This paper will have two main sections, as follows: developing the gas supply plan for a gas-fired electricity generation facility and exploring key gas supply contract pricing issues

  3. Electricity generation: a case study in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    1999-01-01

    Large-scale electricity generation provides versatile energy of the highest quality. Today, fossil fuels such as coal, oil, and natural gas are the primary sources of this energy. However, these fossil energy sources are limited and using fossil energy sources has the undesirable effect of releasing emissions that burden the environment and alter the climate. Therefore, governments and companies all over the world should find new and renewable energy sources. On the other hand, over the past two decades, power station construction programs in the developing countries accounted for nearly 30% of total public investment. In a large number of these countries, shortages of electricity have become a critical constraint to economic growth. In Turkey, from 1980 to 1995, the amount for electricity generated increased about fourfold from 23,275 Gwh to 86,247 Gwh, and annual growth rates were in the double digits. This is a good development, but not enough for Turkey. (author)

  4. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  5. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation

    International Nuclear Information System (INIS)

    Zain, S.M; Roslani, N.S.; Hashim, R.; Anuar, N.; Suja, F.; Basi, N.E.A.; Anuar, N.; Daud, W.R.W.

    2011-01-01

    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank and return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD and total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a Nafion TM membrane using a mixed culture of wastewater as a bio catalyst. The maximum power density generated using activated sludge was 9.053 mW/ cm 2 , with 26.8 % COD removal and 40 % TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater. (author)

  6. Integrating environmental equity, energy and sustainability: A spatial-temporal study of electric power generation

    Science.gov (United States)

    Touche, George Earl

    The theoretical scope of this dissertation encompasses the ecological factors of equity and energy. Literature important to environmental justice and sustainability are reviewed, and a general integration of global concepts is delineated. The conceptual framework includes ecological integrity, quality human development, intra- and inter-generational equity and risk originating from human economic activity and modern energy production. The empirical focus of this study concentrates on environmental equity and electric power generation within the United States. Several designs are employed while using paired t-tests, independent t-tests, zero-order correlation coefficients and regression coefficients to test seven sets of hypotheses. Examinations are conducted at the census tract level within Texas and at the state level across the United States. At the community level within Texas, communities that host coal or natural gas utility power plants and corresponding comparison communities that do not host such power plants are tested for compositional differences. Comparisons are made both before and after the power plants began operating for purposes of assessing outcomes of the siting process and impacts of the power plants. Relationships between the compositions of the hosting communities and the risks and benefits originating from the observed power plants are also examined. At the statewide level across the United States, relationships between statewide composition variables and risks and benefits originating from statewide electric power generation are examined. Findings indicate the existence of some limited environmental inequities, but they do not indicate disparities that confirm the general thesis of environmental racism put forth by environmental justice advocates. Although environmental justice strategies that would utilize Title VI of the 1964 Civil Rights Act and the disparate impact standard do not appear to be applicable, some findings suggest potential

  7. optimization methodologies of mixed electrical generators in algeria ...

    African Journals Online (AJOL)

    ABSTRACT. This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. The principals' interests of this system are the independence production, and the supplying of electric energy in isolated localities. Have at one's the energetic and economic ...

  8. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  9. Rejecting renewables. The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection. (author)

  10. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  11. Outdoor unit construction for an electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  12. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    Science.gov (United States)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  13. Study of the electrical behavior of various magnetohydrodynamic generators using explosives

    International Nuclear Information System (INIS)

    Bernard, J.; Jouys, J.

    1969-01-01

    This report studies the electric behaviour of several types of pulse generators which use the M. H.D. conversion of explosives chemical energy to supply experiments of plasma physics. We study and compare their electric parameters and behaviour on ohmic and inductive loads. The electrical energy which appears on the load is studied in respect of the load and generator characteristics. We point out the way to amplify the initial electric energy. (author) [fr

  14. Regulatory road maps for the integration of intermittent electricity generation: Methodology development and the case of The Netherlands

    International Nuclear Information System (INIS)

    Welle, Adriaan J. van der; Joode, Jeroen de

    2011-01-01

    The envisaged increase in the share of electricity generation from intermittent renewable energy sources (RES-E) like wind and photovoltaics will pose challenges to the existing electricity system. A successful integration of these sources requires a cost-efficient use of system flexibility. The literature on the options to improve system flexibility, and thus the costs of successfully integrating intermittent electricity generating units, is still growing but what is lacking is an overarching systematic view on when to adopt which option in particular energy systems. This paper aims to bridge this gap in literature. We use existing insights on market and network integration of intermittent electricity sources within a regulatory road map framework. The framework allows policy makers and other electricity system stakeholders to arrive at a consistent strategy in dealing with integration issues over a longer period of time. In this contribution we present and explain the framework and apply it for the case of The Netherlands. - Highlights: → Successful integration of intermittent electricity generation requires a cost-efficient use of system flexibility. → An overarching systematic view on when to adopt which flexibility option in particular energy systems was lacking. → We identify a consistent strategy in dealing with integration issues over a longer period of time. → We present this regulatory road map framework and apply it for the case of The Netherlands.

  15. Economical evaluation of electricity generation considering externalities

    International Nuclear Information System (INIS)

    El-Kordy, M.N.; Badr, M.A.; Abed, K.A.; Ibrahim, Said M.A.

    2002-01-01

    The economics of renewable energy are the largest barrier to renewable penetration. Nevertheless, the strong desire to reduce environmental emissions is considered a great support for renewable energy sources. In this paper, a full analysis for the cost of the kWh of electricity generated from different systems actually used in Egypt is presented. Also renewable energy systems are proposed and their costs are analyzed. The analysis considers the external cost of emissions from different generating systems. A proposed large scale PV plant of 3.3 MW, and a wind farm 11.25 MW grid connected at different sites are investigated. A life cycle cost analysis for each system was performed using the present value criterion. The comparison results showed that wind energy generation has the lowest cost, followed by a combined cycle-natural gas fired system. A photovoltaic system still uses comparatively expensive technology for electricity generation; even when external costs are considered the capital cost of photovoltaic needs to be reduced by about 60% in order to be economically competitive. (Author)

  16. Benchmarking of Generation and Distribution Units in Nepal Using Modified DEA Models

    Science.gov (United States)

    Jha, Deependra Kumar; Yorino, Naoto; Zoka, Yoshifumi

    This paper analyzes the performance of Nepalese Electricity Supply Industry (ESI) by investigating the relative operational efficiencies of the generating stations as well as the Distribution Centers (DCs) of the Integrated Nepal Power System (INPS). Nepal Electricity Authority (NEA), a state owned utility, owns and operates the INPS. Performance evaluation of both generation and distribution systems is carried out by formulating suitable weight restriction type Data Envelopment Analysis (DEA) models. The models include a wide range of inputs and outputs representing essence of the respective processes. Decision maker's preferences as well as available quantitative information associated with the operation of the Decision Making Units (DMUs) are judiciously incorporated in the DEA models. The proposed models are realized through execution of computer programs written in General Algebraic Modeling Systems (GAMS) and the results obtained are thus compared against those from the conventional DEA models. Sensitivity analysis is performed in order to check the robustness of the results as well as to identify the improvement directions for DMUs. Ranking of the DMUs has been presented based on their average overall efficiency scores.

  17. Projected costs of generating electricity - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This joint report by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) is the seventh in a series of studies on electricity generating costs. It presents the latest data available for a wide variety of fuels and technologies, including coal and gas (with and without carbon capture), nuclear, hydro, onshore and offshore wind, biomass, solar, wave and tidal as well as combined heat and power (CHP). It provides levelised costs of electricity (LCOE) per MWh for almost 200 plants, based on data covering 21 countries (including four major non-OECD countries), and several industrial companies and organisations. For the first time, the report contains an extensive sensitivity analysis of the impact of variations in key parameters such as discount rates, fuel prices and carbon costs on LCOE. Additional issues affecting power generation choices are also examined. The study shows that the cost competitiveness of electricity generating technologies depends on a number of factors which may vary nationally and regionally. Readers will find full details and analyses, supported by over 130 figures and tables, in this report which is expected to constitute a valuable tool for decision makers and researchers concerned with energy policies and climate change

  18. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  19. Essays on investment planning in electricity generating capacity

    Science.gov (United States)

    Gonzalez-Gomez, Jorge

    In the first part of this study we develop and analyze two mathematical models that incorporate a time changing demand for electricity and uncertainty of input prices. The first model highlights the shortcomings in assuming a constant plant utilization under uncertainty of input prices and the effects of such assumption on the optimal investment in electricity generating capacity in a simple two period model. The second model presents sufficient restrictions to the optimal investment in electricity generating capacity problem to allow for a recursive solution. The necessary restrictions are extremely limiting to the extend that we found a solution for very simple scenarios. In our opinion, the problem is better handled in a case by case basis rather than under a general dynamic framework. Following the spirit of our conclusions of the first part of our study, in the second part we provide a methodology to simulate long-term natural gas prices, we analyze the investment prospects of nuclear and natural gas generating capacity in Mexico and provide a constraint approach for the optimal generation of hydroelectric plants in the Mexican hydroelectric system. These three problems belong to the solution of the optimal investment in electricity generating capacity in Mexico. To simulate the uncertainty of natural gas prices, we assume that natural gas prices are the sum of two stochastic processes: short-term and long-term variability. We characterize the short-term variability of natural gas prices using an Exponential General Autoregressive Conditional Heteroskedastic (EGARCH) model. The uncertainty of the long-term variability of natural gas prices is based on the long-term natural gas prices scenarios of the National Energy Modeling System of the Energy Information Administration. Equipped with a methodology to simulate long-term natural gas prices, we investigate the investment prospects of nuclear and natural gas generating capacity in Mexico using the levelized

  20. Transmutor demo unit and thermal into electrical energy transformation problems

    International Nuclear Information System (INIS)

    Matal, O.; Fiedler, J.

    1999-01-01

    In the three circuits layout of the transmutor the heat is transferred from the primary through the secondary circuits by a favourable heat carrier into the tertiary circuit where the thermal into electrical energy transformation in turbo-generator comes into force. Properties as well as parameters of the heat carrier in the secondary circuit affect basically both the conceptual layout of the tertiary circuit and consequently investments costs for its realization and the effectiveness of the transformation of thermal into electrical energy. For several heat carriers considered for the transmutor secondary circuit particular tertiary circuit concepts for the demonstration transmutor unit of approx. 15 W thermal power rate are analyzed, layout features and possibilities of turbogenerator selection are commented and investment costs as well as effectiveness of thermal into electrical energy transformation are estimated. Some of the results are as follows: (i) Heat carrier properties influence thermodynamics of the TDU water/steam cycle substantially. One of the dominant parameters is the melting (freezing) temperature of the heat carrier. (ii) Heat carrier properties influence investment costs of components of the TDU tertiary circuit substantially. Dominantly influenced are costs of the steam generator, steam turbine and high pressure regeneration system. (iii) If the heat carrier has to be a molten salt than a salt with a low melting temperature is recommended to be selected, for example KHF2. (iv) Eutectic alloy Pb-Bi as the heat carrier serves changes to design the TDU with efficient thermodynamics, with acceptable low investment costs of the tertiary as well as secondary circuit components and with an acceptable level of the nuclear safety

  1. Nuclear Power as an Option in Electrical Generation Planning for Small Economy and Electricity Grid

    International Nuclear Information System (INIS)

    Tomsic, Z.

    2012-01-01

    Implementing a NPP in countries with relatively small total GDP (small economy) and usually with small electricity grid face two major problems and constrains: the ability to obtain the considerable financial resources required on reasonable terms and to connect large NPP to small electricity grid. Nuclear generation financing in developing countries involves complex issues that need to be fully understood and dealt with by all the parties involved. The main topics covered by paper will be the: special circumstances related to the financing of NPP, costs and economic feasibility of NPP, conventional approaches for financing power generation projects in developing countries, alternative approaches for mobilizing financial resources. The safe and economic operation of a nuclear power plant (NPP) requires the plant to be connected to an electrical grid system that has adequate capacity for exporting the power from the NPP, and for providing a reliable electrical supply to the NPP for safe start-up, operation and normal or emergency shut-down of the plant. Connection of any large new power plant to the electrical grid system in a country may require significant modification and strengthening of the grid system, but for NPPs there may be added requirements to the structure of the grid system and the way it is controlled and maintained to ensure adequate reliability. Paper shows the comparative assesment of differrent base load technologies as an option in electrical generation planning for small economy and electricity grid.(author).

  2. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  3. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Economic aspects of grid connected solar electricity generation

    International Nuclear Information System (INIS)

    Pharabod, F.

    1993-01-01

    Experience gained with available solar thermal technologies enlighten on options for research and development on solar electricity generation. The proposed analysis of new solar technologies concerns market, costs and profit viewpoint: - Systems under development have to fit with consumers' needs and utilities' specifications, technology is not the only item to study. - Expense headings depend on technological options and operation procedures such as size of the plant, solar only or hybrid concept. - Anticipation of revenues highly depends on direct insolation quality and on local conditions for introducing the electric power generated into the network: daily direct insolation measurements and annual local load curve are prerequisite data. Strategic advantages regarding environment and sustainable development are to be pointed out, specially in industrialized countries or for projects including financing institutions. As far as generating electric power on the grid is a major challenge in the development of a number of countries in the sun belt, cooperation between industrialized and developing countries, under the auspices of international organization, has to be promoted. (Author) 12 refs

  5. A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies

    International Nuclear Information System (INIS)

    Chen, Zhongfei; Barros, Carlos Pestana; Borges, Maria Rosa

    2015-01-01

    This paper analyses the technical efficiency of Chinese fossil-fuel electricity generation companies from 1999 to 2011, using a Bayesian stochastic frontier model. The results reveal that efficiency varies among the fossil-fuel electricity generation companies that were analysed. We also focus on the factors of size, location, government ownership and mixed sources of electricity generation for the fossil-fuel electricity generation companies, and also examine their effects on the efficiency of these companies. Policy implications are derived. - Highlights: • We analyze the efficiency of 27 quoted Chinese fossil-fuel electricity generation companies during 1999–2011. • We adopt a Bayesian stochastic frontier model taking into consideration the identified heterogeneity. • With reform background in Chinese energy industry, we propose four hypotheses and check their influence on efficiency. • Big size, coastal location, government control and hydro energy sources all have increased costs

  6. The Estimation of Externalities Resulting from the Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ha, Jae Joo

    2003-03-15

    The methodology, program, and the representative results for the estimation of externalities was reviewed. The review of them are based on the ExternE Project which is a representative research project for the estimation of externalities resulting from the various energy generating systems. The results for the study will be used as basic data for the comparative study on the integrated risk estimation for various energy generating systems including nuclear power plants. Also, these results will be used as comparative data in the establishment of a integrated comparative risk assessment tool and in the comparative study of the impacts resulting from the various electricity generating systems. These studies make it possible to compare the environmental impacts of nuclear power generation and other electricity generation systems. Therefore, this will of use in the enhancement of public acceptance of nuclear power generation.

  7. The Estimation of Externalities Resulting from the Electricity Generation

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Ha, Jae Joo

    2003-03-01

    The methodology, program, and the representative results for the estimation of externalities was reviewed. The review of them are based on the ExternE Project which is a representative research project for the estimation of externalities resulting from the various energy generating systems. The results for the study will be used as basic data for the comparative study on the integrated risk estimation for various energy generating systems including nuclear power plants. Also, these results will be used as comparative data in the establishment of a integrated comparative risk assessment tool and in the comparative study of the impacts resulting from the various electricity generating systems. These studies make it possible to compare the environmental impacts of nuclear power generation and other electricity generation systems. Therefore, this will of use in the enhancement of public acceptance of nuclear power generation

  8. Investigating the water consumption for electricity generation at Turkish power plants

    Science.gov (United States)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  9. Developing A Family-Size Biogas-Fueled Electricity Generating System

    Directory of Open Access Journals (Sweden)

    Agus Haryanto

    2017-06-01

     Keywords: biogas; family size; generator; electricity; bio-filter.  Article History: Received Janury 16th 2017; Received in revised form 2nd June 2017; Accepted 18th June 2017; Available online How to Cite This Article: Haryanto, A., Marotin, F., Triyono, S., Hasanudin, U. (2017, Developing A Family-Size Biogas-Fueled Electricity Generating System. International Journal of Renewable Energy Develeopment, 6(2, 111-118. https://doi.org/10.14710/ijred.6.2.111-118

  10. Piezoelectric components wirelessly driven by dipole antenna-like electric field generator

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, S., E-mail: elesatya@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kumar, R.; Panda, S.K. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Hu, J. [Lab of Precision Drive, Nanjing University of Aeronautics and Astronautics, Nanjing 210026 (China)

    2011-08-25

    Highlights: > Wireless energy transmission technique. > Dipole antenna-like electric field generator. > Piezoelecctric resonance. > Finite element analyses. > Simulations and experimental verifications. - Abstract: A new technique of transmitting electric energy wirelessly to piezoelectric components by using a dipole antenna-like electric field generator is explored. Two square size brass plate-shaped live and ground electrodes are used to form a dipole antenna-like electric field generator. When the dipole antenna-like electric field generator in electric resonance with an inductor, a maximum output power of 2.72 mW and an energy conversion efficiency of 0.0174% have been achieved wirelessly by the piezoelectric plate area of 40 mm{sup 2} operating in the thickness vibration mode, placed at the center 4 mm away from the antenna plane with an optimum electrical load of 1365 {Omega}, resonant frequency of 782 kHz, 1 cm electrodes separation, 2500 cm{sup 2} electrode area of dipole antenna-like structure, and input ac source power of 15.58 W applied to the series of dipole antenna-like structure and inductor. The theoretically calculated results have been validated by the experimental studies. It is seen that at the resonance frequency and optimum electrical load, the output power of the wirelessly driven piezoelectric component decreases with the size of piezoelectric component, distance of piezoelectric component from the electrode of antenna plane, but increases with the antenna electrode area.

  11. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    Science.gov (United States)

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-08

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.

  12. Renewable Generators' Consortium: ensuring a market for green electricity

    International Nuclear Information System (INIS)

    1999-03-01

    This project summary focuses on the objectives and key achievements of the Renewable Generators Consortium (RGC) which was established to help renewable energy projects under the Non-Fossil Fuel Obligation (NFFO) to continue to generate in the open liberated post-1998 electricity market. The background to the NFFO is traced, and the development of the Consortium, and the attitudes of generators and suppliers to the Consortium are discussed along with the advantages of collective negotiations through the RGC, the Heads of Terms negotiations, and the success of RGC which has demonstrated the demand for green electricity

  13. The Contribution of Electricity Generation to Greenhouse Effect

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2008-01-01

    The development activities has successfully increasing the human kind, but also has increasing trend the planet changes radically, because of the greenhouse effect (GHE), decreasing ozone layer and acid rain, that all could treat the living of the species-species and including man inside. The electricity generation and transportation are the main contribution of greenhouse gas (GHG), reaching 1/3 of global emission. Base on the Kyoto protocol in 1997, that all countries, alone or together agree to reduce the emission of GG of 5.2 % under the emission of the 1990. The decreasing of GHG could be reached by implementing the technology generation that contain low carbon, such a natural gas, hydro power, wind, solar and nuclear power. Diversification of electricity generation has to take into a count of environmental capacity, so the supply stability and sustainable development could be reached. The IAEA results studies indicated that the emission factor of fossil fuel 2 times greater compare to the natural gas. The emission factor of wind and biomass lie between solar and nuclear power. In the electricity generation chain, nuclear power emit the 25 g of CO 2 /kWh compare to fossil fuel emit 250 - 1250 g CO 2 /kWh. (author)

  14. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  15. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  16. Electrical stimulation of transplanted motoneurons improves motor unit formation

    Science.gov (United States)

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  17. Private wind powered electricity generators for industry in the UK

    Science.gov (United States)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  18. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Potential of Combined Heat and Power Generation, Wind Power Generation and Load Management Techniques for Cost Reduction in Small Electricity Supply Systems.

    Science.gov (United States)

    Bass, Jeremy Hugh

    Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.

  20. Development of a 3 kW double-acting thermoacoustic Stirling electric generator

    International Nuclear Information System (INIS)

    Wu, Zhanghua; Yu, Guoyao; Zhang, Limin; Dai, Wei; Luo, Ercang

    2014-01-01

    Highlights: • A 3 kW double-acting thermoacoustic Stirling electric generator is introduced. • 1.57 kW electric power with 16.8% thermal-to-electric efficiency was achieved. • High mechanical damping coefficient greatly decreases the system performance. • Performance difference is significant, which also decreased system performance. - Abstract: In this paper, a double-acting thermoacoustic Stirling electric generator is proposed as a new device capable of converting external heat into electric power. In the system, at least three thermoacoustic Stirling heat engines and three linear alternators are used to build a multiple-cylinder electricity generator. In comparison with the conventional thermoacoustic electricity generation system, the double-acting thermoacoustic Stirling electric generator has advantages on efficiency, power density and power capacity. In order to verify the idea, a prototype of 3 kW three-cylinder double-acting thermoacoustic Stirling electric generator is designed, built and tested. Based on the classic thermoacoustic theory, numerical simulation is performed to obtain the thermodynamic parameters of the engine. And distributions of key parameters are presented for a better understanding of the energy conversion process in the engine. In the experiments, a maximum electric power of about 1.57 kW and a maximum thermal-to-electric conversion efficiency of 16.8% were achieved with 5 MPa pressurized helium and 86 Hz working frequency. However, we find that the mechanical damping coefficient of the piston is dramatically increased due to the deformation of the cylinder wall caused by high thermal stress during the experiments. Thereby, the system performance was greatly reduced. Additionally, the performance differences between three engines and three alternators are significant, such as the heating temperature difference between three heater blocks of the engines, the piston displacement and the output electric power differences between

  1. Outlook for gas sales for electricity generation in the Northeast

    International Nuclear Information System (INIS)

    Linderman, C.W.

    1998-01-01

    Issues regarding future supply and demand of natural gas as opposed to coal in the electric power generation sector, generation performance standards of coal plants, new combined cycle applications, distributed generation, and the advantages of natural gas over coal are discussed. The electricity demand and supply situation in the Northeast, present and future, and the growing movement toward green power, green power certification programs, the need and demand for disclosure of emissions and fuel source of supply, price and other customer information were summarized. Nuclear power generation and the chances of it being replaced by natural gas-fuelled generation are assessed. Some pipeline siting issues and the need for careful coordination with the electric system to minimize new corridors, are also reviewed. The advantages of natural gas in terms of technology and reduced pollution, hence cleaner air, were cited as the reasons why natural gas has almost unlimited potential as the fuel of choice well into the 21. century

  2. Small-scale electric generators for arctic applications

    International Nuclear Information System (INIS)

    Lamp, T.R.

    1995-01-01

    Forest fires that have endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) has prompted the assessment of power generating systems as substitutes for RTGs in small scale (10--120 watt) applications. A team of scientists and engineers of the US Air Forces' Wright Laboratory conductd an assessment of electrical power technologies for use by the Air Force in remote, harsh environments. The surprisingly high logistics costs of operating fossil fuel generators resulted in the extension of the assessment to non-RTG sites. The candidate power sources must operate unattended for long periods at a high level of operational reliability. Selection of the optimum power generation technology is complicated and heavily driven by the severe operating environment and compounded by the remoteness of the location. It is these site-related characteristics, more than any other, that drive the selection of a safe and economical power source for Arctic applications. A number of proven power generation technologies were evaluated. The assessment concluded that RGTs are clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to assess locations. The assessment also indicated that the logistics costs associated with combustion driven generator systems could be substantially reduced through the use of conversion technologies which have been previously developed for space power applications. copyright 1995 American Institute of Physics

  3. Technical specifications, Vogtle Electric Generating Plant, Unit No. 1 (Docket No. 50-424): Appendix ''A'' to license No. NPF-61

    International Nuclear Information System (INIS)

    1987-01-01

    This technical specifications report presents information concerning the Vogtle Electric Generating Plant in the following areas: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  4. Incorporating energy efficiency into electric power transmission planning: A western United States case study

    International Nuclear Information System (INIS)

    Barbose, Galen L.; Sanstad, Alan H.; Goldman, Charles A.

    2014-01-01

    Driven by system reliability goals and the need to integrate significantly increased renewable power generation, long-range, bulk-power transmission planning processes in the United States are undergoing major changes. At the same time, energy efficiency is an increasing share of the electricity resource mix in many regions, and has become a centerpiece of many utility resource plans and state policies as a means of meeting electricity demand, complementing supply-side sources, and reducing carbon dioxide emissions from the electric power system. The paper describes an innovative project in the western United States to explicitly incorporate end-use efficiency into load forecasts – projections of electricity consumption and demand – that are a critical input into transmission planning and transmission planning studies. Institutional and regulatory background and context are reviewed, along with a detailed discussion of data sources and analytical procedures used to integrate efficiency into load forecasts. The analysis is intended as a practical example to illustrate the kinds of technical and institutional issues that must be addressed in order to incorporate energy efficiency into regional transmission planning activities. - Highlights: • Incorporating energy efficiency into electric power transmission planning is an emergent analytical and policy priority. • A new methodology for this purpose was developed and applied in the western U.S. transmission system. • Efficiency scenarios were created and incorporated into multiple load forecasts. • Aggressive deployment of efficiency policies and programs can significantly reduce projected load. • The approach is broadly applicable in long-range transmission planning

  5. Resolution 147/012. It authorize the Central Libertador / SA aeolian generation company to generate an aeolian electricity source by an electric power generating plant located in Maldonado town 4 AA Catastral section, and the Sistema inerconectado Nacional connection

    International Nuclear Information System (INIS)

    2012-01-01

    This decree authorizes the generation of electricity using aeolian energy as the primary electricity source. This project was presented by the 'Libertador / S.A' aeolian generation company with the proposal to install an electrical plant in Maldonado town. This authorization is according to the Electric Wholesale Market regulation

  6. Comparative funding consequences of large versus small gas-fired power generation units

    International Nuclear Information System (INIS)

    Johnson, N.G.

    1995-01-01

    Gas producers are increasingly looking to privately-owned gas-fired power generation as a major growth market to support the development of new fields being discovered across Australia. Gas-fired generating technology is more environmentally friendly than coal-fired power stations, has lower unit capital costs and has higher efficiency levels. With the recent downward trends in gas prices for power generation (especially in Western Australia) it is likely that gas will indeed be the consistently preferred fuel for generation in Australia. Gas producers should be sensitive to the different financial and risk characteristics of the potential market represented by large versus small gas-fired private power stations. These differences are exaggerated by the much sharper focus given by the private sector to quantify risk and to its allocation to the parties best able to manage it. The significant commercial differences between classes of generation projects result in gas producers themselves being exposed to diverging risk profiles through their gas supply contracts with generating companies. Selling gas to larger generation units results in gas suppliers accepting proportionately (i.e. not just prorata to the larger installed capacity) higher levels of financial risk. Risk arises from the higher probability of a project not being completed, from the increased size of penalty payments associated with non-delivery of gas and from the rising level of competition between gas suppliers. Gas producers must fully understand the economics and risks of their potential electricity customers and full financial analysis will materially help the gas supplier in subsequent commercial gas contract negotiations. (author). 1 photo

  7. Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications

    International Nuclear Information System (INIS)

    Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-01-01

    Access to clean and stable electricity is essential in actualizing Nigeria's quest for joining the league of twenty most industrious nations by the year 2020 (vision 20:2020). No country can develop and sustain it development without having a minimum access to electricity for it larger percentage of its population. At present, Nigeria depends petroleum reserves and its aged hydro plant instalments for electricity generation to feed the 40% of its total population that are connected to the national grid. This paper summarizes literature on the current energy issues in Nigeria and introduces the difficulty of the issues involved. The paper also analyses the current (2010) electricity generation as well as the future expansion plans of the Government in 20 years period. The plan includes the introduction of new electrify generation technologies that have not been in used in the base year (2010). The electricity generation system of (including the future expansion plan) was simulated using the LEAP System (Long-range Energy Alternative and Planning). We also investigated the potential environmental impact of siting a nuclear power plant in one of the potential sites based on the site's specific micro-meteorology (land use) and meteorology using the US EPA (Environmental Protection Agency) models; AERMOD 12345. - Highlights: • This paper scrutinizes literature on Nigeria's energy crisis and presents the policies of the clean technology as solutions. • Only 40% of Nigeria's population is connected to the grid; and this population faces power problems 60% of the time. • Simulation of Nigeria electricity generation system was done. • Air dispersion modellingmodelling for radiological health risk from NPP was done

  8. Development and bottlenecks of renewable electricity generation in China: a critical review.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  9. Concepts of investment risks and strategies in electricity generation

    International Nuclear Information System (INIS)

    De Joode, J.; Boots, M.G.

    2005-06-01

    This report deals with the specific investment risks in electricity generation and discusses the problems associated with energy investments in general and focus on the additional or changing risks resulting from electricity market liberalisation. The focus is on (1) risks under the control of the electricity company, and on (2) market risks, such as the risk of price changes. Ultimately, some of the approaches and strategies that enable electricity producers to counter or mitigate these risks are discussed

  10. Optimization Methodologies of Mixed Electrical Generators in ...

    African Journals Online (AJOL)

    This article deals of the optimization of renewable energy electric generators, for the alimentation of radio telecommunication systems. ... Have at one's the energetic and economic models, and simulation tools, we effected an optimization ...

  11. Nuclear electricity generation a sustainable energy resource for Romania along the next two decades

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2008-01-01

    The main goal of the paper is to evaluate different electricity generation costs inside of the National Romanian energy sector along the next two decades. The IAEA -MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. Due to the natural gas crisis started at the beginning of 2006, Romania has adopted a courageous energy policy based on increasing nuclear electricity share. Since then, the second nuclear Unit was commissioned at Cernavoda in 2007 and the other two CANDU-6 (700 MWe) were scheduled to be operational in 2015. On the other side the European integration of Romania asks for doubling the indigenous gas price during this year, 2008, and also for reducing the atmospheric gaseous emissions from the fossil fuel technologies. Therefore, we evaluated the economical competition between all electricity technologies in the Romanian energy sector in the next two decades for which our MESSAGE model was developed. We focused on coal, gas and, of course, nuclear electricity technologies. Some representative energy scenarios centered on nuclear share electricity growing were considered and MESSAGE results were analyzed from the energetic sustainable point of view. (authors)

  12. Dispersed generation: impact on the electricity system

    International Nuclear Information System (INIS)

    Delfanti, M.; Merlo, M.; Silvestri, A.

    2009-01-01

    The paper deals with the impact of Dispersed Generation (D G) on the national electricity system, by proposing a practical approach for determining the current capacity of the networks to accepts this form of generation (hosting capacity). With the prospect of an increasing intake of D G, we finally draft a possible evolution of distribution networks based on the integration of energy and information networks. [it

  13. Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.

    Science.gov (United States)

    Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F

    2017-04-01

    In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.

  14. Effects of further integration of distributed generation on the electricity market

    NARCIS (Netherlands)

    Frunt, J.; Kling, W.L.; Myrzik, J.M.A.; Nobel, Frank; Klaar, D.A.M.

    2006-01-01

    Environmental concern leads to legislation to stimulate the further integration of renewable energy in the Dutch electricity supply system. Distributed generation is suited for the integration of renewable energy sources. Furthermore it can be used to generate both heat and electricity in a more

  15. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  16. 78 FR 32278 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-05-29

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to Information in Tier 1, Table... Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe Power Corporation, Municipal... Table 3.3-1, ``Definition of Wall Thicknesses for Nuclear Island Buildings, Turbine Buildings, and Annex...

  17. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  18. Variable speed generators

    CERN Document Server

    Boldea, Ion

    2005-01-01

    With the deregulation of electrical energy production and distribution, says Boldea (Polytechnical Institute, Timisoara, Romania) producers are looking for ways to tailor their electricity for different markets. Variable-speed electric generators are serving that purpose, up to the 400 megavolt ampere unit size, in Japan since 1996 and Germany sinc

  19. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    Science.gov (United States)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model

  20. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  1. Theoretical analysis of heat transfer in, and electrical performance of, a milliwatt radioisotopic powered thermoelectric generator

    International Nuclear Information System (INIS)

    Biver, C.J.

    1975-01-01

    A simplified, theoretical model has been made for a radioisotope-powered milliwatt thermoelectric generator (RTG). Calculations of unit heat transfer and electrical performance characteristics are made in two ways: (a) using discrete values of input physical parameters for an individual unit; and (b) using a statistical simulation (Monte Carlo) approach for estimating the variation in performance in a group of N-units. The statistical simulation approach is useful in: (a) estimating the allowable range of input parameters conducive to the production design meeting specifications in a group of N-units; and (b) determining particular parameters that must be significantly restricted in variation to achieve desired performance. The available experimental data, as compared with the discrete value calculations, are in quite good agreement (within 5 percent generally). (U.S.)

  2. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  3. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  4. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C.

    2003-01-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  5. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  6. Generation of hydrogen free radicals from water for fuels by electric field induction

    International Nuclear Information System (INIS)

    Nong, Guangzai; Chen, Yiyi; Li, Ming; Zhou, Zongwen

    2015-01-01

    Highlights: • Hydrogen free radicals are generated from water splitting. • Hydrogen fuel is generated from water by electric field induction. • Hydrocarbon fuel is generated from CO_2 and water by electric field induction. - Abstract: Water is the most abundant resource for generating hydrogen fuel. In addition to dissociating H"+ and "−OH ions, certain water molecules dissociate to radicals under an electric field are considered. Therefore, an electric field inducing reactor is constructed and operated to generate hydrogen free radicals in this paper. Hydrogen free radicals begin to be generated under a 1.0 V electric field, and increasing the voltage and temperature increases the number of hydrogen free radicals. The production rate of hydrogen free radicals is 0.245 mmol/(L h) at 5.0 V and room temperature. The generated hydrogen free radicals are converted to polymer fuel and hydrogen fuel at production rates of 0.0093 mmol/(L h) and 0.0038 mmol/(L h) respectively, under 5.0 V and 0.25 mA. The results provide a way to generate hydrogen free radicals, which might be used to generate hydrocarbon fuel in industrial manufacture.

  7. Case study on comparative assessment of nuclear and coal-fueled electricity generation options and strategy for nuclear power development in China

    International Nuclear Information System (INIS)

    Zhao Shiping; Shi Xiangjun; Bao Yunqiao; Mo Xuefeng; Wei Zhihong; Fang Dong; Ma Yuqing; Li Hong; Pan Ziqiang; Li Xutong

    2001-01-01

    China, as other countries in the world, is seeking for a way of sustainable development. In energy/electricity field, nuclear power is one of electric energy options considering the Chinese capability of nuclear industry. The purpose of this study is to investigate the role of nuclear power in Chinese energy/electricity system in future by comprehensive assessment. The main conclusions obtained from this study are: (1) China will need a total generation capacity of 750 - 879 GW in 2020, which means new power units of 460 - 590 GW generation capacity will be built from 2001 to 2020. (2) the total amount of SO 2 emission from power production will rise to 16 - 18 Mt in 2020, about 2.8 - 3.2 times of 1995, even if the measures to control SO 2 emission are taken for all new coal units. (3) CO 2 emission from electricity generation will reach 21 - 24 Gt in 2020. (4) the environmental impacts and health risks of coal-fired energy chain are greater than that of nuclear chain. The normalized health risk caused by coal chain is 20.12 deaths/GW·a but 4.63 deaths/GW·a by nuclear chain in China. (5) As estimated by experts, there will be a shortage of 200 GW in 2050 in China even if considering the maximum production of coal, the utilization of hydropower and renewable resource. Nuclear power is the only way to fill the gap between demand and supply

  8. Condition based monitoring, diagnosis and maintenance on operating equipments of a hydraulic generator unit

    International Nuclear Information System (INIS)

    Liu, X T; Feng, F Z; Si, A W

    2012-01-01

    According to performance characteristics of operating equipments in a hydraulic generator unit (HGU), the relative techniques on condition monitoring and fault diagnosis (CMFD) are introduced in this paper, especially the key technologies are emphasized, such as equipment monitoring, expert system (ES), intelligent diagnosis and condition based maintenance (CBM). Meanwhile, according to the instructor on CBM proposed by State electric power corporation, based on integrated mode, the main steps on implementation of CBM are discussed in this paper.

  9. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Feasibility of Small Hydro-Electric Generation in a Large Urban Area

    OpenAIRE

    Benson Y. Zhang; Adam Taylor

    2012-01-01

    The possibilities of generating electric power from relatively small hydro-electric sources in a large urban area is investigated. Two different aspects of hydro-electric sources have been studied: storm/waste water pipes in large multi-tenanted residential buildings and urban storm water discharge area (CSI area). The potential to generate from these sources has been investigated using a micro-turbine. The potential electric power which could be extracted from the sources was estimated using...

  11. Water withdrawal and consumption reduction analysis for electrical energy generation system

    Science.gov (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  12. Proceedings of the Canadian Institute's 3. annual conference on generation adequacy in Ontario : strategies to increase capacity to ensure a reliable electricity supply in Ontario

    International Nuclear Information System (INIS)

    2006-01-01

    This conference provided a forum for the discussion of issues related to generation adequacy in Ontario. Members of the electricity industry as well as members from governmental and non-governmental agencies discussed a variety of recommendations for cost-effective reliable energy in Ontario. Issues related to the overhaul or replacement of nuclear power reactors and coal-fired generators in the province were reviewed. The status of various wind power projects in the province was examined along with issues related to interconnected power systems. Best practices for the planning and execution of electricity infrastructure projects were also reviewed, and issues related to stakeholder involvement in electricity generation projects were discussed. The discussions also described recent developments in electricity generation in various jurisdictions in Canada and the United States. The conference featured 19 presentations, of which 7 have been catalogued separately for inclusion in this database. tabs., figs

  13. Policy and Regulatory Roadmaps for the Integration of Distributed Generation and the Development of Sustainable Electricity Networks. Final Report of the SUSTELNET project

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.

    2004-08-01

    The SUSTELNET project has been created to identify criteria for a regulatory framework for future electricity markets and network structures that create a level playing field between centralised and decentralised generation and facilitate the integration of renewable energy sources (RES). Furthermore, the objective of the project was to develop regulatory roadmaps for the transition to a sustainable electricity market and network structure. This report summarizes the results of the project. These results consist of: criteria, guidelines and rationales for a future electricity policy and regulatory framework, an outline for the development of regulatory roadmaps and nine national regulatory roadmaps (for Denmark, Germany, Italy, the Netherlands, United Kingdom, Czech Republic, Poland, Hungary and Slovakia), recommendations for a European regulatory policy on distributed generation and a benchmark study of current Member States policies towards distributed generation

  14. Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia

    International Nuclear Information System (INIS)

    Lean, Hooi Hooi; Smyth, Russell

    2010-01-01

    This paper employs annual data for Malaysia from 1970 to 2008 to examine the causal relationship between economic growth, electricity generation, exports and prices in a multivariate model. We find that there is unidirectional Granger causality running from economic growth to electricity generation. However, neither the export-led nor handmaiden theories of trade are supported and there is no causal relationship between prices and economic growth. The policy implication of this result is that electricity conservation policies, including efficiency improvement measures and demand management policies, which are designed to reduce the wastage of electricity and curtail generation can be implemented without having an adverse effect on Malaysia's economic growth. (author)

  15. Investment and deregulation in the electricity generation industry

    International Nuclear Information System (INIS)

    Peluchon, B.

    2007-12-01

    This work addresses the issue of investment in the electricity generation industry. As the analysis of many crisis which have affected electricity markets shows, there is a systematic under-investment in peak capacity. Electricity prices are not high enough to cover fixed costs of such generators, a phenomenon that has been dubbed 'missing money' in some recent papers (Stoft). The investment decisions of a duo-poly facing random demand are then compared to those of a public monopoly. The results are that no prices may be high enough to solve the 'missing money' problem, since the duo-poly is able to exercise market power in order to maximize his profit. This results systematically in fewer peak capacity in the duo-poly case than in the public monopoly case. This remains true in the case of a n-oligopoly. The necessity of designing a mechanism remunerating capacity is thus demonstrated. Capacity markets are then analysed in the light of those results. What appears is that operating reserves are a public good and, as such, prevents capacity markets to solve the 'missing money' problem. This casts a shadow on the pursuit of deregulation in the electricity industry. (author)

  16. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    Science.gov (United States)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  17. Electric power monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  18. A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas

    International Nuclear Information System (INIS)

    Lafrancois, Becky A.

    2012-01-01

    As the leading contributor of greenhouse gas emissions, the electricity sector stands to be impacted by policies seeking to curtail emissions. Instead of increasing electricity from renewable resources or nuclear power facilities, an alternative approach to reducing emissions in the electric power sector is changing the dispatch order of fossil fuels. Important differences between fossil fuels, and in the technologies used to burn them, make it possible to substantially reduce emissions from the sector. On average, each gigawatt-year of electricity generation switched from coal to natural gas reduces CO 2 emissions by 59 percent. As a result of significant investments in natural gas fired power plants in the United States between 1998 and 2005, there is an opportunity for electricity producers to take advantage of underutilized capacity. This is the first study to closely examine the new capital additions and analyze the technical potential for reductions in emissions. The analysis finds that 188 GW of capacity may be available to replace coal-fired baseload electricity generation. Utilizing this excess gas-fired capacity will reduce the sector's CO 2 emissions by 23 to 42 percent and reduce overall U.S. CO 2 emissions between 9 percent and 17 percent. - Highlights: ► Utilizing recently built natural gas fired power plants can significantly reduce CO 2 emissions in the United States. ► CO 2 emissions from electricity production can be reduced by 23–42 percent. ► U.S. overall CO 2 emissions reduced by 9–17 percent.

  19. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  20. New steam generators slated for nuclear units

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a brief discussion of Duke Power's plans to replace steam generators at its McGuire and Catawba nuclear units. A letter of intent to purchase (from Babcock and Wilcox) the 12 Westinghouse steam generators has been signed, but no constructor has been selected at this time. This action is brought about by the failures of more than 3000 tubes in these units

  1. Study Of The Fuel Cycle Effect To The Electricity Generating Cost

    International Nuclear Information System (INIS)

    Salimy, D. H.

    1998-01-01

    The nuclear fuel cycle cost contributes relatively small fraction to the total nuclear power generation cost, I.e. about 15 to 30%, compared to the fuel cost in the coal-generated electricity (40-60%). Or in the oil-generated electricity (70-80%). This situation will give effect that the future generation cost is much less sensitive to the changes in the fuel prince than in the case of fossil fuel power plants. The study has shown that by assuming a 100% increase in the natural uranium price, the total nuclear fuel cycle cost would increase only by about 27% and in turn it contributes about 29% increase to the total nuclear fuel cycle cost. As a result, it contributes only 4 to 8% increase in the nuclear energy generation cost. As a comparison, if the same situation should occur to fossil fuel plants, the assumed fuel price increase would have increased the electricity generating cost by about 40-65% for coal-fired plants, and about 70-85% for oil-fired plants. This study also has assesses the economic aspects of the electricity generating cots for nuclear power plant (NPP) and the coal power plant. For an NPP the most affecting factor is the investment cost, while for the coal power plant, the major factor influencing the total cost is the price/cost of the fuel

  2. Essays on restructured electricity markets

    Science.gov (United States)

    Nicholson, Emma Leah

    This dissertation focuses on the performance of restructured electricity markets in the United States. In chapter 1, I study bidder-specific offer caps ("BSOCs") which are used to mitigate market power in three wholesale electricity markets. The price of electricity is determined through multi-unit uniform price auctions and BSOCs impose an upper limit, which is increasing in marginal cost, on each generator's bid. I apply BSOCs in both the uniform and discriminatory price auctions and characterize the equilibria in a two firm model with stochastic demand. BSOCs unambiguously increase expected production efficiency in the uniform price auction and they can increase the expected profit of the generator with the lower cap. Chapter 2, coauthored with Ramteen Sioshansi, Ph.D., compares two types of uniform price auction formats used in wholesale electricity markets, centrally committed markets and self committed markets. In centrally committed markets, generators submit two-part bids consisting of a fixed startup cost and a variable (per MWh) energy cost, and the auctioneer ensures that no generator operates at a loss. Generators in self committed markets must incorporate their startup costs into their one part energy bids. We derive Nash equilibria for both the centrally and self committed electricity markets in a model with two symmetric generators with nonconvex costs and deterministic demand. Using a numerical example, we demonstrate that if the caps on the bid elements are chosen appropriately, the two market designs are equivalent in terms of generator revenues and settlement costs. Regulators and prominent academic experts believe that electric restructuring polices have stifled investment in new generation capacity. In chapter 3 I seek to determine whether these fears are supported by empirical evidence. I examine both total investment in megawatts and the number of new investments across regions that adopted different electric restructuring policies to

  3. Net energy analysis of different electricity generation systems

    International Nuclear Information System (INIS)

    1994-07-01

    This document is a report on the net energy analysis of nuclear power and other electricity generation systems. The main objectives of this document are: To provide a comprehensive review of the state of knowledge on net energy analysis of nuclear and other energy systems for electricity generation; to address traditional questions such as whether nuclear power is a net energy producer or not. In addition, the work in progress on a renewed application of the net energy analysis method to environmental issues is also discussed. It is expected that this work could contribute to the overall comparative assessment of different energy systems which is an ongoing activity at the IAEA. 167 refs, 9 figs, 5 tabs

  4. Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Macknick, J; Newmark, R; Rogers, J; Madden, N; Fisher, J

    2013-01-01

    Water use by the electricity sector represents a significant portion of the United States water budget (41% of total freshwater withdrawals; 3% consumed). Sustainable management of water resources necessitates an accurate accounting of all water demands, including water use for generation of electricity. Since 1985, the Department of Energy (DOE) Energy Information Administration (EIA) has collected self-reported data on water consumption and withdrawals from individual power generators. These data represent the only annual collection of water consumption and withdrawals by the electricity sector. Here, we compile publically available information into a comprehensive database and then calculate water withdrawals and consumptive use for power plants in the US. In effect, we evaluate the quality of water use data reported by EIA for the year 2008. Significant differences between reported and calculated water data are evident, yet no consistent reason for the discrepancies emerges. (letter)

  5. Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    McConnell, Dylan; Hearps, Patrick; Eales, Dominic; Sandiford, Mike; Dunn, Rebecca; Wright, Matthew; Bateman, Lachlan

    2013-01-01

    In electricity markets that use a merit order dispatch system, generation capacity is ranked by the price that it is bid into the market. Demand is then met by dispatching electricity according to this rank, from the lowest to the highest bid. The last capacity dispatched sets the price received by all generation, ensuring the lowest cost provision of electricity. A consequence of this system is that significant deployments of low marginal cost electricity generators, including renewables, can reduce the spot price of electricity. In Australia, this prospect has been recognized in concern expressed by some coal-fired generators that delivering too much renewable generation would reduce wholesale electricity prices. In this analysis we calculate the likely reduction of wholesale prices through this merit order effect on the Australian National Electricity Market. We calculate that for 5 GW of capacity, comparable to the present per capita installation of photovoltaics in Germany, the reduction in wholesale prices would have been worth in excess of A$1.8 billion over 2009 and 2010, all other factors being equal. We explore the implications of our findings for feed-in tariff policies, and find that they could deliver savings to consumers, contrary to prevailing criticisms that they are a regressive form of taxation. - Highlights: ► We model the impact of photovoltaic generation on the Australian electricity market. ► Photovoltaic generation depresses electricity prices, particularly in summer peaks. ► Over the course of a year, the depression in wholesale prices has significant value. ► 5 GW of solar generation would have saved $1.8 billion in the market over two years. ► The depression of wholesale prices offsets the cost of support mechanisms

  6. 21 CFR 876.4300 - Endoscopic electrosurgical unit and accessories.

    Science.gov (United States)

    2010-04-01

    ... Endoscopic electrosurgical unit and accessories. (a) Identification. An endoscopic electrosurgical unit and... device includes the electrosurgical generator, patient plate, electric biopsy forceps, electrode, flexible snare, electrosurgical alarm system, electrosurgical power supply unit, electrical clamp, self...

  7. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  8. Generation adequacy report 2009 on the electricity supply - demand balance in France

    International Nuclear Information System (INIS)

    2009-01-01

    Under the terms of the Law of February 10, 2000, RTE (Reseau de Transport d'Electricite), working under the aegis of the Public Authorities, periodically establishes a multi-annual forecast report on the balance of electricity supply and demand in France. The Generation Adequacy Report is one basis for the Minister for Energy, and the Public Authorities in general, to build the Multi-annual Investment Plan (referred to in this document by its French acronym PPI for Programmation Pluri-annuelle des Investissements) for electricity generation facilities, introduced by the above-mentioned law. The Generation Adequacy Report deals with the security of the French electricity supply. It intends to identify over a period of about fifteen years the risks of imbalances in continental France between the electricity demand and the generation capacity available to supply it. It enables the identification of the generation capacity required to meet the peaks of demand. The choice of generation technologies to be developed, which is dictated by environmental and economic concerns, is not covered by the Generation Adequacy Report, but is a matter for the other stakeholders in the French electric system, under the guidelines determined by the PPI. The Generation Adequacy Report is published by RTE on its web site and thus accessible to all to serve transparency and contribute to the French energy debate. This document is the fourth edition of the Generation Adequacy Report published by RTE, following its 2003, 2005 and 2007 editions. RTE publishes partial updates in-between to reflect developments in generation capacity. The last update was published in 2008. The time horizon of the 2009 edition of the Generation Adequacy Report is 2025. (author)

  9. Electric generating capacity planning: A nonlinear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Yakin, M.Z.; McFarland, J.W.

    1987-02-01

    This paper presents a nonlinear programming approach for long-range generating capacity expansion planning in electrical power systems. The objective in the model is the minimization of total cost consisting of investment cost plus generation cost for a multi-year planning horizon. Reliability constraints are imposed by using standard and practical reserve margin requirements. State equations representing the dynamic aspect of the problem are included. The electricity demand (load) and plant availabilities are treated as random variables, and the method of cumulants is used to calculate the expected energy generated by each plant in each year of the planning horizon. The resulting model has a (highly) nonlinear objective function and linear constraints. The planning model is solved over the multiyear planning horizon instead of decomposing it into one-year period problems. This approach helps the utility decision maker to carry out extensive sensitivity analysis easily. A case study example is provided using EPRI test data. Relationships among the reserve margin, total cost and surplus energy generating capacity over the planning horizon are explored by analyzing the model.

  10. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    sites are suitable for the generation of electrical energy. Also, the results ... Nigerian Journal of Technology (NIJOTECH). Vol. 36, No. ... parameter in the wind-power generation system. ..... [3] A. Zaharim, A. M Razali, R. Z Abidin, and K Sopian,.

  11. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  12. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  13. A Probability Analysis of the Generating Cost for EU-APR1400 Single Unit

    International Nuclear Information System (INIS)

    Ha, Gak Hyeon; Kim, Sung Hwan

    2014-01-01

    The nuclear power plant market is expected to grow rapidly in order to address issues of global warming, reducing CO 2 emissions and securing stable electricity supplies. Under these circumstances, the main primary goal of the EU-APR100 development is to ensure export competitiveness in the European countries. To this end, EU-APR1400 have been developed based one te APR1400 (Advanced Power Reactor, GEN Type) The EU-APR1400 adds many advanced design features to its predecessor, as outlined below in Table 1. In this simulation, the results of the generating cost of the EU-APR1400 single unit were determined using the probability cost analysis technique, the generating cost range was shown to be 56.16 ∼ 70.92 won/kWh.

  14. A Probability Analysis of the Generating Cost for EU-APR1400 Single Unit

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Gak Hyeon; Kim, Sung Hwan [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    The nuclear power plant market is expected to grow rapidly in order to address issues of global warming, reducing CO{sub 2} emissions and securing stable electricity supplies. Under these circumstances, the main primary goal of the EU-APR100 development is to ensure export competitiveness in the European countries. To this end, EU-APR1400 have been developed based one te APR1400 (Advanced Power Reactor, GEN Type) The EU-APR1400 adds many advanced design features to its predecessor, as outlined below in Table 1. In this simulation, the results of the generating cost of the EU-APR1400 single unit were determined using the probability cost analysis technique, the generating cost range was shown to be 56.16 ∼ 70.92 won/kWh.

  15. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  16. Importance of hard coal in electricity generation in Poland

    Science.gov (United States)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  17. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  18. High benefits approach for electrical energy conversion in electric vehicles from DC to PWM-AC without any generated harmonic

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply

  19. Wind energy as a significant source of electricity for the United States

    International Nuclear Information System (INIS)

    Nix, R.G.

    1996-06-01

    This paper discusses wind energy and its potential to significantly impact the generation of electricity within the US. The principles and the equipment used to convert wind energy to electricity are described, as is the status of current technology. Markets and production projections are given. There is discussion of the advances required to reduce the selling cost of electricity generated from the wind from today's price of about $0.05 per kilowatt-hour to full cost-competitiveness with gas- and coal-based electricity

  20. Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Forrest, Sam; MacGill, Iain

    2013-01-01

    Growing climate change and energy security concerns are driving major wind energy deployment in electricity industries around the world. Despite its many advantages, growing penetrations of this highly variable and somewhat unpredictable energy source pose new challenges for electricity industry operation. One issue receiving growing attention is the so-called ‘merit order effect’ of wind generation in wholesale electricity markets. Wind has very low operating costs and therefore tends to displace higher cost conventional generation from market dispatch, reducing both wholesale prices and conventional plant outputs. This paper extends the current literature on this effect through an empirical study employing a range of econometric techniques to quantify the impacts of growing wind penetrations in the Australian National Electricity Market (NEM). The results suggest that wind is having a marked impact on spot market prices and, while wind is primarily offsetting higher operating cost gas generation, it is now also significantly reducing dispatch of emissions intensive brown coal generation. Great care needs to be taken in extrapolating these results to longer-term implications, however, the study does propose a methodology for assessing this effect, highlights the impacts that wind is already having on NEM outcomes and suggests promising directions for future research. - Highlights: ► Proposes methodologies to estimate short run impact of wind on electricity markets. ► Quantifies the merit order effect of wind generation on wholesale spot price. ► Wind is found to be significantly effecting gas fired generation. ► Evidence is found for wind having a notable impact on baseload coal generation. ► Discusses the implications for development of wind generation in Australia

  1. Inventory of power plants in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  2. Electricity generation in the world and Ukraine: Current status and future developments

    Directory of Open Access Journals (Sweden)

    Alexander Zvorykin

    2017-11-01

    Full Text Available Electricity generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electricity can be generated from: 1 non-renewable energy sources such as coal, natural gas, oil, and nuclear; and 2 renewable energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. However, the major energy sources for electricity generation in the world are: 1 thermal power – primarily using coal (~40% and secondarily natural gas (~23%; 2 “large” hydro power plants (~17% and 3 nuclear power from various reactor designs (~11%. The rest of the energy sources for electricity generation is from using oil (~4% and renewable sources such as biomass, wind, geothermal and solar (~5%, which have just visible impact in selected countries. In addition, energy sources, such as wind and solar, and some others, like tidal and wave-power, are intermittent from depending on Mother Nature. And cannot be used alone for industrial electricity generation. Nuclear power in Ukraine is the most important source of electricity generation in the country. Currently, Ukrainian Nuclear Power Plants (NPPs generate about 45.5% of the total electricity followed with coal generation ‒ 38%, gas generation 9.6% and the rest is based on renewable sources, mainly on hydro power plants – 5.9%. Nuclear-power industry is based on four NPPs (15 Pressurized Water Reactors (PWRs including the largest one in Europe ‒ Zaporizhzhya NPP with about 6,000 MWel gross installed capacity. Two of these 15 reactors have been built and put into operation in 70-s, ten in 80-s, one in 90-s and just two in 2004. Therefore, based on an analysis of the world power reactors in terms of their maximum years of operation (currently, the oldest reactors are ~45-year old several projections have been made for future of the nuclear-power industry

  3. Quad-Cities Station, Units 1 and 2. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Unit 1 generated 2,024,125 net electrical MWH and the generator was on line 3162.6 hours. Unit 2 generated 746,184 net electrical MWH and was on line 1475.3 hrs. Data is included concerning operations, power generation, shutdowns, maintenance, changes, and tests. (FS)

  4. Comparative health and safety assessment of alternative future electrical-generation systems

    International Nuclear Information System (INIS)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated

  5. Electric power annual 1997. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  6. A methodology to identify stranded generation facilities and estimate stranded costs for Louisiana's electric utility industry

    Science.gov (United States)

    Cope, Robert Frank, III

    1998-12-01

    The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous "transition problems." One significant transition problem for federal and state regulators rests with determining a utility's stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as "Top-Down" and "Bottom-Up." The "Top-Down" approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The "Bottom-Up" approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a "Bottom-Up" quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific

  7. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Science.gov (United States)

    Stala-Szlugaj, Katarzyna; Grudziński, Zbigniew

    2017-10-01

    In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA) whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS) changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i) and CO2 emission allowances, cover all costs (ii), or constitute positive prices (iii), but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh). The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  8. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Directory of Open Access Journals (Sweden)

    Stala-Szlugaj Katarzyna

    2017-01-01

    Full Text Available In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i and CO2 emission allowances, cover all costs (ii, or constitute positive prices (iii, but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh. The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  9. Partnership for electrical generation technology education

    International Nuclear Information System (INIS)

    Rasmussen, R. S.; Beaty, L.; Holman, R.

    2006-01-01

    This Engineering Technician education effort adapts an existing two-year Instrumentation and Control (I and C) education program into a model that is focused on electrical-generation technologies. It will also locally implement a program developed elsewhere with National Science Foundation funding, aimed at public schools, and adapt it to stimulate pre-college interest in pursuing energy careers in general. (authors)

  10. Design mechanic generator under speed bumper to support electricity recourse for urban traffic light

    Science.gov (United States)

    Sabri, M.; Lauzuardy, Jason; Syam, Bustami

    2018-03-01

    The electrical energy needs for the traffic lights in some cities of developing countries cannot be achieved continuously due to limited capacity and interruption of electricity distribution, the main power plant. This issues can lead to congestion at the crossroads. To overcome the problem of street chaos due to power failure, we can cultivate to provide electrical energy from other sources such as using the bumper to generate kinetic energy, which can be converted into electrical energy. This study designed a generator mechanic that will be mounted on the bumper construction to generate electricity for the purposes of traffic lights at the crossroads. The Mechanical generator is composed of springs, levers, sprockets, chains, flywheel and customize power generator. Through the rotation of the flywheel, we can earned 9 Volt DC voltage and electrical current of 5.89 Ampere. This achievement can be used to charge the accumulator which can be used to power the traffic lights, and to charge the accumulator capacity of 6 Ah, the generator works in the charging time for 1.01 hours.

  11. Conceptual design of a demonstration reactor for electric power generation

    International Nuclear Information System (INIS)

    Asaoka, Y.; Hiwatari, R.; Okano, K.; Ogawa, Y.; Ise, H.; Nomoto, Y.; Kuroda, T.; Mori, S.; Shinya, K.

    2005-01-01

    Conceptual study on a demonstration plant for electric power generation, named Demo-CREST, was conducted based on the consideration that a demo-plant should have capacities both (1) to demonstrate electric power generation in a plant scale with moderate plasma performance, which will be achieved in the early stage of the ITER operation, and foreseeable technologies and materials and (2) to have a possibility to show an economical competitiveness with advanced plasma performance and high performance blanket systems. The plasma core was optimized to be a minimum size for both net electric power generation with the ITER basic plasma parameters and commercial-scale generation with advance plasma parameters, which would be attained by the end of ITER operation. The engineering concept, especially the breeding blanket structure and its maintenance scheme, is also optimized to demonstrate the tritium self-sustainability and maintainability of in-vessel components. Within the plasma performance as planned in the present ITER program, the net electric power from 0 MW to 500 MW is possible with the basic blanket system under the engineering conditions of maximum magnetic field 16 T, NBI system efficiency 50%, and NBI current drive power restricted to 200 MW. Capacities of stabilization of reversed shear plasma and the high thermal efficiency are additional factors for optimization of the advanced blanket. By replacing the blanket system with the advanced one of higher thermal efficiency, the net electric power of about 1000 MW is also possible so that the economic performance toward the commercial plant can be also examined with Demo-CREST. (author)

  12. A Pilot Study on Comparative Assessment of Electricity Generating Systems Using Monetary Value

    International Nuclear Information System (INIS)

    Kim, Kil Yoo; Kim, Seong Ho; Kim, Tae Woon

    2005-01-01

    Recently, many variables which affect the cost of electricity generating systems are drastically changing. For examples, the price of crude oil soared above 70 dollars a barrel and it will be continuously going up. Kyoto Protocol, an international agreement signed by 141 countries that promise to reduce greenhouse gases, finally entered into force on February 16, 2005. A total of 39 countries are required to reduce their emissions of greenhouse gases, including carbon dioxide, methane and nitrous oxide, to 5.2 percent below the 1990 levels during 2008-2012. Also, many researches and government support are concentrated on the renewable energy. In Korea, the portion of renewable energy in the electricity generation will be increased up to 7% in 2010. Therefore, a comparative assessment among electricity generating systems by considering the environmental impacts, risks, health effects, and social effects is required to establish the national energy and power systems planning systematically and scientifically. Up to now, several papers for data collection and analysis of the environmental impacts, risks, and health effects for various electricity generation systems in Korea were published. However, they were not the comparative assessment covering all impacts and effects but just a partial assessment (e.g., environmental impacts assessment only), or not covering all generating systems such as nuclear, coal, LNG, hydro, oil, wind, photo-voltaic (=solar) but covering partial ones (e.g., nuclear, coal, LNG, and wind only). Although Ref. deals all electricity generating systems, and all impacts such as economic, environmental, health, and social impacts, it used too much subjective opinion by using pairwise comparison questionnaire to know the relative importance among the economic, environmental, health, and social effects. However, if economic, environmental, health, and social effects of the various electricity generation systems could be calculated by monetary value

  13. The development of the 3. generation electric scooter in Taiwan

    International Nuclear Information System (INIS)

    Shu, J.P.H.; Wu, C.T.; Hsu, C.T.; Wu, C.T.; Lo, S.-M.; Hsiau, C.

    2000-01-01

    At the present time, there are approximately 25,000 electric scooters in operation in Taiwan. Most of the customers so far have complained about the cruising range, vehicle weight, charging time, and vehicle cost. Two generations of electric scooters have already been developed by the Industrial Technology Research Institute (ITRI), the first generation used valve-regulated lead-acid (VRLA) batteries, while the second generation used nickel-metal hydride (Ni-MH) batteries. Production of the first generation of electric scooters began in September, 1999 while the second generation is still in the cost-down engineering phase. The Government had established mandatory sales regulations, and in order to support this program and improve the overall vehicle performance, ITRI is now developing the third generation, utilizing a lithium-ion (Li-ion) battery, in addition to higher power-electronic efficiency systems. The stated objectives of the development program for the third generation are performance improvements of 25 per cent for weight, 50 per cent for the cruising range, 20 per cent for total energy efficiency, 300 per cent longer battery life at no cost increase after the government subsidy. If the goals are met, the third generation electric scooter could replace most of the 50 cc gasoline scooters in operation in Asia. Included in the presentation are the major technical facets of development for the third generation. Aluminum-casting frame is scheduled to replace the steel-welding frame. Lithium-ion battery is equipped with a battery management system to optimize battery cells and protect them. The phase angle and flux-weakening of the motor and controller are being optimized in order to increase the torque at low and high speed. The two-stage gear transmission is replaced with a single-stage timing belt transmission of a new design. The total efficiency of the vehicle will be monitored by a centralized vehicle energy management system that will control the

  14. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    Science.gov (United States)

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Validation of a methodology for the study of generation cost of electric power for nuclear power plants; Validacion de una metodologia para el estudio de costos de generacion de electricidad de plantas nucleares de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F.; Martin del Campo M, C. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550, Jiutepec, Morelos (Mexico)]. E-mail: rfortega@mexis.com

    2004-07-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  16. Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap

    International Nuclear Information System (INIS)

    Zou, Peng; Chen, Qixin; Yu, Yang; Xia, Qing; Kang, Chongqing

    2017-01-01

    Highlights: • How electricity markets are evolving with the changing generation mix is studied. • China 2050 High Renewable Energy Penetration Roadmap are empirically analysed. • A multi-period Nash-Cournot model is established to study the market equilibrium. • Energy storages are analysed and compared to reveal their impacts on the equilibrium. - Abstract: The power generation mix are significantly changing due to the growth of stricter energy policies. The renewables are increasingly penetrating the power systems and leading to more clean energy and lower energy prices. However, they also require much more flexibilities and ancillary services to handle their uncertainties and variabilities. Thus, the requirements for regulation and reserve services may dramatically increase while the supplies of these services, which are mainly from the traditional thermal plants, remain almost invariant. This changing situation will cause higher regulation and reserve prices and impact the profit models and revenue structures of the traditional plants. How electricity markets are actually evolving with the changing generation mix? Can enough backup power plants be given adequate economic incentives and thus remained with the increasing renewables and the decreasing energy prices and productions? Can de-carbonization be fully performed in power systems? To explicitly answer the question, this paper uses a multi-period Nash-Cournot equilibrium model to formulate the evolution of power markets incorporating different types of generators, including thermal units, hydro units, wind farms, solar stations and energy storage systems. The price changes in the co-optimized energy, regulation and reserve markets, and the profit changes of various generators are studied. And the variabilities and uncertainties of renewable generation sources are considered in dynamically determining the requirements of regulation and reserve services. Based on the China 2050 High Renewable Energy

  17. Electricity generation costs by source, and costs and benefits by substitutions of generation source

    International Nuclear Information System (INIS)

    Akimoto, Keigo; Oda, Junichiro; Sano, Fuminori

    2015-01-01

    After Fukushima-daiichi nuclear power accident, the Japanese government assessed the electricity generation costs by source in 2011. However, the conditions have been changing, and this study newly assessed the generation costs by source using new data. The generation costs for coal, oil, gas, nuclear, PV and wind power for 2013 and 2030 were estimated. According to the analysis, coal power is the cheapest when climate change damage costs are not considered, and nuclear power is the cheapest when the climate damage costs are considered. However, under the competitive electricity market in which power companies tend to invest in power plants with short-term payback investment preference, power companies will recognize higher costs of nuclear power particularly under highly uncertain nuclear regulation policies and energy policies. The policies to reduce the uncertainties are very important. (author)

  18. Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO

    International Nuclear Information System (INIS)

    Klaassen, Ger; Riahi, Keywan

    2007-01-01

    This paper examines the global impacts of a policy that internalizes the external costs (related to air pollution damage, excluding climate costs) of electricity generation using a combined energy systems and macroeconomic model. Starting point are estimates of the monetary damage costs for SO 2 , NO X , and PM per kWh electricity generated, taking into account the fuel type, sulfur content, removal technology, generation efficiency, and population density. Internalizing these externalities implies that clean and advanced technologies increase their share in global electricity production. Particularly, advanced coal power plants, natural gas combined cycles, natural gas fuel cells, wind and biomass technologies gain significant market shares at the expense of traditional coal- and gas-fired plants. Global carbon dioxide emissions are lowered by 3% to 5%. Sulfur dioxide emissions drop significantly below the already low level. The policy increases the costs of electricity production by 0.2 (in 2050) to 1.2 Euro cent/kWh (in 2010). Gross domestic product losses are between 0.6% and 1.1%. They are comparatively high during the initial phase of the policy, pointing to the need for a gradual phasing of the policy

  19. Transforming Ontario's Power Generation Company

    International Nuclear Information System (INIS)

    Manley, J.; Epp, J.; Godsoe, P.C.

    2004-01-01

    The OPG Review Committee was formed by the Ontario Ministry of Energy to provide recommendations and advice on the future role of Ontario Power Generation Inc. (OPG) in the electricity sector. This report describes the future structure of OPG with reference to the appropriate corporate governance and senior management structure. It also discusses the potential refurbishing of the Pickering A nuclear generating Units 1, 2 and 3. The electricity system in Ontario is becoming increasingly fragile. The province relies heavily on electricity imports and the transmission system is being pushed to near capacity. Three nuclear generating units are out of service. The problems can be attributed to the fact that the electricity sector has been subjected to unpredictable policy changes for more than a decade, and that the largest electricity generator (OPG) has not been well governed. OPG has had frequent senior management change, accountability has been weak, and cost overruns have delayed the return to service of the Pickering nuclear power Unit 4. It was noted that the generating assets owned and operated by OPG are capable of providing more than 70 per cent of Ontario's electricity supply. Decisive action is needed now to avoid a potential supply shortage of about 5,000 to 7,000 megawatts by 2007. In its current state, OPG risks becoming a burden on ratepayers. Forty recommendations were presented, some of which suggest that OPG should become a rate-regulated commercial utility focused on running and maintaining its core generating assets. This would require that the government act as a shareholder, and the company operate like a commercial business. It was also emphasized that the market must be allowed to bring in new players. refs., tabs., figs

  20. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law – passed in parliament by a large majority – that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs. The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO 2 -emissions and a need for Germany to become a net importer of electricity. Now – a little more than a year after the phase-out law entered into force – this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation. The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011. If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable

  1. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  2. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  3. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  4. The Birth of Nuclear-Generated Electricity

    International Nuclear Information System (INIS)

    Claflin, D.J. POC

    1999-01-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public

  5. On the legal nature of electricity supply contracts concluded by electricity companies and power stations generating electricity from renewable energy sources

    International Nuclear Information System (INIS)

    Herrmann, B.J.

    1998-01-01

    Section 2 of the German Act for enhanced use of electricity from renewable energy sources (StEG) defines the obligation to contract but not the contractual obligations, i.e. the conditions of performance of the contract (supply and purchase of electricity and the legal obligations of contractors). The analysis here shows that characterising this mandatory contract required by the act as an agreement of purchase and sale more appropriately describes the legal nature of the contract and the intent of the legislator than other contracts for supply and purchase of electricity, as for instance those concluded by electric utilities and their customers. One specific aspect elaborated by the author is that the StEG does not constitute an obligation to supply on the part of the renewable energy generating power station, so that the power station operator is not obliged to ensure availability of the electricity at any time or in terms of supplies that can be called off by the purchasing utility, whereas the electric utility is obliged by section 2 of the StEG to purchase the contractual amounts from the generating station. (orig./CB) [de

  6. Sustainability considerations for electricity generation from biomass

    International Nuclear Information System (INIS)

    Evans, Annette; Strezov, Vladimir; Evans, Tim J.

    2010-01-01

    The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers. (author)

  7. Optimal placement and sizing of multiple distributed generating units in distribution

    Directory of Open Access Journals (Sweden)

    D. Rama Prabha

    2016-06-01

    Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.

  8. Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model

    International Nuclear Information System (INIS)

    Shin, Ho-Chul; Park, Jin-Won; Kim, Ho-Seok; Shin, Eui-Soon

    2005-01-01

    As a measure to establish a climate-friendly energy system, Korean government has proposed to expand landfill gas (LFG) electricity generation capacity. The purpose of this paper is to analyze the impacts of LFG electricity generation on the energy market, the cost of generating electricity and greenhouse gases emissions in Korea using a computer-based software tool called 'Long-range Energy Alternative Planning system' (LEAP) and the associated 'Technology and Environmental Database'. In order to compare LFG electricity generation with existing other generating facilities, business as usual scenario of existing power plants was surveyed, and then alternative scenario investigations were performed using LEAP model. Different alternative scenarios were considered, namely the base case with existing electricity facilities, technological improvement of gas engine and LFG maximum utilization potential with different options of gas engine (GE), gas turbine (GT), and steam turbine (ST). In the technological improvement scenario, there will be 2.86 GWh or more increase in electricity output, decrease of 45 million won (Exchange rate (1$=1200 won)). in costs, and increase of 10.3 thousand ton of CO 2 in global warming potentials due to same period (5 year) of technological improvement. In the maximum utilization potential scenario, LFG electricity generation technology is substituted for coal steam, nuclear, and combined cycle process. Annual cost per electricity product of LFG electricity facilities (GE 58MW, GT 53.5MW, and ST 54.5MW) are 45.1, 34.3, and 24.4 won/kWh, and steam turbine process is cost-saving. LFG-utilization with other forms of energy utilization reduces global warming potential by maximum 75% with compared to spontaneous emission of CH 4 . LFG electricity generation would be the good solution for CO 2 displacement over the medium term and additional energy profits

  9. Sustainable development business case report : renewable electricity generation : SD business case

    International Nuclear Information System (INIS)

    2005-11-01

    This investment report is the first in a series that will be released by Sustainable Development Technology Canada as part of the SD Business Case. It focuses primarily on generating electricity from renewable energy sources and examines 4 primary technology groups or sub-sectors including wind generated electricity; solar PV generated electricity; stationary fuel cell generated electricity; and electricity generated from biological sources. Each sub-sector has been assessed in terms of its market dynamics, technology makeup and conditions, sustainability impacts, and investment risk. A selection of the leading technologies in each technology area are brought forward and rated in terms of their respective investment potential. The report first presents an overview of the SD business case plan. It defines the primary audience of the report, lists the sectors and investment categories to be assessed by the business case and provides some background information on Sustainable Development Technology Canada. The report presents the framework for data collection and analysis and an executive summary of the complete report. It then presents the results of the market assessment report for each of the 4 sectors. This includes demand, infrastructure renewal, environmental commitments, renewable energy value proposition, and future market potential. The section covering the technology assessment report discusses the various technologies and ranks them. The sustainability assessment report section provides an economic, environmental and societal assessment of each sub-sector. Risk assessment is conducted in terms of technology and non-technology related risk. Last, the report presents conclusions and investment priorities. 11 tabs., 7 figs

  10. Business opportunities and dynamic competition through distributed generation in primary electricity distribution networks

    International Nuclear Information System (INIS)

    Raineri, R.; Rios, S.; Vasquez, R.

    2005-01-01

    In this paper, for a real electricity distribution network, an assessment of business opportunities to invest in distributed generation (DG) is performed through a simulation based on a full representation of three medium voltage (12 kV) feeders. The three feeders representation includes 1062 sections of conductors with 13 different sizes. The economic assessment focuses on both, the incentives of the incumbent distribution company and those of a new entrant. The technical and economic impact on losses, reliability and voltage regulation in the network area are verified. The DG solution analyzed determines a business opportunity for new investors where end users are also benefited. This work calls in the debate on the need to reformulate the current regulation model on electricity distribution, by defining clear rules to incorporate DG to the existing network, and to enable any agent to develop the proposed business. DG success depends on the location of adequate sites to strategically establish few DG units being a substitute to network expansion

  11. Facts against nuclear electricity generation. 2. enlarged ed.

    International Nuclear Information System (INIS)

    Buechele, C.

    1986-01-01

    The book destroys a legend. The nuclear cartel still goes on telling the tale of safety, environmental compatibility and economic efficiency of nuclear electricity generation. But nothing in this story stands the test: Bare facts destroy the legend. Up to now, only insiders have been able to state counterarguments. The book in hand now presents in a nutshell all results and experience and facts to be brought forward against nuclear electricity generation. The material is presented in a problem-oriented, reliable and comprehensible manner. Anyone who long since suspected lies and malinformation of the public will step by step find the arguments justifying his suspicion. In an annex, Harald Gaber explains the Chernobyl disaster and its consequences. A literature index with comments is a helpful guide for further reading. (orig.) [de

  12. Generation of electrical power

    International Nuclear Information System (INIS)

    Hursen, T.F.; Kolenik, S.A.; Purdy, D.L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, the thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element

  13. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  14. Review of the research proposal for the steam generator retired from Kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Han, Joung Ho; Kim, Hong Pyo; Lim, Yun Soo; Lee, Deok Hyun; Hwang, Seong Sik; Hur, Do Haeng [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The tubes of the steam generator retired form Kori unit 1 have many different kinds of failures, such as denting pitting, wastage, ODSCC, PWSCC.Korea Electric Power Research Institute (KEPRI) submitted a research proposal for the steam generator to the Korea Institute S and T Evaluation and Planning (KSITEP). The KISTEP requested Korea Atomic Energy Research Institute to review the proposal by organizing a committee which should be composed of the specialists of the related domestic research institutes. Opinions of the committee on the objectives, research fields, economic benefit and validity in the research proposal were reviewed and suggested optimal research fields to be fulfilled successfully for the retired steam generator. Also, the rolls for the participants in the research works were allocated, which is critical in order to do the project effectively. 6 figs., 5 tabs. (Author)

  15. The impact of financing schemes and income taxes on electricity generation costs

    International Nuclear Information System (INIS)

    Bertel, E.; Plante, J.

    2007-01-01

    Electricity generation cost estimates reported in many national and international studies provide a wealth of data to support economic assessments, and eventually to guide choices on generation sources and technologies. However, although the electricity generating cost is the criterion generally selected to present results, it is calculated by various means in different studies because the chosen approach must be relevant to the context of the specific project (private vs. stated-owned investor, regional differences...). The traditional constant-money levelized generation cost methodology is widely used by utilities, government agencies and international organisations to provide economic assessments of alternative generation options. It gives transparent and robust results, especially suitable for screening studies and international comparisons. However, the method, which is strictly economic, does not take into account all the factors influencing the choice of investors in liberalized electricity markets. In particular, it does not take into account financing schemes and income taxes which may hate a significant impact on the capital cost to be supported by the investor. The approach described below is based on the overall framework of average levelized lifetime cost evaluation, but it takes into account the financing scheme adopted by the investor and the income taxes supported by the plant operator/utility. It is similar to models which are used to analyse the economics of competing electricity generation sources in liberalized electricity markets, such as the merchant plant cash flow model adopted in the MIT study. (authors)

  16. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies

    International Nuclear Information System (INIS)

    Allan, Grant; Eromenko, Igor; McGregor, Peter; Swales, Kim

    2011-01-01

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. - Research Highlights: → Portfolio analysis of scenarios for Scotland's electricity generating mix in 2020. → Reveals potential inefficiencies of selecting mixes based on levelised cost alone. → Portfolio risk-reducing contribution of Wave and Tidal technologies assessed.

  17. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Grant, E-mail: grant.j.allan@strath.ac.u [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Eromenko, Igor; McGregor, Peter [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Swales, Kim [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2011-01-15

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. - Research Highlights: {yields} Portfolio analysis of scenarios for Scotland's electricity generating mix in 2020. {yields} Reveals potential inefficiencies of selecting mixes based on levelised cost alone. {yields} Portfolio risk-reducing contribution of Wave and Tidal technologies assessed.

  18. The integrated North American electricity market : investment in electricity infrastructure and supply : a North American concern

    International Nuclear Information System (INIS)

    Egan, T.

    2006-03-01

    Electricity supply and infrastructure solutions for the United States and Canada were discussed along with the availability of fuel supply and the diversity of fuel sources. This document focuses on investment in transmission infrastructure in order to assure sustainable generation sources for both countries while addressing constraints along the border, which will allow for enhanced cross-border trade. The Canadian Electricity Association has proposed 3 areas of bi-national cooperation to promote effective investment in electricity infrastructure and supply in the North American market: (1) cooperation in enhancing electricity supply, (2) cooperation in enhancing transmission infrastructure, and (3) cooperation in addressing air quality issues and climate change. The report discussed electricity generation by fuel source in Canada and the United States; status of restructuring in Canada; as well as the economic and environmental benefits of an integrated market. It also discussed regulatory and policy matters affecting the investment environment. Last, it discussed the need for opportunities for investment in the North American market, distribution and demand side measures, and cooperation in enhancing transmission infrastructure. It was concluded that growing electricity demand in both the United States and Canada requires investment in electricity infrastructure and supply in the future. Resolving electricity infrastructure and supply needs must be an international concern, requiring the full engagement and cooperation of both countries. 1 tab, 2 figs

  19. Impact of Auxiliary Equipments Consumption on Electricity Generation Cost in Selected Power Plants of Pakistan

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-04-01

    Full Text Available This study focuses on higher generation cost of electricity in selected TPPs (Thermal Power Plants in Sindh, Pakistan. It also investigates the energy consumed by the auxiliary equipment of the selected TPPs in Sindh, Pakistan. The AC (Auxiliary Consumption of selected TPPs is compared with that in UK and other developed countries. Results show that the AC in selected TPPs in Sindh, Pakistan exceeds the average AC of the TPPs situated in developed countries. Many energy conservation measures such as impeller trimming and de-staging, boiler feed pump, high voltage inverter, variable frequency drive, and upgrading the existing cooling tower fan blades with fiber reinforced plastic are discussed to overcome higher AC. This study shows that harnessing various available energy conservative measures the AC and unit cost can be reduced by 4.13 and 8.8%; also adverse environmental impacts can be mitigated. Results show that the unit cost of electricity can be reduced from Rs.20 to19/kWh in JTPP (Jamshoro Thermal Power Plant, Rs.9 to 8.8/kWh in GTPS (Gas Turbine Power Station Kotri and Rs. 11 to 10.27/ kWh in LPS (Lakhara Power Station. Thus, electricity production can be improved with the existing capacity, which will eventually assist to manage the current energy crisis and ensure its conservation

  20. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  1. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  2. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  3. Comparative assessment of electricity generation options in the Philippines

    International Nuclear Information System (INIS)

    Leonin, T.V.; Mundo, M.Q.; Venida, L.L.; Arriola, H.; Madrio, E.

    2001-01-01

    The development of a country specific data base on energy sources, facilities and technologies is presented in this paper. It also identified feasible national electricity generating options and electric power system expansion alternatives for the period 2000-2020, and conducted comparative assessments of these options based on economic and environmental considerations. The possible role of nuclear power in the country's future electric energy was also studied. The comparison of three electricity generating options were considered: coal-fired thermal power plant without flue gas desulfurization (FGD), coal-fired thermal power plant with FGD and combined cycle power plant with 300 MW generating capacity each. Based on the analysis of three alternatives, the use of coal-fired power plants equipped with flue gas desulfurization (FGD) should be seriously considered. The government is expected to pursue the full development of local energy sources such as hydropower, geothermal, coal, natural gas and other new and renewable energy sources. However, there will still be a major need for imported oil and coal fuel which will likely supply unidentified energy sources beyond 2010. In the case of nuclear power, the government has not firmed up definite plans for any construction of nuclear power plants after 2010. However, the long term energy development plan still includes the operation of at least two nuclear power plants by the 2020 and this long term range program has not been revised in the recent published updates. (Author)

  4. New Generation General Purpose Computer (GPC) compact IBM unit

    Science.gov (United States)

    1991-01-01

    New Generation General Purpose Computer (GPC) compact IBM unit replaces a two-unit earlier generation computer. The new IBM unit is documented in table top views alone (S91-26867, S91-26868), with the onboard equipment it supports including the flight deck CRT screen and keypad (S91-26866), and next to the two earlier versions it replaces (S91-26869).

  5. US central station nuclear electric generating units: significant milestones

    International Nuclear Information System (INIS)

    1979-09-01

    Listings of US nuclear power plants include significant dates, reactor type, owners, and net generating capacity. Listings are made by state, region, and utility. Tabulations of status, schedules, and orders are also presented

  6. The enhancement of natural radiation dosage by coal-fired power generation in the United Kingdom

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1980-02-01

    The total fuel cycle of electricity generation from coal is assessed as a source of enhanced exposure to natural radiation. The various routes by which such exposure can arise are discussed and the consequent individual and collective radiation doses in the United Kingdom are estimated on the basis of a critical review of published data augmented by the results of recent, hitherto unpublished work within the CEGB. Further work is in progress to clarify particular areas of uncertainty that have been identified. (author)

  7. Electricity. A Bilingual Text = Electricidad. Un Texto Bilingue.

    Science.gov (United States)

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in electricity in a two-column, English-Spanish format. Following an introduction to electricity and a lesson on safety, the booklet contains 21 units covering the following topics: ways to produce electricity; basic circuits; electrical measurements; electric generators; transformers, symbols and…

  8. Renewable generation technology choice and policies in a competitive electricity supply industry

    Science.gov (United States)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable

  9. Regulation of distributed generation. A European Policy Paper on the Integration of Distributed Generation in the Internal Electricity Market

    International Nuclear Information System (INIS)

    Van Sambeek, E.J.W.; Scheepers, M.J.J.

    2004-06-01

    In the SUSTELNET project criteria and guidelines have been developed that can create a level playing field in electricity markets between distributed generation (DG) and large scale power generation and will improve the network and market access of DG and electricity supply from renewable energy resources (RES). This report focuses on the European dimensions of DG regulation. The key findings of the SUSTELNET project are compared with the EU legislation, i.e. the current Electricity, Renewables and CHP Directives. Additional EU policy, regulation and initiatives are identified that can help Member States in developing future economically efficient and sustainable electricity supply systems

  10. Electricity generation from woody biomass fuels compared with other renewable energy options

    International Nuclear Information System (INIS)

    Sims, R.E.H.

    1994-01-01

    Currently the annual electricity demand in New Zealand is around 30,000 GWh 70% of which is generated by hydro power. Natural gas, a resource with estimated reserves of approximately 14 years currently supplies 25% of generating capacity. This paper describes how part replacement of gas by biomass could be a feasible proposition for the future. Life cycle cost analyses showed electricity could be generated from arisings for (US)4.8-6 c/kWh; from residues for (US)2.4-4.8 c/kWh; and from plantations for (US)4.8-7.2 c/kWh. For comparison, the current retail electricity price is around (US)4-5.5 c/kWh and estimates for wind power generation range from (US)5-10 c/kWh. Future hydro power schemes will generate power between (US)4-9 c/kWh depending on site suitability. (author)

  11. Generation Adequacy Report on the electricity supply-demand balance in France. 2009 Edition

    International Nuclear Information System (INIS)

    2010-01-01

    Under the terms of the Law of February 10, 2000, RTE (Reseau de Transport d'Electricite), working under the aegis of the Public Authorities, periodically establishes a multi-annual forecast report on the balance of electricity supply and demand in France. The Generation Adequacy Report is one basis for the Minister for Energy, and the Public Authorities in general, to build the Multi-annual Investment Plan (referred to in this document by its French acronym PPI for Programmation Pluri-annuelle des Investissements) for electricity generation facilities, introduced by the above-mentioned law. The Generation Adequacy Report deals with the security of the French electricity supply. It intends to identify over a period of about fifteen years the risks of imbalances in continental France between the electricity demand and the generation capacity available to supply it. It enables the identification of the generation capacity required to meet the peaks of demand. The choice of generation technologies to be developed, which is dictated by environmental and economic concerns, is not covered by the Generation Adequacy Report, but is a matter for the other stakeholders in the French electric system, under the guidelines determined by the PPI. The Generation Adequacy Report is published by RTE on its web site and thus accessible to all to serve transparency and contribute to the French energy debate. This document is the fourth edition of the Generation Adequacy Report published by RTE, following its 2003, 2005 and 2007 editions. RTE publishes partial updates in-between to reflect developments in generation capacity. The last update was published in 2008. The time horizon of the 2009 edition of the Generation Adequacy Report is 2025

  12. Impacts of plug-in electric vehicles in a balancing area

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Samuelsen, Scott

    2016-01-01

    Highlights: • Unit commitment methodology is used to determine BEV impact on electricity market. • Roles of charging profile, dispatch strategy and interconnecting area are assessed. • Results show that impact of BEV on cost of electricity generation is small. • Controlled BEV charging can lower emissions intensity of the grid and MCP. • BEV deployment helps reduce overall criteria pollutant emissions. - Abstract: High contributions of the electricity generation and transportation sectors to criteria pollutant and greenhouse gas emissions have resulted in an increased interest and shift towards low to non-carbon generation options such as renewable wind and solar, and alternative transportation options including plug-in electric vehicles. Since plug-in electric vehicles transfer the tailpipe emissions to the electric grid, it is important to study the interaction between the two sectors. In this paper, a previously developed spatially and temporally resolved unit commitment model is used to determine the dispatch schedule of resources with and without battery electric vehicles for 2050 in a fictitious balancing area located within the South Coast Air Basin of California. Cases studied include various charging profiles, penetration in light-duty fleet, imports mix, and grid dispatch strategies. Results of the analysis include average cost of electricity production, market clearing price, temporal production of individual generators, and emissions from electricity generation and the transportation sectors. The results show that deploying battery electric vehicles (1) has little impact on the average cost of electricity generation-maximum of $2.5 per MW h for the cases studied with 40% penetration in the light-duty fleet, (2) reduces the overall criteria pollutant emissions except for one case, and (3) results in a smoother load profile, reduces the use of peaking units, and reduces the average emission intensity of the grid through controlled off

  13. Privatizing electricity: Pt. 3

    International Nuclear Information System (INIS)

    Bindon, F.J.L.

    1992-01-01

    In these early years of electricity privitization in the United Kingdom, it is impossible to draw any firm conclusions about whether this particular government policy has benefited the country as a whole. This article examines early trends in the economic fortunes of National Power and Power Gen the two non-nuclear utilities and Nuclear Electric, which generate power in England and Wales, as well as Scottish Power, Scottish Hydro and Scottish Nuclear which generate power for Scotland. (UK)

  14. Investment in Electricity Generation and Transmission: Decision Making Under Uncertainty

    DEFF Research Database (Denmark)

    Conejo, Antonio J.; Baringo, Luis; Kazempour, Jalal

    This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment...... undergraduate and graduate students in the fields of electric energy systems, operations research, management science, and economics. Practitioners in the electric energy sector will also benefit from the concepts and techniques presented here....

  15. Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator

    DEFF Research Database (Denmark)

    Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo

    2013-01-01

    This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind tur...

  16. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  17. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  18. Natural gas for electric power generation: Strategic issues, risks and opportunities

    International Nuclear Information System (INIS)

    Linderman, C.

    1992-01-01

    Natural gas is again being regarded as a significant fuel for electric power generation. It was once a predominant fuel for utilities in gas-producing areas, but natural gas consumption declined greatly after the 1973 oil shock because of reduced electricity demand and increased coal and nuclear generation. Moreover, wellhead price and other forms of regulation produced gas shortages in the 1970s. The resurgence of natural gas in future resource plans stems from its inherent ideal fuel characteristics: short lead time; low capital costs; small increments of modular capacity; delivered close to load centers; environmentally benign, preferable to oil and coal; and potential for high thermal efficiency in gas turbines. Natural gas, if available and attractively priced, is an ideal fuel for electric power generation. No other fuel shares these attractive characteristics, and utilities, facing higher than expected load growth, are relying on an increasing proportion of gas-fired combustion turbines, combined cycle plants, and cogeneration to meet a growing, yet uncertain, future demand for electricity. Despite these desirable operating characteristics, the varied past and uncertain future of natural gas markets raise legitimate concerns about the riskiness of current utility natural gas strategies. This report, which summarizes the major findings from research efforts, is intended to help utility decision-makers understand the full range of risks they face with natural gas electric power generation and to identify actions they can take to mitigate those risks

  19. A comparative analysis of energy and CO2 taxes on the primary energy mix for electricity generation

    International Nuclear Information System (INIS)

    Voorspools, Kris; Peersman, Inneke; D'haeseleer, William

    2005-01-01

    In many countries, economies are moving towards internalization of external costs of greenhouse-gas (GHG) emissions. This can best be achieved by either imposing additional taxes or by using an emission-permit-trading scheme. The electricity sector is under scrutiny in the allocation of emission-reduction objectives, not only because it is a large homogeneous target, but also because of the obvious emission-reduction potential by decreasing power generation based on carbon-intensive fuels. In this paper, we discuss the impact of a primary-energy tax and a CO 2 tax on the dispatching strategy in power generation. In a case study for the Belgian power-generating context, several tax levels are investigated and the impact on the optimal dispatch is simulated. The impact of the taxes on the power demand or on the investment strategies is not considered. As a conclusion, we find that a CO 2 tax is more effective than a primary-energy tax. Both taxes accomplish an increased generation efficiency in the form of a promotion of combined-cycle gas-fired units over coal-fired units. The CO 2 tax adds an incentive for fuel switching which can be achieved by altering the merit order of power plants or by switching to a fuel with a lower carbon content within a plant. For the CO 2 tax, 13 euros/ton CO 2 is withheld as the optimal value which results in an emission reduction of 13% of the electricity-related GHG emissions in the Belgian power context of 2000. A tax higher than 13 euros/ton CO 2 does not contribute to the further reduction of GHGs. (Author)

  20. New approach in electricity network regulation: an issue on effective integration of distributed generation in electricity supply systems

    International Nuclear Information System (INIS)

    Scheepers, Martin J.J.; Wals, Adrian F.

    2003-11-01

    Technological developments and EU targets for penetration of renewable energy sources (RES) and greenhouse gas (GHG) reduction are decentralising the electricity infrastructure and services. Although, the liberalisation and internationalisation of the European electricity market has resulted in efforts to harmonise transmission pricing and regulation, hardly any initiative exists to consider the opening up and regulation of distribution networks to ensure effective participation of RES and distributed generation (DG) in the internal market. The SUSTELNET project has been created in order to close this policy gap. Its main objective is to develop regulatory roadmaps for the transition to an electricity market and network structure that creates a level playing field between centralised and decentralised generation and that facilitates the integration of RES, within the framework of the liberalisation of the EU electricity market. By analysing the technical, socio-economic and institutional dynamics of the European electricity system and markets, the project identifies the underlying patterns that provide the boundary conditions and levers for policy development to reach long term RES and GHG targets (2020-2030 time frame). This paper presents results of this analytical phase of the SUSTELNET project. Furthermore, preliminary results of the current work in progress are presented. Principles and criteria for a regulatory framework for sustainable electricity systems are discussed, as well as the development of medium to long-term transition strategies/roadmaps for network regulation and market transformation to facilitate the integration of RES and decentralised electricity generating systems.