WorldWideScience

Sample records for electrically evoked auditory

  1. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  2. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    Science.gov (United States)

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    Science.gov (United States)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  4. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  5. Auditory and visual evoked potentials during hyperoxia

    Science.gov (United States)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  6. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  7. Brainstem auditory evoked potentials in horses

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Nogueira da Gama

    2016-04-01

    Full Text Available ABSTRACT: The brainstem auditory evoked potential (BAEP evaluates the integrity of the auditory pathways to the brainstem. The aim of this study was to evoke BAEPs in 21 clinically normal horses. The animals were sedated with detomidine hydrochloride (0.013mg.kg-1 BW. Earphones were inserted and rarefaction clicks at 90 dB and noise masking at 40 dB were used. After performing the test, the latencies of waves (I, II, III, IV, and V and interpeaks(I-III, III-V, and I-V were identified. The mean latencies of the waves were as follows: wave I, 2.4 ms; wave II, 2.24 ms; wave III, 3.61ms; wave IV, 4.61ms; and wave V, 5.49ms. The mean latencies of the interpeaks were as follows: I-III, 1.37ms; III-V, 1.88ms; and I-V, 3.26ms. This is the first study using BAEPs in horses in Brazil, and the observed latencies will be used as normative data for the interpretation of tests performed on horses with changes related to auditory system or neurologic abnormalities.

  8. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds

  9. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L

    2011-01-01

    The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial

  10. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  11. Auditory evoked potential measurements in elasmobranchs

    Science.gov (United States)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  12. A Telehealth System for Remote Auditory Evoked Potential Monitoring

    OpenAIRE

    Millan, Jorge; Yunda, Leonardo

    2013-01-01

    A portable, Internet-based EEG/Auditory Evoked Potential (AEP) monitoring system was developed for remote electrophysiological studies during sleep. The system records EEG/AEP simultaneously at the subject?s home for increased comfort and flexibility. The system provides simultaneous recording and remote viewing of EEG, EMG and EOG waves and allows on-line averaging of auditory evoked potentials. The design allows the recording of all major AEP components (brainstem, middle and late latency E...

  13. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  14. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  15. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  16. Brainstem auditory evoked potential testing in Dalmatian dogs in Brazil

    Directory of Open Access Journals (Sweden)

    M.I.P. Palumbo

    2014-04-01

    Full Text Available The brain stem auditory-evoked potential (BAEP is an electrophysiologic test that detects and records the electrical activity in the auditory system from cochlea to midbrain, generated after an acoustic stimulus applied to the external ear. The aim of this study is to obtain normative data for BAEP in Dalmatian dogs in order to apply this to the evaluation of deafness and other neurologic disorders. BAEP were recorded from 30 Dalmatian dogs for a normative Brazilian study. Mean latencies for waves I, III, and V were 1.14 (±0.09, 2.62 (±0.10, and 3.46 (±0.14 ms, respectively. Mean inter-peak latencies for I-III, III-V, and I-V intervals were 1.48 (±0.17, 0.84 (±0.12, and 2.31 (±0.18 ms, respectively. Unilateral abnormalities were found in 16.7% of animals and bilateral deafness was seen in one dog. The normative data obtained in this paper is compatible with other published data. As far as we know this is the first report of deafness occurrence in Dalmatian dogs in Brazil.

  17. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  18. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    Science.gov (United States)

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  19. Auditory Evoked Responses in Neonates by MEG

    International Nuclear Information System (INIS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-01-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age

  20. Normalization of auditory evoked potential and visual evoked potential in patients with idiot savant.

    Science.gov (United States)

    Chen, X; Zhang, M; Wang, J; Lou, F; Liang, J

    1999-03-01

    To investigate the variations of auditory evoked potentials (AEP) and visual evoked potentials (VEP) of patients with idiot savant (IS) syndrome. Both AEP and VEP were recorded from 7 patients with IS syndrome, 21 mentally retarded (MR) children without the syndrome and 21 normally age-matched controls, using a Dantec concerto SEEG-16 BEAM instrument. Both AEP and VEP of MR group showed significantly longer latencies (P1 and P2 latencies of AEP, P savant syndrome presented normalized AEP and VEP.

  1. Cortical evoked potentials to an auditory illusion: binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  2. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  3. Brain stem auditory evoked responses in chronic alcoholics.

    OpenAIRE

    Chan, Y W; McLeod, J G; Tuck, R R; Feary, P A

    1985-01-01

    Brain stem auditory evoked responses (BAERs) were performed on 25 alcoholic patients with Wernicke-Korsakoff syndrome, 56 alcoholic patients without Wernicke-Korsakoff syndrome, 24 of whom had cerebellar ataxia, and 37 control subjects. Abnormal BAERs were found in 48% of patients with Wernicke-Korsakoff syndrome, in 25% of alcoholic patients without Wernicke-Korsakoff syndrome but with cerebellar ataxia, and in 13% of alcoholic patients without Wernicke-Korsakoff syndrome or ataxia. The mean...

  4. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  5. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    Science.gov (United States)

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  6. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Click-Evoked Auditory Efferent Activity: Rate and Level Effects.

    Science.gov (United States)

    Boothalingam, Sriram; Kurke, Julianne; Dhar, Sumitrajit

    2018-05-07

    There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen's d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory

  8. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  9. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements...

  11. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-10-01

    Full Text Available Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP and ten were poor (PCP. Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC, with a downward trend in the primary auditory cortex (PAC activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls before CI use (0M and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  12. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants.

    Science.gov (United States)

    Liang, Maojin; Zhang, Junpeng; Liu, Jiahao; Chen, Yuebo; Cai, Yuexin; Wang, Xianjun; Wang, Junbo; Zhang, Xueyuan; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-01-01

    Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI) patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP) and ten were poor (PCP). Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs) were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC), with a downward trend in the primary auditory cortex (PAC) activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls) before CI use (0M) and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  13. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    OpenAIRE

    Renata Mota Mamede de Carvallo; Carla Gentile Matas; Isabela de Souza Jardim

    2008-01-01

    Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU), as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem...

  14. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Renata Mota Mamede de Carvallo

    2008-09-01

    Full Text Available Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU, as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests could be applied to all babies. The “pass” result for the group of babies from the nursery was 94.7% using Transient Evoked Otoacoustic Emissions and 96% using Automatic Auditory Brainstem Response. The newborn intensive care unit group obtained 87.1% on Transient Evoked Otoacoustic Emissions and 80% on the Automatic Auditory Brainstem Response, and there was no statistical difference between the procedures when the groups were evaluated individually. However, comparing the groups, Transient Evoked Otoacoustic Emissions were presented in 94.7% of the nursery babies and in 87.1% in the group from the newborn intensive care unit. Considering the Automatic Auditory Brainstem Response, we found 96 and 87%, respectively. Cconclusions: Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response had similar “pass” and “fail” results when the procedures were applied to neonates from the regular nursery, and the combined tests were more precise to detect hearing impairment in the newborn intensive care unit babies.

  15. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  16. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  17. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  18. A novel method for extraction of neural response from single channel cochlear implant auditory evoked potentials.

    Science.gov (United States)

    Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz

    2017-02-01

    Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  20. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    International Nuclear Information System (INIS)

    Nightingale, S.; Schofield, I.S.; Dawes, P.J.D.K.

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings. (author)

  1. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, S. (Royal Victoria Infirmary, Newcastle upon Tyne (UK)); Schofield, I.S.; Dawes, P.J.D.K. (Newcastle upon Tyne Univ. (UK). Newcastle General Hospital)

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings.

  2. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  3. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Temporal processing and long-latency auditory evoked potential in stutterers.

    Science.gov (United States)

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  6. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  7. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  8. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  9. The effect of automatic blink correction on auditory evoked potentials.

    Science.gov (United States)

    Korpela, Jussi; Vigário, Ricardo; Huotilainen, Minna

    2012-01-01

    The effects of blink correction on auditory event-related potential (ERP) waveforms is assessed. Two blink correction strategies are compared. ICA-SSP combines independent component analysis (ICA) with signal space projection (SSP) and ICA-EMD uses empirical mode decomposition (EMD) to improve the performance of the standard ICA method. Five voluntary subjects performed an auditory oddball task. The resulting ERPs are used to compare the two blink correction methods to each other and against blink rejection. The results suggest that both methods qualitatively preserve the ERP waveform but that they underestimate some of the peak amplitudes. ICA-EMD performs slightly better than ICA-SSP. In conclusion, the use of blink correction is justified, especially if blink rejection leads to severe data loss.

  10. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  11. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Identification of causal relations between haemodynamic variables, auditory evoked potentials and isoflurane by means of fuzzy logic

    DEFF Research Database (Denmark)

    Jensen, E W; Nebot, A; Caminal, P

    1999-01-01

    The aim of this study was to identify a possible relationship between haemodynamic variables, auditory evoked potentials (AEP) and inspired fraction of isoflurane (ISOFl). Two different models (isoflurane and mean arterial pressure) were identified using the fuzzy inductive reasoning (FIR...

  13. Modeling the Developmental Patterns of Auditory Evoked Magnetic Fields in Children

    OpenAIRE

    Kotecha, Rupesh; Pardos, Maria; Wang, Yingying; Wu, Ting; Horn, Paul; Brown, David; Rose, Douglas; deGrauw, Ton; Xiang, Jing

    2009-01-01

    BACKGROUND: As magnetoencephalography (MEG) is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS:...

  14. Brainstem Auditory Evoked Potentials in Patients with Subarachnoid Haemorrhage

    Directory of Open Access Journals (Sweden)

    Mikhail Matveev

    2009-10-01

    Full Text Available Objective. The aim of the present study is to typify BAEPs configurations of patients with different location of lesions caused by subarachnoid haemorrhage (SAH and the ensuing complications, in view of assessing the auditory-brainstem system disturbance.Methods. The typization was performed by comparing BAEPs with standard patterns from two sets of types of BAEPs by ipsilateral and binaural stimulation and by cross-stimulation.Results. 94 BAEPs were used for collection of normal referential values: for the absolute latencies and the absolute amplitudes of waves I, II, III, IV and V; for inter-peak latencies I-III, II-III, III-V, I-V and II-V; for amplitude ratios I/V and III/V. 146 BAEPs of patients with mild SAH and 55 from patients with severe SAH, were typified. In 5 types of BAEPs out of a total of 11, the percentage of the potentials in patients with mild SAH and severe SAH differed significantly (p<0.01.Conclusions. The use of sets of types of BAEPs by ipsilateral, binaural and cross-stimulation correctly classifies the potentials in patients with mild and severe SAH.

  15. Use of auditory evoked potentials for intra-operative awareness in anesthesia: a consciousness-based conceptual model.

    Science.gov (United States)

    Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng

    2015-01-01

    Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during

  16. The roles of superficial amygdala and auditory cortex in music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecto; Bonhage, Corinna; Küssner, Mats B; Jacobs, Arthur M

    2013-11-01

    This study investigates neural correlates of music-evoked fear and joy with fMRI. Studies on neural correlates of music-evoked fear are scant, and there are only a few studies on neural correlates of joy in general. Eighteen individuals listened to excerpts of fear-evoking, joy-evoking, as well as neutral music and rated their own emotional state in terms of valence, arousal, fear, and joy. Results show that BOLD signal intensity increased during joy, and decreased during fear (compared to the neutral condition) in bilateral auditory cortex (AC) and bilateral superficial amygdala (SF). In the right primary somatosensory cortex (area 3b) BOLD signals increased during exposure to fear-evoking music. While emotion-specific activity in AC increased with increasing duration of each trial, SF responded phasically in the beginning of the stimulus, and then SF activity declined. Psychophysiological Interaction (PPI) analysis revealed extensive emotion-specific functional connectivity of AC with insula, cingulate cortex, as well as with visual, and parietal attentional structures. These findings show that the auditory cortex functions as a central hub of an affective-attentional network that is more extensive than previously believed. PPI analyses also showed functional connectivity of SF with AC during the joy condition, taken to reflect that SF is sensitive to social signals with positive valence. During fear music, SF showed functional connectivity with visual cortex and area 7 of the superior parietal lobule, taken to reflect increased visual alertness and an involuntary shift of attention during the perception of auditory signals of danger. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields.

    Science.gov (United States)

    Kawase, Tetsuaki; Maki, Atsuko; Kanno, Akitake; Nakasato, Nobukazu; Sato, Mika; Kobayashi, Toshimitsu

    2012-01-16

    The different response characteristics of the different auditory cortical responses under conventional central masking conditions were examined by comparing the effects of contralateral white noise on the cortical component of 40-Hz auditory steady state fields (ASSFs) and the N100 m component in auditory evoked fields (AEFs) for tone bursts using a helmet-shaped magnetoencephalography system in 8 healthy volunteers (7 males, mean age 32.6 years). The ASSFs were elicited by monaural 1000 Hz amplitude modulation tones at 80 dB SPL, with the amplitude modulated at 39 Hz. The AEFs were elicited by monaural 1000 Hz tone bursts of 60 ms duration (rise and fall times of 10 ms, plateau time of 40 ms) at 80 dB SPL. The results indicated that continuous white noise at 70 dB SPL presented to the contralateral ear did not suppress the N100 m response in either hemisphere, but significantly reduced the amplitude of the 40-Hz ASSF in both hemispheres with asymmetry in that suppression of the 40-Hz ASSF was greater in the right hemisphere. Different effects of contralateral white noise on these two responses may reflect different functional auditory processes in the cortices. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.

    Science.gov (United States)

    Molloy, Katharine; Griffiths, Timothy D; Chait, Maria; Lavie, Nilli

    2015-12-09

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory

  19. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'?

    Science.gov (United States)

    Jones, S J; Longe, O; Vaz Pato, M

    1998-03-01

    Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with 'streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.

  20. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  1. Effects of single cycle binaural beat duration on auditory evoked potentials.

    Science.gov (United States)

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  2. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders

    Directory of Open Access Journals (Sweden)

    Renata Aparecida Leite

    2014-03-01

    Full Text Available OBJECTIVES: This study investigated whether neurophysiologic responses (auditory evoked potentials differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. METHODS: The participants included 24 typically developing children (Control Group, mean age: eight years and ten months and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months. Additionally, 12 study group children were enrolled in speech therapy (Study Group 1, and 11 were not enrolled in speech therapy (Study Group 2. The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. RESULTS: Latency differences were observed between the groups (the control and study groups regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. CONCLUSION: The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  4. Auditory evoked fields to vocalization during passive listening and active generation in adults who stutter.

    Science.gov (United States)

    Beal, Deryk S; Cheyne, Douglas O; Gracco, Vincent L; Quraan, Maher A; Taylor, Margot J; De Nil, Luc F

    2010-10-01

    We used magnetoencephalography to investigate auditory evoked responses to speech vocalizations and non-speech tones in adults who do and do not stutter. Neuromagnetic field patterns were recorded as participants listened to a 1 kHz tone, playback of their own productions of the vowel /i/ and vowel-initial words, and actively generated the vowel /i/ and vowel-initial words. Activation of the auditory cortex at approximately 50 and 100 ms was observed during all tasks. A reduction in the peak amplitudes of the M50 and M100 components was observed during the active generation versus passive listening tasks dependent on the stimuli. Adults who stutter did not differ in the amount of speech-induced auditory suppression relative to fluent speakers. Adults who stutter had shorter M100 latencies for the actively generated speaking tasks in the right hemisphere relative to the left hemisphere but the fluent speakers showed similar latencies across hemispheres. During passive listening tasks, adults who stutter had longer M50 and M100 latencies than fluent speakers. The results suggest that there are timing, rather than amplitude, differences in auditory processing during speech in adults who stutter and are discussed in relation to hypotheses of auditory-motor integration breakdown in stuttering. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    Science.gov (United States)

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  6. Objective quantification of the tinnitus decompensation by synchronization measures of auditory evoked single sweeps.

    Science.gov (United States)

    Strauss, Daniel J; Delb, Wolfgang; D'Amelio, Roberto; Low, Yin Fen; Falkai, Peter

    2008-02-01

    Large-scale neural correlates of the tinnitus decompensation might be used for an objective evaluation of therapies and neurofeedback based therapeutic approaches. In this study, we try to identify large-scale neural correlates of the tinnitus decompensation using wavelet phase stability criteria of single sweep sequences of late auditory evoked potentials as synchronization stability measure. The extracted measure provided an objective quantification of the tinnitus decompensation and allowed for a reliable discrimination between a group of compensated and decompensated tinnitus patients. We provide an interpretation for our results by a neural model of top-down projections based on the Jastreboff tinnitus model combined with the adaptive resonance theory which has not been applied to model tinnitus so far. Using this model, our stability measure of evoked potentials can be linked to the focus of attention on the tinnitus signal. It is concluded that the wavelet phase stability of late auditory evoked potential single sweeps might be used as objective tinnitus decompensation measure and can be interpreted in the framework of the Jastreboff tinnitus model and adaptive resonance theory.

  7. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  8. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Sex differences in the refractory period of the 100 ms auditory evoked magnetic field.

    Science.gov (United States)

    Rojas, D C; Teale, P; Sheeder, J; Reite, M

    1999-11-08

    The 100 ms latency auditory evoked magnetic response (M100) has been implicated in the earliest stage of acoustic memory encoding in the brain. Sex differences in this response have been found in its location within the brain and its functional properties. We recorded the M100 in 25 adults in response to changes in interstimulus interval of an auditory stimulus. Response amplitudes of the M100 were used to compute a measure of the M100 refractory period, which has been proposed to index the decay time constant of echoic memory. This time constant was significantly longer in both hemispheres of the female participants when compared to the male participants. Possible implications of this for behavioral sex differences in human memory performance are discussed.

  10. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S K; Wei, W I; Sham, J S.T.; Choy, D T.K.; Hui, Y [Queen Mary Hospital, Hong Kong (Hong Kong)

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  11. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    International Nuclear Information System (INIS)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y.

    1992-01-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author)

  12. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    Science.gov (United States)

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p beats/min) to SURG2 (76 +/- 12 beats/min). Increases of amplitudes of midlatency SEP amplitudes indicate increased nociceptive signal transmission which is not blunted by isoflurane-nitrous oxide anaesthesia. In contrast, unchanged AEPs indicate adequate levels of the hypnotic components of anaesthesia.

  13. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pconcussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  14. Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.

    Science.gov (United States)

    Thakur, L; Anand, J P; Banerjee, P K

    2004-10-01

    The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.

  15. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    Science.gov (United States)

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  16. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  17. Maturation of long latency auditory evoked potentials in hearing children: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Magliaro, Fernanda Cristina Leite; Carvalho, Ana Claudia Martinho de; Matas, Carla Gentile

    2017-05-15

    To analyze how Auditory Long Latency Evoked Potentials (LLAEP) change according to age in children population through a systematic literature review. After formulation of the research question, a bibliographic survey was done in five data bases with the following descriptors: Electrophysiology (Eletrofisiologia), Auditory Evoked Potentials (Potenciais Evocados Auditivos), Child (Criança), Neuronal Plasticity (Plasticidade Neuronal) and Audiology (Audiologia). Level 1 evidence articles, published between 1995 and 2015 in Brazilian Portuguese or English language. Aspects related to emergence, morphology and latency of P1, N1, P2 and N2 components were analyzed. A total of 388 studies were found; however, only 21 studies contemplated the established criteria. P1 component is characterized as the most frequent component in young children, being observed around 100-150 ms, which tends to decrease as chronological age increases. The N2 component was shown to be the second most commonly observed component in children, being observed around 200-250 ms.. The other N1 and P2 components are less frequent and begin to be seen and recorded throughout the maturational process. The maturation of LLAEP occurs gradually, and the emergence of P1, N1, P2 and N2 components as well as their latency values are variable in childhood. P1 and N2 components are the most observed and described in pediatric population. The diversity of protocols makes the comparison between studies difficult.

  18. Modeling the developmental patterns of auditory evoked magnetic fields in children.

    Directory of Open Access Journals (Sweden)

    Rupesh Kotecha

    Full Text Available BACKGROUND: As magnetoencephalography (MEG is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS: Three main responses were identified at approximately 46 ms (M50, 71 ms (M70 and 106 ms (M100 in latency for children. The latencies of M70 and M100 shortened with age in both hemispheres; the latency of M50 shortened with age only in the right hemisphere. Analysis of developmental lateralization patterns in children showed that the latency of the right hemispheric evoked responses shortened faster than the corresponding left hemispheric responses. The latency of M70 in the right hemisphere highly correlated to the age of the child. The amplitudes of the M70 responses increased with age and reached their peaks in children 12-14 years of age, after which they decreased with age. The source estimates for the M50 and M70 responses indicated that they were generated in different subareas in the Heschl's gyrus in children, while not localizable in adults. Furthermore, gender also affected developmental patterns. The latency of M70 in the right hemisphere was proposed to be an index of auditory development in children, the modeling equation is 85.72-1.240xAge (yrs. Our results demonstrate that there is a clear developmental pattern in the auditory cortex and underscore the importance of M50 and M70 in the developing brain.

  19. Identification enhancement of auditory evoked potentials in EEG by epoch concatenation and temporal decorrelation.

    Science.gov (United States)

    Zavala-Fernandez, H; Orglmeister, R; Trahms, L; Sander, T H

    2012-12-01

    Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  1. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    International Nuclear Information System (INIS)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Johansson, Reijo; Jaeaeskelaeinen, Satu K.; Kujari, Harry; Haataja, Leena

    2009-01-01

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  2. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials

    OpenAIRE

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-01-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion - midline nuchal ridge, left - right mastoids, vertex - midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re. human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (S...

  3. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz...

  4. Can bispectral index or auditory evoked potential index predict implicit memory during propofol-induced sedation?

    Science.gov (United States)

    Wang, Yun; Yue, Yun; Sun, Yong-hai; Wu, An-shi

    2006-06-05

    Some patients still suffer from implicit memory of intraoperative events under adequate depth of anaesthesia. The elimination of implicit memory should be a necessary aim of clinical general anaesthesia. However, implicit memory cannot be tested during anaesthesia yet. We propose bispectral index (BIS) and auditory evoked potential index (AEPI), as predictors of implicit memory during anaesthesia. Thirty-six patients were equally divided into 3 groups according to the Observer's Assessment of Alertness/Sedation Score: A, level 3; B, level 2; and C, level 1. Every patient was given the first auditory stimulus before sedation. Then every patient received the second auditory stimulus after the target level of sedation had been reached. BIS and AEPI were monitored before and after the second auditory stimulus presentation. Four hours later, the inclusion test and exclusion test were performed on the ward using process dissociation procedure and the scores of implicit memory estimated. In groups A and B but not C, implicit memory estimates were statistically greater than zero (P memory scores in group A did not differ significantly from those in group B (P > 0.05). Implicit memory scores correlated with BIS and AEPI (P AEPI. The 95% cutoff points of BIS and AEPI for predicting implicit memory are 47 and 28, respectively. Implicit memory does not disappear until the depth of sedation increases to level 1 of OAA/S score. Implicit memory scores correlate well with BIS and AEPI during sedation. BIS is a better index for predicting implicit memory than AEPI during propofol induced sedation.

  5. New composite index based on midlatency auditory evoked potential and electroencephalographic parameters to optimize correlation with propofol effect site concentration - Comparison with bispectral index and solitary used fast extracting auditory evoked potential index

    NARCIS (Netherlands)

    Vereecke, HEM; Vasquez, PM; Jensen, EW; Thas, O; Vandenbroecke, R; Mortier, EP; Struys, MMRF

    Background: This study investigates the accuracy of a composite index, the A-Line (R) auditory evoked potentials index version 1.6 (AAI(1.6); Danmeter A/S, Odense, Denmark), as a measure of cerebral anesthetic drug effect in a model for predicting a calculated effect site concentration of propofol

  6. Abnormalities in auditory evoked potentials of 75 patients with Arnold-Chiari malformations types I and II

    Directory of Open Access Journals (Sweden)

    Henriques Filho Paulo Sergio A.

    2006-01-01

    Full Text Available OBJECTIVE: To evaluate the frequency and degree of severity of abnormalities in the auditory pathways in patients with Chiari malformations type I and II. METHOD: This is a series-of-case descriptive study in which the possible presence of auditory pathways abnormalities in 75 patients (48 children and 27 adults with Chiari malformation types I and II were analyzed by means of auditory evoked potentials evaluation. The analysis was based on the determination of intervals among potentials peak values, absolute latency and amplitude ratio among potentials V and I. RESULTS: Among the 75 patients studied, 27 (36% disclosed Arnold-Chiari malformations type I and 48 (64% showed Arnold-Chiari malformations type II. Fifty-three (71% of these patients showed some degree of auditory evoked potential abnormalities. Tests were normal in the remaining 22 (29% patients. CONCLUSION: Auditory evoked potentials testing can be considered a valuable instrument for diagnosis and evaluation of brain stem functional abnormalities in patients with Arnold-Chiari malformations type I and II. The determination of the presence and degree of severity of these abnormalities can be contributory to the prevention of further handicaps in these patients either through physical therapy or by means of precocious corrective surgical intervention.

  7. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result......The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...... in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners...

  8. Analog and digital filtering of the brain stem auditory evoked response.

    Science.gov (United States)

    Kavanagh, K T; Franks, R

    1989-07-01

    This study compared the filtering effects on the auditory evoked potential of zero and standard phase shift digital filters (the former was a mathematical approximation of a standard Butterworth filter). Conventional filters were found to decrease the height of the evoked response in the majority of waveforms compared to zero phase shift filters. A 36-dB/octave zero phase shift high pass filter with a cutoff frequency of 100 Hz produced a 16% reduction in wave amplitude compared to the unfiltered control. A 36-dB/octave, 100-Hz standard phase shift high pass filter produced a 41% reduction, and a 12-dB/octave, 150-Hz standard phase shift high pass filter produced a 38% reduction in wave amplitude compared to the unfiltered control. A decrease in the mean along with an increase in the variability of wave IV/V latency was also noted with conventional compared to zero phase shift filters. The increase in the variability of the latency measurement was due to the difficulty in waveform identification caused by the phase shift distortion of the conventional filter along with the variable decrease in wave latency caused by phase shifting responses with different spectral content. Our results indicated that a zero phase shift high pass filter of 100 Hz was the most desirable filter studied for the mitigation of spontaneous brain activity and random muscle artifact.

  9. Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain.

    Science.gov (United States)

    Ono, Munenori; Bishop, Deborah C; Oliver, Douglas L

    2016-02-12

    Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.

  10. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum.

    Science.gov (United States)

    Zeyl, Jeffrey N; Johnston, Carol E

    2015-10-01

    Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.

  11. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  12. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance

    Science.gov (United States)

    Yahata, Izumi; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2017-01-01

    The effects of visual speech (the moving image of the speaker’s face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker’s face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker’s face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information. PMID:28141836

  13. Musical Brains. A study of evoked musical sensations without external auditory stimuli. Preliminary report of three cases

    International Nuclear Information System (INIS)

    Goycoolea, Marcos V; Mena, Ismael; Neubauer, Sonia G; Levy, Raquel G.; Fernandez Grez, Margarita; Berger, Claudia G

    2006-01-01

    Background: There are individuals, usually musicians, who are seemingly able to evoke musical sensations without external auditory stimuli. However, to date there is no available evidence to determine if it is feasible to have musical sensations without using external sensory receptors nor if there is a biological substrate to these sensations. Study design: Two single photon emission computerized tomography (SPECT) evaluations with [99mTc]-HMPAO were conducted in each of three female musicians. One was done under basal conditions (without evoking) and the other one while evoking these sensations. Results: In the NeuroSPECT studies of the musicians who were tested while evoking a musical composition, there was a significant increase in perfusion above the normal mean in the right and left hemispheres in Brodmann's areas 9 and 8 (frontal executive area) and in areas 40 on the left side (auditory center). However, under basal conditions there was no hyper perfusion of areas 9, 8, 39 and 40. In one case hyper perfusion was found under basal conditions in area 45, however it was less than when she was evoking. Conclusions: These findings are suggestive of a biological substrate to the process of evoking musical sensations (au)

  14. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  15. The maturational process of the auditory system in the first year of life characterized by brainstem auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Raquel Beltrão Amorim

    2009-01-01

    Full Text Available The study of brainstem auditory evoked potentials (BAEP allows obtaining the electrophysiological activity generated in the cochlear nerve to the inferior colliculus. In the first months of life, a period of greater neuronal plasticity, important changes are observed in the absolute latency and inter-peak intervals of BAEP, which occur up to the completion of the maturational process, around 18 months of life in full-term newborns, when the response is similar to that of adults. OBJECTIVE: The goal of this study was to establish normal values of absolute latencies for waves I, III and V and inter-peak intervals I-III, III-V and I-V of the BAEP performed in full-term infants attending the Infant Hearing Health Program of the Speech-Language Pathology and Audiology Course at Bauru School of Dentistry, Brazil, with no risk history for hearing impairment. MATERIAL AND METHODS: The stimulation parameters were: rarefaction click stimulus presented by the 3ª insertion phone, intensity of 80 dBnHL and a rate of 21.1 c/s, band-pass filter of 30 and 3,000 Hz and average of 2,000 stimuli. A sample of 86 infants was first divided according to their gestational age in preterm (n=12 and full-term (n=74, and then according to their chronological age in three periods: P1: 0 to 29 days (n=46, P2: 30 days to 5 months 29 days (n=28 and P3: above 6 months (n= 12. RESULTS: The absolute latency of wave I was similar to that of adults, generally in the 1st month of life, demonstrating a complete process maturity of the auditory nerve. For waves III and V, there was a gradual decrease of absolute latencies with age, characterizing the maturation of axons and synaptic mechanisms in the brainstem level. CONCLUSION: Age proved to be a determining factor in the absolute latency of the BAEP components, especially those generated in the brainstem, in the first year of life.

  16. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials.

    Science.gov (United States)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L

    2013-12-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Nicotine Receptor Subtype-Specific Effects on Auditory Evoked Oscillations and Potentials

    Science.gov (United States)

    Featherstone, Robert E.; Phillips, Jennifer M.; Thieu, Tony; Ehrlichman, Richard S.; Halene, Tobias B.; Leiser, Steven C.; Christian, Edward; Johnson, Edwin; Lerman, Caryn; Siegel, Steven J.

    2012-01-01

    Background Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. Methodology/Principal Findings We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE), and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. Conclusions/Significance These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through activation of α4β2

  18. Long-latency auditory evoked potentials with verbal and nonverbal stimuli.

    Science.gov (United States)

    Oppitz, Sheila Jacques; Didoné, Dayane Domeneghini; Silva, Débora Durigon da; Gois, Marjana; Folgearini, Jordana; Ferreira, Geise Corrêa; Garcia, Michele Vargas

    2015-01-01

    Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000Hz - frequent and 4000Hz - rare); and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare). Considering the component N2 for tone burst, the lowest latency found was 217.45ms for the BA/DI stimulus; the highest latency found was 256.5ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    Science.gov (United States)

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Background noise can enhance cortical auditory evoked potentials under certain conditions.

    Science.gov (United States)

    Papesh, Melissa A; Billings, Curtis J; Baltzell, Lucas S

    2015-07-01

    To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30dB. The syllable was presented binaurally and monaurally at two presentation rates. The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. Published by Elsevier Ireland Ltd.

  1. Recovery function of the human brain stem auditory-evoked potential.

    Science.gov (United States)

    Kevanishvili, Z; Lagidze, Z

    1979-01-01

    Amplitude reduction and peak latency prolongation were observed in the human brain stem auditory-evoked potential (BEP) with preceding (conditioning) stimulation. At a conditioning interval (CI) of 5 ms the alteration of BEP was greater than at a CI of 10 ms. At a CI of 10 ms the amplitudes of some BEP components (e.g. waves I and II) were more decreased than those of others (e.g. wave V), while the peak latency prolongation did not show any obvious component selectivity. At a CI of 5 ms, the extent of the amplitude decrement of individual BEP components differed less, while the increase in the peak latencies of the later components was greater than that of the earlier components. The alterations of the parameters of the test BEPs at both CIs are ascribed to the desynchronization of intrinsic neural events. The differential amplitude reduction at a CI of 10 ms is explained by the different durations of neural firings determining various effects of desynchronization upon the amplitudes of individual BEP components. The decrease in the extent of the component selectivity and the preferential increase in the peak latencies of the later BEP components observed at a CI of 5 ms are explained by the intensification of the mechanism of the relative refractory period.

  2. [Prospective study with auditory evoked potentials of the brain stem in children at risk].

    Science.gov (United States)

    Navarro Rivero, B; González Díaz, E; Marrero Santos, L; Martínez Toledano, I; Murillo Díaz, M J; Valiño Colás, M J

    1999-04-01

    The aim of this study was to evaluate methods of hypoacusis screening. The early detection of audition problems is vital for quick rehabilitation. For this reason, resting on the criteria of the Comisión Española para la Detección Precoz de la Hipoacusia (Spanish Commission for the Early Detection of Hypoacusis), we have carried out a prospective study, from January to May 1998, evaluating patients at risk of suffering from hypoacusis. The study included 151 patients with ages between birth and 14 years. Medical records and brainstem auditory evoked responses (BAER) were carried out. The most common reason for requesting a consultation for the 151 patients included in our study was the suspicion of hypoacusis. Seventy-one (47%) presented pathological BAER, 37 of them were bilateral. In most cases the loss of audition was of cochlear origin, with 11 patients having a serious deafness, 4 with bilateral affection (3 suspicious of hypoacusis and 1 of hyperbilirubinemia) and 7 unilateral deafness. BAER is a good screening method for children at risk. It is an innocuous, objective and specific test that does not require the patient's collaboration. The level of positives is high (47%).

  3. BRAINSTEM AUDITORY EVOKED POTENTIAL AS AN INDEX OF CNS DEMYELINATION IN GUILLAIN -BARRÉ SYNDROME (GBS

    Directory of Open Access Journals (Sweden)

    Smita Singh

    2016-01-01

    Full Text Available Background: Guillain-Barré Syndrome (GBS is an acute, frequently severe and fulminant polyradicular neuropathy that is autoimmune in nature. GBS manifest as rapidly evolving areflexic motor paralysis with or without sensory disturbances. It mainly involves peripheral nervous system and autonomic nervous system. There are rare evidences about the involvement of central nervous system (CNS in GBS. Aims: The main objective of the study was to assess the CNS involvement in GBS using the Brainstem Auditory Evoked Potential (BAEP. Methods & Material: The study was conducted in the clinical neurophysiology lab in the department of physiology, CSMMU Lucknow. Study group involved 26 subjects (n=26 having GBS and control group involved 30 normal subjects (n=30. BAEPS were recorded by Neuroperfect- EMG 2000 EMG/NCV/EPsytem. The data so obtained were subjected to analysis using Statistical Package for Social Sciences (SPSS Version 13.0. Results & Conclusions: There was significant increase in PIII & PV peak latencies and PI-PIII & PI-PV interpeak latencies in both left and right ear in the study group, which showed the CNS involvement in GBS which can be assessed using BAEP.

  4. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  5. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  6. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  7. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    Science.gov (United States)

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  9. Profiles in fibromyalgia: algometry, auditory evoked potentials and clinical characterization of different subtypes.

    Science.gov (United States)

    Triñanes, Yolanda; González-Villar, Alberto; Gómez-Perretta, Claudio; Carrillo-de-la-Peña, María T

    2014-11-01

    The heterogeneity found in fibromyalgia (FM) patients has led to the investigation of disease subgroups, mainly based on clinical features. The aim of this study was to test the hypothesis that clinical FM subgroups are associated with different underlying pathophysiological mechanisms. Sixty-three FM patients were classified in type I or type II, according to the Fibromyalgia Impact Questionnaire (FIQ), and in mild/moderate versus severe FM, according to the severity of three cardinal symptoms considered in the American College of Rheumatology (ACR) 2010 criteria (unrefreshed sleep, cognitive problems and fatigue). To validate the subgroups obtained by these two classifications, we calculated the area under the receiver operating characteristic curves for various clinical variables and for two potential biomarkers of FM: Response to experimental pressure pain (algometry) and the amplitude/intensity slopes of the auditory evoked potentials (AEPs) obtained to stimuli of increasing intensity. The variables that best discriminated type I versus type II were those related to depression, while the indices of clinical or experimental pain (threshold or tolerance) did not significantly differ between them. The variables that best discriminated the mild/moderate versus severe subgroups were those related to the algometry. The AEPs did not allow discrimination among the generated subsets. The FIQ-based classification allows the identification of subgroups that differ in psychological distress, while the index based on the ACR 2010 criteria seems to be useful to characterize the severity of FM mainly based on hyperalgesia. The incorporation of potential biomarkers to generate or validate classification criteria is crucial to advance in the knowledge of FM and in the understanding of pathophysiological pathways.

  10. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A template-free approach for determining the latency of single events of auditory evoked M100

    Energy Technology Data Exchange (ETDEWEB)

    Burghoff, M [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Link, A [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Salajegheh, A [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Elster, C [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Poeppel, D [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Trahms, L [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2005-02-07

    The phase of the complex output of a narrow band Gaussian filter is taken to define the latency of the auditory evoked response M100 recorded by magnetoencephalography. It is demonstrated that this definition is consistent with the conventional peak latency. Moreover, it provides a tool for reducing the number of averages needed for a reliable estimation of the latency. Single-event latencies obtained by this procedure can be used to improve the signal quality of the conventional average by latency adjusted averaging. (note)

  12. Acceptance of background noise, working memory capacity, and auditory evoked potentials in subjects with normal hearing.

    Science.gov (United States)

    Brännström, K Jonas; Zunic, Edita; Borovac, Aida; Ibertsson, Tina

    2012-01-01

    The acceptable noise level (ANL) test is a method for quantifying the amount of background noise that subjects accept when listening to speech. Large variations in ANL have been seen between normal-hearing subjects and between studies of normal-hearing subjects, but few explanatory variables have been identified. To explore a possible relationship between a Swedish version of the ANL test, working memory capacity (WMC), and auditory evoked potentials (AEPs). ANL, WMC, and AEP were tested in a counterbalanced order across subjects. Twenty-one normal-hearing subjects participated in the study (14 females and 7 males; aged 20-39 yr with an average of 25.7 yr). Reported data consists of age, pure-tone average (PTA), most comfortable level (MCL), background noise level (BNL), ANL (i.e., MCL - BNL), AEP latencies, AEP amplitudes, and WMC. Spearman's rank correlation coefficient was calculated between the collected variables to investigate associations. A principal component analysis (PCA) with Varimax rotation was conducted on the collected variables to explore underlying factors and estimate interactions between the tested variables. Subjects were also pooled into two groups depending on their results on the WMC test, one group with a score lower than the average and one with a score higher than the average. Comparisons between these two groups were made using the Mann-Whitney U-test with Bonferroni correction for multiple comparisons. A negative association was found between ANL and WMC but not between AEP and ANL or WMC. Furthermore, ANL is derived from MCL and BNL, and a significant positive association was found between BNL and WMC. However, no significant associations were seen between AEP latencies and amplitudes and the demographic variables, MCL, and BNL. The PCA identified two underlying factors: One that contained MCL, BNL, ANL, and WMC and another that contained latency for wave Na and amplitudes for waves V and Na-Pa. Using the variables in the first factor

  13. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    Science.gov (United States)

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  14. Impedance and electrically evoked compound action potential (ECAP drop within 24 hours after cochlear implantation.

    Directory of Open Access Journals (Sweden)

    Joshua Kuang-Chao Chen

    Full Text Available Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001. There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes

  15. 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions.

    Science.gov (United States)

    Kirk, D L; Yates, G K

    1998-01-01

    Iontophoresis of 4-aminopyridine into scala media of the guinea pig cochlea caused elevation of the thresholds of the compound action potential of the auditory nerve, loss of amplitude of the extracellular cochlear microphonic response (CM), increase in the endocochlear potential (EP) and reduction in the amplitude of electrically evoked oto-acoustic emissions (EEOAEs). These changes were reversible over 10-20 min. The reciprocity of the changes in the CM and the EP was consistent with an interruption of both DC and AC currents through outer hair cells (OHCs), probably by blockade of mechano-electrical transduction (MET) channels in OHCs. Reductions in EEOAEs were consistent with the extrinsically applied generating current entering the OHC via the MET channels. Implications for the activation of OHC electromotility in vivo are discussed.

  16. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  17. Serial auditory-evoked potentials in the diagnosis and monitoring of a child with Landau-Kleffner syndrome.

    Science.gov (United States)

    Plyler, Erin; Harkrider, Ashley W

    2013-01-01

    A boy, aged 2 1/2 yr, experienced sudden deterioration of speech and language abilities. He saw multiple medical professionals across 2 yr. By almost 5 yr, his vocabulary diminished from 50 words to 4, and he was referred to our speech and hearing center. The purpose of this study was to heighten awareness of Landau-Kleffner syndrome (LKS) and emphasize the importance of an objective test battery that includes serial auditory-evoked potentials (AEPs) to audiologists who often are on the front lines of diagnosis and treatment delivery when faced with a child experiencing unexplained loss of the use of speech and language. Clinical report. Interview revealed a family history of seizure disorder. Normal social behaviors were observed. Acoustic reflexes and otoacoustic emissions were consistent with normal peripheral auditory function. The child could not complete behavioral audiometric testing or auditory processing tests, so serial AEPs were used to examine central nervous system function. Normal auditory brainstem responses, a replicable Na and absent Pa of the middle latency responses, and abnormal slow cortical potentials suggested dysfunction of auditory processing at the cortical level. The child was referred to a neurologist, who confirmed LKS. At age 7 1/2 yr, after 2 1/2 yr of antiepileptic medications, electroencephalographic (EEG) and audiometric measures normalized. Presently, the child communicates manually with limited use of oral information. Audiologists often are one of the first professionals to assess children with loss of speech and language of unknown origin. Objective, noninvasive, serial AEPs are a simple and valuable addition to the central audiometric test battery when evaluating a child with speech and language regression. The inclusion of these tests will markedly increase the chance for early and accurate referral, diagnosis, and monitoring of a child with LKS which is imperative for a positive prognosis. American Academy of Audiology.

  18. Comparison of auditory evoked potentials and the A-line ARX Index for monitoring the hypnotic level during sevoflurane and propofol induction

    DEFF Research Database (Denmark)

    Litvan, H; Jensen, E W; Revuelta, M

    2002-01-01

    Extraction of the middle latency auditory evoked potentials (AEP) by an auto regressive model with exogenous input (ARX) enables extraction of the AEP within 1.7 s. In this way, the depth of hypnosis can be monitored at almost real-time. However, the identification and the interpretation of the a......Extraction of the middle latency auditory evoked potentials (AEP) by an auto regressive model with exogenous input (ARX) enables extraction of the AEP within 1.7 s. In this way, the depth of hypnosis can be monitored at almost real-time. However, the identification and the interpretation...

  19. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    International Nuclear Information System (INIS)

    Fobe, Lisete Pessoa de Oliveira

    1999-01-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  20. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  1. Age-related differences in auditory evoked potentials as a function of task modulation during speech-nonspeech processing.

    Science.gov (United States)

    Rufener, Katharina Simone; Liem, Franziskus; Meyer, Martin

    2014-01-01

    Healthy aging is typically associated with impairment in various cognitive abilities such as memory, selective attention or executive functions. Less well observed is the fact that also language functions in general and speech processing in particular seems to be affected by age. This impairment is partly caused by pathologies of the peripheral auditory nervous system and central auditory decline and in some part also by a cognitive decay. This cross-sectional electroencephalography (EEG) study investigates temporally early electrophysiological correlates of auditory related selective attention in young (20-32 years) and older (60-74 years) healthy adults. In two independent tasks, we systematically modulate the subjects' focus of attention by presenting words and pseudowords as targets and white noise stimuli as distractors. Behavioral data showed no difference in task accuracy between the two age samples irrespective of the modulation of attention. However, our work is the first to show that the N1-and the P2 component evoked by speech and nonspeech stimuli are specifically modulated in older adults and young adults depending on the subjects' focus of attention. This finding is particularly interesting in that the age-related differences in AEPs may be reflecting levels of processing that are not mirrored by the behavioral measurements.

  2. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Evaluation of the Slope of Amplitude Growth Function Changes of the Electrically Evoked Action Potential in Three Months after Receiving the Device in Children with Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Ali Reza Pourjavid

    2012-04-01

    Full Text Available Objective: In neural response telemetry, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation is sent to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and monitoring the intra and postoperative responses of auditory nerve and help to primary setting of speech processor. The aim of this study was evaluating the potential's slope of amplitude growth function changes three monthes after receiving the devise in pediatric cochlear implant recipients. Materials & Methods: This longitudinal study evaluated the potentials' slope of amplitude growth function changes in four given electrodes in four sessions after receiving the devise by approximately one month's intervals in all of the children who implanted in Amir Alam and Hazrat-e-Rasoul hospitals in 2007, July to December. Friedman test was used to analyse the results. Results: Electrically evoked compound action potential's mean slope of each electrode was more in later sessions relative to first session, while there was significant difference between the 1st and the other electrodes’ responses in every session (P<0.05. Conclusion: The reliabiliy of the responses results in more assurance of clinician to fit the speech processor for along time. Better responses in apical electrodes may lead to develope an effective coding strategy.

  4. Self-initiated actions result in suppressed auditory but amplified visual evoked components in healthy participants.

    Science.gov (United States)

    Mifsud, Nathan G; Oestreich, Lena K L; Jack, Bradley N; Ford, Judith M; Roach, Brian J; Mathalon, Daniel H; Whitford, Thomas J

    2016-05-01

    Self-suppression refers to the phenomenon that sensations initiated by our own movements are typically less salient, and elicit an attenuated neural response, compared to sensations resulting from changes in the external world. Evidence for self-suppression is provided by previous ERP studies in the auditory modality, which have found that healthy participants typically exhibit a reduced auditory N1 component when auditory stimuli are self-initiated as opposed to externally initiated. However, the literature investigating self-suppression in the visual modality is sparse, with mixed findings and experimental protocols. An EEG study was conducted to expand our understanding of self-suppression across different sensory modalities. Healthy participants experienced either an auditory (tone) or visual (pattern-reversal) stimulus following a willed button press (self-initiated), a random interval (externally initiated, unpredictable onset), or a visual countdown (externally initiated, predictable onset-to match the intrinsic predictability of self-initiated stimuli), while EEG was continuously recorded. Reduced N1 amplitudes for self- versus externally initiated tones indicated that self-suppression occurred in the auditory domain. In contrast, the visual N145 component was amplified for self- versus externally initiated pattern reversals. Externally initiated conditions did not differ as a function of their predictability. These findings highlight a difference in sensory processing of self-initiated stimuli across modalities, and may have implications for clinical disorders that are ostensibly associated with abnormal self-suppression. © 2016 Society for Psychophysiological Research.

  5. A comparison of auditory evoked potentials to acoustic beats and to binaural beats

    OpenAIRE

    Pratt, H; Starr, A; Michalewski, HJ; Dimitrijevic, A; Bleich, N; Mittelman, N

    2010-01-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source cur...

  6. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    Science.gov (United States)

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p potential.

  7. Neurofeedback-Based Enhancement of Single Trial Auditory Evoked Potentials: Feasibility in Healthy Subjects.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.

  8. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    Science.gov (United States)

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (pwave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from

  9. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  10. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    Science.gov (United States)

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable...

  12. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with "small-world" properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex-and sensory systems in general-in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions.

  13. Biomimetic Sonar for Electrical Activation of the Auditory Pathway

    Directory of Open Access Journals (Sweden)

    D. Menniti

    2017-01-01

    Full Text Available Relying on the mechanism of bat’s echolocation system, a bioinspired electronic device has been developed to investigate the cortical activity of mammals in response to auditory sensorial stimuli. By means of implanted electrodes, acoustical information about the external environment generated by a biomimetic system and converted in electrical signals was delivered to anatomically selected structures of the auditory pathway. Electrocorticographic recordings showed that cerebral activity response is highly dependent on the information carried out by ultrasounds and is frequency-locked with the signal repetition rate. Frequency analysis reveals that delta and beta rhythm content increases, suggesting that sensorial information is successfully transferred and integrated. In addition, principal component analysis highlights how all the stimuli generate patterns of neural activity which can be clearly classified. The results show that brain response is modulated by echo signal features suggesting that spatial information sent by biomimetic sonar is efficiently interpreted and encoded by the auditory system. Consequently, these results give new perspective in artificial environmental perception, which could be used for developing new techniques useful in treating pathological conditions or influencing our perception of the surroundings.

  14. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection

    Directory of Open Access Journals (Sweden)

    Alessandra Spada Durante

    Full Text Available Abstract Introduction: The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. Objective: To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. Methods: The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group; and 31 adults with normal hearing (control group. An automated system of detection, analysis, and recording of cortical responses (HEARLab® was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000 Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing threshold (BT. The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. Results: The cortical

  15. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    Science.gov (United States)

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the

  16. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  17. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q

    2015-01-01

    Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  18. Language performance and auditory evoked fields in 2- to 5-year-old children.

    Science.gov (United States)

    Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Ueno, Sanae; Remijn, Gerard B; Haruta, Yasuhiro; Oi, Manabu; Munesue, Toshio; Tsubokawa, Tsunehisa; Higashida, Haruhiro; Minabe, Yoshio

    2012-02-01

    Language development progresses at a dramatic rate in preschool children. As rapid temporal processing of speech signals is important in daily colloquial environments, we performed magnetoencephalography (MEG) to investigate the linkage between speech-evoked responses during rapid-rate stimulus presentation (interstimulus interval language performance in 2- to 5-year-old children (n = 59). Our results indicated that syllables with this short stimulus interval evoked detectable P50m, but not N100m, in most participants, indicating a marked influence of longer neuronal refractory period for stimulation. The results of equivalent dipole estimation showed that the intensity of the P50m component in the left hemisphere was positively correlated with language performance (conceptual inference ability). The observed positive correlations were suggested to reflect the maturation of synaptic organisation or axonal maturation and myelination underlying the acquisition of linguistic abilities. The present study is among the first to use MEG to study brain maturation pertaining to language abilities in preschool children. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Testing resonating vector strength: Auditory system, electric fish, and noise

    Science.gov (United States)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  20. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  1. Deriving cochlear delays in humans using otoacoustic emissions and auditory evoked potentials

    DEFF Research Database (Denmark)

    Pigasse, Gilles

    A great deal of the processing of incoming sounds to the auditory system occurs within the cochlear. The organ of Corti within the cochlea has differing mechanical properties along its length that broadly gives rise to frequency selectivity. Its stiffness is at maximum at the base and decreases...... relation between frequency and travel time in the cochlea defines the cochlear delay. This delay is directly associated with the signal analysis occurring in the inner ear and is therefore of primary interest to get a better knowledge of this organ. It is possible to estimate the cochlear delay by direct...... and invasive techniques, but these disrupt the normal functioning of the cochlea and are usually conducted in animals. In order to obtain an estimate of the cochlear delay that is closer to the normally functioning human cochlea, the present project investigates non-invasive methods in normal hearing adults...

  2. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials.

    Science.gov (United States)

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-06-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.

  3. Effects of glutamate receptor agonists on the P13 auditory evoked potential and startle response in the rat

    Directory of Open Access Journals (Sweden)

    Christen eSimon

    2011-01-01

    Full Text Available The P13 potential is the rodent equivalent of the P50 potential, which is an evoked response recorded at the vertex (Vx 50 msec following an auditory stimulus in humans. Both the P13 and P50 potentials are only present during waking and rapid eye movement (REM sleep, and are considered to be measures of level of arousal. The source of the P13 and P50 potentials appears to be the pedunculopontine nucleus (PPN, a brainstem nucleus with indirect ascending projections to the cortex through the intralaminar thalamus (ILT, mediating arousal, and descending inhibitory projections to the caudal pontine reticular formation (CPRF, which mediates the auditory startle response (SR. We tested the hypothesis that intracranial microinjection (ICM of glutamate (GLU or GLU receptor agonists will increase the activity of PPN neurons, resulting in an increased P13 potential response, and decreased SR due to inhibitory projections from the PPN to the CPRF, in freely moving animals. Cannulae were inserted into the PPN to inject neuroactive agents, screws were inserted into the Vx in order to record the P13 potential, and electrodes inserted into the dorsal nuchal muscle to record electromyograms (EMGs and SR amplitude. Our results showed that ICM of GLU into the PPN dose-dependently increased the amplitude of the P13 potential and decreased the amplitude of the SR. Similarly, ICM of NMDA or KA into the PPN increased the amplitude of the P13 potential. These findings indicate that glutamatergic input to the PPN plays a role in arousal control in vivo, and changes in glutamatergic input, or excitability of PPN neurons, could be implicated in a number of neuropsychiatric disorders with the common symptoms of hyperarousal and REM sleep dysregulation.

  4. Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles

    NARCIS (Netherlands)

    Thomas, CK; Nelson, G; Than, L; Zijdewind, Inge

    The activation order of motor units during electrically evoked contractions of paralyzed or partially paralyzed thenar muscles was determined in seven subjects with chronic cervical spinal cord injury. The median nerve was stimulated percutaneously with pulses of graded intensity to produce

  5. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  6. [Impact of hypoglycemic episodes on nerves conduction and auditory and visual evoked potentials in children with type 1 diabetes].

    Science.gov (United States)

    Wysocka-Mincewicz, Marta; Trippenbach-Dulska, Hanna; Emeryk-Szajewska, Barbara; Zakrzewska-Pniewska, Beata; Kochanek, Krzysztof; Pańkowska, Ewa

    2007-01-01

    Hypoglycemia is an acute disturbance of energy, especially impacting the central nervous system, but direct influence on peripheral nervous function is not detected. The aim of the study was to establish the influence of hypoglycemic moderate and severe episodes on the function of peripheral nerves, hearing and visual pathway. 97 children with type 1 diabetes (mean age 15.4+/-2.16 years, mean duration of diabetes 8.11+/-2.9 years, mean HbA1c 8,58+/-1.06%), at least 10 years old and with at least 3 years duration of diabetes, were included to study. Nerve conduction studies, visual (VEP) and auditory (ABR) evoked potentials were performed with standard surface stimulating and recording techniques. Moderate hypoglycemic episodes were defined as events of low glycemia requiring help of another person but without loss of consciousness and/or convulsions but recurrent frequently in at least one year. Severe hypoglycemia was defined as events with loss of consciousness and/or convulsions. Univariate ANOVA tests of significance or H Kruskal-Wallis test were used, depending on normality of distribution. The subgroups with a history of hypoglycemic episodes had significant delay in all conduction parameters in the sural nerve (amplitude pwave III latency and interval I-III in subgroups with episodes of hypoglycemia (pwave III and interval I-III. Frequent moderate hypoglycemic episodes were strong risk factors for damage of the peripheral and central nervous systems, comparable with impact of several severe hypoglycemias.

  7. Hearing in the Juvenile Green Sea Turtle (Chelonia mydas: A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Wendy E D Piniak

    Full Text Available Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.

  8. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    Science.gov (United States)

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  9. Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.

    Science.gov (United States)

    Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng

    2015-01-01

    In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.

  10. Real-time classification of auditory sentences using evoked cortical activity in humans

    Science.gov (United States)

    Moses, David A.; Leonard, Matthew K.; Chang, Edward F.

    2018-06-01

    Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.

  11. Comparison of a new composite index based on midlatency auditory evoked potentials and electroencephalographic parameters with bispectral index (BIS) during moderate propofol sedation.

    Science.gov (United States)

    Hadzidiakos, D; Petersen, S; Baars, J; Herold, K; Rehberg, B

    2006-11-01

    Derived parameters of the electroencephalogram and auditory evoked potentials can be used to determine depth of anaesthesia and sedation. However, it is not known whether any parameter can identify the occurrence of awareness in individual patients. We have compared the performance of bispectral index and a new composite index derived from auditory evoked potentials and the electroencephalogram (AAI 1.61) in predicting consciousness, explicit and implicit memory during moderate sedation with propofol. Twenty-one patients with spinal anaesthesia received intraoperatively propofol at the age-corrected C(50) for loss of consciousness and were presented test words via headphones. Bispectral index and AAI 1.61 (auditory evoked potentials, AEP-Monitor2) were recorded in parallel as well as the Observer's Assessment of Alertness/Sedation-score. Postoperatively, testing for explicit and implicit memory formation was performed. Bispectral index and AAI 1.61 correlated well with loss of consciousness defined by an Observer's Assessment of Alertness/Sedation-score of 2 (identical P(K) of 0.87), but did not allow a prediction of postoperative explicit or implicit recall. Both bispectral index and AAI may be indices of depth of sedation rather than indicators of memory formation, which persists during propofol sedation even after loss of consciousness.

  12. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  13. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.

    Science.gov (United States)

    Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H

    1999-09-01

    To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.

  14. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete

    2017-06-01

    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  15. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    Science.gov (United States)

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  16. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  17. Chaos analysis of the electrical signal time series evoked by acupuncture

    International Nuclear Information System (INIS)

    Wang Jiang; Sun Li; Fei Xiangyang; Zhu Bing

    2007-01-01

    This paper employs chaos theory to analyze the time series of electrical signal which are evoked by different acupuncture methods applied to the Zusanli point. The phase space is reconstructed and the embedding parameters are obtained by the mutual information and Cao's methods. Subsequently, the largest Lyapunov exponent is calculated. From the analyses we can conclude that the time series are chaotic. In addition, differences between various acupuncture methods are discussed

  18. Chaos analysis of the electrical signal time series evoked by acupuncture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiang [School of Electrical Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: jiangwang@tju.edu.cn; Sun Li [School of Electrical Engineering, Tianjin University, Tianjin 300072 (China); Fei Xiangyang [School of Electrical Engineering, Tianjin University, Tianjin 300072 (China); Zhu Bing [Institute of Acupuncture and Moxibustion, China Academy of Traditional Chinese Medicine, Beijing 100700 (China)

    2007-08-15

    This paper employs chaos theory to analyze the time series of electrical signal which are evoked by different acupuncture methods applied to the Zusanli point. The phase space is reconstructed and the embedding parameters are obtained by the mutual information and Cao's methods. Subsequently, the largest Lyapunov exponent is calculated. From the analyses we can conclude that the time series are chaotic. In addition, differences between various acupuncture methods are discussed.

  19. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  20. Protocolo para captação dos potenciais evocados auditivos de longa latência Protocol to collect late latency auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Luzia Maria Pozzobom Ventura

    2009-12-01

    Full Text Available Os potenciais evocados auditivos de longa latência (PEALLs se referem a uma série de mudanças elétricas, ocorridas no sistema nervoso central, resultante da estimulação da via sensorial auditiva. Muitos estudos abordam o uso destes potenciais, controlando o artefato gerado pelo movimento ocular com a utilização de equipamentos com grande número de canais. Porém, na prática clínica nacional, a realidade é diferente, havendo disponibilidade de equipamentos com número reduzido de canais. OBJETIVO: Comparar dois métodos de controle do artefato gerado pelo movimento ocular durante a captação dos PEALLs usando dois canais de registro. MATERIAL E MÉTODO: Estudo prospectivo pela aplicação de dois métodos de captação dos PEALLs (subtração do artefato ocular e controle do limite de rejeição em 10 adultos ouvintes normais. RESULTADOS: Não foi observada diferença estatisticamente significante entre os valores de latência obtidos com o uso dos dois métodos, apenas entre os valores de amplitude. CONCLUSÃO: Os dois métodos foram eficientes para a captação dos PEALLs e para o controle do artefato do movimento ocular. O método do controle do limite de rejeição promoveu maiores valores de amplitude.Long Latency Auditory Evoked Potentials (LLAEP represents a number of electrical changes occurring in the central nervous system, resulting from stimulation of the auditory sensorial pathways. Many studies approach the use of these potentials controlling the artifact created by eye movement with the use of equipment with a large number of channels. However, what happens is very different in Brazilian clinical practice, where the equipment used has a very limited number of channels. AIM: to compare the two methods used to control the artifacts created by eye movements during LLAEP capture using two recording channels. MATERIALS AND METHODS: this is a prospective study with the application of two LLAEP capturing methods (eye artifact

  1. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-04-01

    Full Text Available O Potencial Evocado Auditivo de Média Latência é um teste objetivo promissor na audiologia na pesquisa neuro-diagnóstica das disfunções do sistema auditivo. Tem como vantagens a precisão e objetividade na avaliação e por isso é útil em crianças. O presente estudo teve como objetivo analisar os potenciais evocados auditivos de média latência em dois pacientes com distúrbio de processamento auditivo e relacionar as medidas objetivas e comportamentais. Para tanto foi realizado estudo de caso de dois pacientes (P1= feminino, 12 anos; P2= masculino, 17 anos, ambos com ausência de alterações sensoriais, distúrbios neurológicos, neuropsiquiátricos. Ambos foram submetidos à anamnese, inspeção do meato acústico externo, avaliação audiológica e avaliação do exame de potencial evocado auditivo de média latência. Houve associação significante entre os resultados dos exames comportamentais e objetivos. Na anamnese, houve queixas referentes à dificuldade de escuta em ambiente ruidoso, localização sonora, desatenção, além de trocas fonológicas na escrita e na fala. Foram observadas alterações no processo de decodificação auditiva à direita em ambos os casos na avaliação comportamental do processamento auditivo e no exame de potencial evocado auditivo de média latência a resposta da via contralateral direita foi deficitária, confirmando as dificuldades dos pacientes estudados na atribuição de significado às informações acústicas em condição de competição sonora à direita nos dois casos. Para os casos estudados comprovou-se à associação entre os resultados, porém há necessidade de novos estudos com maior amostra para confirmação dos dados.The Auditory Evoked Middle Latency Response is one of the most promising objective tests in audiology and in revealing brain dysfunction and neuro-audiologic findings. The main advantages of its clinical use are precision and objectivity in evaluating children

  2. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-01-01

    Full Text Available O Potencial Evocado Auditivo de Média Latência é um teste objetivo promissor na audiologia na pesquisa neuro-diagnóstica das disfunções do sistema auditivo. Tem como vantagens a precisão e objetividade na avaliação e por isso é útil em crianças. O presente estudo teve como objetivo analisar os potenciais evocados auditivos de média latência em dois pacientes com distúrbio de processamento auditivo e relacionar as medidas objetivas e comportamentais. Para tanto foi realizado estudo de caso de dois pacientes (P1= feminino, 12 anos; P2= masculino, 17 anos, ambos com ausência de alterações sensoriais, distúrbios neurológicos, neuropsiquiátricos. Ambos foram submetidos à anamnese, inspeção do meato acústico externo, avaliação audiológica e avaliação do exame de potencial evocado auditivo de média latência. Houve associação significante entre os resultados dos exames comportamentais e objetivos. Na anamnese, houve queixas referentes à dificuldade de escuta em ambiente ruidoso, localização sonora, desatenção, além de trocas fonológicas na escrita e na fala. Foram observadas alterações no processo de decodificação auditiva à direita em ambos os casos na avaliação comportamental do processamento auditivo e no exame de potencial evocado auditivo de média latência a resposta da via contralateral direita foi deficitária, confirmando as dificuldades dos pacientes estudados na atribuição de significado às informações acústicas em condição de competição sonora à direita nos dois casos. Para os casos estudados comprovou-se à associação entre os resultados, porém há necessidade de novos estudos com maior amostra para confirmação dos dados.The Auditory Evoked Middle Latency Response is one of the most promising objective tests in audiology and in revealing brain dysfunction and neuro-audiologic findings. The main advantages of its clinical use are precision and objectivity in evaluating children

  3. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2017-01-01

    . A single ANF is modeled as a network of two exponential integrateand-fire point-neuron models, referred to as peripheral and central axons of the ANF. The peripheral axon is excited by the cathodic charge, inhibited by the anodic charge, and exhibits longer spike latencies than the central axon......A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike......; the central axon is excited by the anodic charge, inhibited by the cathodic charge, and exhibits shorter spike latencies than the peripheral axon. The model also includes subthreshold and suprathreshold adaptive feedback loops which continuously modify the membrane potential and can account for effects...

  4. A Basic Study on P300 Event-Related Potentials Evoked by Simultaneous Presentation of Visual and Auditory Stimuli for the Communication Interface

    Directory of Open Access Journals (Sweden)

    Masami Hashimoto

    2011-10-01

    Full Text Available We have been engaged in the development of a brain-computer interface (BCI based on the cognitive P300 event-related potentials (ERPs evoked by simultaneous presentation of visual and auditory stimuli in order to assist with the communication in severe physical limitation persons. The purpose of the simultaneous presentation of these stimuli is to give the user more choices as commands. First, we extracted P300 ERPs by either visual oddball paradigm or auditory oddball paradigm. Then amplitude and latency of the P300 ERPs were measured. Second, visual and auditory stimuli were presented simultaneously, we measured the P300 ERPs varying the condition of combinations of these stimuli. In this report, we used 3 colors as visual stimuli and 3 types of MIDI sounds as auditory stimuli. Two types of simultaneous presentations were examined. The one was conducted with random combination. The other was called group stimulation, combining one color, such as red, and one MIDI sound, such as piano, in order to make a group; three groups were made. Each group was presented to users randomly. We evaluated the possibility of BCI using these stimuli from the amplitudes and the latencies of P300 ERPs.

  5. Influência dos contrastes de fala nos potenciais evocados auditivos corticais The influence of speech stimuli contrast in cortical auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Kátia de Freitas Alvarenga

    2013-06-01

    Full Text Available Estudos voltados aos potenciais evocados auditivos com estímulos de fala em indivíduos ouvintes são importantes para compreender como a complexidade do estímulo influencia nas características do potencial cognitivo auditivo gerado. OBJETIVO: Caracterizar o potencial evocado auditivo cortical e o potencial cognitivo auditivo P3 com estímulos de contrastes vocálico e consonantal em indivíduos com audição normal. MÉTODO: Participaram deste estudo 31 indivíduos sem alterações auditivas, neurológicas e de linguagem na faixa etária de 7 a 30 anos. Os potenciais evocados auditivos corticais e cognitivo auditivo P3 foram registrados nos canais ativos Fz e Cz utilizando-se os contrastes de fala consonantal (/ba/-/da/ e vocálico (/i/-/a/. Desenho: Estudo de coorte, transversal e prospectivo. RESULTADOS: Houve diferença entre o contraste de fala utilizado e as latências dos componentes N2 (p = 0,00 e P3 (p = 0,00, assim como entre o canal ativo considerado (Fz/Cz e os valores de latência e amplitude de P3. Estas diferenças não ocorreram para os componentes exógenos N1 e P2. CONCLUSÃO: O contraste do estímulo de fala, vocálico ou consonantal, deve ser considerado na análise do potencial evocado cortical, componente N2, e do potencial cognitivo auditivo P3.Studies about cortical auditory evoked potentials using the speech stimuli in normal hearing individuals are important for understanding how the complexity of the stimulus influences the characteristics of the cortical potential generated. OBJECTIVE: To characterize the cortical auditory evoked potential and the P3 auditory cognitive potential with the vocalic and consonantal contrast stimuli in normally hearing individuals. METHOD: 31 individuals with no risk for hearing, neurologic and language alterations, in the age range between 7 and 30 years, participated in this study. The cortical auditory evoked potentials and the P3 auditory cognitive one were recorded in the Fz and Cz

  6. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  7. Functional near-infrared spectroscopy to probe sensorimotor region activation during electrical stimulation-evoked movement.

    Science.gov (United States)

    Muthalib, Makii; Ferrari, Marco; Quaresima, Valentina; Kerr, Graham; Perrey, Stephane

    2017-11-07

    This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O 2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. NMES-evoked movements induced significantly greater activation (increase in O 2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O 2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O 2 Hb (P = 0·144) and HHb (P = 0·958). fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  8. Auditory detectability of hybrid electric vehicles by pedestrians who are blind

    Science.gov (United States)

    2010-11-15

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  9. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    Science.gov (United States)

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    Science.gov (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  11. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase to neutral......Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase......-and-fire neuron with two partitions responding individually to anodic and cathodic stimulation. Membrane noise was parameterized based on reported relative spread of AN neurons. Firing efficiency curves and spike-latency distributions were simulated for monophasic and symmetric biphasic stimulation...

  12. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    Science.gov (United States)

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  13. Auditory Evoked Potentials and Hand Preference in 6-Month-Old Infants: Possible Gender-Related Differences in Cerebral Organization.

    Science.gov (United States)

    Shucard, Janet L.; Shucard, David W.

    1990-01-01

    Verbal and musical stimuli were presented to infants in a study of the relations of evoked potential left-right amplitude asymmetries to gender and hand preference. There was a relation between asymmetry and hand preference, and for girls, between asymmetry and stimulus condition. Results suggest a gender difference in cerebral hemisphere…

  14. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.

    Science.gov (United States)

    Lovelace, Jonathan W; Wen, Teresa H; Reinhard, Sarah; Hsu, Mike S; Sidhu, Harpreet; Ethell, Iryna M; Binder, Devin K; Razak, Khaleel A

    2016-05-01

    Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits

  15. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    Science.gov (United States)

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  16. Auditory localisation of conventional and electric cars : laboratory results and implications for cycling safety.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. Commandeur, J.J.F. Agterberg, M.J.H. & Wee, B. van

    2016-01-01

    When driven at low speeds, cars operating in electric mode have been found to be quieter than conventional cars. As a result, the auditory cues which pedestrians and cyclists use to assess the presence, proximity and location oncoming traffic may be reduced, posing a safety hazard. This laboratory

  17. Auditory localisation of conventional and electric cars: laboratory results and implications for cycling safety

    NARCIS (Netherlands)

    Stelling-Konczak, A.; Hagenzieker, M.P.; Commandeur, J.J.F.; Agterberg, M.J.H.; van Wee, B.

    2016-01-01

    When driven at low speeds, cars operating in electric mode have been found to be quieter than conventional cars. As a result, the auditory cues which pedestrians and cyclists use to assess the presence, proximity and location oncoming traffic may be reduced, posing a safety hazard. This laboratory

  18. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats.

    Directory of Open Access Journals (Sweden)

    Abdallah Ahnaou

    Full Text Available Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A and activation of metabotropic glutamate receptor (mGluR2 signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1 model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA antagonist phencyclidine (PCP; 2 confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3 evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not.

  19. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  20. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    Science.gov (United States)

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  1. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    Science.gov (United States)

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  2. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    Science.gov (United States)

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  3. The vestibular implant: Frequency-dependency of the electrically evoked Vestibulo-Ocular Reflex in humans

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2015-01-01

    Full Text Available The Vestibulo-Ocular Reflex (VOR shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR elicited by a vestibular implant, showed the same frequency-dependency.Twelve vestibular electrodes implanted in 7 patients with bilateral vestibular hypofunction were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5Hz, 1Hz, and 2Hz. The main characteristics of the eVOR were evaluated and compared to the natural VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies.A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the natural VOR. Other characteristics of the (eVOR (angle, habituation-index, and asymmetry showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the normal vestibular system.

  4. Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia-Gating of auditory-evoked potentials and prepulse inhibition

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Oranje, Bob; Yding, Birte

    2010-01-01

    The use of translational approaches to validate animal models is needed for the development of treatments that can effectively alleviate cognitive impairments associated with schizophrenia, which are unsuccessfully treated by the current available therapies. Deficits in pre-attentive stages...... of sensory information processing seen in schizophrenia patients, can be assessed by highly homologues methods in both humans and rodents, evident by the prepulse inhibition (PPI) of the auditory startle response and the P50 (termed P1 here) suppression paradigms. Treatment with the NMDA receptor antagonist...... PCP on postnatal days 7, 9, and 11 reliably induce cognitive impairments resembling those presented by schizophrenia patients. Here we evaluate the potential of early postnatal PCP (20mg/kg) treatment in Lister Hooded rats to induce post-pubertal deficits in PPI and changes, such as reduced gating...

  5. Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia-Gating of auditory-evoked potentials and prepulse inhibition

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Oranje, Bob; Yding, Birte

    2010-01-01

    of sensory information processing seen in schizophrenia patients, can be assessed by highly homologues methods in both humans and rodents, evident by the prepulse inhibition (PPI) of the auditory startle response and the P50 (termed P1 here) suppression paradigms. Treatment with the NMDA receptor antagonist...... findings confirm measures of early information processing to show high resemblance between rodents and humans, and indicate that early postnatal PCP-treated rats show deficits in pre-attentional processing, which are distinct from those observed in schizophrenia patients.......The use of translational approaches to validate animal models is needed for the development of treatments that can effectively alleviate cognitive impairments associated with schizophrenia, which are unsuccessfully treated by the current available therapies. Deficits in pre-attentive stages...

  6. Potenciais evocados auditivos de longa latência: um estudo comparativo entre hemisférios cerebrais Long auditory evoked potential: comparative study between cerebral hemispheres

    Directory of Open Access Journals (Sweden)

    Ana Claudia F. Frizzo

    2001-09-01

    Full Text Available Introdução: A partir dos primeiros registros de atividades elétricas cerebrais (EEG em resposta à apresentação de estímulos auditivos em seres humanos, durante a década de 30, pôde-se observar os potenciais evocados auditivos de longa latência - PEALLs (Mendel, 1989. Desde então, muitas pesquisas têm sido realizadas enfatizando o estudo do sistema auditivo em sua totalidade (periférico e central. Considerando a diferenciação funcional entre os hemisférios cerebrais, o presente estudo procurou identificar evidências eletrofisiológicas que constatem diferenciações interhemisféricas. Forma de estudo: Prospectivo clínico randomizado. Objetivo: O objetivo principal foi verificar a ocorrência de possíveis diferenciações entre os PEALLs dos hemisférios direito (Cz/A2 e esquerdo (Cz/A1 em um grupo de normoouvintes entre 8 e 18 anos de idade, por meio da análise comparativa dos registros dos PEALLs, quanto à latência e amplitude. Resultados: Não foram observadas diferenças estatisticamente significantes entre as medidas, exceto para o componente P2, na população masculina. Porém, não se pode negar a diferenciação funcional entre os hemisférios e deve-se considerar essa variável durante a realização da pesquisa dos PEALLs. Conclusão: Contudo, futuros trabalhos ainda serão necessários, com amostras maiores ou até mesmo com diferentes posicionamentos de eletrodos, a fim de verificarmos a existência ou não de evidências eletrofisiológicas que constatam essas diferenciações, garantindo a aplicação mais segura e efetiva deste método.Introduction: Since of the first registration of cerebral electric activities (EEG in response to the presentation hearing stimulus in human, decade 30‘s, can be observed the late components or long latency auditory evoked potentials - LLAEP (Mendel, 1989. Ever since, a lot of number of researches have been performed emphasizing the study of the hearing system (the ear and

  7. Bayesian Modeling of the Dynamics of Phase Modulations and their Application to Auditory Evoked Responses at Different Loudness Scales

    Directory of Open Access Journals (Sweden)

    Zeinab eMortezapouraghdam

    2016-01-01

    Full Text Available We study the effect of long-term habituation signatures of auditory selective attention reflected in the instantaneous phase information of the auditory event-related potentials (ERPs at four distinct stimuli levels of 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. The analysis is based on the single-trial level. The effect of habituation can be observed in terms of the changes (jitter in the instantaneous phase information of ERPs. In particular, the absence of habituation is correlated with a consistently high phase synchronization over ERP trials.We estimate the changes in phase concentration over trials using a Bayesian approach, in which the phase is modeled as being drawn from a von Mises distribution with a concentration parameter which varies smoothly over trials. The smoothness assumption reflects the fact that habituation is a gradual process.We differentiate between different stimuli based on the relative changes and absolute values of the estimated concentration parameter using the proposed Bayesian model.

  8. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  9. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    Science.gov (United States)

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  10. Potenciais evocados auditivos de tronco encefálico em usuários de crack e múltiplas drogas Auditory brainstem evoked potentials in crack and multiple drugs addicts

    Directory of Open Access Journals (Sweden)

    Loretta Fabianni Nigri

    2009-01-01

    Full Text Available OBJETIVO: Analisar os potenciais evocados auditivos de tronco encefálico em usuários de crack e múltiplas drogas, bem como levantar as possíveis queixas auditivas e de equilíbrio nesta população. MÉTODOS: Foram avaliados 40 usuários de drogas (20 com uso há mais de cinco anos e 20 há menos de cinco anos e 20 não usuários, do sexo masculino, com idades entre 19 e 46 anos, com limiares auditivos dentro da normalidade. RESULTADOS: Não houve diferenças significativas dos potenciais evocados auditivos de tronco encefálico dos usuários de drogas quando comparados ao grupo controle. CONCLUSÃO: Os potenciais evocados auditivos de tronco encefálico dos usuários de drogas não diferiram significantemente do grupo controle. As queixas apresentadas pelos usuários de drogas foram hiperacusia, alucinação auditiva, zumbido e alteração de equilíbrio.PURPOSE: To study the findings of auditory brainstem evoked potentials in crack and multiple drugs users, as well as to raise possible auditory and balance complaints in this population. METHODS: A total of 40 drugs addicts (20 who had been using drugs for over five years and 20 for less than five years and 20 non-users were evaluated. Subjects were all male, with ages ranging from 19 to 46 years, and had auditory thresholds within normal. RESULTS: No significant statistical differences were found regarding the auditory brainstem evoked potentials findings of the addicts group, when compared to the non-users. CONCLUSION: Auditory brainstem evoked potentials in crack and multiple drugs users did not differ significantly from the control group. Complaints presented by drugs addicts were hyperacusis, auditory hallucination, tinnitus and altered balance.

  11. Effect of inner and outer hair cell lesions on electrically evoked otoacoustic emissions.

    Science.gov (United States)

    Reyes, S; Ding, D; Sun, W; Salvi, R

    2001-08-01

    When the cochlea is stimulated by a sinusoidal current, the inner ear emits an acoustic signal at the stimulus frequency, termed the electrically evoked otoacoustic emission (EEOAE). Recent studies have found EEOAEs in birds lacking outer hair cells (OHCs), raising the possibility that other types of hair cells, including inner hair cells (IHCs), may generate EEOAEs. To determine the relative contribution of IHCs and OHCs to the generation of the EEOAE, we measured the amplitude of EEOAEs, distortion product otoacoustic emissions (DPOAEs), the cochlear microphonic (CM) and the compound action potential (CAP) in normal chinchillas and chinchillas with IHC lesions or IHC plus OHC lesions induced by carboplatin. Selective IHC loss had little or no effect on CM amplitude and caused a slight reduction in mean DPOAE amplitude. However, IHC loss resulted in a massive reduction in CAP amplitude. Importantly, selective IHC lesions did not reduce EEOAE amplitude, but instead, EEOAE amplitude increased at high frequencies. When both IHCs and OHCs were destroyed, the amplitude of the CM, DPOAE and EEOAE all decreased. The increase in EEOAE amplitude seen with IHC loss may be due to (1) loss of tonic efferent activity to the OHCs, (2) change in the mechanical properties of the cochlea or (3) elimination of EEOAEs produced by IHCs in phase opposition to those from OHCs.

  12. Electrically evoked local muscle contractions cause an increase in hippocampal BDNF.

    Science.gov (United States)

    Maekawa, Takahiro; Ogasawara, Riki; Tsutaki, Arata; Lee, Kihyuk; Nakada, Satoshi; Nakazato, Koichi; Ishii, Naokata

    2018-05-01

    High-intensity exercise has recently been shown to cause an increase in brain-derived neurotropic factor (BDNF) in the hippocampus. Some studies have suggested that myokines secreted from contracting skeletal muscle, such as irisin (one of the truncated form of fibronectin type III domain-containing protein 5 (FNDC5)), play important roles in this process. Thus, we hypothesized that locally evoked muscle contractions may cause an increase of BDNF in the hippocampus through some afferent mechanisms. Under anesthesia, Sprague-Dawley rats were fixed on a custom-made dynamometer and their triceps surae muscles were made to maximally contract via delivery of electric stimulations of the sciatic nerve (100 Hz with 1-ms pulse and 3-s duration). Following 50 repeated maximal isometric contractions, the protein expressions of BDNF and activation of its receptor in the hippocampus significantly increased compared with the sham-operated control rats. However, the expression of both BDNF and FNDC5 within stimulated muscles did not significantly increase, nor did their serum concentrations change. These results indicate that local muscular contractions under unconsciousness can induce BDNF expression in the hippocampus. This effect may be mediated by peripheral reception of muscle contraction, but not by systemic factors.

  13. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries.

    Science.gov (United States)

    Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi

    2013-01-01

    Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem

  14. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2016-07-01

    Full Text Available The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70% and testing (30% subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R2 between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

  15. Brain stem auditory potentials evoked by clicks in the presence of high-pass filtered noise in dogs.

    Science.gov (United States)

    Poncelet, L; Deltenre, P; Coppens, A; Michaux, C; Coussart, E

    2006-04-01

    This study evaluates the effects of a high-frequency hearing loss simulated by the high-pass-noise masking method, on the click-evoked brain stem-evoked potentials (BAEP) characteristics in dogs. BAEP were obtained in response to rarefaction and condensation click stimuli from 60 dB normal hearing level (NHL, corresponding to 89 dB sound pressure level) to wave V threshold, using steps of 5 dB in eleven 58 to 80-day-old Beagle puppies. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation potential (RCDP). The procedure was repeated while constant level, high-pass filtered (HPF) noise was superposed to the click. Cut-off frequencies of the successively used filters were 8, 4, 2 and 1 kHz. For each condition, wave V and RCDP thresholds, and slope of the wave V latency-intensity curve (LIC) were collected. The intensity range at which RCDP could not be recorded (pre-RCDP range) was calculated. Compared with the no noise condition, the pre-RCDP range significantly diminished and the wave V threshold significantly increased when the superposed HPF noise reached the 4 kHz area. Wave V LIC slope became significantly steeper with the 2 kHz HPF noise. In this non-invasive model of high-frequency hearing loss, impaired hearing of frequencies from 8 kHz and above escaped detection through click BAEP study in dogs. Frequencies above 13 kHz were however not specifically addressed in this study.

  16. Potenciales provocados auditivos en niños con riesgo neonatal de hipoacusia Auditory evoked potentials in children at neonatal risk for hypoacusis

    Directory of Open Access Journals (Sweden)

    Saúl Garza Morales

    1997-02-01

    Full Text Available Los potenciales provocados auditivos del tallo cerebral (PPATC son un método sencillo y no invasor de evaluación de la función auditiva, que se utiliza ampliamente en niños para detectar tempranamente hipoacusia. Entre abril de 1992 y mayo de 1994, se estudiaron 400 niños mexicanos que presentaban, al menos, un factor de riesgo neonatal de hipoacusia. La media de la edad de los niños estudiados fue 6,6 meses y la media de la edad gestacional al nacer, 35,1 semanas. El 51% de ellos fueron tratados con amikacina. Se registraron 1 427 factores de riesgo (3,5 por niño, entre los que predominaron la exposición a ototóxicos, la hiperbilirrubinemia y el peso al nacer menor de 1 500 g. En 27% se encontraron alteraciones auditivas de tipo periférico y en 13%, ausencia de respuesta a estímulos auditivos. El bajo peso y la menor edad gestacional al nacer, la concentración máxima de bilirrubina en el suero, la presencia de sepsis, la hemorragia subependimaria o intraventricular, la ventilación mecánica y la exposición a ototóxicos se asociaron significativamente con la presencia de hipoacusia grave o profunda.Auditory evoked potentials of the brain stem (AEPBS provide a simple, noninvasive method of evaluating hearing function and have been widely used for early detection of hypoacusis in children. Between April 1992 and May 1994, a study was done of 400 Mexican children who presented at least one neonatal risk factor for hearing impairment. The average age of the children studied was 6.6 months and their average gestational age at birth was 35.1 weeks. Just over half of them (51% had been treated with amikacin. The study found 1 427 risk factors (3.5 per child, the most common ones being exposure to ototoxic substances, hyperbilirubinemia, and birthweight of less that 1 500 g. In 27% of the children, peripheral auditory changes were found, and 13% did not respond to auditory stimuli. Low birthweight and young gestational age at birth, high

  17. The electrical properties of auditory hair cells in the frog amphibian papilla.

    Science.gov (United States)

    Smotherman, M S; Narins, P M

    1999-07-01

    The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

  18. The loudness dependence of auditory evoked potentials (LDAEP as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms.

    Directory of Open Access Journals (Sweden)

    Christine Wyss

    Full Text Available Besides the influence of dopaminergic neurotransmission on negative symptoms in schizophrenia, there is evidence that alterations of serotonin (5-HT system functioning also play a crucial role in the pathophysiology of these disabling symptoms. From post mortem and genetic studies on patients with negative symptoms a 5-HT dysfunction is documented. In addition atypical neuroleptics and some antidepressants improve negative symptoms via serotonergic action. So far no research has been done to directly clarify the association between the serotonergic functioning and the extent of negative symptoms. Therefore, we examined the status of brain 5-HT level in negative symptoms in schizophrenia by means of the loudness dependence of auditory evoked potentials (LDAEP. The LDAEP provides a well established and non-invasive in vivo marker of the central 5-HT activity. We investigated 13 patients with schizophrenia with predominant negative symptoms treated with atypical neuroleptics and 13 healthy age and gender matched controls with a 32-channel EEG. The LDAEP of the N1/P2 component was evaluated by dipole source analysis and single electrode estimation at Cz. Psychopathological parameters, nicotine use and medication were assessed to control for additional influencing factors. Schizophrenic patients showed significantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP in the right hemisphere in patients was related to higher scores in scales assessing negative symptoms. A relationship with positive symptoms was not found. These data might suggest a diminished central serotonergic neurotransmission in patients with predominant negative symptoms.

  19. Electrically evoked compound action potentials artefact rejection by independent component analysis: procedure automation.

    Science.gov (United States)

    Akhoun, Idrick; McKay, Colette; El-Deredy, Wael

    2015-01-15

    Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.

  20. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways.

    Science.gov (United States)

    Liang, M; Lee, M C; O'Neill, J; Dickenson, A H; Iannetti, G D

    2016-08-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. Copyright © 2016 the American Physiological Society.

  1. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  2. What and Where in auditory sensory processing: A high-density electrical mapping study of distinct neural processes underlying sound object recognition and sound localization

    Directory of Open Access Journals (Sweden)

    Victoria M Leavitt

    2011-06-01

    Full Text Available Functionally distinct dorsal and ventral auditory pathways for sound localization (where and sound object recognition (what have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts and speech sounds, with simulated left-right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated what and where task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls delivered from seven free-field spatial locations; with stimulus configuration identical across the where and what tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the where and what tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures.

  3. The internal auditory clock: what can evoked potentials reveal about the analysis of temporal sound patterns, and abnormal states of consciousness?

    Science.gov (United States)

    Jones, S J

    2002-09-01

    Whereas in vision a large amount of information may in theory be extracted from instantaneous images, sound exists only in its temporal extent, and most of its information is contained in the pattern of changes over time. The "echoic memory" is a pre-attentive auditory sensory store in which sounds are apparently retained in full temporal detail for a period of a few seconds. From the long-latency auditory evoked potentials to spectro-temporal modulation of complex harmonic tones, at least two automatic sound analysis processes can be identified whose time constants suggest participation of the echoic memory. When a steady tone changes its pitch or timbre, "change-type" CP1, CN1 and CP2 potentials are maximally recorded near the vertex. These potentials appear to reflect a process concerned with the distribution of sound energy across the frequency spectrum. When, on the other hand, changes occur in the temporal pattern of tones (in which individual pitch changes are occurring at a rate sufficiently rapid for the C-potentials to be refractory), a large mismatch negativity (or MN1) and following positivity (MP2) are generated. The amplitude of these potentials is influenced by the degree of regularity of the pattern, larger responses being generated to a "deviant" tone when the pitch and time of occurrence of the "standards" are fully specified by the preceding pattern. At the sudden cessation of changes, on resumption of a steady pitch, a mismatch response is generated whose latency is determined with high precision (in the order of a few milliseconds) by the anticipated time of the next change, which did not in fact occur. The mismatch process, therefore, functions as spectro-temporal auditory pattern analyser, whose consequences are manifested each time the pattern changes. Since calibration of the passage of time is essential for all conscious and subconscious behaviour, is it possible that some states of unconsciousness may be directly due to disruption of

  4. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M

    2016-08-01

    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; Ptorque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during

  5. Estabilidade dos potenciais evocados auditivos em indivíduos adultos com audição normal Stability of auditory evoked potentials in adults with normal hearing

    Directory of Open Access Journals (Sweden)

    Carla Gentile Matas

    2011-03-01

    Full Text Available OBJETIVO: Avaliar a estabilidade dos parâmetros dos potenciais evocados auditivos em adultos normais. MÉTODOS: Foram submetidos à avaliação audiológica e eletrofisiológica (potencial evocado auditivo de tronco encefálico - PEATE, potencial evocado auditivo de média latência - PEAML e potencial cognitivo - P300 49 indivíduos normais, de 18 a 40 anos (25 do gênero feminino e 24 do gênero masculino. Realizou-se reavaliação três meses após a avaliação. RESULTADOS: Foram observadas diferenças entre os gêneros na avaliação para as latências das ondas III e V e interpicos I-III e I-V do PEATE e amplitude N2-P3 do P300. Não foram verificadas diferenças significativas para os parâmetros do PEATE, PEAML (latência das ondas Na, Pa e amplitude Na - Pa e P300 (latência da onda P300 entre os resultados obtidos na avaliação e reavaliação. CONCLUSÃO: Exceção feita à amplitude N2-P3, observou-se estabilidade dos parâmetros de PEATE, PEAML e P300 em adultos normais após período de três meses.PURPOSE: To evaluate the stability of parameters of auditory evoked potentials in normal adults. METHODS: Forty-nine normal subjects with ages from 18 to 40 years (25 females and 24 males were submitted to audiological and electrophysiological hearing evaluation (auditory brainstem response - ABR, middle latency response - MLR, and cognitive potential - P300. Subjects were reassessed three months after the initial evaluation. RESULTS: Significant differences were observed between genders regarding the wave latencies III and V and the interpeaks I-III and I-IV of ABR, and the amplitude N2-P3 of the P300. No differences were found between the results of initial and final assessments for the parameters of the ABR, MLR (Na, Pa latencies and Na-Pa amplitude and P300 (P300 latency. CONCLUSION: Except for the N2-P3 amplitude, it was observed stability of the parameters of ABR, MLR and P300 in normal adults after a period of three months.

  6. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  7. An automatic algorithm for blink-artifact suppression based on iterative template matching: application to single channel recording of cortical auditory evoked potentials

    Science.gov (United States)

    Valderrama, Joaquin T.; de la Torre, Angel; Van Dun, Bram

    2018-02-01

    Objective. Artifact reduction in electroencephalogram (EEG) signals is usually necessary to carry out data analysis appropriately. Despite the large amount of denoising techniques available with a multichannel setup, there is a lack of efficient algorithms that remove (not only detect) blink-artifacts from a single channel EEG, which is of interest in many clinical and research applications. This paper describes and evaluates the iterative template matching and suppression (ITMS), a new method proposed for detecting and suppressing the artifact associated with the blink activity from a single channel EEG. Approach. The approach of ITMS consists of (a) an iterative process in which blink-events are detected and the blink-artifact waveform of the analyzed subject is estimated, (b) generation of a signal modeling the blink-artifact, and (c) suppression of this signal from the raw EEG. The performance of ITMS is compared with the multi-window summation of derivatives within a window (MSDW) technique using both synthesized and real EEG data. Main results. Results suggest that ITMS presents an adequate performance in detecting and suppressing blink-artifacts from a single channel EEG. When applied to the analysis of cortical auditory evoked potentials (CAEPs), ITMS provides a significant quality improvement in the resulting responses, i.e. in a cohort of 30 adults, the mean correlation coefficient improved from 0.37 to 0.65 when the blink-artifacts were detected and suppressed by ITMS. Significance. ITMS is an efficient solution to the problem of denoising blink-artifacts in single-channel EEG applications, both in clinical and research fields. The proposed ITMS algorithm is stable; automatic, since it does not require human intervention; low-invasive, because the EEG segments not contaminated by blink-artifacts remain unaltered; and easy to implement, as can be observed in the Matlab script implemeting the algorithm provided as supporting material.

  8. Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity.

    NARCIS (Netherlands)

    Mens, L.H.M.

    2007-01-01

    During the last decade, cochlear implantation has evolved into a well-established treatment of deafness, predominantly because of many improvements in speech processing and the controlled excitation of the auditory nerve. Cochlear implants now also feature telemetry, which is highly useful to

  9. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    Science.gov (United States)

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by

  10. Auditory evoked potentials in children at neonatal risk for hypoacusis Potenciales provocados auditivos en niños con riesgo neonatal de hipoacusia

    Directory of Open Access Journals (Sweden)

    Saúl Garza Morales

    1997-10-01

    Full Text Available Brainstem auditory evoked potentials provide a simple, noninvasive method of evaluating hearing function and have been widely used for early detection of hypoacusis in children. Between April 1992 and May 1994, a study was done of 400 Mexican children who presented at least one neonatal risk factor for hearing impairment. The average age of the children studied was 6.6 months and their average gestational age at birth was 35.1 weeks. Just over half of the children had been treated with amikacin. The study found 1427 risk factors (about 3.5 per child, the most common ones being exposure to ototoxic substances, hyperbilirubinemia, and birthweight Los potenciales provocados auditivos del tallo cerebral son un método sencillo y no invasor de evaluación de la función auditiva, que se utiliza ampliamente en niños para detectar tempranamente hipoacusia. Entre abril de 1992 y mayo de 1994, se estudiaron 400 niños mexicanos que presentaban, al menos, un factor de riesgo neonatal de hipoacusia. La media de la edad de los niños estudiados fue 6,6 meses y la media de la edad gestacional al nacer, 35,1 semanas. El 51% de ellos fueron tratados con amikacina. Se registraron 1427 factores de riesgo (3,5 por niño, entre los que predominaron la exposición a ototóxicos, la hiperbilirrubinemia y el peso al nacer <1 500 g. En 27% se encontraron alteraciones auditivas de tipo periférico y en 13%, ausencia de respuesta a estímulos auditivos. El bajo peso y la menor edad gestacional al nacer, la concentración máxima de bilirrubina en el suero, la presencia de sepsis, la hemorragia subependimaria o intraventricular, la ventilación mecánica y la exposición a ototóxicos se asociaron significativamente con la presencia de hipoacusia grave o profunda.

  11. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording.

    Directory of Open Access Journals (Sweden)

    Kang Peng

    Full Text Available In the auditory pathway, the inferior colliculus (IC receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC, and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency. Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.

  12. Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array

    Directory of Open Access Journals (Sweden)

    Helbig Silke

    2009-12-01

    Full Text Available Abstract Background The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720°. When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP recordings in this region with a large number of subjects using a commercially available cochlear implant system. The aim of this study is to determine if certain properties of ECAP recordings vary, depending on the stimulation site in the cochlea. Methods Recordings of auditory nerve responses were conducted in 67 subjects to demonstrate the feasibility of ECAP recordings using the Auditory Nerve Response Telemetry (ART™ feature of the MED-EL MAESTRO system software. These recordings were then analyzed based on the site of cochlear stimulation defined as basal, middle and apical to determine if the amplitude, threshold and slope of the amplitude growth function and the refractory time differs depending on the region of stimulation. Results Findings show significant differences in the ECAP recordings depending on the stimulation site. Comparing the apical with the basal region, on average higher amplitudes, lower thresholds and steeper slopes of the amplitude growth function have been observed. The refractory time shows an overall dependence on cochlear region; however post-hoc tests showed no significant effect between individual regions. Conclusions Obtaining ECAP recordings is also possible in the most apical region of the cochlea. However, differences can be observed depending on the region of the cochlea stimulated. Specifically, significant higher ECAP amplitude, lower thresholds and steeper amplitude growth function slopes have been observed in the apical region. These differences could be explained by the location of the stimulating electrode with respect to the neural tissue

  13. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  14. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds.

    Science.gov (United States)

    Kelbsch, Carina; Maeda, Fumiatsu; Lisowska, Jolanta; Lisowski, Lukasz; Strasser, Torsten; Stingl, Krunoslav; Wilhelm, Barbara; Wilhelm, Helmut; Peters, Tobias

    2017-06-01

    To analyse pupil responses to specific chromatic stimuli in patients with advanced retinitis pigmentosa (RP) to ascertain whether chromatic pupillography can be used as an objective marker for residual retinal function. To examine correlations between parameters of the pupil response and the perception threshold of electrically evoked phosphenes. Chromatic pupillography was performed in 40 patients with advanced RP (visual acuity Chromatic pupillography demonstrated a significant decrease in outer retinal photoreceptor responses but a persisting and disinhibited intrinsic photosensitive retinal ganglion cell function in advanced RP. These phenomena may be useful as an objective marker for the efficacy of any interventional treatment for hereditary retinal diseases as well as for the selection of suitable patients for an electronic retinal implant. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    NARCIS (Netherlands)

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement

  16. Potencial evocado auditivo tardio relacionado a eventos (P300 na síndrome de Down Late auditory event-related evoked potential (P300 in Down's syndrome patients

    Directory of Open Access Journals (Sweden)

    Carla Patrícia Hernandez Alves Ribeiro César

    2010-04-01

    Full Text Available A síndrome de Down é causada pela trissomia do cromossomo 21 e está associada com alteração do processamento auditivo, distúrbio de aprendizagem e, provavelmente, início precoce de Doença de Alzheimer. OBJETIVO: Avaliar as latências e amplitudes do potencial evocado auditivo tardio relacionado a eventos (P300 e suas alterações em indivíduos jovens adultos com síndrome de Down. MATERIAL E MÉTODO: Estudo de caso prospectivo. Latências e amplitudes do P300 foram avaliadas em 17 indivíduos com síndrome de Down e 34 indivíduos sadios. RESULTADOS: Foram identificadas latências do P300 (N1, P2, N2 e P3 prolongadas e amplitude N2 - P3 diminuída nos indivíduos com síndrome de Down quando comparados ao grupo controle. CONCLUSÃO: Em indivíduos jovens adultos com síndrome de Down ocorre aumento das latências N1, P2, N2 e P3, e diminuição significativa da amplitude N2-P3 do potencial evocado auditivo tardio relacionado a eventos (P300, sugerindo prejuízo da integração da área de associação auditiva com as áreas corticais e subcorticais do sistema nervoso central.Down syndrome is caused by a trisomy of chromosome 21 and is associated with central auditory processing deficit, learning disability and, probably, early-onset Alzheimer's disease. AIM: to evaluate the latencies and amplitudes of evoked late auditory potential related to P300 events and their changes in young adults with Down's syndrome. MATERIALS AND METHODS: Prospective case study. P300 test latency and amplitudes were evaluated in 17 individuals with Down's syndrome and 34 healthy individuals. RESULTS The P300 latency (N1, P2, N2 and P3 was longer and the N2-P3 amplitude was lower in individuals with Down syndrome when compared to those in the control group. CONCLUSION: In young adults with Down syndrome, N1, P2, N2 and P3 latencies of late auditory evoked potential related to P300 events were prolonged, and N2 - P3 amplitudes were significantly reduced

  17. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno

    2013-11-01

    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  18. Sound detection by the longfin squid (em>Loligo pealeiiem>) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure

    DEFF Research Database (Denmark)

    Mooney, T. Aran; Hanlon, Roger T; Christensen-Dalsgaard, Jakob

    2010-01-01

    of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500 Hz with lowest thresholds between 100 and 200 Hz. At the best frequencies, AEP amplitudes were often >20 µV. Evoked potentials were...

  19. Psychophysics, flare, and neurosecretory function in human pain models: capsaicin versus electrically evoked pain.

    Science.gov (United States)

    Geber, Christian; Fondel, Ricarda; Krämer, Heidrun H; Rolke, Roman; Treede, Rolfe-Detlef; Sommer, Claudia; Birklein, Frank

    2007-06-01

    Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2x CAP (50 microg) and 2x ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcitonin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an enzyme immunoassay. Time course and peak pain ratings were different between CAP and ES. Test-retest correlation was high (r > or = 0.73). Both models induced primary heat hyperalgesia and primary plus secondary pin-prick hyperalgesia. Allodynia occurred in about half of the subjects. Maximum flare sizes did not differ between CAP and ES, but flare intensities were higher for ES. Test-retest correlation was higher for flare sizes than for flare intensity. A significant CGRP release could only be measured after CAP. The different time courses of pain stimulation (CAP: rapidly decaying pain versus ES: pain plateau) led to different peripheral neurosecretory effects but induced similar central plasticity and hyperalgesia. The present study gives a detailed overview of psychophysical and neurosecretory characteristics induced by noxious stimulation with capsaicin and electrical current. We describe differences, similarities, and reproducibility of these human pain models. These data might help to interpret past and future results of human pain studies using experimental pain.

  20. Comparison between electrically evoked and voluntary isometric contractions for biceps brachii muscle oxidative metabolism using near-infrared spectroscopy.

    Science.gov (United States)

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Nosaka, Kazunori

    2009-09-01

    This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, DeltaTOI) and total haemoglobin concentration (DeltatHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased approximately 30% of pre-exercise MVC. During the 30 contractions at 30% MVC, DeltaTOI decrease was significantly (P < 0.05) greater and DeltatHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (approximately 40% of VOL) was significantly (P < 0.05) lower than VOL, DeltaTOI was similar and tHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity.

  1. A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties

    Directory of Open Access Journals (Sweden)

    Colin eHorne

    2016-02-01

    Full Text Available We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs. The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability under both monophasic and cathodic-anodic biphasic stimulation, without changing the model’s parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions.Our work extends the stochastic leaky integrate and fire (SLIF neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  2. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors.

    Science.gov (United States)

    Jubeau, Marc; Muthalib, Makii; Millet, Guillaume Y; Maffiuletti, Nicola A; Nosaka, Kazunori

    2012-02-01

    This study compared between maximal voluntary (VOL) and electrically stimulated (ES) isometric contractions of the elbow flexors for changes in indirect markers of muscle damage to investigate whether ES would induce greater muscle damage than VOL. Twelve non-resistance-trained men (23-39 years) performed VOL with one arm and ES with the contralateral arm separated by 2 weeks in a randomised, counterbalanced order. Both VOL and ES (frequency 75 Hz, pulse duration 250 μs, maximally tolerated intensity) exercises consisted of 50 maximal isometric contractions (4-s on, 15-s off) of the elbow flexors at a long muscle length (160°). Changes in maximal voluntary isometric contraction torque (MVC), range of motion, muscle soreness, pressure pain threshold and serum creatine kinase (CK) activity were measured before, immediately after and 1, 24, 48, 72 and 96 h following exercise. The average peak torque over the 50 isometric contractions was greater (P < 0.05) for VOL (32.9 ± 9.8 N m) than ES (16.9 ± 6.3 N m). MVC decreased greater and recovered slower (P < 0.05) after ES (15% lower than baseline at 96 h) than VOL (full recovery). Serum CK activity increased (P < 0.05) only after ES, and the muscles became more sore and tender after ES than VOL (P < 0.05). These results showed that ES induced greater muscle damage than VOL despite the lower torque output during ES. It seems likely that higher mechanical stress imposed on the activated muscle fibres, due to the specificity of motor unit recruitment in ES, resulted in greater muscle damage.

  3. An evoked auditory response fMRI study of the effects of rTMS on putative AVH pathways in healthy volunteers.

    LENUS (Irish Health Repository)

    Tracy, D K

    2010-01-01

    Auditory verbal hallucinations (AVH) are the most prevalent symptom in schizophrenia. They are associated with increased activation within the temporoparietal cortices and are refractory to pharmacological and psychological treatment in approximately 25% of patients. Low frequency repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex has been demonstrated to be effective in reducing AVH in some patients, although results have varied. The cortical mechanism by which rTMS exerts its effects remain unknown, although data from the motor system is suggestive of a local cortical inhibitory effect. We explored neuroimaging differences in healthy volunteers between application of a clinically utilized rTMS protocol and a sham rTMS equivalent when undertaking a prosodic auditory task.

  4. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    Science.gov (United States)

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  5. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  6. Potentiation by choline of basal and electrically evoked acetylcholine release, as studied using a novel device which both stimulates and perfuses rat corpus striatum

    Science.gov (United States)

    Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.

    1993-01-01

    We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Effects of electrical water bath stunning current frequencies on the spontaneous electroencephalogram and somatosensory evoked potentials in hens.

    Science.gov (United States)

    Raj, A B M; O'Callaghan, M

    2004-04-01

    1. The effectiveness of water bath electrical stunning of chickens with a constant root mean square (rms) current of 100 mA per bird delivered for 3 s using 100, 200, 400, 800 and 1500 Hz sine wave alternating current (AC) was investigated in layer hens. The quantitative changes occurring in the electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) were used to determine the effectiveness of stunning. The changes occurring in the EEG were evaluated using Fast Fourier Transformations (FFT) and the SEPs were averaged to determine whether they were present or abolished. 2. The results of FFT indicated that stunning of chickens with a constant rms current of 100 mA per bird using 100 or 200 Hz induced epileptiform activity in all the hens, immediately followed by a reduction in the total (2 to 30 Hz) and relative (13 to 30 Hz) power contents in the EEG frequency bands indicative of unconsciousness and insensibility. The SEPs were abolished in the majority of hens stunned with 100 Hz and all the hens stunned with 200 Hz. 3. By contrast, stunning using 400, 800 or 1500 Hz failed to induce epileptiform activity in all the birds, the total and relative power contents in the EEG frequency bands showed a substantial increase, rather than reduction, and the SEPs were also retained in the majority of chickens. It is therefore suggested that stunning using these frequencies failed to stun them satisfactorily. In these birds, occurrence of a painful arousal, rather than unconsciousness, could not be ruled out. 4. It is therefore suggested that water bath electrical stunning of chickens with a minimum rms current of 100 mA per bird delivered using 100 or 200 Hz would be adequate to ensure bird welfare under commercial conditions, provided both the carotid arteries in the neck are severed at slaughter. On humanitarian and bird welfare grounds, a rms current of greater than 100 mA per bird should be applied whilst using frequencies of 400 Hz or more of sine wave AC

  8. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  9. Effect of gamma rays on electrically evoked contractions of non-vascular smooth muscles (rat vas deferens)

    International Nuclear Information System (INIS)

    Azroony, R.; Ksies, F.; Alya, G.

    2002-10-01

    We have tried, in this experiment, to study the modifications of non-vascular smooth muscles contraction induced via gamma rays. Smooth muscular fibers were isolated from the vas deferens of an adult rat and contractions were electrically evoked. Our results show that irradiation activates the VOC (Voltage Operated Channel) type of ionic channels which causes an increasing in the inward flux of Ca 2+ and then causes an increasing in the inner calcium concentration [Ca 2] i, the matter which means an increasing in the force of muscular contraction. Concerning to the response of vas deferens smooth muscles to the activation of membrane receptors, we have tried to study the effects of gamma rays on activating adrenergic and cholinergic receptors, also, we have tried to show the effects of different doses of gamma rays (1, 3, 5, 7 Gy) on regulating the contractile response of this type of smooth muscles. And results show that: - Irradiation increases contraction force, mediated by adrenergic and cholinergic receptors, in a dose dependent manner, with E m ax 1 Gy m axc 3 Gy m ax 5 Gy m ax 7 Gy. There is an important shift on irradiated rats (3, 5, 7 Gy) where the maximum effect of Acetylcholine (E m ax) can be obtained in lower concentrations of Acetylcholine. These results mean that irradiation activates the inward flux of Ca 2+ through the ROC (Receptors Operated Channels) type of ionic channels, which rely, in their activation, on activating the membrane receptors. By comparing these results with the effects of gamma rays on activating vascular adrenergic and cholinergic receptors, we concluded that: Non-vascular smooth muscles (vas deferens) are less sensitive to irradiation in comparing with vascular smooth muscles (venae portal hepatica), and irradiation increases the sensitivity of cholinergic receptors to acetylcholine in the smooth muscular fibers of vas deferens while; if decreases this sensitivity in the smooth muscular fibers of venae portal hepatica

  10. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: dependence of required stimulation current on interstimulus interval value.

    Science.gov (United States)

    Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas

    2015-05-01

    To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.

  11. Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Ruaro Maria

    2009-01-01

    Full Text Available Abstract Background Neuronal plasticity is initiated by transient elevations of neuronal networks activity leading to changes of synaptic properties and providing the basis for memory and learning 1. An increase of electrical activity can be caused by electrical stimulation 2 or by pharmacological manipulations: elevation of extracellular K+ 3, blockage of inhibitory pathways 4 or by an increase of second messengers intracellular concentrations 5. Neuronal plasticity is mediated by several biochemical pathways leading to the modulation of synaptic strength, density of ionic channels and morphological changes of neuronal arborisation 6. On a time scale of a few minutes, neuronal plasticity is mediated by local protein trafficking 7 while, in order to sustain modifications beyond 2–3 h, changes of gene expression are required 8. Findings In the present manuscript we analysed the time course of changes of the evoked electrical activity during neuronal plasticity and we correlated it with a transcriptional analysis of the underlying changes of gene expression. Our investigation shows that treatment for 30 min. with the GABAA receptor antagonist gabazine (GabT causes a potentiation of the evoked electrical activity occurring 2–4 hours after GabT and the concomitant up-regulation of 342 genes. Inhibition of the ERK1/2 pathway reduced but did not abolish the potentiation of the evoked response caused by GabT. In fact not all the genes analysed were blocked by ERK1/2 inhibitors. Conclusion These results are in agreement with the notion that neuronal plasticity is mediated by several distinct pathways working in unison.

  12. Síndrome da apneia obstrutiva do sono e o potencial auditivo P300 Obstructive sleep apnea and P300 evoked auditory potential

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Martins

    2011-12-01

    Full Text Available A Síndrome da Apneia Obstrutiva do Sono (SAOS diminui as capacidades da atenção, memória e concentração, fatores relacionados com a cognição. A análise dos parâmetros do P300 auditivo permitiria inferir disfunção cognitiva. OBJETIVO: Comparar os dados da polissonografia e do P300 auditivo em adultos, roncopatas primários com portadores de SAOS. CASUÍSTICA E MÉTODO: Estudo prospectivo em roncopatas primários (N=12 e em portadores de SAOS (N=54, submetidos à polissonografia definidos pelo índice de apneia e hipopneia (IAH. As variáveis da polissonografia e as do P300 foram comparadas, pelos testes "T" de Student, exato de Fisher, regressão logística e análise de correlação com nível de significância de 5%. RESULTADOS: O IAH apresentou correlação inversa com a oximetria em ambos os grupos. A prevalência do P300 foi menor no G.SAOS (teste exato de Fisher, p=0,027. A idade dos pacientes não influenciou a prevalência do P300 (análise de regressão; p=0,232. A amplitude do P300 foi menor do G.SAOS (teste "T" de Student; p=0,003 a latência do P300 foi semelhante em ambos os grupos (teste "T" de Student; p=0,89. CONCLUSÃO: A redução da amplitude do P300 nos portadores de SAOS sugere disfunção cognitiva induzida por diminuição da memória auditiva.The obstructive sleep apnea syndrome (OSAS reduces attention span, memory and concentration capacities, all associated with cognition. The analysis of the auditory P300 parameters could help infer cognitive dysfunction. OBJECTIVE: To compare the data from polysomnography and the auditory P300 in adults, primary snorers with OSAS patients. MATERIALS AND METHODS: Prospective study with primary snorers (N=12 and in OSAS patients (N=54, submitted to polysomnography, defined by the apnea-hypopnea index (AHI. The polysomnography and P300 variables were compared by the t-Student test, the Exact Fisher's Test, logistic regression and analysis of correlation with a significance

  13. Auditory evoked potentials in premature and full-term infants Potenciais evocados auditivos em lactentes pré-termo e a termo

    Directory of Open Access Journals (Sweden)

    Maria Angélica de Almeida Porto

    2011-10-01

    Full Text Available Accurate information about type, degree, and configuration of hearing loss are necessary for successful audiological early interventions. Auditory brainstem response with tone burst stimuli (TB ABR and auditory steady-state response (ASSR exams provide this information. AIM: To analyze the clinical applicability of TB ABR and ASSR at 2 kHz in infants, comparing responses in full-term and premature neonates. MATERIAL AND METHOD: The study was cross-sectional, clinical and experimental. Subjects consisted of 17 premature infants and 19 full-term infants. TB ABR and ASSR exams at 2000 Hz were done during natural sleep. RESULTS: The electrophysiological minimum response obtained with TB ABR was 32.4 dBnHL (52.4 dBSPL; the ASSR minimum was 13.8 dBHL (26.4 dBSPL. The exams required 21.1 min and 22 min, respectively. Premature and full-term infant responses showed no statistically significant differences, except for auditory steady-state response duration. CONCLUSIONS: Both exams have clinical applicability at 2 kHz in infants, with 20 min of duration, on average. In general, there are no differences between premature and full-term individuals.O sucesso de uma intervenção audiológica precoce depende de informações precisas quanto ao tipo, grau e configuração da perda auditiva. O potencial evocado auditivo de tronco encefálico com o estímulo tone burst (PEATE TB e a resposta auditiva de estado estável (RAEE proporcionam tais informações. OBJETIVO: Investigar a aplicabilidade clínica, em lactentes, do PEATE TB e da RAEE na frequência de 2 kHz, comparando as respostas dos lactentes nascidos a termo e prétermo. MATERIAL E MÉTODO: O estudo (transversal, clínico e experimental foi realizado com uma casuística de 17 lactentes pré-termo e 19 a termo submetidos ao PEATE TB e RAEE em 2000 Hz. RESULTADOS: A resposta eletrofisiológica mínima obtida com o PEATE TB foi de 32,4 dBnNA (52,4 dBNPS e com a RAEE de 13,8 dBNA (26,4 dBNPS, com dura

  14. Effect of elevated potassium ion concentrations on electrically evoked release of (/sup 3/H)acetylcholine in slices of rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Szerb, J C; Hadhazy, P; Dudar, J D [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Physiology and Biophysics

    1978-01-01

    To establish the effect of raising the concentration of extracellular potassium ions on axonal conduction and transmitter release in a mammalian central pathway, the septohippocampal cholinergic tract, the rate of (/sup 3/H) acetylcholine release evoked by electrical stimulation was measured in rat hippocampal slices superfused with Krebs' solution containing 3-15 mM K/sup +/. The evoked release of (/sup 3/H) acetylcholine was abolished by the presence of tetrodotoxin or by the omission of Ca/sup 2 +/ in the superfusion medium, indicating that it originated from terminals depolarized by conducted action potentials. Potassium concentrations between 3 and 8 mM had no effect but 10-15 mM K/sup +/ reduced the rate of evoked release and decreased the size of the releasable pool of (/sup 3/H) acetylcholine. Decreasing the sodium content of the Krebs' solution to 97 mM or less had effects similar to those of elevated (K/sup +/). Elevated K/sup +/ (10-15 mM) reversibly reduced the size of compound action potentials in the fimbria and the alveus. The results suggest that extracellular potassium concentrations occurring under physiological conditions do not affect axonal conduction and transmitter release but that both are reduced in pathological states when extracellular (K/sup +/) above 8 mM occur.

  15. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.

    Science.gov (United States)

    Goldwyn, Joshua H; Rinzel, John

    2016-04-01

    The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.

  16. Corticosteroid therapy in regressive autism: a retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior.

    Science.gov (United States)

    Duffy, Frank H; Shankardass, Aditi; McAnulty, Gloria B; Eksioglu, Yaman Z; Coulter, David; Rotenberg, Alexander; Als, Heidelise

    2014-05-15

    Up to a third of children with Autism Spectrum Disorder (ASD) manifest regressive autism (R-ASD).They show normal early development followed by loss of language and social skills. Absent evidence-based therapies, anecdotal evidence suggests improvement following use of corticosteroids. This study examined the effects of corticosteroids for R-ASD children upon the 4 Hz frequency modulated evoked response (FMAER) arising from language cortex of the superior temporal gyrus (STG) and upon EEG background activity, language, and behavior. An untreated clinical convenience sample of ASD children served as control sample. Twenty steroid-treated R-ASD (STAR) and 24 not-treated ASD patients (NSA), aged 3 - 5 years, were retrospectively identified from a large database. All study participants had two sequential FMAER and EEG studies;Landau-Kleffner syndrome diagnosis was excluded. All subjects' records contained clinical receptive and expressive language ratings based upon a priori developed metrics. The STAR group additionally was scored behaviorally regarding symptom severity as based on the Diagnostic and Statistical Manual IV (DSM-IV) ASD criteria list. EEGs were visually scored for abnormalities. FMAER responses were assessed quantitatively by spectral analysis. Treated and untreated group means and standard deviations for the FMAER, EEG, language, and behavior, were compared by paired t-test and Fisher's exact tests. The STAR group showed a significant increase in the 4 Hz FMAER spectral response and a significant reduction in response distortion compared to the NSA group. Star group subjects' language ratings were significantly improved and more STAR than NSA group subjects showed significant language improvement. Most STAR group children showed significant behavioral improvement after treatment. STAR group language and behavior improvement was retained one year after treatment. Groups did not differ in terms of minor EEG abnormalities. Steroid treatment produced no

  17. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  18. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    Science.gov (United States)

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P HDA stimulation were reduced (P HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  19. Intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation for preservation of facial nerve function in patients with large acoustic neuroma

    Institute of Scientific and Technical Information of China (English)

    LIU Bai-yun; TIAN Yong-ji; LIU Wen; LIU Shu-ling; QIAO Hui; ZHANG Jun-ting; JIA Gui-jun

    2007-01-01

    Background Although various monitoring techniques have been used routinely in the treatment of the lesions in the skull base, iatrogenic facial paresis or paralysis remains a significant clinical problem. The aim of this study was to investigate the effect of intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation on preservation of facial nerve function.Method From January to November 2005, 19 patients with large acoustic neuroma were treated using intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation (TCEMEP) for preservation of facial nerve function. The relationship between the decrease of MEP amplitude after tumor removal and the postoperative function of the facial nerve was analyzed.Results MEP amplitude decreased more than 75% in 11 patients, of which 6 presented significant facial paralysis (H-B grade 3), and 5 had mild facial paralysis (H-B grade 2). In the other 8 patients, whose MEP amplitude decreased less than 75%, 1 experienced significant facial paralysis, 5 had mild facial paralysis, and 2 were normal.Conclusions Intraoperative TCEMEP can be used to predict postoperative function of the facial nerve. The decreased MEP amplitude above 75 % is an alarm point for possible severe facial paralysis.

  20. Potencial evocado auditivo de longa latência para estímulo de fala apresentado com diferentes transdutores em crianças ouvintes Late auditory evoked potentials to speech stimuli presented with different transducers in hearing children

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Agostinho-Pesse

    2013-01-01

    Full Text Available OBJETIVO: analisar, de forma comparativa, a influência do transdutor no registro dos componentes P1, N1 e P2 eliciados por estímulo de fala, quanto à latência e à amplitude, em crianças ouvintes. MÉTODO: 30 crianças ouvintes de quatro a 12 anos de idade, de ambos os sexos. Os potenciais evocados auditivos de longa latência foram pesquisados por meio dos transdutores, fone de inserção e caixa acústica, eliciados por estímulo de fala /da/, sendo o intervalo interestímulos de 526ms, a intensidade de 70dBNA e a taxa de apresentação de 1,9 estímulos por segundo. Foram analisados os componentes P1, N1 e P2 quando presentes, quanto à latência e à amplitude. RESULTADOS: constatou-se um nível de concordância forte entre a pesquisadora e o juiz. Não houve diferença estatisticamente significante ao comparar os valores de latência e amplitude dos componentes P1, N1 e P2, ao considerar sexo e orelha, assim como para a latência dos componentes quando analisado os tipos de transdutores. Entretanto, houve diferença estatisticamente significante para a amplitude dos componentes P1 e N1, com maior amplitude para o transdutor caixa acústica. CONCLUSÃO: os valores de latência dos componentes P1, N1 e P2 e amplitude de P2 obtidos com fone de inserção podem ser utilizados como referência de normalidade independente do transdutor utilizado para a pesquisa dos potenciais evocados auditivos de longa latência.PURPOSE: to analyze, in a comparative manner, the influence of the transducer on the recordings of P1, N1 and P2components elicited through speech stimulus, as to the latency and amplitude in hearing children. METHOD: the sample was comprised of 30 hearing children aged 4-12 yrs, both genders. The long latency auditory evoked potentials were researched by means of transducers, insertion phone and speakers, elicited through speech stimulus /da/ presented with interstimuli interval of 526ms, the intensity of 70dBNA and presentation

  1. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring.

    Science.gov (United States)

    Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito

    2013-12-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.

  2. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Science.gov (United States)

    Ioannou, Christos I; Pereda, Ernesto; Lindsen, Job P; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  3. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  4. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.; Kros, Corne J.

    2016-01-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they

  5. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Christos I Ioannou

    Full Text Available The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB. The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  6. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    Science.gov (United States)

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  7. A contribution to the study of spontaneous and evoked electrical activities of the adult rabbit hypothalamus and application of digital analysis

    International Nuclear Information System (INIS)

    Lasmoles, Francoise

    1974-01-01

    The spontaneous and evoked electrical activities of the hypothalamus were studied in 18 adult rabbits chronically implanted with electrodes. The graphic study of the EEG was completed by digital analyses of the signal considered as a random process and processed both by statistical analysis in order to know the distribution function of the signal amplitude and harmonic analysis allowing classification of power density spectra by the calculation of the autocorrelation function and its Fourier transform. Absolute values and percentage of energy distribution were obtained from 0 to 40 Hz for each frequency rate (0.25 Hz) and in various frequency bands (0-3, 3-6, 7-9, 9-15, 15-20, 20-30 and 30-40 Hz). The experimental methods (electrode implantation, data acquisition and processing) are described: 240 sequences corresponding to stable physiological states were analyzed after analogical-digital conversion (sampling rate: 10 ms, period of integration: 20 s). Whatever the state of vigilance, the hypothalamus had a fairly homogeneous function different from the spontaneous electrical activity of the cortex. The signal characteristics both in amplitude and frequency allowed to distinguish the hypothalamic areas studied (supra-optic area, mammillary body, postero-lateral hypothalamus). The results were reproducible and verified the information supplied by visual examination of the EEG. Following light stimulus, the evoked potentials were collected in the hypothalamus; there should therefore be convergence, yet since the answers are unstable and long latent, the neuronal paths followed by the impulse must not be direct. (author) [fr

  8. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  9. Potencial evocado cognitivo e desordem de processamento auditivo em crianças com distúrbios de leitura e escrita Cognitive evoked potentials and central auditory processing in children with reading and writing disorders

    Directory of Open Access Journals (Sweden)

    Gislaine Richter Minhoto Wiemes

    2012-06-01

    Full Text Available As dificuldades na aprendizagem escolar muitas vezes podem ser causadas por uma alteração do Processamento Auditivo - PA. OBJETIVO: Identificar se acima da média dos valores de latência do P300, num grupo de indivíduos com Distúrbio de Leitura e Escrita, também seriam encontradas alterações no teste Staggered Spondaic Word - SSW e no teste de Fala no Ruído que sugerissem Desordem do Processamento Auditivo - DPA. MATERIAL E MÉTODOS: Estudo de coorte transversal. Foram avaliados 21 indivíduos com distúrbio de leitura e escrita, idade entre 7 e 14 anos. RESULTADOS: Todos apresentaram resultados normais no exame otorrinolaringológico, na avaliação audiológica e Potencial Evocado Auditivo de Tronco Encefálico. Fazendo-se a média aritmética de todos os valores de latência do P300 obtidos, chegou-se à média de 334,25 ms, sendo divididos em dois grupos: grupo "A", com média da latência acima de 335 ms, e "B", com latência abaixo de 335 ms. Nos indivíduos do grupo "A", foram realizados os testes SSW e Fala no Ruído. CONCLUSÃO:O presente estudo pode concluir que foram encontradas alterações nos testes de fala dicótica (SSW e de Fala no Ruído no grupo de indivíduos com Distúrbio da Escrita e Leitura com valores de latência do P300 acima de 335 ms, sugerindo DPA.Learning disorders are often magnified by auditory processing disorders (APD. OBJECTIVE: This paper aims to verify whether individuals with reading and writing disorders and P300 latencies above the average also present altered Staggered Spondaic Word (SSW and speech-in-noise test results suggestive of APD. MATERIALS AND METHODS: This is a cross-sectional cohort study. Twenty-one individuals with reading and writing disorders aged between 7 and 14 years were enrolled. RESULTS: All subjects had normal findings on ENT examination, audiological tests, and brainstem auditory evoked potentials. The average P300 latency (334,25 ms of all patients was picked as a cutoff

  10. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    . Sensorineural hearing impairments is commonly associated with a loss of outer hair-cell functionality, and a measurable consequence is the decreased amount of cochlear compression at frequencies corresponding to the damaged locations in the cochlea. In clinical diagnostics, a fast and objective measure of local...

  11. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  12. Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes.

    Science.gov (United States)

    Oron, Y; Gillo, B; Gershengorn, M C

    1988-06-01

    Xenopus laevis oocytes are giant cells suitable for studies of plasma membrane receptors and signal transduction pathways because of their capacity to express receptors after injection of heterologous mRNA. We studied depolarizing chloride currents evoked by acetylcholine (AcCho) in native oocytes ("intrinsic AcCho response"), by thyrotropin-releasing hormone (TRH) in oocytes injected with pituitary (GH3) cell RNA ("acquired TRH response"), and by AcCho in oocytes injected with rat brain RNA ("acquired AcCho response"). We found differences in the latencies and patterns of these responses and in the responsiveness to these agonists when applied to the animal or vegetal hemisphere, even though all of the responses are mediated by the same signal transduction pathway. The common intrinsic response to AcCho is characterized by minimal latency (0.86 +/- 0.05 sec), a rapid, transient depolarization followed by a distinct prolonged depolarization, and larger responses obtained after AcCho application at the vegetal rather than the animal hemisphere. By contrast, the acquired responses to TRH and AcCho are characterized by much longer latencies, 9.3 +/- 1.0 and 5.5 +/- 0.8 sec, respectively, and large rapid depolarizations followed by less distinct prolonged depolarizations. The responsiveness on the two hemispheres to TRH and AcCho in mRNA-injected oocytes is opposite to that for the common intrinsic AcCho response in that there is a much greater response when agonist is applied at the animal rather than the vegetal hemisphere. We suggest that the differences in these responses are caused by differences in the intrinsic properties of these receptors. Because different receptors appear to be segregated in the same oocyte in distinct localizations, Xenopus oocytes may be an important model system in which to study receptor sorting in polarized cells.

  13. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  14. Potenciais Evocados Auditivos de Estado Estável no diagnóstico audiológico infantil: uma comparação com os Potenciais Evocados Auditivos de Tronco Encefálico Steady-state auditory evoked responses in audiological diagnosis in children: a comparison with brainstem evoked auditory responses

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2010-02-01

    Full Text Available Os Potenciais Evocados Auditivos de Estado Estável (PEAEE têm sido apontados como uma técnica promissora na avaliação audiológica infantil. OBJETIVO: Investigar o nível de concordância entre os resultados dos PEAEE e dos Potenciais Evocados Auditivos de Tronco Encefálico (PEATE-clique em um grupo de crianças com perda auditiva sensorioneural, averiguando assim a aplicabilidade clínica desta técnica na avaliação audiológica infantil. FORMA DE ESTUDO: Clínico prospectivo de coorte transversal. MATERIAL E MÉTODO: 15 crianças com idade entre dois e 36 meses e diagnóstico de perda auditiva sensorioneural. A concordância entre as respostas dos dois testes foi avaliada por meio do coeficiente de correlação intraclasse e o teste de McNemar comparou os dois testes quanto à probabilidade de ocorrência de resposta. RESULTADOS: Os coeficientes de correlação encontrados foram 0,70; 0,64; 0,49; 0,69; 0,63 e 0,68 respectivamente para as frequências de 1, 2, 4, 1-2, 2-4 e 1-2-4kHz. No teste de McNemar foi obtido p=0.000, indicando que a probabilidade de se obter resposta presente nos dois testes não é igual, sendo maior nos PEAEE. CONCLUSÃO: A boa concordância observada entre as técnicas sugere que um exame pode ser complementar ao outro. Os PEAEE, entretanto, promoveram informações adicionais nos casos de perdas severas e profundas, acrescentando dados importantes para a reabilitação destas crianças e proporcionando maior precisão no diagnóstico audiológico.Auditory Steady-State Responses (ASSR are being recognized as a promising technique in the assessment of hearing in children. AIM: To investigate the agreement level between results obtained from ASSR and click-ABR in a group of children with sensorineural hearing loss, in order to study the clinical applicability of this technique to evaluate the hearing status in young children. STUDY DESIGN: clinical prospective with a cross-sectional cohort. MATERIALS AND METHODS

  15. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  16. Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve stimulation (TENS): a placebo-controlled study in healthy volunteers.

    Science.gov (United States)

    Vassal, François; Créac'h, C; Convers, Ph; Laurent, B; Garcia-Larrea, L; Peyron, R

    2013-09-01

    To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on brain nociceptive responses (laser-evoked potentials, LEPs) and pain perception. Twenty healthy subjects were included. Nociceptive CO(2)-laser pulses were sequentially delivered to the dorsum of both feet. The amplitude of LEPs and nociceptive thresholds were collected in three consecutive conditions: T1: "sham" TENS (2 Hz/low-intensity) positioned heterotopically, over the left thigh; T2: "active" TENS (120 Hz/low-intensity) applied homotopically, over the left common peroneal nerve; and T3: "sham" TENS (replication of condition T1). Compared with "sham" TENS, "active" TENS significantly decreased the LEPs amplitude. This effect was observed exclusively when "active" TENS was applied ipsilaterally to the painful stimulus. Nociceptive thresholds increased with sessions in both limbs, but the increase observed during the "active" condition of TENS (T2) exceeded significantly that observed during the condition T3 only on the foot ipsilateral to TENS. Compared with a credible placebo TENS, high-frequency TENS induced a significant attenuation of both the acute pain and LEPs induced by noxious stimuli applied on the same dermatome. This modulation of subjective and objective concomitants of pain processing reflects a real neurophysiological TENS-related effect on nociceptive transmission. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    Science.gov (United States)

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (pinformation carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review.

    Science.gov (United States)

    Barss, Trevor S; Ainsley, Emily N; Claveria-Gonzalez, Francisca C; Luu, M John; Miller, Dylan J; Wiest, Matheus J; Collins, David F

    2018-04-01

    Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.

    Science.gov (United States)

    Schvartz-Leyzac, Kara C; Pfingst, Bryan E

    2016-11-01

    Electrically evoked compound action potential (ECAP) measures of peak amplitude, and amplitude-growth function (AGF) slope have been shown to reflect characteristics of cochlear health (primarily spiral ganglion density) in anesthetized cochlear-implanted guinea pigs. Likewise, the effect of increasing the interphase gap (IPG) in each of these measures also reflects SGN density in the implanted guinea pig. Based on these findings, we hypothesize that suprathreshold ECAP measures, and also how they change as the IPG is increased, have the potential to be clinically applicable in human subjects. However, further work is first needed in order to determine the characteristics of these measures in humans who use cochlear implants. The current study examined across-site patterns of suprathreshold ECAP measures in 10 bilaterally-implanted, adult cochlear implant users. Results showed that both peak amplitude and slope of the AGF varied significantly from electrode to electrode in ear-specific patterns across the subjects' electrode arrays. As expected, increasing the IPG on average increased the peak amplitude and slope. Across ears, there was a significant, negative correlation between the slope of the ECAP AGF and the duration of hearing loss. Across-site patterns of ECAP peak amplitude and AGF slopes were also compared with common ground impedance values and significant correlations were observed in some cases, depending on the subject and condition. The results of this study, coupled with previous studies in animals, suggest that it is feasible to measure the change in suprathreshold ECAP measures as the IPG increases on most electrodes. Further work is needed to investigate the relationship between these measures and cochlear implant outcomes, and determine how these measures might be used when programming a cochlear-implant processor. Published by Elsevier B.V.

  20. The impact of hearing aids and age-related hearing loss on auditory plasticity across three months - An electrical neuroimaging study.

    Science.gov (United States)

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-09-01

    The present study investigates behavioral and electrophysiological auditory and cognitive-related plasticity in three groups of healthy older adults (60-77 years). Group 1 was moderately hearing-impaired, experienced hearing aid users, and fitted with new hearing aids using non-linear frequency compression (NLFC on); Group 2, also moderately hearing-impaired, used the same type of hearing aids but NLFC was switched off during the entire period of study duration (NLFC off); Group 3 represented individuals with age-appropriate hearing (NHO) as controls, who were not different in IQ, gender, or age from Group 1 and 2. At five measurement time points (M1-M5) across three months, a series of active oddball tasks were administered while EEG was recorded. The stimuli comprised syllables consisting of naturally high-pitched fricatives (/sh/, /s/, and /f/), which are hard to distinguish for individuals with presbycusis. By applying a data-driven microstate approach to obtain global field power (GFP) as a measure of processing effort, the modulations of perceptual (P50, N1, P2) and cognitive-related (N2b, P3b) auditory evoked potentials were calculated and subsequently related to behavioral changes (accuracy and reaction time) across time. All groups improved their performance across time, but NHO showed consistently higher accuracy and faster reaction times than the hearing-impaired groups, especially under difficult conditions. Electrophysiological results complemented this finding by demonstrating longer latencies in the P50 and the N1 peak in hearing aid users. Furthermore, the GFP of cognitive-related evoked potentials decreased from M1 to M2 in the NHO group, while a comparable decrease in the hearing-impaired group was only evident at M5. After twelve weeks of hearing aid use of eight hours each day, we found a significantly lower GFP in the P3b of the group with NLFC on as compared to the group with NLFC off. These findings suggest higher processing effort, as

  1. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion.

    Science.gov (United States)

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J

    2007-02-01

    Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.

  2. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Bleichner, Martin G; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  3. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    Directory of Open Access Journals (Sweden)

    Ling-Chia Chen

    2016-01-01

    Full Text Available Cochlear implant (CI users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users’ speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS. Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  4. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  5. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  6. Direct recordings from the auditory cortex in a cochlear implant user.

    Science.gov (United States)

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  7. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Science.gov (United States)

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  8. Neurovascular Saturation Thresholds Under High Intensity Auditory Stimulation During Wake

    Science.gov (United States)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2012-01-01

    Coupling between neural activity and hemodynamic responses is important in understanding brain function, interpreting brain imaging signals, and assessing pathological conditions. Tissue state is a major factor in neurovascular coupling and may alter the relationship between neural and hemodynamic activity. However, most neurovascular coupling studies are performed under anesthetized or sedated states which may have severe consequences on coupling mechanisms. Our previous studies showed that following prolonged periods of sleep deprivation, evoked hemodynamic responses were muted despite consistent electrical responses, suggesting that sustained neural activity may decrease vascular compliance and limit blood perfusion. To investigate potential perfusion limitations during natural waking conditions, we simultaneously measured evoked response potentials (ERPs) and evoked hemodynamic responses using optical imaging techniques to increasing intensity auditory stimulation. The relationship between evoked hemodynamic responses and integrated ERPs followed a sigmoid relationship where the hemodynamic response approached saturation at lower stimulus intensities than the ERP. If limits in blood perfusion are caused by stretching of the vessel wall, then these results suggest there may be decreased vascular compliance due to sustained neural activity during wake, which could limit vascular responsiveness and local blood perfusion. Conditions that stress cerebral vasculature, such as sleep deprivation and some pathologies (e.g., epilepsy), may further decrease vascular compliance, limit metabolic delivery, and cause tissue trauma. While ERPs and evoked hemodynamic responses provide an indication of the correlated neural activity and metabolic demand, the relationship between these two responses is complex and the different measurement techniques are not directly correlated. Future studies are required to verify these findings and further explore neurovascular coupling during

  9. Potencial evocado auditivo de longa latência-P300 em indivíduos normais: valor do registro simultâneo em Fz e Cz P300-long-latency auditory evoked potential in normal hearing subjects: simultaneous recording value in Fz and Cz

    Directory of Open Access Journals (Sweden)

    Josilene Luciene Duarte

    2009-04-01

    Full Text Available O P300 é um Potencial Evocado Auditivo denominado potencial endógeno por refletir o uso funcional que o indivíduo faz do estímulo auditivo, sendo altamente dependente das habilidades cognitivas, entre elas atenção e discriminação auditiva. É um procedimento de avaliação objetiva, mas que depende da experiência do avaliador em detectar os picos das ondas, sendo importante a utilização de métodos de registro que facilitem a análise da presença de resposta e a interpretação dos resultados. OBJETIVO: Analisar o Potencial Evocado Auditivo de Longa Latência-P300 obtido com a utilização de dois eletrodos ativos posicionados em Fz e Cz. MATERIAIS E MÉTODOS: Participaram deste estudo 33 indivíduos de ambos os gêneros com idade entre 7 e 34 anos, audição normal e sem fator de risco para problemas mentais. RESULTADOS: Os resultados demonstraram que não houve diferença estatisticamente significante para a latência de N2 e P3 e amplitude do P3 quando analisado o gênero e nem correlação com a idade dos indivíduos. Houve forte correlação destas medidas com o posicionamento dos eletrodos em Fz e Cz. CONCLUSÃO: O posicionamento dos eletrodos ativos em Fz e Cz pode ser considerado um recurso a mais para auxiliar na análise clínica do P300.The P300 is and auditory Evoked Potential, called endogenous potential because it reflects the functional use the individual makes of the auditory stimulus, being highly dependent on cognitive skills; among them we list attention and auditory discrimination. It is a procedure of objective evaluation; however, one that depends on the examiner's experience to detect wave peaks, and it is important to use recording methods that facilitate the response presence analysis and result interpretation. AIM: to analyze the P300 Long Latency Auditory Evoked Potential obtained through the use of two active electrodes positioned on Fz and Cz. MATERIALS AND METHODS: 330 individuals from both genders and

  10. Scent-evoked nostalgia.

    Science.gov (United States)

    Reid, Chelsea A; Green, Jeffrey D; Wildschut, Tim; Sedikides, Constantine

    2015-01-01

    Can scents evoke nostalgia; what might be the psychological implications of such an evocation? Participants sampled 12 scents and rated the extent to which each scent was familiar, arousing and autobiographically relevant, as well as the extent to which each scent elicited nostalgia. Participants who were high (compared to low) in nostalgia proneness reported more scent-evoked nostalgia, and scents elicited greater nostalgia to the extent that they were arousing, familiar and autobiographically relevant. Scent-evoked nostalgia predicted higher levels of positive affect, self-esteem, self-continuity, optimism, social connectedness and meaning in life. In addition, scent-evoked nostalgia was characterised by more positive emotions than either non-nostalgic autobiographical memories or non-nostalgic non-autobiographical memories. Finally, scent-evoked nostalgia predicted in-the-moment feelings of personal (general or object-specific) nostalgia. The findings represent a foray into understanding the triggers and affective signature of scent-evoked nostalgia.

  11. Evoked responses to sinusoidally modulated sound in unanaesthetized dogs

    NARCIS (Netherlands)

    Tielen, A.M.; Kamp, A.; Lopes da Silva, F.H.; Reneau, J.P.; Storm van Leeuwen, W.

    1. 1. Responses evoked by sinusoidally amplitude-modulated sound in unanaesthetized dogs have been recorded from inferior colliculus and from auditory cortex structures by means of chronically indwelling stainless steel wire electrodes. 2. 2. Harmonic analysis of the average responses demonstrated

  12. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  13. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    Science.gov (United States)

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  14. Using excitation patterns to predict auditory masking

    NARCIS (Netherlands)

    Heijden, van der M.L.; Kohlrausch, A.G.

    1992-01-01

    We investigated how well auditory masking can be predicted from excitation patterns. For this purpose, a quantitative model proposed by Moore and Glasberg (1987) and Glasberg and Moore (1990) was used to calculate excitation patterns evoked by stationary sounds. We performed simulations of a number

  15. Potenciais evocados auditivos: estudo com indivíduos portadores de lúpus eritematoso sistêmico A study of auditory evoked potentials in systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    Maíra dos Santos da Mata Rezende

    2008-06-01

    Full Text Available O Lúpus Eritematoso Sistêmico (LES é uma doença inflamatória crônica sistêmica, de etiologia desconhecida, multifatorial, caracterizada imunologicamente pela presença de múltiplos auto-anticorpos, sendo as manifestações clínicas bastante polimórficas. Essa doença pode comprometer múltiplos órgãos e sistemas. Os comprometimentos mais comuns são: articular, cutâneo, vascular, renal, neurológico, cardíaco, gastrointestinal, hematológico, ocular e auditivo. OBJETIVO: Investigar a função auditiva central de indivíduos com Lúpus Eritematoso Sistêmico. MATERIAL E MÉTODO: Foi realizado estudo de série, no qual foram avaliados 60 indivíduos do sexo feminino, com idades entre 21 a 46 anos, sendo 30 no grupo controle e 30 no grupo pesquisa. Os participantes foram submetidos a Anamnese, Avaliação Audiológica (Audiometria Tonal, Logoaudiometria e Medidas de Imitância Acústica, e pesquisa dos Potenciais Evocados Auditivos de Curta (PEATE, Média (PEAML e Longa Latências (PEALL. Os dados obtidos foram analisados estatisticamente. RESULTADOS: Não foram observadas diferenças estatisticamente significantes entre os dois grupos avaliados, em nenhuma das avaliações realizadas. CONCLUSÕES: Não há diferença nos Potenciais Evocados Auditivos de Curta (PEATE, Média (PEAML e Longa Latência (P300 entre os indivíduos dos grupos controle e pesquisa.Systemic lupus erythematosus (SLE is a multifactorial chronic systemic inflammatory disease, of unknown origin, characterized by the presence of autoantibodies and polymorphic clinical manifestations. This disease may involve multiple organs and systems. The most common findings are articular, cutaneous, vascular, renal, neurological, cardiac, gastrointestinal, hematological, ocular, and auditory abnormalities. AIM: To investigate the central auditory function of subjects diagnosed with Systemic Lupus Erythematosus (SLE. MATERIAL AND METHOD: A time-series study was made of sixty

  16. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  17. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  18. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  19. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  20. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Contribution to the study of the radioprotective effect of serotonin on brain spontaneous and evoked electrical activities in the adult rabbit following whole-body lethal $gamma$-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fatome, M; Court, L

    1973-11-01

    Thesis. Submitted to Paris Univ., (France). A 1 to 12 mg/kg serotonin- creatine-sulfate intravenous injection seems to act only slightly on the chronic implanted rabbit CNS except for an increase in latencies and delays of the fast components of evoked potentials and a generalized decrease in the total energy of the signal occurring 20 to 60 min after the injection. The CNS is given a real protection by a 10 mg/kg serotonin injec, tion 20 min before a 650 R whole-body exposure, the spontaneous or induced electrical activity being slightly disturbed. In the hours following irradiation the total energy increase is less important than in the unprotected animal, and there is no clear variation towards the low frequencies. Serotonin could act on the brain structures and the total energy of the signal through its depressing effect. Its radioprotective effect could act, at least partly, through the CNS. (auth)

  2. Study on change of multi-modally evoked potentials in nasopharyngeal carcinoma patients after radiotherapy

    International Nuclear Information System (INIS)

    Qin Ling; Chen Jiaxin; Zhang Lixiang; Wang Tiejian; Han Min; Lu Xiaoling

    2001-01-01

    Objective: To investigate possible changes of multi-modally evoked potentials in nasopharyngeal carcinoma patients after radiotherapy. Methods: Altogether 48 nasopharyngeal carcinoma patients receiving primary conventional external beam irradiation were examined before and after radiotherapy to determine their brainstem auditory-evoked potential (BAEP), short-latency somatosensory-evoked potential (SLSEP) and pattern reversal visual-evoked potential (PRVEP). Results: In comparison with the conditions before radiotherapy, in different periods after radiotherapy abnormal peak latency and interval latency difference were found in BAEP, SLSEP and PRVEP. Conclusion: Nasopharyngeal carcinoma after radiotherapy may cause abnormal function of nerve conduction in early periods, which can be showed by BAEP, SLSEP, PRVEP, and injury can be timely detected if the three evoked potentials are used together. Thus authors suggest BAEP, SLSEP, PRVEP should be examined in nasopharyngeal carcinoma patients during and after the radiotherapy so as to find early damage in auditory somatosensory and visual conduction pathways

  3. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials.

    Directory of Open Access Journals (Sweden)

    Heike Althen

    Full Text Available The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN, an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.

  5. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  6. Estudo das latências e amplitudes dos potenciais evocados auditivos de média latência em indivíduos audiologicamente normais Middle latency response study of auditory evoked potentials’ amplitudes and lantencies audiologically normal individuals

    Directory of Open Access Journals (Sweden)

    Ivone Ferreira Neves

    2007-02-01

    Full Text Available Estudo de coorte contemporânea com corte transversal. O Potencial Evocado Auditivo de Média Latência (PEAML é gerado entre 10 e 80ms e possui múltiplos geradores, com maior contribuição da região tálamo-cortical. O estabelecimento de critérios de normalidade para os valores de latência e amplitude é necessário para uso clínico. OBJETIVOS: Analisar a latência e amplitude do PEAML em indivíduos sem alterações audiológicas, e verificar a confiabilidade da amplitude Pa-Nb. MATERIAL E MÉTODO: Foram coletados os PEAML de 25 indivíduos durante o ano de 2005 e analisados os componentes Na, Pa, Nb para cada orelha testada (A1 e A2, e posicionamento de eletrodo (C3 e C4. RESULTADOS: Observou-se diferença estatisticamente significante entre os valores médios de latência para C3A1 e C4A1 com relação aos componentes Na e Pa, não sendo encontrada esta diferença para o componente Nb e valores médios das amplitudes Na-Pa e Pa-Nb. CONCLUSÃO: Foram estabelecidos os valores das médias e desvios padrão para os parâmetros latência e amplitude dos componentes Na, Pa, Nb, e Na-Pa e Pa-Nb, nas condições C3A1, C4A1, C3A2, C4A2, proporcionando os parâmetros para a análise e interpretação deste potencial.Contemporary cohort cross-sectional study. Introduction: The auditory middle latency response (AMLR is generated between 10 and 80 ms and has multiple generators, with a greater contribution from the thalamus-cortical pathways. The establishment of normality criteria for latency and amplitude values is necessary for clinical use. AIM: to analyze the latency and amplitude of the AMLR in individuals without audiological disorders, and verify the reliability of Pa-Nb amplitude. MATERIALS AND METHODS: The AMLR of 25 individuals was collected during 2005 and the Na, Pa, Nb components were analyzed for each tested ear (A1 and A2, and electrode positioning (C3 and C4. RESULTS: A statistically significant difference was noticed among middle

  7. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  8. Comparação dos estímulos clique e CE-chirp® no registro do Potencial Evocado Auditivo de Tronco Encefálico Comparison of click and CE-chirp® stimuli on Brainstem Auditory Evoked Potential recording

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2012-12-01

    Full Text Available OBJETIVO: Comparar as latências e as amplitudes da onda V no registro do Potencial Evocado Auditivo de Tronco Encefálico (PEATE com os estímulos clique e CE-chirp® e a presença ou ausência das ondas I, III e V em fortes intensidades. MÉTODOS: Estudo transversal com 12 adultos com limiares audiométricos PURPOSE: To compare the latencies and amplitudes of wave V on the Brainstem Auditory Evoked Potential (BAEP recording obtained with click and CE-chirp® stimuli and the presence or absence of waves I, III and V in high intensities. METHODS: Cross-sectional study with 12 adults with audiometric thresholds <15 dBHL (24 ears and mean age of 27 years. The parameters used for the recording with both stimuli in intensities of 80, 60, 40, 20 dBnHL were alternate polarity and repetition rate of 27.1 Hz. RESULTS: The CE-chirp® latencies for wave V were longer than click latencies at low intensity levels (20 and 40 dBnHL. At high intensity levels (60 and 80 dBnHL, the opposite occurred. Larger wave V amplitudes were observed with CE-chirp® in all intensity levels, except at 80 dBnHL. CONCLUSION: The CE-chirp® showed shorter latencies than those observed with clicks at high intensity levels and larger amplitudes at all intensity levels, except at 80 dBnHL. The waves I and III tended to disappear with CE-chirp® stimulation.

  9. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  10. Nonlinear development of the populations of neurons expressing c-Fos under sustained electrical intracochlear stimulation in the rat auditory brainstem.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Illing, Robert-Benjamin

    2010-08-06

    The immediate-early-gene c-fos is among the first genes to be expressed following sensory-invoked neuronal activity. Its gene product c-Fos forms the limiting monomer of the heterodimeric activator protein-1 transcription factor that triggers various genes involved in neuroplastic remodeling. This study investigated the pattern of c-Fos expression in anteroventral (AVCN) and dorsal cochlear nucleus (DCN) and central inferior colliculus (CIC) after 45 min, 73 min, 2 h, 3:15 h and 5 h of unilateral electrical intracochlear stimulation (EIS) at 50 Hz in anaesthetized rats. Following EIS, tonotopic c-Fos expression was observed for each stimulation time in ipsilateral AVCN, DCN bilaterally, and contralateral CIC. By counting c-Fos positive nuclei, we discovered temporal non-linearities in the size of the respective population of c-Fos expressing neurons. In all regions investigated, the populations significantly increased from 73 min to 2 h but decreased towards 3:15 h. In AVCN, the number rose again by 5 h of EIS. Remarkably, the same was noted for neurons with large nuclei in deep DCN. In both regions, the population of responsive neurons shifted spatially: In central AVCN, the density of c-Fos positive cells increased significantly from 2 to 5h with medial and lateral regions remaining unchanged. In DCN, the density of large c-Fos positive nuclei fell in the upper and rose in the deep layers from 45 min to 5h of EIS. In conclusion, spatiotemporally varying recruitments of neuronal subpopulations into cellular networks responding to specific patterns of sensory activity take place in the auditory brainstem. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  12. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    Science.gov (United States)

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  13. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  15. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  17. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Directory of Open Access Journals (Sweden)

    Akihiro Funamizu

    Full Text Available Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS of a 20-kHz tone and an unconditioned stimulus (US of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  18. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Science.gov (United States)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  19. Auditory evoked potential P300 in adults: reference values.

    Science.gov (United States)

    Didoné, Dayane Domeneghini; Garcia, Michele Vargas; Oppitz, Sheila Jacques; Silva, Thalisson Francisco Finamôr da; Santos, Sinéia Neujahr Dos; Bruno, Rúbia Soares; Filha, Valdete Alves Valentins Dos Santos; Cóser, Pedro Luis

    2016-01-01

    To establish reference intervals for cognitive potential P300 latency using tone burst stimuli. This study involved 28 participants aged between 18 and 59 years. P300 recordings were performed using a two-channel device (Masbe, Contronic). Electrode placement was as follows: Fpz (ground electrode), Cz (active electrode), M1 and M2 (reference electrodes). Intensity corresponded to 80 dB HL and frequent and rare stimulus frequencies to 1,000Hz and 2,000Hz, respectively. Stimuli were delivered binaurally. Mean age of participants was 35 years. Average P300 latency was 305ms. Maximum acceptable P300 latency values of 362.5ms (305 + 2SD 28.75) were determined for adults aged 18 to 59 years using the protocol described. Estabelecer valores de referência para a latência do potencial cognitivo P300 com estímulos tone burst. Participaram do estudo 28 indivíduos entre 18 e 59 anos. O registro do P300 foi realizado no equipamento Masbe da marca Contronic. Os eletrodos foram fixados nas posições Fpz (eletrodo terra), Cz (eletrodo ativo), M1 e M2 (eletrodos referência). A intensidade foi de 80 dB NA. A frequência do estímulo frequente foi de 1.000Hz e a do estímulo raro de 2.000Hz. Os estímulos foram apresentados na forma binaural. A média de idade dos indivíduos foi de 35 anos. A média de latência para P300 de 305ms. Usando o protocolo descrito, o valor máximo de latência aceitáveis para P300 foram de 362,5ms (305 + 2DP 28,75) na faixa etária do adulto de 18 a 59 anos.

  20. Auditory brainstem evoked potentials in crack and multiple drugs addicts

    OpenAIRE

    Nigri, Loretta Fabianni; Samelli, Alessandra Giannella; Schochat, Eliane

    2009-01-01

    OBJETIVO: Analisar os potenciais evocados auditivos de tronco encefálico em usuários de crack e múltiplas drogas, bem como levantar as possíveis queixas auditivas e de equilíbrio nesta população. MÉTODOS: Foram avaliados 40 usuários de drogas (20 com uso há mais de cinco anos e 20 há menos de cinco anos) e 20 não usuários, do sexo masculino, com idades entre 19 e 46 anos, com limiares auditivos dentro da normalidade. RESULTADOS: Não houve diferenças significativas dos potenciais evocados audi...

  1. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  2. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  3. Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising.

    Science.gov (United States)

    Mina, Faten; Attina, Virginie; Duroc, Yvan; Veuillet, Evelyne; Truy, Eric; Thai-Van, Hung

    2017-01-01

    Auditory steady state responses (ASSRs) in cochlear implant (CI) patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework's simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA) algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications.

  4. Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising.

    Directory of Open Access Journals (Sweden)

    Faten Mina

    Full Text Available Auditory steady state responses (ASSRs in cochlear implant (CI patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework's simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications.

  5. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-12-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  6. Auditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity.

    Science.gov (United States)

    Corina, David P; Blau, Shane; LaMarr, Todd; Lawyer, Laurel A; Coffey-Corina, Sharon

    2017-01-01

    Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians' best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewer available resources for auditory language acquisition. The conditions under which these changes occur are not well understood, but we may begin investigating this phenomenon by looking for interactions between auditory and visual evoked cortical potentials in deaf children. If children with abnormal auditory responses show increased sensitivity to visual stimuli, this may indicate the presence of maladaptive cortical plasticity. We recorded evoked potentials, using both auditory and visual paradigms, from 25 typical hearing children and 26 deaf children (ages 2-8 years) with cochlear implants. An auditory oddball paradigm was used (85% /ba/ syllables vs. 15% frequency modulated tone sweeps) to elicit an auditory P1 component. Visual evoked potentials (VEPs) were recorded during presentation of an intermittent peripheral radial checkerboard while children watched a silent cartoon, eliciting a P1-N1 response. We observed reduced auditory P1 amplitudes and a lack of latency shift associated with normative aging in our deaf sample. We also observed shorter latencies in N1 VEPs to visual stimulus offset in deaf participants. While these data demonstrate cortical changes associated with auditory deprivation, we did not find evidence for a relationship between cortical auditory evoked potentials and the VEPs. This is consistent with descriptions of intra-modal plasticity within visual systems of deaf children, but do not provide evidence for cross-modal plasticity. In addition, we note that sign language experience had no effect on deaf children's early auditory and visual ERP

  7. Effects of musical training on the auditory cortex in children.

    Science.gov (United States)

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  8. The Efficacy of Intraoperative Neurophysiological Monitoring Using Transcranial Electrically Stimulated Muscle-evoked Potentials (TcE-MsEPs) for Predicting Postoperative Segmental Upper Extremity Motor Paresis After Cervical Laminoplasty.

    Science.gov (United States)

    Fujiwara, Yasushi; Manabe, Hideki; Izumi, Bunichiro; Tanaka, Hiroyuki; Kawai, Kazumi; Tanaka, Nobuhiro

    2016-05-01

    Prospective study. To investigate the efficacy of transcranial electrically stimulated muscle-evoked potentials (TcE-MsEPs) for predicting postoperative segmental upper extremity palsy following cervical laminoplasty. Postoperative segmental upper extremity palsy, especially in the deltoid and biceps (so-called C5 palsy), is the most common complication following cervical laminoplasty. Some papers have reported that postoperative C5 palsy cannot be predicted by TcE-MsEPs, although others have reported that it can be predicted. This study included 160 consecutive cases that underwent open-door laminoplasty, and TcE-MsEP monitoring was performed in the biceps brachii, triceps brachii, abductor digiti minimi, tibialis anterior, and abductor hallucis. A >50% decrease in the wave amplitude was defined as an alarm point. According to the monitoring alarm, interventions were performed, which include steroid administration, foraminotomies, etc. Postoperative deltoid and biceps palsy occurred in 5 cases. Among the 155 cases without segmental upper extremity palsy, there were no monitoring alarms. Among the 5 deltoid and biceps palsy cases, 3 had significant wave amplitude decreases in the biceps during surgery, and palsy occurred when the patients awoke from anesthesia (acute type). In the other 2 cases in which the palsy occurred 2 days after the operation (delayed type), there were no significant wave decreases. In all of the cases, the palsy was completely resolved within 6 months. The majority of C5 palsies have been reported to occur several days after surgery, but some of them have been reported to occur immediately after surgery. Our results demonstrated that TcE-MsEPs can predict the acute type, whereas the delayed type cannot be predicted. A >50% wave amplitude decrease in the biceps is useful to predict acute-type segmental upper extremity palsy. Further examination about the interventions for monitoring alarm will be essential for preventing palsy.

  9. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  10. INFLUENCE OF DANCE TRAINING ON SACCULOCOLLIC PATHWAY: VESTIBULAR EVOKED MYOGENIC POTENTIALS (VEMP) AS AN OBJECTIVE TOOL

    OpenAIRE

    Swathi; Sathish Kumar

    2013-01-01

    ABSTRACT : Auditory system is shaped by experience and training. Training (s ensory experience) induces neurophysiologic changes & plasticity in normal hearing individuals, hearing loss patients, hearing aid users and cochlear implanted subjects. Not only speech stimulus, but music also brings about functional and structural organi zation of the brain in musician compared to non - musicians. The Vestibular evoked myogenic potentials (VEMP) are a biphasic in...

  11. Neuromagnetic Oscillations Predict Evoked-Response Latency Delays and Core Language Deficits in Autism Spectrum Disorders

    Science.gov (United States)

    Edgar, J. Christopher; Khan, Sarah Y.; Blaskey, Lisa; Chow, Vivian Y.; Rey, Michael; Gaetz, William; Cannon, Katelyn M.; Monroe, Justin F.; Cornew, Lauren; Qasmieh, Saba; Liu, Song; Welsh, John P.; Levy, Susan E.; Roberts, Timothy P. L.

    2015-01-01

    Previous studies have observed evoked response latency as well as gamma band superior temporal gyrus (STG) auditory abnormalities in individuals with autism spectrum disorders (ASD). A limitation of these studies is that associations between these two abnormalities, as well as the full extent of oscillatory phenomena in ASD in terms of frequency…

  12. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    Science.gov (United States)

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  13. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    Science.gov (United States)

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear

  14. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    Science.gov (United States)

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  15. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  16. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    Science.gov (United States)

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  18. Music evokes vivid autobiographical memories.

    Science.gov (United States)

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  19. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  20. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  1. Auditory neuropathy/auditory dyssynchrony in children with cochlear implants Neuropatia auditiva/dessincronia auditiva em crianças usuárias de implante coclear

    Directory of Open Access Journals (Sweden)

    Ana Claudia Martinho de Carvalho

    2011-08-01

    Full Text Available The electrical stimulation generated by the Cochlear Implant (CI may improve the neural synchrony and hence contribute to the development of auditory skills in patients with Auditory Neuropathy/Auditory Dyssynchrony (AN/AD. AIM: Prospective cohort cross-sectional study to evaluate the auditory performance and the characteristics of the electrically evoked compound action potential (ECAP in 18 children with AN/AD and cochlear implants. MATERIAL AND METHODS: The auditory perception was evaluated by sound field thresholds and speech perception tests. To evaluate ECAP's characteristics, the threshold and amplitude of neural response were evaluated at 80Hz and 35Hz. RESULTS: No significant statistical difference was found concerning the development of auditory skills. The ECAP's characteristics differences at 80 and 35Hz stimulation rate were also not statistically significant. CONCLUSIONS: The CI was seen as an efficient resource to develop auditory skills in 94% of the AN/AD patients studied. The auditory perception benefits and the possibility to measure ECAP showed that the electrical stimulation could compensate for the neural dyssynchrony caused by the AN/AD. However, a unique clinical procedure cannot be proposed at this point. Therefore, a careful and complete evaluation of each AN/AD patient before recommending a Cochlear Implant is advised. Clinical Trials: NCT01023932A estimulação elétrica gerada pelo Implante Coclear (IC pode ser capaz de melhorar a sincronia neural e contribuir para o desenvolvimento das habilidades auditivas de sujeitos portadores de Neuropatia Auditiva/Dessincronia Auditiva (NA/DA. OBJETIVO: Estudo de coorte prospectivo transversal para avaliar o desempenho auditivo e as características do Potencial de Ação Composto Eletricamente Evocado no Nervo Auditivo (ECAP em 18 crianças portadoras de NA/DA e usuárias de IC. MATERIAL E MÉTODOS: Percepção auditiva e características do ECAP foram avaliadas

  2. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  3. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    Science.gov (United States)

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory.

    Science.gov (United States)

    Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P

    2002-04-01

    The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.

  5. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  6. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system function after developmental exposure to gasoline, E15, and E85 vapors.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Visual, auditory, somatosensory, and peripheral nerve evoked responses. This dataset is associated with the following publication: Herr , D., D. Freeborn , L. Degn ,...

  7. Muscle synergies evoked by microstimulation are preferentially encoded during behavior

    Directory of Open Access Journals (Sweden)

    Simon Alexander Overduin

    2014-03-01

    Full Text Available Electrical microstimulation studies provide some of the most direct evidence for the neural representation of muscle synergies. These synergies, i.e. coordinated activations of groups of muscles, have been proposed as building blocks for the construction of motor behaviors by the nervous system. Intraspinal or intracortical microstimulation has been shown to evoke muscle patterns that can be resolved into a small set of synergies similar to those seen in natural behavior. However, questions remain about the validity of microstimulation as a probe of neural function, particularly given the relatively long trains of supratheshold stimuli used in these studies. Here, we examined whether muscle synergies evoked during intracortical microstimulation in two rhesus macaques were similarly encoded by nearby motor cortical units during a purely voluntary behavior involving object reach, grasp, and carry movements. At each microstimulation site we identified the synergy most strongly evoked among those extracted from muscle patterns evoked over all microstimulation sites. For each cortical unit recorded at the same microstimulation site, we then identified the synergy most strongly encoded among those extracted from muscle patterns recorded during the voluntary behavior. We found that the synergy most strongly evoked at an intracortical microstimulation site matched the synergy most strongly encoded by proximal units more often than expected by chance. These results suggest a common neural substrate for microstimulation-evoked motor responses and for the generation of muscle patterns during natural behaviors.

  8. No counterpart of visual perceptual echoes in the auditory system.

    Directory of Open Access Journals (Sweden)

    Barkın İlhan

    Full Text Available It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ~10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ~10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8-13 Hz oscillations play a special role in vision.

  9. Multiple time scales of adaptation in auditory cortex neurons.

    Science.gov (United States)

    Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel

    2004-11-17

    Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.

  10. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  11. Further evidence for a fluid pathway during bone conduction auditory stimulation.

    Science.gov (United States)

    Sohmer, Haim; Freeman, Sharon

    2004-07-01

    This study was designed to evaluate the suggestion that during bone vibrator stimulation on skull bone (bone conduction auditory stimulation), a major connection between the site of the bone vibrator and the inner ear is a fluid pathway. A series of experiments were conducted on pairs of animals (rats or guinea pigs). The cranial cavities of each pair of animals were coupled by means of a saline filled plastic tube sealed into a craniotomy in the skull of each animal. In response to bone conduction click stimulation to the skull bone of animal I, auditory nerve-brainstem evoked responses could be recorded in animal II. Various procedures showed that these responses were initiated in animal II in response to audio-frequency sound pressures generated within the cranial cavity of animal I by the bone conduction stimulation and transferred to the cranial cavity of animal II through the fluid in the plastic tube: they were not responses to air conducted sounds generated by the bone vibrator, were not induced in animal II by vibrations conveyed to it by the plastic tube and were not electrically conducted activity from animal I. Exposing the fluid in the tube to air was not accompanied by any change in threshold. These experiments confirm that during bone conduction stimulation on the skull, audio-frequency sound pressures (alternating condensations and rarefactions) can be conveyed by a fluid pathway to the cochlea and stimulate it.

  12. Sympathetic skin response evoked by laser skin stimulation

    OpenAIRE

    Rossi, P.; Truini, A.; Serrao, M.; Iannetti, G. D.; Parisi, L.; Pozzessere, G.; Cruccu, G.

    2002-01-01

    The objective of this study was to evoke sympathetic skin responses (SSRs) in healthy subjects using laser stimulation and to compare these responses with those induced by conventional electrical stimuli. Twenty healthy subjects were investigated. SSRs were obtained using electrical and laser stimuli delivered to the wrist controlateral to the recording site. The sympathetic sudomotor conduction velocity (SSFCV) was measured in 8 subjects by simultaneously recording the SSR from the hand and ...

  13. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Evoked emotions predict food choice.

    Science.gov (United States)

    Dalenberg, Jelle R; Gutjar, Swetlana; Ter Horst, Gert J; de Graaf, Kees; Renken, Remco J; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  15. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  16. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  17. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  18. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cortical perfusion response to an electrical stimulation of the auditory nerve in profoundly deaf patients: Study with technetium-99m hexamethylpropylene amine oxime single photon emission tomography

    International Nuclear Information System (INIS)

    Le Scao, Y.; Robier, A.; Beuter, P.; Baulieu, J.L.; Pourcelot, L.

    1992-01-01

    Brain activation procedures associated with single photon emission tomography (SPET) have recently been developed in healthy controls and diseased patients in order to help in their diagnosis and treatment. We investigated the effects of a promontory test (PT) on the cerebral distribution of technetium-99m hexamethyl-propylene amine oxime ( 99m Tc-HMPAO) in 7 profoundly deaf patients, 6 PT+ and PT-. The count variation in the temporal lobe was calculated on 6 coronal slices using the ratio (R stimulation -R deprivation )/R deprivation where R=counts in the temporal lobe was observed in all patients and was higher in all patients with PT+ than in the patient with PT-. The problems of head positioning and resolution of the system were taken into account, and we considered that the maximal count increment was related to the auditory cortex response to the stimulus. Further clinical investigations with high-resolution systems have to be performed in order to validate this presurgery test in cochlear implant assessment. (orig.)

  20. Cortical perfusion response to an electrical stimulation of the auditory nerve in profoundly deaf patients: Study with technetium-99m hexamethylpropylene amine oxime single photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Le Scao, Y.; Robier, A.; Beuter, P. (Centre Hospitalier Universitaire, 37 - Tours (France). Dept. of Otorhinolaryngology); Baulieu, J.L.; Pourcelot, L. (Centre Hospitalier Universitaire, 37 - Tours (France). Dept. of Nuclear Medicine)

    1992-04-01

    Brain activation procedures associated with single photon emission tomography (SPET) have recently been developed in healthy controls and diseased patients in order to help in their diagnosis and treatment. We investigated the effects of a promontory test (PT) on the cerebral distribution of technetium-99m hexamethyl-propylene amine oxime ({sup 99m}Tc-HMPAO) in 7 profoundly deaf patients, 6 PT+ and PT-. The count variation in the temporal lobe was calculated on 6 coronal slices using the ratio (R{sub stimulation}-R{sub deprivation})/R{sub deprivation} where R=counts in the temporal lobe was observed in all patients and was higher in all patients with PT+ than in the patient with PT-. The problems of head positioning and resolution of the system were taken into account, and we considered that the maximal count increment was related to the auditory cortex response to the stimulus. Further clinical investigations with high-resolution systems have to be performed in order to validate this presurgery test in cochlear implant assessment. (orig.).

  1. Cortical perfusion response to an electrical stimulation of the auditory nerve in profoundly deaf patients: study with technetium-99m hexamethylpropylene amine oxime single photon emission tomography.

    Science.gov (United States)

    Le Scao, Y; Robier, A; Baulieu, J L; Beutter, P; Pourcelot, L

    1992-01-01

    Brain activation procedures associated with single photon emission tomography (SPET) have recently been developed in healthy controls and diseased patients in order to help in their diagnosis and treatment. We investigated the effects of a promontory test (PT) on the cerebral distribution of technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) in 7 profoundly deaf patients, 6 PT+ and one PT-. The count variation in the temporal lobe was calculated on 6 coronal slices using the ratio (Rstimulation-Rdeprivation)/Rdeprivation where R = counts in the temporal lobe/whole-brain count. A count increase in the temporal lobe was observed in all patients and was higher in all patients with PT+ than in the patient with PT-. The problems of head positioning and resolution of the system were taken into account, and we considered that the maximal count increment was related to the auditory cortex response to the stimulus. Further clinical investigations with high-resolution systems have to be performed in order to validate this presurgery test in cochlear implant assessment.

  2. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  3. Auditory processing during deep propofol sedation and recovery from unconsciousness

    OpenAIRE

    Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk

    2006-01-01

    Objective Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Methods Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2–3...

  4. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  6. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  7. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Science.gov (United States)

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  8. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Directory of Open Access Journals (Sweden)

    Dian Zhang

    Full Text Available In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  9. Automatic detection of frequency changes depends on auditory stimulus intensity.

    Science.gov (United States)

    Salo, S; Lang, A H; Aaltonen, O; Lertola, K; Kärki, T

    1999-06-01

    A cortical cognitive auditory evoked potential, mismatch negativity (MMN), reflects automatic discrimination and echoic memory functions of the auditory system. For this study, we examined whether this potential is dependent on the stimulus intensity. The MMN potentials were recorded from 10 subjects with normal hearing using a sine tone of 1000 Hz as the standard stimulus and a sine tone of 1141 Hz as the deviant stimulus, with probabilities of 90% and 10%, respectively. The intensities were 40, 50, 60, 70, and 80 dB HL for both standard and deviant stimuli in separate blocks. Stimulus intensity had a statistically significant effect on the mean amplitude, rise time parameter, and onset latency of the MMN. Automatic auditory discrimination seems to be dependent on the sound pressure level of the stimuli.

  10. Evoked Emotions Predict Food Choice

    NARCIS (Netherlands)

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments.

  11. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  12. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  13. Development of auditory sensory memory from 2 to 6 years: an MMN study.

    Science.gov (United States)

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-08-01

    Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.

  14. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  15. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  16. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Science.gov (United States)

    Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter

    2010-08-23

    Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  17. Data on the effect of conductive hearing loss on auditory and visual cortex activity revealed by intrinsic signal imaging.

    Science.gov (United States)

    Teichert, Manuel; Bolz, Jürgen

    2017-10-01

    This data article provides additional data related to the research article entitled "Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing" (Teichert and Bolz, 2017) [1]. The primary auditory and visual cortex (A1 and V1) of adult male C57BL/6J mice (P120-P240) were mapped simultaneously using intrinsic signal imaging (Kalatsky and Stryker, 2003) [2]. A1 and V1 activity evoked by combined auditory and visual stimulation were measured before and after conductive hearing loss (CHL) induced by bilateral malleus removal. We provide data showing that A1 responsiveness evoked by sounds of different sound pressure levels (SPL) decreased after CHL whereas visually evoked V1 activity increased after this intervention. In addition, we also provide imaging data on percentage of V1 activity increases after CHL compared to pre-CHL.

  18. Noise-evoked otoacoustic emissions in humans

    NARCIS (Netherlands)

    Maat, B; Wit, HP; van Dijk, P

    2000-01-01

    Click-evoked otoacoustic emissions (CEOAEs) and acoustical responses evoked by bandlimited Gaussian noise (noise-evoked otoacoustic emissions; NEOAEs) were measured in three normal-hearing subjects. For the NEOAEs the first- and second-order Wiener kernel and polynomial correlation functions up to

  19. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  1. Evoked Emotions Predict Food Choice

    OpenAIRE

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well ...

  2. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    Science.gov (United States)

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  3. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex.

    Science.gov (United States)

    Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis

    2014-07-01

    Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. Copyright © 2013 Wiley Periodicals, Inc.

  4. Visual evoked potentials and selective attention to points in space

    Science.gov (United States)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  5. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  6. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  7. Auditory orientation in crickets: Pattern recognition controls reactive steering

    Science.gov (United States)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  8. Prevalence of auditory changes in newborns in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Guimarães, Valeriana de Castro

    2012-01-01

    Full Text Available Introduction: The precocious diagnosis and the intervention in the deafness are of basic importance in the infantile development. The loss auditory and more prevalent than other joined riots to the birth. Objective: Esteem the prevalence of auditory alterations in just-born in a hospital school. Method: Prospective transversal study that evaluated 226 just-been born, been born in a public hospital, between May of 2008 the May of 2009. Results: Of the 226 screened, 46 (20.4% had presented absence of emissions, having been directed for the second emission. Of the 26 (56.5% children who had appeared in the retest, 8 (30.8% had remained with absence and had been directed to the Otolaryngologist. Five (55.5% had appeared and had been examined by the doctor. Of these, 3 (75.0% had presented normal otoscopy, being directed for evaluation of the Evoked Potential Auditory of Brainstem (PEATE. Of the total of studied children, 198 (87.6% had had presence of emissions in one of the tests and, 2 (0.9% with deafness diagnosis. Conclusion: The prevalence of auditory alterations in the studied population was of 0,9%. The study it offers given excellent epidemiologists and it presents the first report on the subject, supplying resulted preliminary future implantation and development of a program of neonatal auditory selection.

  9. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing.

    Science.gov (United States)

    Guéguin, Marie; Le Bouquin-Jeannès, Régine; Faucon, Gérard; Chauvel, Patrick; Liégeois-Chauvel, Catherine

    2007-02-01

    The human auditory cortex includes several interconnected areas. A better understanding of the mechanisms involved in auditory cortical functions requires a detailed knowledge of neuronal connectivity between functional cortical regions. In human, it is difficult to track in vivo neuronal connectivity. We investigated the interarea connection in vivo in the auditory cortex using a method of directed coherence (DCOH) applied to depth auditory evoked potentials (AEPs). This paper presents simultaneous AEPs recordings from insular gyrus (IG), primary and secondary cortices (Heschl's gyrus and planum temporale), and associative areas (Brodmann area [BA] 22) with multilead intracerebral electrodes in response to sinusoidal modulated white noises in 4 epileptic patients who underwent invasive monitoring with depth electrodes for epilepsy surgery. DCOH allowed estimation of the causality between 2 signals recorded from different cortical sites. The results showed 1) a predominant auditory stream within the primary auditory cortex from the most medial region to the most lateral one whatever the modulation frequency, 2) unidirectional functional connection from the primary to secondary auditory cortex, 3) a major auditory propagation from the posterior areas to the anterior ones, particularly at 8, 16, and 32 Hz, and 4) a particular role of Heschl's sulcus dispatching information to the different auditory areas. These findings suggest that cortical processing of auditory information is performed in serial and parallel streams. Our data showed that the auditory propagation could not be associated to a unidirectional traveling wave but to a constant interaction between these areas that could reflect the large adaptive and plastic capacities of auditory cortex. The role of the IG is discussed.

  10. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  11. Abnormalities in auditory efferent activities in children with selective mutism.

    Science.gov (United States)

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  12. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  13. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  14. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  15. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence

    Science.gov (United States)

    Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles

    2015-01-01

    The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628

  16. Proprioceptive evoked potentials in man

    DEFF Research Database (Denmark)

    Arnfred, S; Chen, A C; Eder, Derek N

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......). Further studies of the PEP are needed to assess the influence of load manipulations and of muscle contraction and to explore the effect of attentional manipulation....

  17. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study.

    Science.gov (United States)

    Takuma, S

    2001-07-06

    To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents

  18. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  19. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    Science.gov (United States)

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  20. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    Science.gov (United States)

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  1. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  2. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.

    Science.gov (United States)

    Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V

    2017-07-01

    This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dose-dependent suppression by ethanol of transient auditory 40-Hz response.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    2000-02-01

    Acute alcohol (ethanol) challenge is known to induce various cognitive disturbances, yet the neural basis of the effect is poorly known. The auditory transient evoked gamma-band (40-Hz) oscillatory responses have been suggested to be associated with various perceptual and cognitive functions in humans; however, alcohol effects on auditory 40-Hz responses have not been investigated to date. The objective of the study was to test the dose-related impact of alcohol on auditory transient evoked 40-Hz responses during a selective-attention task. Ten healthy social drinkers ingested, in four separate sessions, 0.00, 0. 25, 0.50, or 0.75 g/kg of 10% (v/v) alcohol solution. The order of the sessions was randomized and a double-blind procedure was employed. During a selective attention task, 300-Hz standard and 330-Hz deviant tones were presented to the left ear, and 1000-Hz standards and 1100-Hz deviants to the right ear of the subjects (P=0. 425 for each standard, P=0.075 for each deviant). The subjects attended to a designated ear, and were to detect the deviants therein while ignoring tones to the other ear. The auditory transient evoked 40-Hz responses elicited by both the attended and unattended standard tones were significantly suppressed by the 0.50 and 0.75 g/kg alcohol doses. Alcohol suppresses auditory transient evoked 40-Hz oscillations already with moderate blood alcohol concentrations. Given the putative role of gamma-band oscillations in cognition, this finding could be associated with certain alcohol-induced cognitive deficits.

  4. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

    Science.gov (United States)

    Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J

    2015-06-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    Science.gov (United States)

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  6. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  7. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  8. Auditory processing during deep propofol sedation and recovery from unconsciousness.

    Science.gov (United States)

    Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk

    2006-08-01

    Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between deep sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During deep sedation, the physical MMN was markedly reduced, but still significant. No ERAN was observed in this level. A clear P3a was elicited during deep sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during deep sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during deep sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.

  9. Thresholding of auditory cortical representation by background noise

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  10. Thresholding of auditory cortical representation by background noise.

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W; Zhang, Li I; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity.

  11. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    with a CI, had auditory neuropathy; one child showed total cochlear ossification bilaterally due to meningitis; and one child had profound hearing loss with cochlear fractures after a head injury. Twelve of these children had multiple associated psychomotor handicaps. The retrosigmoid approach was used in all children. Intraoperative electrical auditory brainstem responses (EABRs) and postoperative EABRs and electrical middle latency responses (EMLRs) were performed. Perceptual auditory abilities were evaluated with the Evaluation of Auditory Responses to Speech (EARS) battery - the Listening Progress Profile (LIP), the Meaningful Auditory Integration Scale (MAIS), the Meaningful Use of Speech Scale (MUSS) - and the Category of Auditory Performance (CAP). Cognitive evaluation was performed on seven children using the Leiter International Performance Scale - Revised (LIPS-R) test with the following subtests: Figure ground, Form completion, Sequential order and Repeated pattern. No postoperative complications were observed. All children consistently used their devices for >75% of waking hours and had environmental sound awareness and utterance of words and simple sentences. Their CAP scores ranged from 1 to 7 (average =4); with MAIS they scored 2-97.5% (average =38%); MUSS scores ranged from 5 to 100% (average =49%) and LIP scores from 5 to 100% (average =45%). Owing to associated disabilities, 12 children were given other therapies (e.g. physical therapy and counselling) in addition to speech and aural rehabilitation therapy. Scores for two of the four subtests of LIPS-R in this study increased significantly during the first year of auditory brainstem implant use in all seven children selected for cognitive evaluation.

  12. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2017-07-01

    The two-tone sequence (ABA_), which comprises two different sounds (A and B) and a silent gap, has been used to investigate how the auditory system organizes sequential sounds depending on various stimulus conditions or brain states. Auditory streaming can be evoked by differences not only in the tone frequency ("spectral cue": ΔF TONE , TONE condition) but also in the amplitude modulation rate ("AM cue": ΔF AM , AM condition). The aim of the present study was to explore the relationship between the perceptual properties of auditory streaming for the TONE and AM conditions. A sequence with a long duration (400 repetitions of ABA_) was used to examine the property of the bistability of streaming. The ratio of feature differences that evoked an equivalent probability of the segregated percept was close to the ratio of the Q-values of the auditory and modulation filters, consistent with a "channeling theory" of auditory streaming. On the other hand, for values of ΔF AM and ΔF TONE evoking equal probabilities of the segregated percept, the number of perceptual switches was larger for the TONE condition than for the AM condition, indicating that the mechanism(s) that determine the bistability of auditory streaming are different between or sensitive to the two domains. Nevertheless, the number of switches for individual listeners was positively correlated between the spectral and AM domains. The results suggest a possibility that the neural substrates for spectral and AM processes share a common switching mechanism but differ in location and/or in the properties of neural activity or the strength of internal noise at each level. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Erika Matsumura

    Full Text Available Abstract Introduction Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. Objective To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. Methods The sample consisted of 38 adult males, mean age of 35.8 (±7.2, divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n = 10, mild obstructive sleep apnea (n = 11 moderate obstructive sleep apnea (n = 8 and severe obstructive sleep apnea (n = 9. All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. Results There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p = 0.03. There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p = 0.01. Conclusion The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem

  14. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.

    Science.gov (United States)

    Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede

    2016-11-25

    Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de

  15. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  16. Electrophysiological evidence for altered visual, but not auditory, selective attention in adolescent cochlear implant users.

    Science.gov (United States)

    Harris, Jill; Kamke, Marc R

    2014-11-01

    Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input.

    Directory of Open Access Journals (Sweden)

    Max F K Happel

    Full Text Available Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.

  18. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Peter W Alderks

    Full Text Available The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2 = 0.92. The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis. Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  19. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    Science.gov (United States)

    Alderks, Peter W; Sisneros, Joseph A

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2) = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  20. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    DEFF Research Database (Denmark)

    Arnfred, Sidse M

    2006-01-01

    potentials but here this method along with low frequency filtering is applied exploratory on auditory P50 gating data, previously analyzed in the standard format (reported in Am J Psychiatry 2003, 160:2236-8). The exploration was motivated by the observation during visual peak detection that the AEP waveform......Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400.Difference waves have mostly been employed in studies of later event related...

  1. Evoked responses of the superior olive to amplitude-modulated signals.

    Science.gov (United States)

    Andreeva, N G; Lang, T T

    1977-01-01

    Evoked potentials of some auditory centers of Rhinolophidae bats to amplitude-modulated signals were studied. A synchronization response was found in the cochlear nuclei (with respect to the fast component of the response) and in the superior olivary complex (with respect to both fast and slow components of the response) within the range of frequency modulation from 50 to 2000 Hz. In the inferior colliculus a synchronized response was recorded at modulation frequencies below 150 Hz, but in the medial geniculate bodies no such response was found. Evoked responses of the superior olivary complex were investigated in detail. The lowest frequencies of synchronization were recorded within the carrier frequency range of 15-30 and 80-86 kHz. The amplitude of the synchronized response is a function of the frequency and coefficient of modulation and also of the angle of stimulus presentation.

  2. EEG and EMG responses to emotion-evoking stimuli processed without conscious awareness.

    Science.gov (United States)

    Wexler, B E; Warrenburg, S; Schwartz, G E; Janer, L D

    1992-12-01

    Dichotic stimulus pairs were constructed with one word that was emotionally neutral and another that evoked either negative or positive feelings. Temporal and spectral overlap between the members of each pair was so great that the two words fused into a single auditory percept. Subjects were consciously aware of hearing only one word from most pairs; sometimes the emotion-evoking word was heard consciously, other times the neutral word was heard consciously. Subjects were instructed to let their thoughts wander in response to the word they heard, during which time EEG alpha activity over left and right frontal regions, and muscle activity (EMG) in the corrugator ("frowning") and zygomatic ("smiling") regions were recorded. Both EEG and EMG provided evidence of emotion-specific responses to stimuli that were processed without conscious awareness. Moreover both suggested relatively greater right hemisphere activity with unconscious rather than conscious processing.

  3. Clinical applied value of brain stem auditory evoked potential in facial neuritis patients combined the damage of other cranial nerves%伴其他颅神经症状的面神经炎患者治疗前后的脑干听觉诱发电位研究

    Institute of Scientific and Technical Information of China (English)

    王金风; 王民

    2012-01-01

    Objective: To explore the clinical applied value of brain stem auditoryk evoed potential (BAEP)in facial neuritis patients combined with damage of other cranial nerves. Methods: Fifty facial neuritis patients combined with damage of other cranial nerves were selected to get BAEP information) the results before and after treatment were analyzed. Results;The inter-peak latencies (IPL) of Ⅰ -- Ⅲ, Ⅲ - V . Ⅰ - V were significantly shorten(P<0. 01)after treatment of the. More than one IPL shortened IPL took up 84%. 74% cases had prolonged potential latencies (PL) of Wave I , Ⅲ and V with more than one shortened or disappeared waveform. In 69 % cases with amplitude of wave V increased and ratio of V/ I more than 0. 5 or ILD of bilateral Wave V was less than 0. 3 ms, IPL of Ⅲ - V shorter than that of Ⅰ - Ⅲ. Conclusion:Facial neuritis involves not only medial surface nerves of foramen stylomastoi-deum but also brainstem and/or other cranial nerves . BAEP can objectively reflect the function of audi-tory system and brain stem, and can be used to follow-up with patients with facial neuritis.%目的:观察伴其他颅神经症状的面神经炎患者治疗前后的脑干听觉诱发电位(BAEP)表现.方法:选择50例面神经炎伴其他颅神经症状的患者进行BAEP检测,并进行治疗前后对比.结果:与治疗前相比,治疗后Ⅱ-Ⅲ、Ⅲ-Ⅴ、Ⅰ-Ⅴ波IPL明显缩短(P<0.01),其中有一个以上的IPL缩短者42例占84%;Ⅰ、Ⅲ、Ⅴ波PL有一个以上缩短或治疗前BAEP波形消失而于治疗后出现者37例占74%;Ⅴ波波幅增高并且Ⅴ/Ⅰ IPL比大于0.5或双侧Ⅴ波侧间潜伏期差(IDL)小于0.3 ms,Ⅲ-Ⅴ波IPL小于Ⅰ-Ⅲ波IPL的35例占70%.结论:面神经炎不仅累及茎乳孔内面神经,还可累及脑干和其他颅神经.BAEP可以客观地反映面神经炎患者听觉系统和脑干功能,因此可以用于对该类患者进行疗效观察.

  4. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  5. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  6. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    Science.gov (United States)

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    Objective: It is well documented that corticospinal projections to motoneurons of one muscle inhibit antagonist motoneurons through collaterals to reciprocally organized spinal inhibitory interneurons. During and just prior to dorsiflexion of the ankle, soleus motoneurons are thus inhibited...... the MEP is evoked. Methods: Seated subjects (n=11) were instructed to react to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle to 30% of their maximal dorsiflexion voluntary contraction (MVC) or plantar flexion MVC, respectively. Focal TMS at 1.2 x motor...

  8. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.

  9. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  10. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Hearing after congenital deafness: central auditory plasticity and sensory deprivation.

    Science.gov (United States)

    Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R

    2002-08-01

    The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.

  12. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    Science.gov (United States)

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  13. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    Science.gov (United States)

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory

  15. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  16. Evoked bioelectrical brain activity following exposure to ionizing radiation.

    Science.gov (United States)

    Loganovsky, K; Kuts, K

    2017-12-01

    The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.

  17. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  18. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  19. Human auditory steady state responses to binaural and monaural beats.

    Science.gov (United States)

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  20. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    Science.gov (United States)

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  1. SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM

    Science.gov (United States)

    Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.

    2009-01-01

    High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777

  2. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Martina Wengenroth

    Full Text Available BACKGROUND: Individuals with the rare genetic disorder Williams-Beuren syndrome (WS are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. METHODOLOGY/PRINCIPAL FINDINGS: Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. CONCLUSIONS/SIGNIFICANCE: There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  3. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  4. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  5. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...

  6. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  7. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia

    DEFF Research Database (Denmark)

    Astrup, J; Symon, L; Branston, N M

    1977-01-01

    + as well as evoked potential were made in the baboon neocortex. Reductions in blood flow were obtained by occlusion of the middle cerebral artery and depression beyond the ischemic threshold of electrical function achieved by a reduction of systemic blood pressure which, in the ischemic zones, changed...

  8. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  9. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  10. Auditory changes in acromegaly.

    Science.gov (United States)

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  11. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.

    Science.gov (United States)

    Nikjeh, Dee A; Lister, Jennifer J; Frisch, Stefan A

    2009-08-01

    Cortical auditory evoked potentials, including mismatch negativity (MMN) and P3a to pure tones, harmonic complexes, and speech syllables, were examined across groups of trained musicians and nonmusicians. Because of the extensive formal and informal auditory training received by musicians throughout their lifespan, it was predicted that these electrophysiological indicators of preattentive pitch discrimination and involuntary attention change would distinguish musicians from nonmusicians and provide insight regarding the influence of auditory training and experience on central auditory function. A total of 102 (67 trained musicians, 35 nonmusicians) right-handed young women with normal hearing participated in three auditory stimulus conditions: pure tones (25 musicians/15 nonmusicians), harmonic tones (42 musicians/20 nonmusicians), and speech syllables (26 musicians/15 nonmusicians). Pure tone and harmonic tone stimuli were presented in multideviant oddball paradigms designed to elicit MMN and P3a. Each paradigm included one standard and two infrequently occurring deviants. For the pure tone condition, the standard pure tone was 1000 Hz, and the two deviant tones differed in frequency from the standard by either 1.5% (1015 Hz) or 6% (1060 Hz). The harmonic tone complexes were digitally created and contained a fundamental frequency (F0) and three harmonics. The amplitude of each harmonic was divided by its harmonic number to create a natural amplitude contour in the frequency spectrum. The standard tone was G4 (F0 = 392 Hz), and the two deviant tones differed in fundamental frequency from the standard by 1.5% (F0 = 386 Hz) or 6% (F0 = 370 Hz). The fundamental frequencies of the harmonic tones occur within the average female vocal range. The third condition to elicit MMN and P3a was designed for the presentation of speech syllables (/ba/ and /da/) and was structured as a traditional oddball paradigm (one standard/one infrequent deviant). Each speech stimulus was

  12. Baseline vestibular and auditory findings in a trial of post-concussive syndrome

    Science.gov (United States)

    Meehan, Anna; Searing, Elizabeth; Weaver, Lindell; Lewandowski, Andrew

    2016-01-01

    Previous studies have reported high rates of auditory and vestibular-balance deficits immediately following head injury. This study uses a comprehensive battery of assessments to characterize auditory and vestibular function in 71 U.S. military service members with chronic symptoms following mild traumatic brain injury that did not resolve with traditional interventions. The majority of the study population reported hearing loss (70%) and recent vestibular symptoms (83%). Central auditory deficits were most prevalent, with 58% of participants failing the SCAN3:A screening test and 45% showing abnormal responses on auditory steady-state response testing presented at a suprathreshold intensity. Only 17% of the participants had abnormal hearing (⟩25 dB hearing loss) based on the pure-tone average. Objective vestibular testing supported significant deficits in this population, regardless of whether the participant self-reported active symptoms. Composite score on the Sensory Organization Test was lower than expected from normative data (mean 69.6 ±vestibular tests, vestibulo-ocular reflex, central auditory dysfunction, mild traumatic brain injury, post-concussive symptoms, hearing15.6). High abnormality rates were found in funduscopy torsion (58%), oculomotor assessments (49%), ocular and cervical vestibular evoked myogenic potentials (46% and 33%, respectively), and monothermal calorics (40%). It is recommended that a full peripheral and central auditory, oculomotor, and vestibular-balance evaluation be completed on military service members who have sustained head trauma.

  13. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  14. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  15. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  16. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  17. Audiometria de resposta evocada de acordo com sexo e idade: achados e aplicabilidade Evoked response audiometry according to gender and age: findings and usefulness

    Directory of Open Access Journals (Sweden)

    Edmir Américo Lourenço

    2008-08-01

    Full Text Available A audiometria de respostas evocadas (ABR é um registro não-invasivo de potenciais elétricos auditivos nos primeiros 12 milissegundos, da orelha média ao córtex auditivo. ABR é importante na avaliação otoneurológica. OBJETIVO: Esclarecer as utilidades do exame, faixas etárias e sexo com maior incidência e topodiagnóstico segundo as latências absolutas e os intervalos interpicos. CASUÍSTICA E MÉTODO: Neste estudo retrospectivo foram analisados 403 prontuários de ABR realizados em clínica particular na cidade de Jundiaí/SP, Brasil, suspeitos de alteração auditiva e/ou doença do SNC, com os pacientes divididos por sexo e faixa etária. RESULTADOS E CONCLUSÕES: ABR é um importante exame para determinar a integridade da via auditiva, limiares eletrofisiológicos e topodiagnóstico, embora o teste não indique a etiologia das alterações. Foi demonstrado que ocorreu maior incidência de achados retrococleares na faixa etária de 12-20 anos e sexo masculino, contudo crianças menores de um ano com fatores de risco não apresentaram um aumento na incidência de alterações condutivas, cocleares e retrococleares em relação à população geral estudada. As latências absolutas das ondas I, III e V foram maiores no sexo masculino e as alterações dos intervalos interpicos foram similares em ambos os sexos, sendo que o intervalo I-III foi o mais freqüentemente alterado.Auditory evoked brainstem responses (ABR is a non-invasive electrical potential registration which evaluates the auditory tract from the middle ear to the auditory cortex in the first 12 milliseconds (ms. The ABR is an important otoneurological evaluation. AIM: confirm the test's usefulness, major incidence and topography according to are range gender considering the absolute latencies of the waves and interpeak intervals. MATERIALS AND METHOD: we retrospectively analyzed 403 tests from a private clinic in the city of Jundiaí-São Paulo State-Brazil, from

  18. Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta.

    Science.gov (United States)

    Chen, Zuyue; Parkkonen, Lauri; Wei, Jingkuan; Dong, Jin-Run; Ma, Yuanye; Carlson, Synnöve

    2018-04-01

    Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.

  19. Mutism and auditory agnosia due to bilateral insular damage--role of the insula in human communication.

    Science.gov (United States)

    Habib, M; Daquin, G; Milandre, L; Royere, M L; Rey, M; Lanteri, A; Salamon, G; Khalil, R

    1995-03-01

    We report a case of transient mutism and persistent auditory agnosia due to two successive ischemic infarcts mainly involving the insular cortex on both hemispheres. During the 'mutic' period, which lasted about 1 month, the patient did not respond to any auditory stimuli and made no effort to communicate. On follow-up examinations, language competences had re-appeared almost intact, but a massive auditory agnosia for non-verbal sounds was observed. From close inspection of lesion site, as determined with brain resonance imaging, and from a study of auditory evoked potentials, it is concluded that bilateral insular damage was crucial to both expressive and receptive components of the syndrome. The role of the insula in verbal and non-verbal communication is discussed in the light of anatomical descriptions of the pattern of connectivity of the insular cortex.

  20. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    diverse pathologies reduce quality of life by impacting such spectrally directed auditory attention, its neurobiological bases are unclear. We demonstrate that human primary and nonprimary auditory cortical activation is modulated by spectrally directed attention in a manner that recapitulates its tonotopic sensory organization. Further, the graded activation profiles evoked by single-frequency bands are correlated with attentionally driven activation when these bands are presented in complex soundscapes. Finally, we observe a strong concordance in the degree of cortical myelination and the strength of tonotopic activation across several auditory cortical regions. Copyright © 2017 Dick et al.

  1. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  2. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.

    Science.gov (United States)

    Thai-Van, Hung; Cozma, Sebastian; Boutitie, Florent; Disant, François; Truy, Eric; Collet, Lionel

    2007-03-01

    Maturation of acoustically evoked brainstem responses (ABR) in hearing children is not complete at birth but rather continues over the first two years of life. In particular, it has been established that the decrease in ABR wave V latency can be modeled as the sum of two decaying exponential functions with respective time-constants of 4 and 50 weeks [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9]. Here, we investigated the maturation of electrically evoked auditory brainstem responses (EABR) in 55 deaf children who recovered hearing after cochlear implantation, and proposed a predictive model of EABR maturation depending on the onset of deafness. The pattern of EABR maturation over the first 2 years of cochlear implant use was compared with the normal pattern of ABR maturation in hearing children. Changes in EABR wave V latency over the 2 years following cochlear implant connection were analyzed in two groups of children. The first group (n=41) consisted of children with early-onset of deafness (mostly congenital), and the second (n=14) of children who had become profoundly deaf after 1 year of age. The modeling of changes in EABR wave V latency with time was based on the mean values from each of the two groups, allowing comparison of the rates of EABR maturation between groups. Differences between EABRs elicited at the basal and apical ends of the implant electrode array were also tested. There was no influence of age at implantation on the rate of wave V latency change. The main factor for EABR changes was the time in sound. Indeed, significant maturation was observed over the first 2 years of implant use only in the group with early-onset deafness. In this group maturation of wave V progressed as in the ABR model of [Eggermont, J.J., Salamy, A., 1988a

  3. Characterization of music-evoked autobiographical memories.

    Science.gov (United States)

    Janata, Petr; Tomic, Stefan T; Rakowski, Sonja K

    2007-11-01

    Despite music's prominence in Western society and its importance to individuals in their daily lives, very little is known about the memories and emotions that are often evoked when hearing a piece of music from one's past. We examined the content of music-evoked autobiographical memories (MEAMs) using a novel approach for selecting stimuli from a large corpus of popular music, in both laboratory and online settings. A set of questionnaires probed the cognitive and affective properties of the evoked memories. On average, 30% of the song presentations evoked autobiographical memories, and the majority of songs also evoked various emotions, primarily positive, that were felt strongly. The third most common emotion was nostalgia. Analyses of written memory reports found both general and specific levels of autobiographical knowledge to be represented, and several social and situational contexts for memory formation were common across many memories. The findings indicate that excerpts of popular music serve as potent stimuli for studying the structure of autobiographical memories.

  4. Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness

    NARCIS (Netherlands)

    Vos, Sjoerd; Haakma, Wieke; Versnel, Huib; Froeling, Martijn; Speleman, Lucienne; Dik, Pieter; Viergever, Max A.; Leemans, Alexander; Grolman, Wilko

    A cochlear implant (CI) can restore hearing in patients with profound sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Therefore, the viability of the auditory nerve is vitally important in successful hearing recovery. However, the nerve typically degenerates

  5. Early access to lexical-level phonological representations of Mandarin word-forms : evidence from auditory N1 habituation

    NARCIS (Netherlands)

    Yue, Jinxing; Alter, Kai; Howard, David; Bastiaanse, Roelien

    2017-01-01

    An auditory habituation design was used to investigate whether lexical-level phonological representations in the brain can be rapidly accessed after the onset of a spoken word. We studied the N1 component of the auditory event-related electrical potential, and measured the amplitude decrements of N1

  6. Language related differences of the sustained response evoked by natural speech sounds.

    Directory of Open Access Journals (Sweden)

    Christina Siu-Dschu Fan

    Full Text Available In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC. Using magnetoencephalography (MEG, we recorded transient and sustained auditory evoked fields (AEF in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl's gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction

  7. Language related differences of the sustained response evoked by natural speech sounds.

    Science.gov (United States)

    Fan, Christina Siu-Dschu; Zhu, Xingyu; Dosch, Hans Günter; von Stutterheim, Christiane; Rupp, André

    2017-01-01

    In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC). Using magnetoencephalography (MEG), we recorded transient and sustained auditory evoked fields (AEF) in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF) evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl's gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction between

  8. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    Science.gov (United States)

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the

  9. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    Directory of Open Access Journals (Sweden)

    Nicolas eGiret

    2015-10-01

    Full Text Available Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM, while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird’s own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of

  10. Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy.

    Science.gov (United States)

    Aghamolaei, Maryam; Zarnowiec, Katarzyna; Grimm, Sabine; Escera, Carles

    2016-02-01

    Auditory deviance detection based on regularity encoding appears as one of the basic functional properties of the auditory system. It has traditionally been assessed with the mismatch negativity (MMN) long-latency component of the auditory evoked potential (AEP). Recent studies have found earlier correlates of deviance detection based on regularity encoding. They occur in humans in the first 50 ms after sound onset, at the level of the middle-latency response of the AEP, and parallel findings of stimulus-specific adaptation observed in animal studies. However, the functional relationship between these different levels of regularity encoding and deviance detection along the auditory hierarchy has not yet been clarified. Here we addressed this issue by examining deviant-related responses at different levels of the auditory hierarchy to stimulus changes varying in their degree of deviation regarding the spatial location of a repeated standard stimulus. Auditory stimuli were presented randomly from five loudspeakers at azimuthal angles of 0°, 12°, 24°, 36° and 48° during oddball and reversed-oddball conditions. Middle-latency responses and MMN were measured. Our results revealed that middle-latency responses were sensitive to deviance but not the degree of deviation, whereas the MMN amplitude increased as a function of deviance magnitude. These findings indicated that acoustic regularity can be encoded at the level of the middle-latency response but that it takes a higher step in the auditory hierarchy for deviance magnitude to be encoded, thus providing a functional dissociation between regularity encoding and deviance detection along the auditory hierarchy. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Jill B Firszt

    2013-12-01

    Full Text Available Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants, less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and three and nine months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction, degree and type

  12. Subthalamic deep brain stimulation improves auditory sensory gating deficit in Parkinson's disease.

    Science.gov (United States)

    Gulberti, A; Hamel, W; Buhmann, C; Boelmans, K; Zittel, S; Gerloff, C; Westphal, M; Engel, A K; Schneider, T R; Moll, C K E

    2015-03-01

    While motor effects of dopaminergic medication and subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients are well explored, their effects on sensory processing are less well understood. Here, we studied the impact of levodopa and STN-DBS on auditory processing. Rhythmic auditory stimulation (RAS) was presented at frequencies between 1 and 6Hz in a passive listening paradigm. High-density EEG-recordings were obtained before (levodopa ON/OFF) and 5months following STN-surgery (ON/OFF STN-DBS). We compared auditory evoked potentials (AEPs) elicited by RAS in 12 PD patients to those in age-matched controls. Tempo-dependent amplitude suppression of the auditory P1/N1-complex was used as an indicator of auditory gating. Parkinsonian patients showed significantly larger AEP-amplitudes (P1, N1) and longer AEP-latencies (N1) compared to controls. Neither interruption of dopaminergic medication nor of STN-DBS had an immediate effect on these AEPs. However, chronic STN-DBS had a significant effect on abnormal auditory gating characteristics of parkinsonian patients and restored a physiological P1/N1-amplitude attenuation profile in response to RAS with increasing stimulus rates. This differential treatment effect suggests a divergent mode of action of levodopa and STN-DBS on auditory processing. STN-DBS may improve early attentive filtering processes of redundant auditory stimuli, possibly at the level of the frontal cortex. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Prestimulus subsequent memory effects for auditory and visual events.

    Science.gov (United States)

    Otten, Leun J; Quayle, Angela H; Puvaneswaran, Bhamini

    2010-06-01

    It has been assumed that the effective encoding of information into memory primarily depends on neural activity elicited when an event is initially encountered. Recently, it has been shown that memory formation also relies on neural activity just before an event. The precise role of such activity in memory is currently unknown. Here, we address whether prestimulus activity affects the encoding of auditory and visual events, is set up on a trial-by-trial basis, and varies as a function of the type of recognition judgment an item later receives. Electrical brain activity was recorded from the scalps of 24 healthy young adults while they made semantic judgments on randomly intermixed series of visual and auditory words. Each word was preceded by a cue signaling the modality of the upcoming word. Auditory words were preceded by auditory cues and visual words by visual cues. A recognition memory test with remember/know judgments followed after a delay of about 45 min. As observed previously, a negative-going, frontally distributed modulation just before visual word onset predicted later recollection of the word. Crucially, the same effect was found for auditory words and observed on stay as well as switch trials. These findings emphasize the flexibility and general role of prestimulus activity in memory formation, and support a functional interpretation of the activity in terms of semantic preparation. At least with an unpredictable trial sequence, the activity is set up anew on each trial.

  14. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  15. Slow cortical evoked potentials after noise exposure

    Energy Technology Data Exchange (ETDEWEB)

    von Wedel, H; Opitz, H J

    1979-07-01

    Human cortical evoked potentials under conditions of stimuation are registrated in the post-stimulatory phase of a five minutes lasting equally masking white noise (90 dB HL). Changes of the evoked potentials during adaptation, possible analogy with high tone losses after noise representation and the origin of tinnitus are examined. Stimulation was started 3 sec after the off-effect of the noise. For five minutes periodically tone bursts were represented. Each train of stimulation consists of tone bursts of three frequencies: 2 kcs, 4 kcs, 8 kcs. The 0.5 sec lasting tones were separated by pauses of 2 sec. During the experiment stimulation and analysis were controlled by a computer. Changes in latency and amplitudes of the cortical evoked potentials were registered. Changes of the adaptation patterns as a function of the poststimulatory time are discussed.

  16. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  17. Occipital lobe lesions result in a displacement of magnetoencephalography visual evoked field dipoles.

    Science.gov (United States)

    Pang, Elizabeth W; Chu, Bill H W; Otsubo, Hiroshi

    2014-10-01

    The pattern-reversal visual evoked potential measured electrically from scalp electrodes is known to be decreased, or absent, in patients with occipital lobe lesions. We questioned whether the measurement and source analysis of the neuromagnetic visual evoked field (VEF) might offer additional information regarding visual cortex relative to the occipital lesion. We retrospectively examined 12 children (6-18 years) with occipital lesions on MRI, who underwent magnetoencephalography and ophthalmology as part of their presurgical assessment. Binocular half-field pattern-reversal VEFs were obtained in a 151-channel whole-head magnetoencephalography. Data were averaged and dipole source analyses were performed for each half-field stimulation. A significant lateral shift (P occipital lesions. Magnetoencephalography may be useful as a screening test of visual function in young patients. We discuss potential explanations for this lateral shift and emphasize the utility of adding the magnetoencephalography pattern-reversal visual evoked field protocol to the neurologic work-up.

  18. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yuko Yoshimura

    2016-01-01

    Full Text Available The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperac