WorldWideScience

Sample records for electrically conducting liquid

  1. Heat and electrical conductivity of thermotropic liquid crystals

    International Nuclear Information System (INIS)

    Saidov, N.S.; Majidov, H.; Saburov, B.S.; Safarov, M.M.

    1989-01-01

    A results of thermal conduction and electrical conduction of chemo tropic liquid crystals are brought in this article. An installation dependence formula of thermal conduction investigating things from the electrical conduction and temperatures is constructed

  2. Electrical conductivity measurements in shock compressed liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Mitchell, A.C.; Nellis, W.J.

    1985-06-01

    The electrical conductivity of shock compressed liquid nitrogen was measured in the pressure range 20 to 50 GPa using a two-stage light-gas gun. The conductivities covered a range 4 x 10 -2 to 1 x 10 2 ohm -1 cm -1 . The data are discussed in terms of a liquid semiconductor model below the onset of the dissociative phase transition at 30 GPa. 15 refs., 1 fig

  3. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    Science.gov (United States)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  4. Lightweight magnesium nanocomposites: electrical conductivity of liquid magnesium doped by CoPd nanoparticles

    Science.gov (United States)

    Yakymovych, Andriy; Slabon, Adam; Plevachuk, Yuriy; Sklyarchuk, Vasyl; Sokoliuk, Bohdan

    2018-04-01

    The effect of monodisperse bimetallic CoPd NP admixtures on the electrical conductivity of liquid magnesium was studied. Temperature dependence of the electrical conductivity of liquid Mg98(CoPd)2, Mg96(CoPd)4, and Mg92(CoPd)8 alloys was measured in a wide temperature range above the melting point by a four-point method. It was shown that the addition of even small amount of CoPd nanoparticles to liquid Mg has a significant effect on the electrical properties of the melts obtained.

  5. Method and device for electromagnetic pumping by conduction of liquid metals having low electrical conductivity

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1976-01-01

    The invention is related to a method for pumping of liquid metals having a low electrical conductivity. To lower the resistance of the conductive spire containing liquid metal to be pumped, a tape formed by a conductive metal such as copper or nickel is inserted in that spire. The tape is interrupted at the level of the air gap of the main magnetic circuit at least when the conductive spire passes through that air gap

  6. Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids.

    Science.gov (United States)

    Pinkert, André; Ang, Keng L; Marsh, Kenneth N; Pang, Shusheng

    2011-03-21

    Ionic liquids are molten salts with melting temperatures below the boiling point of water, and their qualification for applications in potential industrial processes does depend on their fundamental physical properties such as density, viscosity and electrical conductivity. This study aims to investigate the structure-property relationship of 15 ILs that are primarily composed of alkanolammonium cations and organic acid anions. The influence of both the nature and number of alkanol substituents on the cation and the nature of the anion on the densities, viscosities and electrical conductivities at ambient and elevated temperatures are discussed. Walden rule plots are used to estimate the ionic nature of these ionic liquids, and comparison with other studies reveals that most of the investigated ionic liquids show Walden rule values similar to many non-protic ionic liquids containing imidazolium, pyrrolidinium, tetraalkylammonium, or tetraalkylphosphonium cations. Comparison of literature data reveals major disagreements in the reported properties for the investigated ionic liquids. A detailed analysis of the reported experimental procedures suggests that inappropriate drying methods can account for some of the discrepancies. Furthermore, an example for the improved presentation of experimental data in scientific literature is presented.

  7. Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids

    International Nuclear Information System (INIS)

    Liu, Qing-Shan; Li, Pei-Pei; Welz-Biermann, Urs; Chen, Jian; Liu, Xiao-Xia

    2013-01-01

    Highlights: • Targets of this research are hydrophobic series ionic liquids. • Density, dynamic viscosity and electrical conductivity were determined. • Influences of methylene to properties were discussed. • Influences of methyl group on pyridinium ring position to properties were discussed. • Relationship of ρ, η and σ were described systematically. -- Abstract: Air and water stable hydrophobic ionic liquids (ILs) were synthesized: N-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide [C 3 3mpy][NTf 2 ], N-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide [C 6 3mpy][NTf 2 ], and N-hexyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide [C 6 4mpy][NTf 2 ]. Density, dynamic viscosity, and electrical conductivity of ILs were determined at atmospheric pressure in the temperature range of (278 to 353) K. The effects of methylene and methyl groups to density, dynamic viscosity, and electrical conductivity, respectively, were discussed. The thermal expansion coefficient, molecular volume, standard molar entropy, and lattice energy of the samples were estimated in terms of empirical and semi-empirical equations based on the density values. The temperature dependence on dynamic viscosity and electrical conductivity values of the ILs were discussed by Vogel–Fulcher–Tamman (VFT) and Arrhenius equations. The molar conductivities were calculated by density and electrical conductivity values

  8. Measuring electric conductivity in liquid metals by eddy current method

    International Nuclear Information System (INIS)

    Zhuravlev, S.P.; Ostrovskij, O.I.; Grigoryan, V.A.

    1982-01-01

    Technique permitting to apply the method of vertiginous currents for investigation of electric conductivity of metal melts in the high temperature range is presented. Interferences affecting accuracy of measurements are specified and ways of their removing are pointed out. Scheme of measuring and design of the facility are described. Results of measuring electric resistance of liquid Fe, Co, Ni obtained for the first time by this method are presented. The data obtained agree with the results of measurements conducted by the method of the rotating magnetic field. Difference in absolute values of electric resistance in parallel experiments for each metal does not exceed 4%

  9. Equilibrium configurations of the conducting liquid surface in a nonuniform electric field

    Science.gov (United States)

    Zubarev, N. M.; Zubareva, O. V.

    2011-01-01

    Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.

  10. Electrical conductivity of silicon carbide composites

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.; Frias Rebelo, A.

    1997-01-01

    The electrical conductivity was measured on two SiC/SiC composite materials in the temperature range from room temperature up to 1000degC in order to estimate the magnitude of MHD effects in liquid metal blankets if SiC/SiC composites are used as structural materials. For both types of material, the electrical conductivity increased continuously with temperature. The conductivity values ranged from 350 (Ωm) -1 at room temperature to 550 (Ωm) -1 at 1000degC, indicating that the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blanket studies. (author)

  11. Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Ilani-Kashkouli, Poorandokht; Sattari, Mehdi

    2014-01-01

    In this communication, an extensive set of 1077 experimental electrical conductivity data for 54 ionic liquids (ILs) was collected from 21 different literature sources. Using this dataset, a reliable least square support vector machine-group contribution (LSSVM-GC) model has been developed, which...

  12. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  13. Design of a conductivity meter for highly insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, M; Perez, A T; Soria-Hoyo, C [Dep. Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2007-03-07

    The accurate measurement of the electrical conductivity of low conducting liquids is an important issue in many industrial applications. The lack of repeatability is a common problem to the available procedures and commercial techniques. In this paper, we present a device to measure the electrical conductivity of low conducting liquids. The variable inter-electrode gap allows us to assure the existence of an ohmic regime, since only under ohmic regime conditions is the value of the conductivity meaningful.

  14. Design of a conductivity meter for highly insulating liquids

    International Nuclear Information System (INIS)

    Medrano, M; Perez, A T; Soria-Hoyo, C

    2007-01-01

    The accurate measurement of the electrical conductivity of low conducting liquids is an important issue in many industrial applications. The lack of repeatability is a common problem to the available procedures and commercial techniques. In this paper, we present a device to measure the electrical conductivity of low conducting liquids. The variable inter-electrode gap allows us to assure the existence of an ohmic regime, since only under ohmic regime conditions is the value of the conductivity meaningful

  15. Ionic conductivity and complexation in liquid dielectrics

    International Nuclear Information System (INIS)

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  16. Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state

    Science.gov (United States)

    Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.

    2018-01-01

    The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.

  17. Temperature Dependence on Density, Viscosity, and Electrical Conductivity of Ionic Liquid 1-Ethyl-3-Methylimidazolium Fluoride

    Directory of Open Access Journals (Sweden)

    Fengguo Liu

    2018-03-01

    Full Text Available Ionic liquids are considered environmentally friendly media for various industrial applications. Basic data on physicochemical properties are significant for a new material, in terms of developing its potential applications. In this work, 1-ethyl-3-methylimidazolium fluoride ([EMIm]F ionic liquid was synthesized via an anion metathesis process. Physical properties including the density, viscosity, electrical conductivity, and thermal stability of the product were measured. The results show that the density of [EMIm]F decreases linearly with temperature increases, while dynamic viscosity decreases rapidly below 320 K and the temperature dependence of electrical conductivity is in accordance with the VFT (Vogel–Fulcher–Tammann equation. The temperature dependence of the density, conductivity, and viscosity of [EMIm]F can be expressed via the following equations: ρ = 1.516 − 1.22 × 10−3 T, σm = 4417.1exp[−953.17/(T − 166.65] and η = 2.07 × 10−7exp(−5.39 × 104/T, respectively. [EMIm]F exhibited no clear melting point. However, its glass transition point and decomposition temperature are −71.3 °C and 135 °C, respectively.

  18. Electric current-driven migration of electrically neutral particles in liquids

    International Nuclear Information System (INIS)

    Zhang, Xinfang; Qin, Rongshan

    2014-01-01

    We design and experimentally demonstrate a migration of electrically neutral particles in liquids driven by electric current according to the discrepancies of their electrical conductivities. A force from electric current to electrically neutral particles has been identified to drive the particles toward the lateral surface from the centre of suspension via three distinguishable zones, namely, pushing, trapping, and expelling zones. The driving force can overtake gravity in practical cases. The property of the force is found neither similar to that of the force in electromagnetophoresis nor similar to that of the electromigration force in terms of direction and magnitude. An expression for the force at the pushing zone has been developed based on the numerical calculation of the thermodynamics of suspension fluids. The excellent agreement between numerical calculations and experimental data demonstrates that our calculation provides fundamental and predictive insight into particles separation from the liquids. Therefore, it is possible to use the force in many engineering applications such as separation of particles according to the differences of their electrical conductivities

  19. Quantum electric-dipole liquid on a triangular lattice.

    Science.gov (United States)

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  20. Electronic conductivity of solid and liquid (Mg, Fe)O computed from first principles

    Science.gov (United States)

    Holmström, E.; Stixrude, L.; Scipioni, R.; Foster, A. S.

    2018-05-01

    Ferropericlase (Mg, Fe)O is an abundant mineral of Earth's lower mantle and the liquid phase of the material was an important component of the early magma ocean. Using quantum-mechanical, finite-temperature density-functional theory calculations, we compute the electronic component of the electrical and thermal conductivity of (Mg0.75, Fe0.25)O crystal and liquid over a wide range of planetary conditions: 0-200 GPa, 2000-4000 K for the crystal, and 0-300 GPa, 4000-10,000 K for the liquid. We find that the crystal and liquid are semi-metallic over the entire range studied: the crystal has an electrical conductivity exceeding 103 S/m, whereas that of the liquid exceeds 104 S/m. Our results on the crystal are in reasonable agreement with experimental measurements of the electrical conductivity of ferropericlase once we account for the dependence of conductivity on iron content. We find that a harzburgite-dominated mantle with ferropericlase in combination with Al-free bridgmanite agrees well with electromagnetic sounding observations, while a pyrolitic mantle with a ferric-iron rich bridgmanite composition yields a lower mantle that is too conductive. The electronic component of thermal conductivity of ferropericlase with XFe = 0.19 is negligible (accounts for the high conductance that has been proposed to explain anomalies in Earth's nutation. The electrical conductivity of liquid ferropericlase exceeds that of liquid silica by more than an order of magnitude at conditions of a putative basal magma ocean, thus strengthening arguments that the basal magma ocean could have produced an ancient dynamo.

  1. A method of measuring the thermal conductivity of liquids

    NARCIS (Netherlands)

    Held, E.F.M. van der; Drunen, F.G. van

    1949-01-01

    We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material

  2. Volumetric, viscosity, and electrical conductivity properties of aqueous solutions of two n-butylammonium-based protic ionic liquids at several temperatures

    International Nuclear Information System (INIS)

    Xu, Yingjie

    2013-01-01

    Highlights: • Densities and viscosities of N4AC + water and N4NO 3 + water mixtures were measured. • Volumetric and viscosity properties were calculated. • Redlich–Kister equation was used to correlate the excess molar volumes and viscosity deviations. • Electrical conductivity was fitted according to the empirical Casteel–Amis equation. • The interactions and structural effects of N4AC or N4NO 3 with water were analyzed. -- Abstract: Densities and viscosities of (n-butylammonium acetate (N4AC) protic ionic liquid + water) and (n-butylammonium nitrate (N4NO 3 ) protic ionic liquid + water) mixtures were measured at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K under atmospheric pressure. Electrical conductivities of the above-mentioned systems were determined at 298.15 K. Excess molar volumes and viscosity deviations were obtained from the experimental results and fitted to the Redlich–Kister equation with satisfactory results. Other volumetric properties, such as apparent molar volumes, partial molar volumes, and excess partial molar volumes were also calculated. The concentration dependence of electrical conductivity was fitted according to the empirical Casteel–Amis equation. Based on the measured and derived properties, the molecular interactions and structural factors in the above-mentioned systems were discussed

  3. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Hamilton, D.C.

    1986-01-01

    Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  4. Electrical conductivity of quasi-two-dimensional foams.

    Science.gov (United States)

    Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina

    2015-04-01

    Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.

  5. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions.

    Science.gov (United States)

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.

  6. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  7. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  8. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  9. Criteria for disintegration of an uncharged conducting liquid jet in a transverse electric field

    Science.gov (United States)

    Zubareva, O. V.; Zubarev, N. M.; Volkov, N. B.

    2018-01-01

    An uncharged conducting liquid cylindrical column (a jet for applications) placed between a pair of flat electrodes is considered. In the trivial case, when the electric field is absent, the jet with circular cross-section is the only possible equilibrium configuration of the system. In the presence of a potential difference between the electrodes, the jet is deformed by the electrostatic forces: its cross-section stretches along the electric field lines. In the case of the mutual compensation of the electrostatic and capillary forces, a new equilibrium configuration of the jet can appear. In a sufficiently strong field, the balance of the forces becomes impossible, and the jet disintegrates (splits into two separate jets). In the present work, we find the range of the parameters (the applied potential difference and the interelectrode distance), where the problem of finding the equilibrium configurations of the jet has solutions. Also we obtain the conditions under which the solutions do not exist and, consequently, the jet splits. The results are compared with the previously studied limiting case of infinite interelectrode distance.

  10. In situ electrical conductivity measurements of H{sub 2}O under static pressure up to 28 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao, E-mail: liubao@nedu.edu.cn [Institute of Materials Physics, College of Science, Northeast Dianli University, Jilin 132012 (China); State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Gao, Yang [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Han, Yonghao [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Ma, Yanzhang [Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Gao, Chunxiao, E-mail: cc060109@qq.com [State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

    2016-08-26

    Highlights: • We conduct in situ electrical conductivity measurements on water in a diamond anvil cell (DAC) under high pressure up to 28 GPa and study the electrical transport properties of water and ices. • In liquid state, the increasing rate of electrical conductivity with pressure is slower than that obtained in shock-waves measurements. • In solid phase, the relationship between electrical conductivity and pressure is discontinuous, which is corresponding to phase transformation from ice VIII to ice VII. • The difference in electrical conductivity of VI, VII, and VIII may associate with different orientational ordering in these ices. • The electrical conduction in these ices is dominated by already existing ions and Bjerrum defects, which play an important role in electrical transport properties of ices. - Abstract: The in situ electrical conductivity measurements on water in both solid state and liquid state were performed under pressure up to 28 GPa and temperature from 77 K to 300 K using a microcircuit fabricated on a diamond anvil cell (DAC). Water chemically ionization mainly contributes to electrical conduction in liquid state, which is in accord with the results obtained under dynamic pressure. Energy band theory of liquid water was used to understand effect of static pressure on electrical conduction of water. The electric conductivity of H{sub 2}O decreased discontinuously by four orders of magnitude at 0.7–0.96 GPa, indicating water frozen at this P–T condition. Correspondingly, the conduction of H{sub 2}O in solid state is determined by arrangement and bending of H-bond in ice VI and ice VII. Based on Jaccard theory, we have concluded that the charge carriers of ice are already existing ions and Bjerrum defects.

  11. Electrical detection of liquid lithium leaks from pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  12. The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles

    KAUST Repository

    Hamdan, Ahmad; Čerņevičs, Kristians; Cha, Min

    2017-01-01

    We investigated the effect of a liquid's electrical conductivity (EC) on the physical characteristics of electrical discharges in liquids with gaseous bubbles. Argon gas was supplied into the liquid to form an array of gaseous bubbles in between two

  13. Theory of thermal conductivity in the disordered electron liquid

    International Nuclear Information System (INIS)

    Schwiete, G.; Finkel’stein, A. M.

    2016-01-01

    We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.

  14. Theory of thermal conductivity in the disordered electron liquid

    Energy Technology Data Exchange (ETDEWEB)

    Schwiete, G., E-mail: schwiete@uni-mainz.de [Johannes Gutenberg Universität, Spin Phenomena Interdisciplinary Center (SPICE) and Institut für Physik (Germany); Finkel’stein, A. M. [Texas A& M University, Department of Physics and Astronomy (United States)

    2016-03-15

    We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.

  15. Electrically conductive material

    Science.gov (United States)

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  16. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the

  17. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  18. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Science.gov (United States)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  19. Electric and Hydraulic Properties of Carbon Felt Immersed in Different Dielectric Liquids.

    Science.gov (United States)

    Kossenko, Alexey; Lugovskoy, Svetlana; Averbukh, Moshe

    2018-04-23

    measured in dry conditions and when the CF was immersed in several non-conductive liquids. The choice of such liquids prevented side effects of electrolyte ionic conductivity impact on electrical resistivity of the CF. This gave an opportunity to determine the influences of dielectric parameters of electrolytes to increase or decrease the density of interconnectivity of carbon fibers either between themselves or between them and electrodes. The experiments showed the influence of liquid permittivity on the conductivity of CF, probably by changing the density of fiber interconnections inside the felt.

  20. Electric and Hydraulic Properties of Carbon Felt Immersed in Different Dielectric Liquids

    Directory of Open Access Journals (Sweden)

    Alexey Kossenko

    2018-04-01

    reactions, it was measured in dry conditions and when the CF was immersed in several non-conductive liquids. The choice of such liquids prevented side effects of electrolyte ionic conductivity impact on electrical resistivity of the CF. This gave an opportunity to determine the influences of dielectric parameters of electrolytes to increase or decrease the density of interconnectivity of carbon fibers either between themselves or between them and electrodes. The experiments showed the influence of liquid permittivity on the conductivity of CF, probably by changing the density of fiber interconnections inside the felt.

  1. Thermodynamic and electrical properties of laser-shocked liquid deuterium

    Science.gov (United States)

    He, Zhiyu; Jia, Guo; Zhang, Fan; Luo, Kui; Huang, Xiuguang; Shu, Hua; Fang, Zhiheng; Ye, Junjian; Xie, Zhiyong; Xia, Miao; Fu, Sizu

    2018-01-01

    Liquid deuterium at high pressure and temperature has been observed to undergo significant electronic structural changes. Reflectivity and temperature measurements of liquid deuterium up to around 70 GPa were obtained using a quartz standard. The observed specific heat of liquid deuterium approaches the Dulong-Petit limit above 1 eV. Discussions on specific heat indicate a molecular dissociation below 1 eV and fully dissociated above 1.5 eV. Also, the electrical conductivity of deuterium estimated from reflectivity reaches 1.3 × 105 (Ωṡm)-1, proving that deuterium in this condition is a conducting degenerate liquid metal and undergo an insulator-metal transition. The results from specific heat, carrier density and conductivity agreed well with each other, which might be a reinforcement of the insulator-metal transition and the molecular dissociation. In addition, a new correction method of reflectivity in temperature calculation was proposed to improve the accuracy of temperature results. A new "dynamic calibration" was introduced in this work to make the experiments simpler and more accurate.

  2. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  3. An investigation for structure transformation in electric pulse modified liquid aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jingang, E-mail: Qijingang1974@sina.co [School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001 (China); Wang Jianzhong; He Lijia; Zhao Zuofu; Du Huiling [School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001 (China)

    2011-02-15

    The electric pulse (EP) modification of liquid metal is a novel method for grain refinement. In this work, the structure tests of EP-modified liquid aluminum were conducted and investigated using high-temperature X-ray diffractometer by virtue of the outstanding structural heredity of EP-modified liquid aluminum. The results show that the EP-modified liquid structure tends to be slack and unordered with increasing temperature similar to that of the unmodified. Nevertheless, the quantitative characterization denoted by the liquid structural parameters exhibits its discrepancy. At the modifying temperature of 750 {sup o}C, the order of degree of EP-modified liquid aluminum is remarkably strengthened and the value of average atomic number per cluster changes from 119 (no EP) up to 174 (EP) by an increase of 46%. These tests experimentally testified Wang's electric pulse modification (EPM) model that was built only by phenomenology, and hereby the mechanism of grain refinement resulting from EPM is further elucidated.

  4. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  5. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  6. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  7. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  8. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    Science.gov (United States)

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  9. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

    International Nuclear Information System (INIS)

    Zeng Shu-Lin; Wang Hui-Xian; Dong Cheng

    2014-01-01

    A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Poly-Phenylene-Quinonediimine as a possible conducting liquid crystal

    Science.gov (United States)

    Hall, H. K.

    1986-06-01

    The synthesis of stable electrically conducting, fabricable polymers of known structure represents an important goal of current polymer science. It seems to us that conductive, processable, and stable materials of defined structure should not be beyond the reach of the modern synthetic polymer chemist. Our approach has been to utilize a wide variety of polycondensation reactions to see whether they are useful for the synthesis of potentially conducting, stable, processable polymers. Polycondensation routes are preferred because they will lead to polymers of rational, known structure. Standard techniques of polymer chemistry such as copolymerization, use of unsymmetrical monomers, and introduction of softening substituents can be used to enhance processability. Further, the extended para structures preferred for conductivity may also lead to liquid crystal behavior, another potential tool for fabrication.

  11. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  12. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  13. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  14. Liquidity in the Dutch wholesale electricity market

    International Nuclear Information System (INIS)

    Newbery, D.; Von der Fehr, N.H.; Van Damme, E.

    2003-05-01

    Industry concerns over perceived reductions in the liquidity of the Dutch wholesale electricity market led the DTe to ask the Market Surveillance Committee (MSC) to examine recent developments. This report starts with a generic examination of wholesale power markets and liquidity and its measurement. An overview of the Dutch wholesale electricity market and its constituent segments follows together with a summary of events and opinions connected to liquidity that have been reported in the trade press. Sources of information on market liquidity are then reviewed. Participation in the market is analysed before examining each market segment and this analysis and the earlier sections are then drawn together in conclusions and recommendations

  15. Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering

    International Nuclear Information System (INIS)

    Lee, Dae-Geon; Kim, Dong Keun; Moon, Yoon-Jae; Moon, Seung-Jae

    2013-01-01

    To determine the effect of temperature on the specific electrical conductance of inkjet-printed ink during continuous wave laser sintering, the temperature of the sintered ink was estimated. The ink, which contained 34 wt.% silver nanoparticles with an average size of approximately 50 nm, was inkjet-printed onto a liquid crystal display glass substrate. The printed ink was irradiated with a 532 nm continuous wave laser for 60 s with various laser intensities. During laser irradiation, the in-situ electrical conductance of the sintered ink was measured to estimate the transient thermal conductivity of the ink. The electrical conductance and thermal conductivity of the ink was coupled to obtain the transient temperature by applying the Wiedemann–Franz law to a two-dimensional transient heat conduction equation. The electrical conductance of laser-sintered ink was highly dependent on the sintering temperature of the ink. - Highlights: • The in-situ electrical conductance was measured during the laser sintering process. • Wiedemann–Franz law coupled the electrical conductance with transient temperature. • The transient temperature of the laser-sintered Ag nanoparticle ink was estimated

  16. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  17. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    Science.gov (United States)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  18. Highly stretchable and conductive fibers enabled by liquid metal dip-coating

    Science.gov (United States)

    Zhang, Qiang; Roach, Devin J.; Geng, Luchao; Chen, Haosen; Qi, H. Jerry; Fang, Daining

    2018-03-01

    Highly stretchable and conductive fibers have been fabricated by dip-coating of a layer of liquid metal (eutectic gallium indium, EGaIn) on printed silicone elastomer filaments. This fabrication method exploits a nanolayer of oxide skin that rapidly forms on the surface of EGaIn when exposed to air. Through dip-coating, the sticky nature of the oxide skin leads to the formation of a thin EGaIn coating (˜5 μm thick) on the originally nonconductive filaments and renders these fibers excellent conductivity. Electrical characterization shows that the fiber resistance increases moderately as the fiber elongates but always maintains conductivity even when stretched by 800%. Besides this, these fibers possess good cyclic electrical stability with little degradation after hundreds of stretching cycles, which makes them an excellent candidate for stretchable conductors. We then demonstrate a highly stretchable LED circuit as well as a conductive stretchable net that extends the 1D fibers into a 2D configuration. These examples demonstrate potential applications for topologically complex stretchable electronics.

  19. Liquid metal actuation by electrical control of interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Eaker, Collin B.; Dickey, Michael D., E-mail: michael-dickey@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  20. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    Science.gov (United States)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  1. Electrohydrostatic and electrohydrodynamic theories of equilibrium shapes and stability of electrically stressed conducting liquids

    International Nuclear Information System (INIS)

    Chung, M.S.

    1986-01-01

    This work represents an initial attempt at a systematic and rigorous study of the static and dynamic equilibrium shapes and stability of electrically stressed conducting fluids. The ultimate objective of the research is to explain the basic mechanism(s) describing the operation of a field emission liquid metal ion source. The variational procedure is used to obtain a set of equations whose solutions describe the static fluid shape as a function of applied field. Using an iterative procedure to solve Laplace's equation for an arbitrary geometry, a sequence of profiles is calculated that shows the evolution of the deformed fluid surface with applied field. A systematic study of stability is made by applying the Taylor and Zeleny criteria to quasi-statistically stressed fluids. To formulate a realistic and accurate description of the onset of instability, is is necessary to introduce fluid flow, which requires a dynamical analysis. To maintain contact with the LMIS configuration, the approach to instability is studied in axially symmetric fluids using a linearized set of electrohydrodynamic equations. The analysis is applied to different coordinate surfaces, which are used to model fluid shapes, which are observed, or assumed to exist, in an operating LMIS just prior to or at the onset of emission. Results suggest a new interpretation of the onset of instability

  2. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    Science.gov (United States)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  3. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  4. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    Science.gov (United States)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  5. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    International Nuclear Information System (INIS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-01-01

    Highlights: •The electrical conductivity of PPLP in LN 2 was successfully measured. •Based on the measured value of PPLP, DC field analysis was performed. •The electric field distribution was altered according to the DC applying stages. •The maximum electric field was observed during polarity reversal situation. •DC field analysis is important to determine the optimum design of DC HTS devices. -- Abstract: High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN 2 ). Electrical conductivity of PPLP in LN 2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN 2 were presented in this paper. Based on the experimental works, DC electric field distribution of

  6. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    Science.gov (United States)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  7. Corona-induced electrohydrodynamic instabilities in low conducting liquids

    Energy Technology Data Exchange (ETDEWEB)

    Vega, F.; Perez, A.T. [Depto. Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes, s/n. 41012, Sevilla (Spain)

    2003-06-01

    The rose-window electrohydrodynamic (EHD) instability has been observed when a perpendicular field with an additional unipolar ion injection is applied onto a low conducting liquid surface. This instability has a characteristic pattern with cells five to 10 times greater than those observed in volume instabilities caused by unipolar injection. We have used corona discharge from a metallic point to perform some measurements of the rose-window instability in low conducting liquids. The results are compared to the linear theoretical criterion for an ohmic liquid. They confirmed that the minimum voltage for this instability is much lower than that for the interfacial instability in high conducting liquids. This was predicted theoretically in the dependence of the critical voltage as a function of the non-dimensional conductivity. It is shown that in a non-ohmic liquid the rose window appears as a secondary instability after the volume instability. (orig.)

  8. Structural relaxation and thermal conductivity coefficient of liquids

    International Nuclear Information System (INIS)

    Abdurasulov, A.

    1992-01-01

    Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.

  9. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Cho, Jeon-Wook; Ryoo, Hee-Suk [Korea Electrotechnology Research Institute, Changwon, Gyungnam 641-120 (Korea, Republic of); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, 408-2, 4th Engineering Bldg, Sa 3-dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)

    2013-11-15

    Highlights: •The electrical conductivity of PPLP in LN{sub 2} was successfully measured. •Based on the measured value of PPLP, DC field analysis was performed. •The electric field distribution was altered according to the DC applying stages. •The maximum electric field was observed during polarity reversal situation. •DC field analysis is important to determine the optimum design of DC HTS devices. -- Abstract: High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN{sub 2}). Electrical conductivity of PPLP in LN{sub 2} has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN{sub 2} were presented in this paper. Based on the experimental works, DC electric

  10. Energies of conduction bands in dielectric liquids

    International Nuclear Information System (INIS)

    Holroyd, R.

    1975-01-01

    The properties of excess electrons in non-polar liquids depend on the relative energies of the trapped and conducting states. We have measured the energies of the conducting states, denoted V 0 , for about twenty non-polar liquids. Two methods were used: In one the work functions of metals immersed in the liquid were measured. In the other, solutes (TMPD) were photoionized in the liquid and V 0 calculated from the wavelength at which ionization onsets occur. A wide variation in conduction state energies is observed from a high of +0.21 eV for tetradecane to a low of --0.60 eV for tetramethylsilane. In general V 0 shifts to more negative values with increasing molecular symmetry, and correlates well with electron mobility. The photoionization results indicate that V 0 decreases with increasing temperature. In mixtures V 0 is linearly dependent on mole fraction. It was found empirically for n-hexane-neopentane mixtures that μ = 0.34 exp [--15.2(V 0 )]. This equation relating V 0 to the electron mobility also applies approximately to pure hydrocarbons. Thus the role of the conduction state energy in influencing electron mobilities and photoionization onsets is established and recent evidence indicates V 0 also influences the rates of electron reactions in these liquids

  11. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  12. Electrically conductive, immobilized bioanodes for microbial fuel cells

    International Nuclear Information System (INIS)

    Ganguli, R; Dunn, B

    2012-01-01

    The power densities of microbial fuel cells with yeast cells as the anode catalyst were significantly increased by immobilizing the yeast in electrically conductive alginate electrodes. The peak power densities measured as a function of the electrical conductivity of the immobilized electrodes show that although power increases with rising electrical conductivity, it tends to saturate beyond a certain point. Changing the pH of the anode compartment at that point seems to further increase the power density, suggesting that proton transport limitations and not electrical conductivity will limit the power density from electrically conductive immobilized anodes. (paper)

  13. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  14. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation

    International Nuclear Information System (INIS)

    Kranjc, M; Miklavčič, D; Bajd, F; Serša, I

    2014-01-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage–current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage–current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes. (paper)

  15. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  16. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  17. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.

    Science.gov (United States)

    Sasaki, Shuhei; Tsujiei, Yuri; Kawai, Mika; Mitsumata, Tetsu

    2017-02-23

    The electric-voltage dependence of the electric conductivity for cross-linked and un-cross-linked magnetic elastomers was measured at various magnetic fields, and the effect of cross-linking on the electric conductivity and the dielectric-breakdown behavior was investigated. The electric conductivity for un-cross-linked elastomers at low voltages was independent of magnetic fields and the volume fraction of magnetic particles, indicating the electric conduction in the polyurethane matrix. At high voltages, the electric conductivity increased with the magnetic field, showing the electric conduction via chains of magnetic particles. On the other hand, the electric conductivity at low voltages for cross-linked elastomers with volume fractions below 0.06 was independent of the magnetic field, suggesting the electric conduction in the polyurethane matrix. At volume fractions above 0.14, the electric conductivity increased with the magnetic field, suggesting the electric conduction via chains of magnetic particles. At high voltages, the electric conductivity for cross-linked elastomers with a volume fraction of 0.02 was independent of the magnetic field, indicating the electric conduction through the polyurethane matrix. At volume fractions above 0.06, the electric conductivity suddenly increased at a critical voltage, exhibiting the dielectric breakdown at the bound layer of magnetic particles and/or the discontinuous part between chains.

  18. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  19. 3D electrical conductivity tomography of volcanoes

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.

    2018-05-01

    Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in

  20. Acoustical study of electro- and thermal conductivity of liquid metals

    International Nuclear Information System (INIS)

    Tekuchev, V.V.; Rygalov, L.N.; Ivanova, I.V.; Barashkov, B.I.

    2003-01-01

    One established a link between electrical, elastic and structural properties of electronic smelts. One calculated polyterms of resistance and thermal conductivity of liquid metals (Be, Cd, U, V, Mo, Cr, rare-earth metals) on the basis of data covering both melting and boiling points. For some metals the values were obtained for the first time. To analyze kinetic properties of metals under high temperatures one should apply complex many-particles model representations and efficient computing equipment. It is pointed out that essential problems blocking efforts to tackle the mentioned task result in necessity to find simple though approximate models describing satisfactorily properties of metals [ru

  1. Electrical conductivity study on polythiophenes films

    International Nuclear Information System (INIS)

    Youm, I.; Cadene, M.

    1994-10-01

    The electrical conduction mechanism of two classes of polythiophenes: polythiophene (PT) and poly(3-methylthiophene) (PMT) films containing various levels of doping counter-ions was investigated. The temperature dependence of electrical conductivity obeys the Mott equation based on variable range hopping. The dimension of the variable range hopping is correlated with the structure of the conducting polymer. It seems for these polymers that carrier transport via mobile conjugational defects does not play a detectable role. (author). 17 refs, 3 figs, 1 tab

  2. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications

    International Nuclear Information System (INIS)

    Sato, Takaya; Masuda, Gen; Takagi, Kentaro

    2004-01-01

    An aliphatic quaternary ammonium salt which has a methoxyethyl group on the nitrogen atom formed an ionic liquid (room temperature molten salt) when combined with the tetrafluoroborate (BF 4 - ) and bis(trifluoromethylsulfonyl)imide [TFSI; (CF 3 SO 2 ) 2 N - ] anions. The limiting oxidation and reduction potentials, specific conductivity, and some other physicochemical properties of the novel ionic liquids, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEME-BF 4 ) and DEME-TFSI have been evaluated and compared with those of 1-ethyl-3-methylimidazolium tetrafluoroborate. DEME-BF 4 is a practically useful ionic liquid for electrochemical capacitors as it has a quite wide potential window (6.0 V) and high ionic conductivity (4.8 mS cm -1 at 25 deg. C). We prepared an electric double layer capacitor (EDLC) composed of a pair of activated carbon electrodes and DEME-BF 4 as the electrolyte. This EDLC (working voltage ∼2.5 V) has both, a higher capacity above room temperature and a better charge-discharge cycle durability at 100 deg. C when compared to a conventional EDLC using an organic liquid electrolyte such as a tetraethylammonium tetrafluoroborate in propylene carbonate

  3. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  4. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  5. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  6. Thermal and electrical conductivities of Cd-Zn alloys

    International Nuclear Information System (INIS)

    Saatci, B; Ari, M; Guenduez, M; Meydaneri, F; Bozoklu, M; Durmus, S

    2006-01-01

    The composition and temperature dependences of the thermal and electrical conductivities of three different Cd-Zn alloys have been investigated in the temperature range of 300-650 K. Thermal conductivities of the Cd-Zn alloys have been determined by using the radial heat flow method. It has been found that the thermal conductivity decreases slightly with increasing temperature and the data of thermal conductivity are shifting together to the higher values with increasing Cd composition. In addition, the electrical measurements were determined by using a standard DC four-point probe technique. The resistivity increases linearly and the electrical conductivity decreases exponentially with increasing temperature. The resistivity and electrical conductivity are independent of composition of Cd and Zn. Also, the temperature coefficient of Cd-Zn alloys has been determined, which is independent of composition of Cd and Zn. Finally, Lorenz number has been calculated using the thermal and electrical conductivity values at 373 and 533 K. The results satisfy the Wiedemann-Franz (WF) relation at T 373 K), the WF relation could not hold and the phonon component contribution of thermal conductivity dominates the thermal conduction

  7. Pressure sensor using liquid crystals

    Science.gov (United States)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  8. Measurement of the thermal conductivity of liquid D2O by the transient hot-wire method

    International Nuclear Information System (INIS)

    Nagasaka, Y.; Hiraiwa, H.; Nagashima, A.

    1990-01-01

    The measurement of the thermal conductivity of liquid D 2 O (heavy water) started in 1951. Since then, many researchers have measured the thermal conductivity of heavy water mainly with the aid of steady-state methods such as the parallel plate method and the concentric cylinder method. It should be noted here that even in the case of pure H 2 O or D 2 O enclosed in metallic vessel for a couple of days, the electrical conductivity seems to be not low enough for precise transient hot-wire measurements. The purpose of this paper is to obtain precise thermal conductivity data of liquid D 2 O which can be the reference standard values by the transient hot-wire method. The temperature range covered was 4 degrees C to 80 degrees C with pressure up to 40 MPa and the experimental data have an estimated accuracy of ±0.5%

  9. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  10. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs

    KAUST Repository

    Zhou, Jian

    2013-07-10

    We describe a strategy to design highly electrically conductive polycarbonate nanocomposites by using multiwalled carbon nanotubes (MWCNTs) coated with a thin layer of poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate), a conductive polymer. We found that this coating method improves the electrical properties of the nanocomposites in two ways. First, the coating becomes the main electrical conductive path. Second, the coating promotes the formation of a percolation network at a low filler concentration (0.3 wt %). To tailor the electrical properties of the conductive polymer coating, we used a polar solvent ethylene glycol, and we can tune the final properties of the nanocomposite by controlling the concentrations of the elementary constituents or the intrinsic properties of the conductive polymer coating. This very flexible technique allows for tailoring the properties of the final product. © 2013 American Chemical Society.

  11. Liquid-like thermal conduction in intercalated layered crystalline solids

    Science.gov (United States)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  12. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  13. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  14. Stay connected: Electrical conductivity of microbial aggregates.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2017-11-01

    The discovery of direct extracellular electron transfer offers an alternative to the traditional understanding of diffusional electron exchange via small molecules. The establishment of electronic connections between electron donors and acceptors in microbial communities is critical to electron transfer via electrical currents. These connections are facilitated through conductivity associated with various microbial aggregates. However, examination of conductivity in microbial samples is still in its relative infancy and conceptual models in terms of conductive mechanisms are still being developed and debated. The present review summarizes the fundamental understanding of electrical conductivity in microbial aggregates (e.g. biofilms, granules, consortia, and multicellular filaments) highlighting recent findings and key discoveries. A greater understanding of electrical conductivity in microbial aggregates could facilitate the survey for additional microbial communities that rely on direct extracellular electron transfer for survival, inform rational design towards the aggregates-based production of bioenergy/bioproducts, and inspire the construction of new synthetic conductive polymers. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    Science.gov (United States)

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  16. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  17. Electrically controlled liquid crystal fiber

    Science.gov (United States)

    Corella-Madueño, A.; Reyes, J. Adrián

    2006-08-01

    We consider a cylindrical fiber whose core is a liquid crystal (LC) subject to the action of a low frequency field applied parallel to the axis of the cylinder and having initially the escaped configuration. We find the distorted textures of the nematic inside the cylinder by assuming arbitrary anchoring boundary conditions. In the optical limit we calculate the ray trajectories followed by a low intensity beam along the fiber parametrized by a low frequency electric field. Finally, we calculate exactly the spatial dependence of the transverse magnetic modes distribution in the guide, on the electric field, by using a numerical scheme. We summarize our paper and discuss our results.

  18. Electrically Tuned Microwave Devices Using Liquid Crystal Technology

    Directory of Open Access Journals (Sweden)

    Pouria Yaghmaee

    2013-01-01

    Full Text Available An overview of liquid crystal technology for microwave and millimeter-wave frequencies is presented. The potential of liquid crystals as reconfigurable materials arises from their ability for continuous tuning with low power consumption, transparency, and possible integration with printed and flexible circuit technologies. This paper describes physical theory and fundamental electrical properties arising from the anisotropy of liquid crystals and overviews selected realized liquid crystal devices, throughout four main categories: resonators and filters, phase shifters and delay lines, antennas, and, finally, frequency-selective surfaces and metamaterials.

  19. Double anisotropic electrically conductive flexible Janus-typed membranes.

    Science.gov (United States)

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  20. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  1. Electrical processes for liquid waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Junkison, A.R.; Pottinger, J.S.

    1987-08-01

    This report describes the development of electrical techniques for the treatment of liquid waste streams. Part I is concerned with solid/liquid separation and the demonstration of the electrokinetic thickening of flocs at inorganic membranes suitable for intermediate-level wastes and electrochemical cleaning of stainless steel microfilters and graphite ultrafilters. Part II describes work on the development of electrochemical ion exchange, particularly the use of inorganic absorption media and polarity reversal to enhance system selectivity. Work on the adsorption and desorption of plutonium in acid nitrate solution at various electrode materials is also included. (author)

  2. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  3. Pressure and graphite effects on electrical conductivity in pyroxene

    Science.gov (United States)

    Wang, D.; Liu, T.; Shen, K.; Li, B.

    2017-12-01

    The geophysical observations including magnetotelluric (MT) and geomagnetic deep sounding show the distribution of electrical conductivity in the Earth's interior. The laboratory-based conductivity measurements of minerals and rocks are usually used to interpret the geophysical observations. Pyroxene is the second most abundant components in the upper mantle, and the electrical conductivity of pyroxene is important to understanding the bulk electrical conductivity. The electrical conductivity of a mineral is affected by many factors, such as its chemical composition, temperature, pressure. Here we report the effects of pressure and graphite on the electrical conductivity of pyroxene and applied to interpretation of MT observation. The starting materials are natural of orthopyroxene and clinopyroxe crystals. A powder sample with grain size 10 um was packed in a Mo capsule and hot-pressed at high pressures and temperatures using a 1000-ton Walker-type uniaxial split-cylinder apparatus. A mixture of pyroxene and a few percent of diamond was annealed at high pressure and temperature. All the hot-pressed samples before and after electrical conductivity measurements, were characterized by scanning electron microscopy, Fourier-Transform Infrared and Raman spectroscopy. High pressure conductivity experiments were carried out in a Walker-type multi-anvil apparatus using a 14/8 assembly. We use a Solartron 1260 Impedance/Gain -phase analyzer with 1V applied voltage within a frequency range of 1M-0.1 Hz to collect data. Complex impedance data on were collected in several heating and cooling cycles The electrical conductivity of pyroxene was made at 4,7,10 GPa, and electrical conductivity of the graphite-bearing pyroxene was measured at 4GPa. The results show the electrical conductivity decrease with the increasing of pressure, which may correspond to the transform from orthopyroxene to clinopyroxene. The results can be used to explain a drop of the electrical conductivity in

  4. Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields

    Science.gov (United States)

    Chegel, Raad

    2018-02-01

    Based on data of density function theory (DFT) as the input of tight binding model, the electrical conductivity (σ(T)) of graphene nanoribbos (GNRs) and Boron Nitride nanoribbos (BNNRs) under external electric fields with different wide are studied using the Green's function method. The BNNRs are wide band gap semiconductor and they are turned into metal depending on their electric field strength. The σ(T) shows increasing in low temperature region and after reaching the maximum value, it will decrease in high temperature region. In lower temperature ranges, the electrical conductivity of the GNRs is greater than that of the BNNRs. In a low temperature region, the σ(T) of GNRs increases linearly with temperature unlike the BNNRs. The electrical conductivity are strongly dependent on the electric field strength.

  5. Chapter A6. Section 6.3. Specific Electrical Conductance

    Science.gov (United States)

    Radtke, Dean B.; Davis, Jerri V.; Wilde, Franceska D.

    2005-01-01

    Electrical conductance is a measure of the capacity of a substance to conduct an electrical current. The specific electrical conductance (conductivity) of water is a function of the types and quantities of dissolved substances it contains, normalized to a unit length and unit cross section at a specified temperature. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of conductivity in ground and surface waters.

  6. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma.

    Science.gov (United States)

    Tha, Khin Khin; Katscher, Ulrich; Yamaguchi, Shigeru; Stehning, Christian; Terasaka, Shunsuke; Fujima, Noriyuki; Kudo, Kohsuke; Kazumata, Ken; Yamamoto, Toru; Van Cauteren, Marc; Shirato, Hiroki

    2018-01-01

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤ .045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r = .571, Bonferroni-corrected p = .018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r = .518, p = .040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. • This study tested the validity of noninvasive electrical conductivity measurements by MRI. • This study also evaluated the electrical conductivity characteristics of diffuse glioma. • Gliomas have higher electrical conductivity values than the normal brain parenchyma. • Noninvasive electrical conductivity measurement can be helpful for better characterisation of glioma.

  7. The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles

    KAUST Repository

    Hamdan, Ahmad

    2017-03-27

    We investigated the effect of a liquid\\'s electrical conductivity (EC) on the physical characteristics of electrical discharges in liquids with gaseous bubbles. Argon gas was supplied into the liquid to form an array of gaseous bubbles in between two electrodes (a pin-to-hollow electrode setup). Methanol and water were considered as base liquids, representing a low and a high dielectric permittivity (ϵ) liquid respectively, while potassium chloride (KCl) was added to control the EC of the liquids. When increasing the EC of the liquids, we found that the discharge probability was reduced by 46% for in-water and 38% for in-methanol discharges. We also found that the injected charge decreased by ∼4 μC as the EC increased. Moreover, as the gap distance increased from 1 to 2.5 mm, the injected charge decreased by 2 μC for in-water discharge and by 4 μC for in-methanol discharge. The plasma emission is another important parameter in characterizing discharges. With increasing the EC, the plasma emission volume decreased linearly by a factor of ∼5. The plasma lifetime was shortened by around 33% for in-water and 20% for in-methanol discharges in the case of d = 1 mm, while the decrease was 40% for in-water and 30% for in-methanol discharges in the case of d = 2.5 mm. Using the broadening characteristics of the Hα line, the electron density was estimated during the first 100 ns by ∼3 × 10 cm for in-water discharges and by ∼2 × 10 cm for in-methanol discharges, and it decreased by about one order of magnitude after 800 ns; note that n dependence on the EC was not significant. The reported findings provide further understanding of electrical discharges in bubbled liquids and highlight the influence of a liquid\\'s EC, which are useful in the development and optimization of the applications based on such process.

  8. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  9. Electrical conduction of a XLPE nanocomposite

    Science.gov (United States)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  10. Effective electrical and thermal conductivity of multifilament twisted superconductors

    International Nuclear Information System (INIS)

    Chechetkin, V.R.

    2013-01-01

    The effective electrical and thermal conductivity of composite wire with twisted superconducting filaments embedded into normal metal matrix is calculated using the extension of Bruggeman method. The resistive conductivity of superconducting filaments is described in terms of symmetric tensor, whereas the conductivity of a matrix is assumed to be isotropic and homogeneous. The dependence of the resistive electrical conductivity of superconducting filaments on temperature, magnetic field, and current density is implied to be parametric. The resulting effective conductivity tensor proved to be non-diagonal and symmetric. The non-diagonal transverse–longitudinal components of effective electrical conductivity tensor are responsible for the redistribution of current between filaments. In the limits of high and low electrical conductivity of filaments the transverse effective conductivity tends to that of obtained previously by Carr. The effective thermal conductivity of composite wires is non-diagonal and radius-dependent even for the isotropic and homogeneous thermal conductivities of matrix and filaments.

  11. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    Science.gov (United States)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  12. Investigation of the liquid crystal alignment layer: effect on electrical properties

    International Nuclear Information System (INIS)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh; Ouada, Hafedh Ben

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit

  13. Investigation of the liquid crystal alignment layer: effect on electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ouada, Hafedh Ben [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000 Monastir (Tunisia)], E-mail: asma_abderrahmen@yahoo.fr

    2008-04-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit.

  14. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  15. Studies on electrical conductivity of poly phenylene vinylene

    International Nuclear Information System (INIS)

    Khattab, Asaad F.; Ahmad, Saddam M.

    2009-01-01

    Four Pp polymers have been synthesized through Wit ting reaction, 1 poly(p-phenylene vinylene), 2 = poly(p phenylene vinylene-co-m-phenylene vinylene), 3 = poly(p-phenylene vinylene-co-o-phenylene vinylene) and 4 poly(p-phenylene-1,5-hexadiene). Electrical conductivity measurements show that the conductivity of polymer 3 is higher than that of polymers 1 and 2. The dihedral angle measurements indicates that the irregularity of polymer chains is the main reason for this fact. The interruption of chain conjugation by aliphatic segments (polymer 4) will increase the conductivity by increasing the chain mobility.The electrical conductivity of the polymers is increased by doping with iodine and by raising the temperature. The effect of annealing with different temperatures on conductivity was studied; the results show that structural conformation of polymeric chain is the main factor affecting electrical conductivity. (author)

  16. Electrical conductivity of free-standing mesoporous silicon thin films

    International Nuclear Information System (INIS)

    Khardani, M.; Bouaicha, M.; Dimassi, W.; Zribi, M.; Aouida, S.; Bessais, B.

    2006-01-01

    The effective electrical conductivity of free-standing p + -type porous silicon layers having porosities ranging from 30% to 80% was studied at both experimental and theoretical sides. An Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon (PS) films were prepared by the electrochemical etching method for different values of the anodic current density. In order to model the PS electrical conductivity, the free-standing porous layer was assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of the mesoporous film to the value of the effective band gap energy estimated from the absorption coefficient. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities

  17. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  18. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.

    Science.gov (United States)

    Martin, Shawn; Pratt, Harry D; Anderson, Travis M

    2017-07-01

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Numerical Modeling of Electrical Contact Conductance of Rough Bodies

    Directory of Open Access Journals (Sweden)

    M. V. Murashov

    2015-01-01

    Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are

  20. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  1. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    Science.gov (United States)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  2. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  3. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  4. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    Science.gov (United States)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2018-06-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  5. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    Science.gov (United States)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-11-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  6. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  7. On the behavior and stability of a liquid metal in quasi-planar electric contacts

    Science.gov (United States)

    Samuilov, S. D.

    2016-06-01

    The contacts between conductors formed under relatively low pressures can be treated as quasi-planar. Melting of the material of such contacts upon the passage of electric current is used in some technological processes, but the behavior of liquid in these conditions has not been analyzed. In this study, such an estimate was obtained for specific conditions appearing under electric-pulse compacting (briquetting) of metal shavings. Analysis of derived relations shows that this estimate is valid for any quasi-2D contacts upon passage of a pulsed current of duration from microseconds to milliseconds. It is shown that the spacing between contact surfaces decreases, the liquid metal is extruded in the lateral directions, and the area of the contact and its conductivity increase. Sausage-type magnetohydrodynamic (MHD) instability and overheating instability do not evolve in these conditions because the instability wavelength is larger than the rated thickness of the molten layer; screw MHD instability can appear in slower processes.

  8. Coal + Biomass → Liquids + Electricity (with CCS)

    Science.gov (United States)

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  9. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be

  10. Electrical conductivity of metal powders under pressure

    Science.gov (United States)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  11. Correction of temperature and bulk electrical conductivity effects on soil water content measurements using ECH2O EC-5, TE and 5TE sensors

    Science.gov (United States)

    Rosenbaum, Ulrike; Huisman, Sander; Vrba, Jan; Vereecken, Harry; Bogena, Heye

    2010-05-01

    For a monitoring of dynamic spatiotemporal soil moisture patterns at the catchment scale, automated and continuously measuring systems that provide spatial coverage and high temporal resolution are needed. Promising techniques like wireless sensor networks (e.g. SoilNet) have to integrate low-cost electromagnetic soil water content sensors [1], [2]. However, the measurement accuracy of such sensors is often deteriorated by effects of temperature and soil bulk electrical conductivity. The objective of this study is to derive and validate correction functions for such temperature and electrical conductivity effects for the ECH2O EC-5, TE and 5TE sensors. We used dielectric liquids with known dielectric properties for two different laboratory experiments. In the first experiment, the temperature of eight reference liquids with permittivity ranging from 7 to 42 was varied from 5 to 40°C. All sensor types showed an underestimation of permittivity for low temperatures and an overestimation for high temperatures. In the second experiment, the conductivity of the reference liquids was increased by adding NaCl. The highest deviations occurred for high permittivity and electrical conductivity between ~0.8 and 1.5 dS/m (underestimation from 8 to 16 permittivity units depending on sensor type). For higher electrical conductivity (2.5 dS/m), the permittivity was overestimated (10 permittivity units for the EC-5 and 7 for the 5TE sensor). Based on these measurements on reference liquids, we derived empirical correction functions that are able to correct thermal and conductivity effects on measured sensor response. These correction functions were validated using three soil samples (coarse sand, silty clay loam and bentonite). For the temperature correction function, the results corresponded better with theoretical predictions after correction for temperature effects on the sensor circuitry. It was also shown that the application of the conductivity correction functions improved

  12. Electric field stabilization of viscous liquid layers coating the underside of a surface

    Science.gov (United States)

    Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.

    2017-05-01

    We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.

  13. Bentonite electrical conductivity: a model based on series–parallel transport

    KAUST Repository

    Lima, Ana T.

    2010-01-30

    Bentonite has significant applications nowadays, among them as landfill liners, in concrete industry as a repairing material, and as drilling mud in oil well construction. The application of an electric field to such perimeters is under wide discussion, and subject of many studies. However, to understand the behaviour of such an expansive and plastic material under the influence of an electric field, the perception of its electrical properties is essential. This work serves to compare existing data of such electrical behaviour with new laboratorial results. Electrical conductivity is a pertinent parameter since it indicates how much a material is prone to conduct electricity. In the current study, total conductivity of a compacted porous medium was established to be dependent upon density of the bentonite plug. Therefore, surface conductivity was addressed and a series-parallel transport model used to quantify/predict the total conductivity of the system. © The Author(s) 2010.

  14. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications

    Directory of Open Access Journals (Sweden)

    M.F. Zawrah

    2016-12-01

    Full Text Available In this study, Al2O3–H2O nanofluids were synthesized using sodium dodecylbenzenesulfonate (SDBS dispersant agent by ultra-sonication method. Different amounts of SDBS i.e. 0.1, 0.2, 0.3, 0.6, 1 and 1.5 wt.% were tested to stabilize the prepared nanofluids. The stability of nanofluids was verified using optical microscope, transmission electron microscope and Zeta potential. After selecting the suitable amount of dispersant, nanofluids with different volume fractions of Al2O3 were prepared. Zeta potential measurement of nanofluids with low alumina and intermediate fractions showed good dispersion of Al2O3 nanoparticles in water, but nanofluids with high mass fraction were easier to aggregate. The stabilized nanofluids were subjected for measuring of rheological behavior and electrical conductivity. The electrical conductivity was correlated to the thermal conductivity according to Wiedemann–Franz law. The results revealed that the nanofluid containing 1% SDBS was the most stable one and settling was observed for the fluid contained 0.75 vol.% of Al2O3 nanoparticles which gave higher viscosity. The rheological measurements indicated that the viscosity of nanofluids decreased firstly with increasing shear rate (shear thinning behavior. Addition of nanoparticles into the base liquid enhanced the electrical conductivity up to 0.2 vol.% of Al2O3 nano-particles after which it decreased.

  15. Making Complex Electrically Conductive Patterns on Cloth

    Science.gov (United States)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  16. Electrically tunable spatially variable switching in ferroelectric liquid crystal/water system

    Science.gov (United States)

    Choudhary, A.; Coondoo, I.; Prakash, J.; Sreenivas, K.; Biradar, A. M.

    2009-04-01

    An unusual switching phenomenon in the region outside conducting patterned area in ferroelectric liquid crystal (FLC) containing about 1-2 wt % of water has been observed. The presence of water in the studied heterogeneous system was confirmed by Fourier transform infrared spectroscopy. The observed optical studies have been emphasized on the "spatially variable switching" phenomenon of the molecules in the nonconducting region of the cell. The observed phenomenon is due to diffusion of water between the smectic layers of the FLC and the interaction of the curved electric field lines with the FLC molecules in the nonconducting region.

  17. The Electrical Conductivity of Stretched Polyaniline and Polypyrrole Coated Yarns

    Directory of Open Access Journals (Sweden)

    M. Nouri

    2009-12-01

    Full Text Available The nylon and nylon/lycra yarns were coated with electrically conductive polymers such as polyaniline and polypyrrole, via chemical polymerization process. Electrical conductivity of the coated yarns was measured at variousstrain levels using two-point probe technique and their strain sensitivities were studied. The results showed that, electrical conductivity of the coated yarns decreased with an increase in strain level. A sharp decrease in the electrical conductivity of the nylon/lycra coated yarn with the strain level was recorded whereas, a small drop in the electrical conductivity of the nylon coated yarn was observed. Linear relationships were found between the electrical conductivity and length for the nylon and nylon/lycra coated yarns. The polyaniline coated yarns showed higher strain sensitivity compared to polypyrrole coated yarns. Repeatability of the strain sensitivity of the coated yarns was examined and the coated nylon/lycra yarn showed better repeatability compared to that of coated nylon yarn. The coated yarns were proposed as a flexible strain sensor in the field of intelligent materials.

  18. Can the scaling behavior of electric conductivity be used to probe the self-organizational changes in solution with respect to the ionic liquid structure? The case of [C8MIM][NTf2].

    Science.gov (United States)

    Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella

    2015-08-28

    Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.

  19. Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid

    International Nuclear Information System (INIS)

    Egashira, Minato; Asai, Takahito; Yoshimoto, Nobuko; Morita, Masayuki

    2011-01-01

    Highlights: ► Ternary electrolyte containing NaBF 4 , polyether and ionic liquid has been prepared. ► The conductivity of the electrolytes has been evaluated toward content of ionic liquid. ► The conductivity shows maximum 1.2 mS cm −1 and is varied in relation to solution structure. - Abstract: For the development of novel non-aqueous sodium ion conductor with safety of sodium secondary cell, non-flammable ionic liquid is attractive as electrolyte component. A preliminary study has been carried out for the purpose of constructing sodium ion conducting electrolyte based on ionic liquid. The solubility of sodium salt such as NaBF 4 in ionic liquid is poor, thus the ternary electrolyte has been prepared where NaBF 4 with poly(ethylene glycol) dimethyl ether (PEGDME) as coordination former is dissolved with ionic liquid diethyl methoxyethyl ammonium tetrafluoroborate (DEMEBF 4 ). The maximum conductivity among the prepared solutions, ca. 1.2 mS cm −1 at 25 °C, was obtained when the molar ratio (ethylene oxide unit in PEGDME):NaBF 4 :DEMEBF 4 was 8:1:2. The relationship between the conductivity of the ternary electrolyte and its solution structure has been discussed.

  20. Correlation of electrical conductivity and photoluminescence in nanoporous silicon

    International Nuclear Information System (INIS)

    Bouaicha, M.; Khardani, M.; Bessais, B.

    2006-01-01

    The effective electrical conductivity of p type porous silicon is determined both theoretically and experimentally for different porosities ranging from 30% to 80%. In this work, Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon samples were prepared by the electrochemical etching method for different values of the anodic current. The porous material is assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of a PS layer, to the peak energy of its photoluminescence (PL) spectrum. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities. The results are discussed as regard to other works

  1. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    International Nuclear Information System (INIS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L.S.; Tavolaro, A.

    2016-01-01

    Highlights: • Graphene was exfoliated in liquid phase also in the presence of zeolite 4A. • Films were obtained by drop-casting. • SEM, Raman, low-frequency noise and thermal electric measurements show that the presence of zeolite improves the quality of the FLG films. - Abstract: In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al 2 O 3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm 2 . The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  2. Ambient effects on the electrical conductivity of carbon nanotubes

    DEFF Research Database (Denmark)

    Roch, Aljoscha; Greifzu, Moritz; Roch Talens, Esther

    2015-01-01

    We show that the electrical conductivity of single walled carbon nanotubes (SWCNT) networks is affected by oxygen and air humidity under ambient conditions by more than a magnitude. Later, we intentionally modified the electrical conductivity by functionalization with iodine and investigated...

  3. Electromagnetic interaction between a rising spherical particle in a conducting liquid and a localized magnetic field

    Science.gov (United States)

    Lyu, Z.; Tran, N.; Boeck, T.; Karcher, C.

    2017-07-01

    Lorentz force velocimetry (LFV) is a non-contact electromagnetic flow measurement technique for electrically conductive liquids. It is based on measuring the flow-induced force acting on an external permanent magnet. Motivated by extending LFV to liquid metal two-phase flow measurement, in a first test we consider the free rising of a non-conductive spherical particle in a thin tube of liquid metal (GaInSn) initially at rest. Here the measured force is due to the displacement flow induced by the rising particle. In this paper, numerical results are presented for three different analytical solutions of flows around a moving sphere under a localized magnetic field. This simplification is made since the hydrodynamic flow is difficult to measure or to compute. The Lorentz forces are compared to experiments. The aim of the present work is to check if our simple numerical model can provide Lorentz forces comparable to the experiments. The results show that the peak values of the Lorentz force from the analytical velocity fields provide us an upper limit to the measurement results. In the case of viscous flow around a moving sphere we recover the typical time-scale of Lorentz force signals.

  4. Conductivity relaxation and charge transport of trihexyl tetradecyl phosphonium dicyanamide ionic liquid by broadband dielectric spectroscopy

    Science.gov (United States)

    Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.

    2018-04-01

    Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.

  5. Thermo-electric pump

    International Nuclear Information System (INIS)

    Georges, J.-L.; Veyret, J.-F.

    1973-01-01

    Description is given of a thermo-pump for electrically conductive liquid fluids, e.g. for a liquid metal such as sodium. This pump is characterized in that the piping for the circulation of the conductive liquid is constituted by a plurality of conduits defined by two co-axial cylinders and two walls parallel to their axis. Each conduit limited outside by a magnet, inside by a mild-iron tube, and laterally by two materials forming a thermocouple. The electric current generated by that thermo-couple and the magnetic flux generated by the magnets both loop the loop through an outer cylindrical nickel shell. This can be applied to sodium circulation loops for testing nuclear fuel elements [fr

  6. Electrical conductivity of (La,Sr)MnO3

    International Nuclear Information System (INIS)

    Nowotny, J.; Rekas, M.; Sorrell, C.C.

    1998-01-01

    Defect disorder model for undoped and Sr-doped LaMnO 3 was derived from non-stoichiometry data reported in literature. This model is checked against the electrical conductivity data. The regimes corresponding to oxygen deficit and oxygen excess will be discussed. A good agreement between the random defect model and experimental data of the electrical conductivity was revealed. Copyright (1998) Australasian Ceramic Society

  7. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanlin [Department of Thermal Energy Engineering, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, 102249 (China); Wang, Mi [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (China); Yao, Jun [School of Energy Research, Xiamen University, Xiamen 361005 (China)

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  8. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  9. Electrical resistivity of liquid iron with high concentration of light element impurities

    Science.gov (United States)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  10. Synthesis and characterization of electrical conducting nanoporous carbon structures

    International Nuclear Information System (INIS)

    El Mir, L.; Kraiem, S.; Bengagi, M.; Elaloui, E.; Ouederni, A.; Alaya, S.

    2007-01-01

    Nanoporous organic xerogel compounds were prepared by sol-gel method from pyrogallol-formaldehyde (PF) mixtures in water using perchloric acid as catalyst. The preparation conditions of electrical conducting carbon (ECC) structures were explored by changing the pyrolysis temperature. The effect of this preparation parameters on the structural and electrical properties of the obtained ECCs were studied, respectively, by thermogravimetric analysis (TGA), nitrogen adsorption isotherms, IR spectroscopy and electrical conductivity measurements. The analysis of the obtained results revealed that, the polymeric insulating phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers when the carbon microparticles inside the structure agglomerated with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity and the I(V) characteristics of the obtained ECC structures show a non-ohmic behaviour. The results obtained from TGA and differential thermal analyser (DTA) thermograms, scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs, IR spectroscopy and X-ray diffraction revealed that, the obtained ECC structures consist of amorphous and nanoporous electrical conducting carbon materials

  11. Electrical conductivity measurement on DKDP Crystals with different deuterated degrees

    International Nuclear Information System (INIS)

    Liu, Baoan; Yin, Xin; Xu, Mingxia; Ji, Shaohua; Zhu, Lili; Zhang, Lisong; Sun, Xun; Xu, Xinguang; Zhao, Minglei; Zhang, Qinghua

    2012-01-01

    Ten DKDP single crystals with deuterated degrees ranging from 0 to 90 % were grown by a rapid growth method. The electrical conductivities of these crystals were measured along a and c directions at room temperature. The electrical conductivity increases with the increase for deuterium content. Also, the electrical conductivities of certain crystals were measured at various temperatures ranging from 20 to 130 C. The values of activation energy decrease as the increase of deuterium content. The present study indicates that the deuterium tunneling frequency is smaller than that of hydrogen, which may be the reason why the variation of electrical conductivity happens after the substitution of hydrogen for deuterium in KDP crystal. (orig.)

  12. Phosphonium–based ionic liquid as dispersing agent for MWCNT in melt-mixing polystyrene blends: Rheology, electrical properties and EMI shielding effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Soares da Silva, Jéssica P. [Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, 21941-598, Rio de Janeiro (Brazil); Soares, Bluma G., E-mail: bluma@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, 21941-598, Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalurgica e de Materiais - COPPE, Centro de Tecnologia, 21941-972, Rio de Janeiro (Brazil); Livi, Sebastien [Université de Lyon, F-69003, Lyon (France); INSA Lyon, F-69621, Villeurbanne (France); CNRS, UMR 5223, Ingénierie des Matériaux Polymères (France); Barra, Guilherme M.O. [Universidade Federal de Santa Catarina, Departamento de Engenharia Mecânica, Florianópolis, SC (Brazil)

    2017-03-01

    Conducting nanocomposites composed with polystyrene (PS) and multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing procedure assisted by trihexyl-(tetradecyl)-phosphonium combined with bis(trifluoromethylsulfonyl) amide counteranion (TFSI) as the ionic liquid (IL). The non-covalent functionalization of MWCNT with the IL was confirmed by Raman spectroscopy and thermogravimetric analysis. The functionalized MWCNT provided better dispersion of the MWCNT within PS matrix, as indicated by transmission electron microscopy (TEM), and also an electrical conductivity as high as 10{sup −1} S/m with 0.66 m% of MWCNT combined with 3.34 m% of IL. This value is around four orders of magnitude higher when compared to nanocomposites with similar amount of untreated MWCNT. From rheological studies, it was observed that the transition between liquid-like to solid-like behavior occurred at lower frequencies for the systems containing functionalized MWCNT. Moreover, an improvement of around 170% in the electromagnetic interference shielding effectiveness (EMI SE) in the X-band frequency range was observed for the nanocomposites containing 1% of MWCNT non-covalently functionalized with the IL, that is, 1% of MWCNT and 5% of IL. - Highlights: • MWCNT well dispersed in PS matrix, in the presence of ionic liquid. • Outstanding electric conductivity of PS/MWCNT nanocomposite. • Improved EMI shielding effectiveness by addition of ionic liquid in PS/MWCNT nanocomposite.

  13. Transport properties of olivine grain boundaries from electrical conductivity experiments

    Science.gov (United States)

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  14. Mechanisms of electrical conductivity in olivine

    International Nuclear Information System (INIS)

    Schock, R.N.; Duba, A.G.; Shankland, T.J.

    1984-01-01

    Data on the electrical conductivity and the thermoelectric effect in single crystals indicate that the charge conduction mechanism in pure magnesium forsterite is electrons. The concentration of electrons can be varied by controlling the number of oxygen vacancies through manipulation of the oxygen pressure. For iron bearing olivine, the conduction mechanism is by electron holes localized on an iron ion. Since iron strongly affects the creep process as well, oxidation of iron is probably accompanied by the production of magnesium vacancies. 15 references

  15. The Effect of H2SO4 Concentration on the Ionic Conductivity of Liquid PMMA Oligomer

    International Nuclear Information System (INIS)

    Norashima Kamaluddin; Famiza Abdul Latif; Han, C.C.; Ruhani Ibrahim; Sharil Fadli Mohamad Zamri; Norashima Kamaluddin; Famiza Abdul Latif; Han, C.C.; Ruhani Ibrahim; Sharil Fadli Mohamad Zamri

    2015-01-01

    To date gel and film type polymer electrolytes have been widely synthesized due to their wide range of electrical properties. However these types of polymer electrolytes exhibit poor mechanical stability and poor electrode-electrolyte contact hence deprive the overall performance of a battery system. Therefore, in order to indulge the advantages of polymer as electrolyte, a new class of polymer electrolyte was synthesized and investigated. In this study, liquid poly(methyl methacrylate) (PMMA) electrolyte was synthesized using the simplest free radical polymerization technique using benzoyl peroxide as the initiator. At this stage, it was found that this liquid PMMA oligomer (MW=3000 g/ mole) has a potential as electrolyte in electrochemical devices. It was found that an ionic conductivity of ∼10 -7 S/ cm at room temperature can be achieved when only small volume of high molarity of sulfuric acid (H 2 SO 4 ) was doped in the liquid PMMA oligomer. The properties of this liquid PMMA oligomer were further investigated using Fourier Transform Infrared Spectroscopy (FTIR). (author)

  16. Electrical resistivity of liquid Ag-Au alloy

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-01-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au binary alloy on composition are reported. The structure of the binary alloy is described as a hard-sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trend is observed. (author)

  17. Electrical conductivity of cobalt–titanium substituted SrCaM hexaferrites

    International Nuclear Information System (INIS)

    Eraky, M.R.

    2012-01-01

    A series of polycrystalline M-type hexagonal ferrites with the composition Sr 0.5 Ca 0.5 Co x Ti x Fe 12−2x O 19 (where x=0.0–0.8) were prepared by the conventional ceramic technique. The electrical conductivity has been measured from 300 to 590 K. The dc conductivity, σ dc , exhibited a semiconductor behavior. The negative sign of thermoelectric power coefficient S reveals that all samples are n-type semiconductors. Both σ dc and mobility, μ d , increases with the substitution of Co 2+ and Ti 4+ ions, reach maximum at x=0.4 and start decreasing at x>0.4. Many conduction mechanisms were discussed to explain the electric conduction in the system. It was found that the hopping conduction is the predominant conduction mechanism. For samples with compositional parameter x=0.0 and 0.8, the band conduction mechanism shares in electric conduction beside the hopping process. - Highlights: ► SrCaCoTiM hexaferrites have been prepared by conventional ceramic technique. ► The electrical conductivity exhibited a semiconductor behavior. There is an increase in conductivity up to x=0.4 for Co and Ti substitution. ► The hopping conduction is the predominant conduction mechanism.

  18. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  19. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  20. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  1. Magnetohydraulic flow through a packed bed of electrically conducting spheres

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1985-01-01

    The flow of an electrically conducting fluid through a packed bed of electrically conducting spheres in the presence of a strong magnetic field constitutes a very complex flow situation due to the constant turning of the fluid in and out of magnetic field lines. The interaction of the orthogonal components of the velocity and magnetic field will induce electric fields that are orthogonal to both and the electric fields in turn can cause currents that interact with the magnetic field to generate forces against the direction of flow. The strengths of these generated forces depend primarily upon the closure paths taken by the induced currents which, in turn, depend upon the relative ratio of the electrical resistance of the solid spheres to that of the fluid. Both experimental and analytical analyses of the slow flow of a eutectic mixture of sodium and potassium (NaK) through packed cylinders containing stainless steel spheres in the presence of a strong transverse magnetic field were completed. A theory of magnetohydraulic flow is developed by analogy with the development of hydraulic radius theories of flow through porous media. An exact regional analysis is successfully applied to an infinite bed of electrically conducting spheres with a conducting or non-conducting constraining wall on one side. The equations derived are solved for many different combinations of flowrate, magnetic field strength, porosity, and electrical resistance ratio

  2. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  3. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Method of imaging the electrical conductivity distribution of a subsurface

    Science.gov (United States)

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  5. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  6. Maximum on the electrical conductivity polytherm of molten TeCl4

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2017-01-01

    The electrical conductivity of molten TeCl 4 was measured up to 761 K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl 4 electrical conductivity polytherm has a maximum. It was recorded at 705 K (Κ max =0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  7. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  8. Searches for fractional electric charge on niobium samples exposed to liquid helium

    International Nuclear Information System (INIS)

    Smith, P.F.; Homer, G.J.; Lewin, J.D.; Walford, H.E.; Jones, W.G.

    1986-01-01

    Levitation measurements at room temperature described in a previous paper did not confirm the apparent fractional electric charges reported by the Stanford Group for niobium samples at liquid helium temperature. To simulate possible effects of a low-temperature environment, both niobium and steel samples have been exposed to liquid helium for periods of typically 48 h, both with and without the assistance of electric fields to extract possible fractionally charged ions. Subsequent levitation tests show no indication of fractional charge. With some additional assumptions regarding ionic mobility and surface energy, an upper limit ∝10 -2 fractional charges/g is inferred for the liquid helium itself. (orig.)

  9. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  10. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  11. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    Science.gov (United States)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  12. Electrical conductivity of hydrogen shocked to megabar pressures

    International Nuclear Information System (INIS)

    Weir, S.T.; Nellis, W.J.; Mitchell, A.C.

    1993-08-01

    The properties of ultra-high pressure hydrogen have been the subject of much experimental and theoretical study. Of particular interest is the pressure-induced insulator-to-metal transition of hydrogen which, according to recent theoretical calculations, is predicted to occur by band-overlap in the pressure range of 1.5-3.0 Mbars on the zero temperature isotherm. Extremely high pressures are required for metallization since the low-pressure band gap is about 15 eV. Recent static-pressure diamond anvil cell experiments have searched for evidence of an insulator-to-metal transition, but no conclusive evidence for such a transition has yet been supplied. Providing conclusive evidence for hydrogen metallization is difficult because no technique has yet been developed for performing static high-pressure electrical conductivity experiments at megabar pressures. The authors report here on electrical conductivity experiments performed on H 2 and D 2 multi-shocked to megabar pressures. Electrical conductivities of dense fluid hydrogen at these pressures and temperatures reached are needed for calculations of the magnetic fields of Jupiter and Saturn, the magnetic fields being generated by convective dynamos of hot, dense, semiconducting fluid hydrogen. Also, since electrical conduction at the pressure-temperature conditions being studied is due to the thermal excitation of charge carriers across the electronic band gap, these experiments yield valuable information on the width of the band gap at high densities

  13. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  14. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  15. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  16. A nonconjugated radical polymer glass with high electrical conductivity

    Science.gov (United States)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  17. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-06-01

    Full Text Available When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS. We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.

  18. Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + propylene carbonate binary mixtures

    International Nuclear Information System (INIS)

    Vraneš, Milan; Zec, Nebojša; Tot, Aleksandar; Papović, Snežana; Dožić, Sanja; Gadžurić, Slobodan

    2014-01-01

    Highlights: • Densities of [bmim][NTf 2 ] mixtures with propylene carbonate were measured. • Excess properties were calculated. • Formation of hydrogen bonds between IL and PC was discussed. • Electrical conductivity and viscosity were also measured. • Influence of temperature and composition on mixture properties were studied. -- Abstract: Densities of binary liquid mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][NTf 2 ], with propylene carbonate (PC) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. The electrical conductivity was measured in the range from (293.15 to 328.15) K. Also, viscosity of [bmim][NTf 2 ] + PC binary mixtures was measured from (298.15 to 333.15) K. Excess molar volumes, V E , have been obtained from the experimental densities and were fitted to Redlich–Kister polynomial equation. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between PC and selected ionic liquid. Results are discussed in order to understand the hydrogen bonds formation between components of the mixture

  19. Liquid state behaviour of semi-conducting materials; Comportement a l'etat liquide des materiaux semiconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Vandevyver, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This work is a review of the present state of knowledge concerning the behaviour in the liquid state of materials having semi-conducting properties in the solid state. In the case of many materials it is observed that a 'short-distance order' persists (with modifications) at temperatures above the melting point; this phenomenon is responsible for the semi-conducting properties of certain liquids. A decrease in the mobility of the carriers is generally observed on fusion, whereas the width of the forbidden zone increases: {delta}E{sub g} = {delta}E{sub g1} + {delta}E{sub g2}; {delta}E{sub g1} which is related to the expansion of the crystal is usually positive whereas {delta}E{sub g2} which is related to a change in the short-distance order is negative. According to the relative importance of these two phenomena, {delta}E{sub g} is either positive or negative, involving an increase or a decrease in the semiconducting nature of the material at its melting point. Various examples are presented, in particular that of selenium-tellurium solutions. The experimental study of the electrical properties of liquids comes up against major difficulties (the Hall effect in particular). It is shown nevertheless that the theoretical studies explain semi-quantitatively the known experimental results. (author) [French] Cette etude fait le point sur l'etat actuel des connaissances relatives au comportement a l'etat liquide des materiaux presentant a l'etat solide des proprietes semiconductrices. Dans de nombreux materiaux on observe la persistance (avec modification), d'un 'ordre a courte distance' a des temperatures superieures a celles de la fusion; ceci est a l'origine des proprietes semiconductrices de certains liquides. A la fusion on observe generalement une diminution de la mobilite des porteurs tandis que la largeur de la bande interdite subit un accroissement: {delta}E{sub g} = {delta}E{sub g1} + {delta}E{sub g2}; {delta}E{sub g1

  20. Modelling electrical conductivity of groundwater using and adaptive neuro-fuzzy inference system

    NARCIS (Netherlands)

    Tutmez, B.; Hatipoglu, Z.; Kaymak, U.

    2006-01-01

    Electrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this present

  1. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system

    NARCIS (Netherlands)

    B. Tutmez (Bulent); Z. Hatipoglu (Z.); U. Kaymak (Uzay)

    2006-01-01

    textabstractElectrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this

  2. Behaviour of the Egyptian beach economic minerals during their electrical separation in relation to their electrical conductivity

    International Nuclear Information System (INIS)

    Khazback, A.E.; Soliman, F.A.S.

    1988-01-01

    The most important and strategic minerals in the Egyptian beach sands are monazite, zircon, rutile and ilmenite. Due to their importance, several flowsheets were designed for their separation economically. Electrostatic separation plays an important role in most of these flowsheets depending on the main differences between them concerning their electrical conductivity. This paper describes the design of a cell for the measurement of the electrical conductivities of these minerals. It also establishes a quantitative relationship between the electrical conductivity and the behaviour of these minerals during their electrical separation. A computer program was written to facilitate the calculation of the slope of the discharge curve from which the electrical conductivity or the reciprocal resistivity. Relaxation time and the data correlation coefficient for the tested minerals are obtained. For all the tests performed, the correlation coefficient value was found to be better than 99%. In general the electrical conductivity was shown to be a function of both temperature and grain size. It was found also that the presence of iron staining on the surface of monazite grains and inclusions in the zircon grains alters noticeably the bulk conductivity of the tested minerals

  3. Universality of DC electrical conductivity from holography

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xian-Hui, E-mail: gexh@shu.edu.cn [Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai, 200444 (China); Department of Physics, University of California, San Diego, CA92122 (United States); Sin, Sang-Jin, E-mail: sjsin@hangyang.ac.kr [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Wu, Shao-Feng, E-mail: sfwu@shu.edu.cn [Department of Physics, Shanghai University, Shanghai, 200444 (China)

    2017-04-10

    We propose a universal formula of dc electrical conductivity in rotational- and translational-symmetries breaking systems via the holographic duality. This formula states that the ratio of the determinant of the dc electrical conductivities along any spatial directions to the black hole area density in zero-charge limit has a universal value. As explicit illustrations, we give several examples elucidating the validation of this formula: We construct an anisotropic black brane solution, which yields linear in temperature for the in-plane resistivity and insulating behavior for the out-of-plane resistivity; We also construct a spatially isotropic black brane solution that both the linear-T and quadratic-T contributions to the resistivity can be realized.

  4. Thermoacoustic magnetohydrodynamic electrical generator

    International Nuclear Information System (INIS)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid

  5. Simplified Calculation of the Electrical Conductivity of Composites with Carbon Nanotubes

    Science.gov (United States)

    Ivanov, S. G.; Aniskevich, A.; Kulakov, V.

    2018-03-01

    The electrical conductivity of two groups of polymer nanocomposites filled with the same NC7000 carbon nanotubes (CNTs) beyond the percolation threshold is described with the help of simple formulas. Different manufacturing process of the nanocomposites led to different CNT network structures, and, as a consequence, their electrical conductivity, at the same CNT volume, differed by two orders of magnitude. The relation between the electrical conductivity and the volume content of CNTs of the first group of composites (with a higher electrical conductivity) is described assuming that the CNT network structure is close to a statistically homogeneous one. The formula for this case, derived on the basis of a self-consistent model, includes only two parameters: the effective longitudinal electrical conductivity of CNT and the percolation threshold (the critical value of CNT volume content). These parameters were determined from two experimental points of electrical conductivity as a function of the volume fraction of CNTs. The second group of nanocomposites had a pronounced agglomerative structure, which was confirmed by microscopy data. To describe the low electrical conductivity of this group of nanocomposites, a formula based on known models of micromechanics is proposed. Two parameters of this formula were determined from experimental data of the first group, but the other two — of the second group of nanocomposites. A comparison of calculation and experimental relations confirmed the practical expediency of using the approach described.

  6. New conducted electrical weapons: Electrical safety relative to relevant standards.

    Science.gov (United States)

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  7. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  8. Electrical and Electrochemical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Thanh-Hai Le

    2017-04-01

    Full Text Available Conducting polymers (CPs have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.

  9. Development of an electrical connector for liquid sodium environment. Final Report

    International Nuclear Information System (INIS)

    Kataoka, Hajime; Noguchi, Koichi; Takatsudo, Hiroshi; Miyakawa, Shun-ichi

    1998-07-01

    The INstrumented irradiation Test Assembly (INTA) has been used to conduct precision on-line instrumented irradiation tests in the experimental fast reactor JOYO. In INTA, direct instrumentation wiring between the irradiation test section in the core and the upper structure section in the rotating plug makes INTA structurally complex and expensive. Instead of direct wiring, if an electrical connector capable of withstanding a heated liquid sodium environment could be used between the irradiation test section and the upper structure section, the upper mechanism of INTA could be reused and testing costs would be drastically reduced. Moreover, the reactor load factor would be improved because of reduced handling time for INTA. In an attempt to gain this advantage, research and development of an electric connector in a sodium environment was carried out from 1988 to 1996 at PNC. As no previous R and D had been conducted in this area, this development activity was conducted in a boot strap manner. The first test was carried out for a small model fabrication, the second was for a water partial model, and the third was for a sodium partial model. Based on those tests, a prototype design specification of the connector was determined. In the sodium partial model test, the resilience of the electrical connector insulation to the sodium environment was investigated. However, severe cracking in the ceramic insulator caused by the high temperature sodium environment was discovered at the junction of ceramic insulator and metallic electrode. Although additional sodium partial tests were performed for various material combinations of ceramic insulators, metallic electrodes, brazing materials and metallization materials, the results of the tests were unsatisfactory. Therefore, it was decided that the development of the connector in sodium should cease at PNC in 1997. (J.P.N.)

  10. Electrical conductivity in polyacrylonitrile and perbunan

    International Nuclear Information System (INIS)

    Migahed, M.D.; Bakr, N.A.; Tawansi, A.

    1981-07-01

    The electrical conduction in Ag-PAN-Ag and Ag-NBR-Ag sandwich samples is studied measuring the dependence of current on the applied voltage and temperature. The conduction mechanism depends on the polymer type. A bulk polarization contribution is suggested in the conduction mechanism at high temperatures besides the Schottky emission in the case of PAN and simple carrier jump model in the case of NBR at room temperature. NBR(28) is proved to be more semiconducting than both NBR(38) and PAN. This is attributed to the lowering of the nitrile group content in NBR(28). (author)

  11. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Thakur, P.K.; Yussouff, M.

    1984-12-01

    Based on the augmented space formalism introduced by one of us and the use of the Ward identity and the Bethe-Sapeter equation, a formalism has been developed for the calculation of electrical conductivity for random alloys. A simple application is made to a model case, and it is argued that the formalism enables us to carry out viable calculations on more realistic models of alloys. (author)

  12. Electrical conductivity in random alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Yussouff, M.

    1983-06-01

    Starting from the augmented space formalism by one of us, and the use of the Ward identity and Bethe Salpeter equation, a complete formalism for the calculation of the electrical conductivity in tight-binding models of random binary alloys has been developed. The formalism is practical in the sense that viable calculations may be carried out with its help for realistics models of alloy systems. (author)

  13. Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.

    Science.gov (United States)

    Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2018-09-01

    This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electric Conductivity of Phosphorus Nanowires

    International Nuclear Information System (INIS)

    Jing-Xiang, Zhang; Hui, Li; Xue-Qing, Zhang; Kim-Meow, Liew

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I – V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures. (condensed matter: structure, mechanical and thermal properties)

  15. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  16. Electrical conduction along dislocations in plastically deformed GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, Y; Yokoyama, T; Oiwa, H; Edagawa, K [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Yonenaga, I, E-mail: yasushi@iis.u-tokyo.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan)

    2009-07-15

    Electrical conduction along dislocations in plastically deformed n-GaN single crystals has been investigated by scanning spread resistance microscopy (SSRM). In the SSRM images, many conductive spots have been observed, which correspond to electrical conduction along the dislocations introduced by deformation. Here, the introduced dislocations are b=(a/3)<1overline 210> edge dislocations parallel to the [0001] direction. The current values at the spots normalized to the background current value are larger than 100. Previous works have shown that grown-in edge dislocations in GaN are nonconductive. The high conductivity of the deformation-introduced edge dislocations in the present work suggests that the conductivity depends sensitively on the dislocation core structure.

  17. Electrical conductivity and magnetic permeability measurement of case hardened steels

    Science.gov (United States)

    Tian, Yong

    2015-03-01

    For case carburized steels, electrical conductivity and magnetic permeability profiles are needed to develop model-based case depth characterization techniques for the purpose of nondestructive quality control. To obtain fast and accurate measurement of these material properties, four-point potential drop approaches are applied on circular-shaped discs cut from steel rings with different case depths. First, a direct current potential drop (DCPD) approach is applied to measure electrical conductivity. Subsequently, an alternating current potential drop (ACPD) approach is used to measure magnetic permeability. Practical issues in measurement design and implementation are discussed. Depth profiles of electrical conductivity and magnetic permeability are reported.

  18. Music through the skin—simple demonstration of human electrical conductivity

    Science.gov (United States)

    Vollmer, M.; Möllmann, K. P.

    2016-05-01

    The conduction of electricity is an important topic for any basic physics course. Issues of safety often results in teacher demonstration experiments in front of the class or in extremely simple though—for students—not really fascinating (not to say boring) hands on activities for everybody using 1.5 V batteries, cables and light bulbs etc. Here we briefly review some basic facts about conduction of electricity through the human body and report a simple, safe, and awe inspiring electrical conduction experiment which can be performed with little preparation by a teacher involving the whole class of say 20 students.

  19. Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures

    Science.gov (United States)

    James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.

    2017-12-01

    It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi

  20. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  1. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yang; Wen, Meimei [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Kim, Chang Nyung, E-mail: cnkim@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Yang, Shangjing [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of)

    2017-04-15

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  2. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    International Nuclear Information System (INIS)

    Luo, Yang; Wen, Meimei; Kim, Chang Nyung; Yang, Shangjing

    2017-01-01

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  3. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    Science.gov (United States)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  4. Numerical Simulation on the Liquid Bridge Formation by the Applied Electric Pulse

    Science.gov (United States)

    Hong, Jin Seok; Kang, In Seok

    2010-11-01

    In this work, liquid bridge (LB) formation by the applied electric field is analyzed numerically. Numerical simulation captures the temporal behavior of liquid surface during the LB formation between a top plate and a bottom nozzle. Numerical results show the three stages of LB formation; interface elevation, impact/fast spreading and slow spreading/stabilization. The effect of the applied voltage pulse is also studied in terms of minimal electrical energy for LB formation. Non-linear behavior such as bubble trapping at the impact of liquid to plate is also captured and explained qualitatively. Grounded and floating plate is considered. The wetting criterion for LB formation is suggested and explained in terms of capillary pressure. The linear decrease of the final contact radius with the top plate contact angle is shown from the numerical results. In addition, the effects of the liquid properties on the dynamics are briefly discussed.

  5. Hydrodynamical flows in dielectric liquid in strong inhomogeneous pulsed electric field

    International Nuclear Information System (INIS)

    Tereshonok, Dmitry V; Babaeva, Natalia Yu; Naidis, George V; Smirnov, Boris M

    2016-01-01

    We consider a hydrodynamical flow of dielectric liquid near a high voltage needle-shaped electrode in a strong inhomogeneous pulsed electric field. It was shown that under a small rise time, a negative pressure area (pressure is less than critical pressure) appears near the electrode leading to the formation of a cavity in which electric breakdown can develop. A comparison of the dependence of the velocity of fluid near an electrode for two cases (taking into account the dependence of dielectric permeability of the liquid on the electric field and without taking it into account) was made. A field-dependent dielectric coefficient leads to the appearance of two local maximums of the velocities and increases the minimum pressure, thus lowering the possibility of cavitation. While under the constant value of dielectric permeability only one local maximum appears. (paper)

  6. Electrical resistivity of liquid noble metal alloys

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-08-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au, Cu-Ag, Cu-Au binary alloys on composition are reported. The structure of the binary alloy is described as a hard sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trends is observed in cases where experimental information is available. (author)

  7. Density, excess properties, electrical conductivity and viscosity of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + γ-butyrolactone binary mixtures

    International Nuclear Information System (INIS)

    Vraneš, Milan; Papović, Snežana; Tot, Aleksandar; Zec, Nebojša; Gadžurić, Slobodan

    2014-01-01

    Highlights: • Densities of [bmim][NTf 2 ] mixtures with γ-butyrolactone were measured. • Excess properties were calculated. • Nature of interactions between IL and GBL were discussed. • Specific conductivity and viscosity were also measured. • Walden plot is presented. - Abstract: Density, electrical conductivity and viscosity of binary liquid mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][NTf 2 ], with γ-butyrolactone (GBL) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes have been calculated from the experimental densities and were fitted with Redlich–Kister polynomial equation. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between GBL and selected ionic liquid

  8. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  9. Determination of proton conductivity of ionic liquids for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wallnofer, E.; Baumgartner, W.R.; Hacker, V. [Graz Univ. of Technology, Graz (Austria). Inst. for Chemistry and Technology of Inorganic Material

    2006-07-01

    Hydrogen fuel cells operating at temperatures of between 100 and 200 degrees C allow the catalyst to tolerate higher levels of carbon monoxide (CO) impurities. However, the number of possible materials for high temperature fuel cell electrolytes or membranes is limited. This study examined the relevant electrochemical properties of different ion liquids with specific reference to neutralized imidazole derivates with a dominant Grotthuss mechanism of proton conduction. The electrochemical stability of the ionic liquids was measured by cyclic voltammetry (CV) under nitrogen. Proton conductivity was measured under hydrogen by CV within the electrochemical limits. Hydrogen was dissolved at the anode, transported through the ionic liquid, and recombined at the cathode, so that the detected current could indicate the amount of transported hydrogen. Electrochemical impedance spectroscopy (EIS) was used to measure the frequency dependent behaviour of the ionic liquids. All measurements were conducted at 50, 100, and 150 degrees C. Results of the study showed that proton conductivity increased with higher temperatures. It was concluded that neutralized imidazole derivates with optimized side chains of the cation may prove to be a viable alternative to conventional fuel cell electrolytes. 4 refs., 2 figs.

  10. Identification of electrical resistance of fresh state concrete for nondestructive setting process monitoring

    International Nuclear Information System (INIS)

    Shin, Sung Woo

    2015-01-01

    Concrete undergoes significant phase changes from liquid to solid states as hydration progresses. These phase changes are known as the setting process. A liquid state concrete is electrically conductive because of the presence of water and ions. However, since the conductive elements in the liquid state of concrete are consumed to produce non-conductive hydration products, the electrical conductivity of hydrating concrete decreases during the setting process. Therefore, the electrical properties of hydrating concrete can be used to monitor the setting process of concrete. In this study, a parameter identification method to estimate electrical parameters such as ohmic resistance of concrete is proposed. The effectiveness of the proposed method for monitoring the setting process of concrete is experimentally validated

  11. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  12. Exchange of transverse plasmons and electrical conductivity of neutron star cores

    International Nuclear Information System (INIS)

    Shternin, P. S.

    2008-01-01

    We study the electrical conductivity in magnetized neutron star cores produced by collisions between charged particles. We take into account the ordinary exchange of longitudinal plasmons and the exchange of transverse plasmons in collisions between particles. The exchange of transverse plasmons is important for collisions between relativistic particles, but it has been disregarded previously when calculating the electrical conductivity. We show that taking this exchange into account changes the electrical conductivity, including its temperature dependence (thus, for example, the temperature dependence of the electrical resistivity along the magnetic field in the low-temperature limit takes the form R parallel ∝ T 5/3 instead of the standard dependence R parallel ∝ T 2 for degenerate Fermi systems). We briefly describe the effect of possible neutron and proton superfluidity in neutron star cores on the electrical conductivity and discuss various scenarios for the evolution of neutron star magnetic fields

  13. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  14. Evaluation of electric double layer capacitor using Ketjenblack as conductive nanofiller

    International Nuclear Information System (INIS)

    Tashima, Daisuke; Yoshitama, Hiromu; Otsubo, Masahisa; Maeno, Seiji; Nagasawa, Yoshinobu

    2011-01-01

    Highlights: → The capacitances of electric double layer capacitors (EDLCs) with nanocomposite electrodes were examined. → It was found that the Ketjenblack-containing EDLCs showed fairly high capacitance (150-210 F/g) compared to EDLCs containing acetylene black with the aqueous electrolyte. → A maximum specific capacitance of 252 F/g was obtained in EDLCs containing 20 wt.% KB with a large amount of the surface functional group. → Reduction-oxidation reactions were thought to occur at the interface between the electrolyte and surface functional group, which increased the specific capacitance of the EDLCs. - Abstract: In this study, the capacitances of electric double layer capacitors (EDLCs) with nanocomposite electrodes were examined by analyzing their charge-discharge characteristics and cyclic voltammograms. In addition, the internal resistance of these EDLCs was evaluated using two kinds of conductive nanofillers: acetylene black (AB) and Ketjenblack (KB). Usually, KB exhibits higher electronic conductivity than AB. The temperature dependence of the capacitance and internal resistance of the prepared EDLCs at 0-50 deg. C using an aqueous electrolyte, organic electrolyte, and two kinds of ionic liquids was evaluated. Moreover, the influence on the capacitance and internal resistance when KB containing a surface functional group is used as the conductive nanofiller of the polarized electrode was examined. It was found that the KB-containing EDLCs showed fairly high capacitance (150-210 F/g) compared to EDLCs containing AB with the aqueous electrolyte. In addition, a maximum specific capacitance of 252 F/g was obtained in EDLCs containing 20 wt.% KB with a large amount of the surface functional group. Reduction-oxidation reactions were thought to occur at the interface between the electrolyte and surface functional group, which increased the specific capacitance of the EDLCs.

  15. Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid

    International Nuclear Information System (INIS)

    Shen, L.P.; Wang, H.; Dong, M.; Ma, Z.C.; Wang, H.B.

    2012-01-01

    A new kind of nanofluid, ZnO-insulated oil nanofluid was prepared from ZnO nanoparticles synthesized by solvothermal method. Electrical property measurement shows that the electrical conductivity increases by 973 times after adding 0.75% volumetric fraction of ZnO nanoparticles into the insulated oil. A linear dependence of the electrical conductivity on the volumetric fraction has been observed, while the temperature dependence of the electrical conductivity reveals a nonlinear relationship. An electrical conductivity model is established for the nanofluid by considering both the Brownian motion and electrophoresis of the ZnO nanoparticles. -- Highlights: ► Stable ZnO-insulated oil nanofluid was successfully prepared. ► The electrical conductivity of the ZnO nanofluid is investigated. ► A new model is established to explain the electrical properties of the nanofluid.

  16. The electrical conductivity of CuCrZr alloy after SPD processing

    International Nuclear Information System (INIS)

    Lipińska, M; Bazarnik, P; Lewandowska, M

    2014-01-01

    CuCrZr alloys exhibit very good relation between mechanical properties and electrical conductivity. However, for its use in some advanced applications improvement of mechanical strength while preserving high electrical conducting is required. Therefore, in this work a CuCrZr alloy was subjected to a series of thermo-mechanical treatments, including solution annealing and water quenching, SPD processing (using hydrostatic extrusion and ECAP) as well as aging in order to improve mechanical strength. The influence of these processing procedures on microstructure features and mechanical properties was determined by TEM observation and microhardness measurements, respectively. Electrical conductivity of the samples was measured by four-points method. The results have shown that it is possible to improve mechanical strength while preserving good electrical conductivity by a proper combination of SPD processing and heat treatment

  17. Maximum on the electrical conductivity polytherm of molten TeCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2017-09-01

    The electrical conductivity of molten TeCl{sub 4} was measured up to 761 K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl{sub 4} electrical conductivity polytherm has a maximum. It was recorded at 705 K (Κ{sub max}=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  18. Assembly for electrical conductivity measurements in the piston cylinder device

    Science.gov (United States)

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  19. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers

    NARCIS (Netherlands)

    Wang, H.; Yang, Jun; Liao, Hui; Chen, Xianhua

    2016-01-01

    Electrically conductive asphalt concrete has the potential to satisfy multifunctional applications. Designing such asphalt concrete needs to balance the electrical and mechanical performance of asphalt concrete. The objective of this study is to design electrically conductive asphalt concrete

  20. Numerical estimation of the effective electrical conductivity in carbon paper diffusion media

    International Nuclear Information System (INIS)

    Zamel, Nada; Li, Xianguo; Shen, Jun

    2012-01-01

    Highlights: ► Anisotropic effective electrical conductivity of the GDL is estimated numerically. ► The electrical conductivity is a key component in understanding the structure of the GDL. ► Expressions for evaluating the electrical conductivity were proposed. ► The tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively. - Abstract: The transport of electrons through the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells has a significant impact on the optimal design and operation of PEM fuel cells and is directly affected by the anisotropic nature of the carbon paper material. In this study, a three-dimensional reconstruction of the GDL is used to numerically estimate the directional dependent effective electrical conductivity of the layer for various porosity values. The distribution of the fibers in the through-plane direction results in high electrical resistivity; hence, decreasing the overall effective electrical conductivity in this direction. This finding is in agreement with measured experimental data. Further, using the numerical results of this study, two mathematical expressions were proposed for the calculation of the effective electrical conductivity of the carbon paper GDL. Finally, the tortuosity factor was evaluated as 1.7 and 3.4 in the in- and through-plane directions, respectively.

  1. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    Science.gov (United States)

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  2. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  3. Adaptation of electrical conductivity test for Moringa oleifera seeds

    Directory of Open Access Journals (Sweden)

    Maria Luiza de Souza Medeiros

    2017-09-01

    Full Text Available This study aimed to adapt and test the efficiency of electrical conductivity methodology test in quality evaluation of Moringa oleifera Lam seeds. For physiological characterization four seed sets were evaluated by tests of germination, seedlings emergency, speed of emergency index, emergency first count, seedlings length and dry mass and cold test. The electrical conductivity test was carried out at 25 °C for 4, 8, 12, 16 and 24 h of immersion in 75 or 125 mL of distilled water using 25 or 50 seeds. A completely randomized design was used. The best results were obtained when using 50 seeds immersed in 75 mL or 125 mL of distilled water for 4 h. The electrical conductivity test adapted to moringa seeds was efficient in ranking sets of different vigor levels. The test may be efficiently used for physiological quality evaluation of moringa seeds.

  4. Electric field fluctuations in liquid tellurium alloys a hint to bond character

    NARCIS (Netherlands)

    Paulick, C.A.; Brinkmann, R.; Elwenspoek, Michael Curt; von Hartrott, M.; Kiehl, M.; Maxim, P.; Quitmann, D.

    1985-01-01

    Atomic scale electric field fluctuations in liquid tellurium alloys are detected as they induce nuclear spin relaxation rate RQ in noble gas impurity atoms, via quadrupolar interaction. Results for Xe in liquid Ag, Ga, In, Tl, Ge, Sn---Te alloys are discussed, assuming that bonding in these alloys

  5. Enhancement in electrical conductivity of Li 2 O

    Indian Academy of Sciences (India)

    The study of electrical conductivity of 30Li2O : (70 – ) B2O3 : V2O5 glass samples has been carried out. The results have been explained by dividing the temperature range into two regions. In region I, conductivity shows Arrhenius behaviour for all the samples. The conductivity increases with addition of V2O5.

  6. Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection

    Science.gov (United States)

    Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin

    2017-05-01

    Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.

  7. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    International Nuclear Information System (INIS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed

  8. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  9. Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungyong; Lim, Soonho [Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2017-06-15

    In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

  10. Experimental study of electric conductivity, density and viscosity of Wood's alloy

    International Nuclear Information System (INIS)

    Kazandzhan, B.I.; Matveev, V.M.; Savich, T.B.; Umarov, A.M.

    1989-01-01

    Electric conductivity, density and kinematic viscosity of commercially pure Wood's alloy are obtained in a wide temperature range. Electric conductivity and density are investigated from the room temperature to 1000 K. Measurements of kinematic viscosity are carried out from 372 to 1000 K by means of torsional vibrations method using informatiom computer system permitting to automate data acquisition and processing and to increase the measurement accuracy. On the basis of analysis the character of electric conductivity and kinematic viscosity polyterms Wood's alloy liquidus and solidus temperatures are estimated

  11. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr; Locke, Bruce R [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida (United States)

    2005-11-21

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH{center_dot} radicals produced by the liquid phase discharge directly in water and OH{center_dot} radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH{center_dot} radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH{center_dot} radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.

  12. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Locke, Bruce R

    2005-01-01

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH· radicals produced by the liquid phase discharge directly in water and OH· radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH· radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH· radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon

  13. Measurement of total dissolved solids using electrical conductivity

    International Nuclear Information System (INIS)

    Ray, Vinod K.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Phani Babu, C.; Kalyanakrishnan, G.

    2017-01-01

    Total dissolved solids (TDS) is an important parameter for the disposal of effluents generated during processing of different raw materials like Magnesium Di-uranate (MDU), Heat Treated Uranium Peroxide (HTUP), Sodium Di-uranate (SDU) in Uranium Extraction plant and Washed and Dried Frit (WDF) in Zirconium Extraction Plant. The present paper describes the use of electrical conductivity for determination of TDS. As electrical conductivity is matrix dependent property, matrix matched standards were prepared for determination of TDS in ammonium nitrate solution (AN) and mixture of ammonium nitrate and ammonium sulphate (AN/AS) and results were found to be in good agreement when compared with evaporation method. (author)

  14. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  15. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  16. Direct numerical simulation of MHD flow with electrically conducting wall

    International Nuclear Information System (INIS)

    Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.

    2006-01-01

    The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget

  17. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  18. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation

    NARCIS (Netherlands)

    Hu, Bobing; Wang, Yunlong; Zhu, Zhuoying; Xia, Changrong; Bouwmeester, Henricus J.M.

    2015-01-01

    The oxygen release kinetics of mixed-conducting Sr2Fe1.5Mo0.5O6 d–Sm0.2Ce0.8O2 d (SFM–SDC) dualphase composites has been investigated, at 750 C, as a function of the SDC phase volume fraction using electrical conductivity relaxation (ECR) under reducing atmospheres, extending our previous work on

  19. Analysis of the electrical conduction in CdHgTe crystals

    International Nuclear Information System (INIS)

    Dziuba, Z.

    1987-01-01

    The electrical conduction versus magnetic field in p-like CdHgTe samples at 77 K is investigated by analysing the conductivity tensor components. The electrical conduction is mainly due to electrons in the conduction band and low-mobility carriers in an impurity band. In the investigated samples Cd/sub x/Hg/sub 1-x/Te with the composition x approximately 0.17 the concentration of electrons in the conduction band is higher than the intrinsic one and in samples with the composition close to HgTe the concentration of electrons in the conduction band is equal to or lower than the intrinsic one. The model of a half-filled impurity band situated close to the bottom of the conduction band is proposed to account for the concentration of electrons in the conduction band. (author)

  20. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    Science.gov (United States)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be

  1. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  2. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity

    Science.gov (United States)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl

    2017-11-01

    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  3. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  4. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  5. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  6. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  7. Electrical Resistivity Survey For Conductive Soils At Gas Turbine ...

    African Journals Online (AJOL)

    Ten (10) vertical electrical soundings (VES) using Schlumberger configuration were carried out to delineate subsurface conductive soils for the design of earthling grid for electrical materials installation at the Gas Turbine Station, Ajaokuta, SW Nigeria. Interpretation of the resistivity data revealed three major geoelectric ...

  8. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  9. Study on intercalation of ionic liquid into montmorillonite and its property evaluation

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Present study report fabrication of a solid–liquid intercalated compound using montmorillonite and ionic liquid [IL; 1-Butyl-3-methylimidazolium tetrafluoroborate; ([BMIM][BF 4 ])]. The intercalation of IL into the interlayer of montmorillonite was revealed by swelling behavior measured by X-ray diffraction (XRD) and cation exchange capacity (CEC). The crystal swelling structure of intercalation compound was further evidenced by transmission electron microscope (TEM). From these results, the arrangement of [BMIM] + ions (cationic part of IL) into the unit layer were proposed. Furthermore, the montmorillonite showed electrical conductivity with the aid of IL. This demonstrates a successful attempt to fabricate a solid–liquid state nano-structure compound as possible transparent electrically conducting thin film. -- Highlights: ► Direct intercalation of ionic liquid into the montmorillonite was studied. ► The crystal swelling structure in liquid state was successfully characterized by TEM. ► We proposed the atomic arrangement of intercalated compound using ionic liquid. ► Ionic liquid is useful for fabricating an intercalated compound with electrical-conductivity.

  10. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

    Science.gov (United States)

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445

  11. Electrohydrodynamic actuation of co-flowing liquids by means of microelectrode arrays

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Pablo; Ferney, Mathieu; Ramos, Antonio

    2011-01-01

    Electric fields induce forces at the interface between liquids with different electrical properties (conductivity and/or permittivity). We explore how to use these forces for manipulating two coflowing streams of liquids in a microchannel. A microelectrode array is fabricated at the bottom of the channel and one of the two liquids is labelled with a fluorescent dye for observing the phenomenon. The diffuse interface between the two liquids is deflected depending on the ac signal and conductivity (or permittivity) ratio between the liquids. Only a few volts are needed for observing the interface destabilization, in contrast with other electrode configurations where hundreds of volts are applied.

  12. Electrohydrodynamic actuation of co-flowing liquids by means of microelectrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Pablo; Ferney, Mathieu; Ramos, Antonio, E-mail: pablogarcia@us.es [Depto. de Electronica y Electromagnetismo, University of Sevilla (Spain)

    2011-06-23

    Electric fields induce forces at the interface between liquids with different electrical properties (conductivity and/or permittivity). We explore how to use these forces for manipulating two coflowing streams of liquids in a microchannel. A microelectrode array is fabricated at the bottom of the channel and one of the two liquids is labelled with a fluorescent dye for observing the phenomenon. The diffuse interface between the two liquids is deflected depending on the ac signal and conductivity (or permittivity) ratio between the liquids. Only a few volts are needed for observing the interface destabilization, in contrast with other electrode configurations where hundreds of volts are applied.

  13. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  14. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  15. The electric conductivity of a pion gas

    International Nuclear Information System (INIS)

    Atchison, J.; Rapp, R.

    2017-01-01

    The determination of transport coefficients plays a central role in characterizing hot and dense nuclear matter. In the present work we calculate the electric conductivity of hot hadronic matter by extracting it from the ρ meson spectral function, as its zero-energy limit at vanishing momentum. Using hadronic many-body theory, we calculate the ρ meson self-energy in a pion gas. This requires the dressing of the pion propagators in the ρ self-energy with π - ρ loops, and the inclusion of vertex corrections to maintain gauge invariance. The resulting spectral function is used to calculate the electric conductivity of hot hadronic matter. In particular, we analyze the transport peak of the spectral function and extract its behavior with temperature and coupling strength. Our results suggest that, while obeying lower bounds proposed by conformal field theories in the strong-coupling limit, hot pion matter is a strongly-coupled medium. (paper)

  16. Ground electrical conductivity for medium wave activities over Nigeria

    African Journals Online (AJOL)

    Ground electrical properties remain a useful tool for most applications in engineering and communication, therefore, reliability and precision is highly required in their determination. Ground electrical conductivity as a function of signal frequency has been determined at Ilorin during the dry and the wet seasons. The study ...

  17. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  18. The dc electrical conductivity calculation purely from the dissipative component of the ac conductivity II. formula for conductors with static scatterers

    International Nuclear Information System (INIS)

    Milinski, Nikola; Milinski, Eduard

    2001-01-01

    While the first part of this work was devoted to the conceptual and most crucial questions of the dc electrical conductivity σ, the present second part is devoted to the technical questions of the theory, to elaboration of the concept to the particular systems. The conducting system to be investigated has been defined here by five suppositions (postulates), rather general to include the systems of practical interest, like metals in solid and liquid phase are, and the amorphous conductors, like the alloys and conducting glasses are. A formula for dc conductivity calculation has been derived, which gives σ in terms of the matrix elements / k +g/F/Ψ k >/ 2 , where F is scattering force, and Ψ k +g, Ψ k , are the Bloch functions. For the case when Bloch functions are approximated by plane waves, an approximate formula for σ has been obtained in a more tractable form. Specific to our concept is the inclusion of an equation constitutive to σ calculation, which also has been elaborated for the considered system, to the stage suitable for practical application, σ calculation in conjunction with the mentioned constitutive equation is the most important innovative element of our concept, and we expect it will lead to substantial advance in research of this subject. (authors)

  19. Electric conductivity of molten mixtures of ternary mutual KF-KCl-ZrF4 system

    International Nuclear Information System (INIS)

    Darienko, S.E.; Raspopin, S.P.; Chervinskij, Yu.F.

    1988-01-01

    Using the relative capillary method at the frequency of 50 kHz the specific electric conductivity of molten mixtures of the KF-KCl-ZnF 4 system is measured. All the measurements were made in the atmosphere of purified argon. Temperature dependence of electric conductivity of the mixtures studied (800-1260 K) is described by the equations of exponential type with sufficient accuracy. Curves of identical specific electric conductivity of the three-component system are presented. With an increase in zirconium tetrachloride concentration in the mixtures electric conductivity of the melts decreases. On the basis of the measurement results of KF-ZrF 4 and KCl-ZrF 4 molten mixture specific electric conductivity and data on the melt density the values of molar electric conductivity at 1200 K are calculated

  20. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  1. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles

    2017-05-11

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes in the electrical volume conductivity of an anhydride-cured epoxy polymer during moisture sorption-desorption experiments. Gravimetric analysis showed that the polymer exhibits a two-stage sorption behavior resulting from the competition between diffusive and reactive mechanisms. As expected, the macroscopic electrical conductivity increases with the diffusion of water. However, our most surprising observation was severe hysteresis in the relation between water uptake and electrical conductivity during the sorption and desorption experiments. This indicates that change in the electrical conductivity depends on both the water uptake and the competition between the diffusive and reactive mechanisms. We studied samples with various thicknesses to determine the relative effects of the diffusive and reactive mechanisms. This is an important observation as it means that general electrical monitoring techniques should be used cautiously when it comes to measuring the moisture content of polymer or polymer-based composite samples.

  2. Electrical conductivity tensor of an irradiated metal

    International Nuclear Information System (INIS)

    Corciovei, A.; Dumitru, R.D.

    1979-01-01

    A method to calculate the electrical conductivity tensor of an irradiated metal is presented. The proposed method relies on the use of the Kubo formula, evaluated by a perturbation method. The one electron Hamiltonian is written as a sum of two terms: the Hamiltonian of the conduction electrons moving in a periodic lattice and the perturbation, namely, the scattering potential due to the irradiation defects of the ideal crystal. Then, the lowest order of the conductivity is determined by the lowest order of the Laplace transform of the current. An integral equation is written for this last quantity. (author)

  3. A novel thick-film electrical conductivity sensor suitable for liquid and soil conductivity measurements

    OpenAIRE

    Atkinson, John; Sophocleous, Marios

    2015-01-01

    Results are reported from an initial evaluation of a novel conductivity sensor that could be incorporated onto a multi-element thick film (screen printed) sensor array designed for soil and water analysis. The new sensor exhibits a repeatable cell constant over a wide range of conductivities and is currently performing very well in an investigation of soil structural properties where its output is being correlated with soil water content in a study of different soil porosities.

  4. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  5. Electrical resistivity of liquid Ti, V, Mo and W

    International Nuclear Information System (INIS)

    Seydel, U.; Fucke, W.

    1980-01-01

    Electrical resistivity data for liquid Ti, V, Mo and W in the temperature range from melting to boiling are presented. The data were obtained by a fast resistive pulse heating technique based on heating small samples shaped as wires or foils in an RCL discharge circuit and simultaneously measuring temperature, volume, voltage and current. (author)

  6. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    Directory of Open Access Journals (Sweden)

    Carlos O. Maidana

    2017-02-01

    Full Text Available Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  7. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Carlos O.; Nieminen, Juha E. [Maidana Research, Grandville (United States)

    2017-02-15

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  8. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    Science.gov (United States)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or

  9. Mathematical Modeling of Electrical Conductivity of Dielectric with Dispersed Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are increasingly used for application in engineering as structural, thermal protection and functional materials, including dielectrics, because of a wide variety of properties. The relative dielectric constant and the dielectric loss tangent are basic functional characteristics of a composite used as a dielectric. The quantitative level of these characteristics is mainly affected by the properties of the composite matrix and inclusions as well as their shape and volume concentration. Metallic inclusions in a dielectric, which serves as a function of the composite matrix, expand electrical properties of the composite in particular increase its dielectric constant and dielectric loss tangent and thereby greatly expand its application field. Dielectric losses are defined by the imaginary component of the complex value of the relative dielectric constant of the dielectric. At a relatively low vibration frequency of electromagnetic field affecting the dielectric, this value is proportional to the electrical conductivity of the dielectric and inversely proportional to the frequency. In order to predict the expected value of the electric conductivity of the dielectric with metallic inclusions, a mathematical model that properly describes the structure of the composite and the electrical interaction of the matrix and inclusions is required.In the paper, a mathematical model of the electrical interaction of the representative element of the composite structure and a homogeneous isotropic medium with electrical conductivity, which is desired characteristics of the composite, is constructed. Globular shape of the metallic inclusions as an average statistical form of dispersed inclusions with a comparable size in all directions is adopted. The inclusion is covered with a globular layer of electrical insulation to avoid percolation with increasing volume concentration of inclusions. Outer globular layer of representative structure of composite

  10. Molecular and supramolecular orientation in conducting polymers

    International Nuclear Information System (INIS)

    Aldissi, M.

    1987-01-01

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  11. DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kondo, S.; Snead, L.L.

    2009-01-01

    High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 deg. C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed.

  12. Thermodynamic parameters of elasticity and electrical conductivity ...

    African Journals Online (AJOL)

    The thermodynamic parameters (change in free energy of elasticity, DGe; change in enthalpy of elasticity, DHe; and change in entropy of elasticity, DSe) and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced ...

  13. Electrically switchable photonic liquid crystal devices for routing of a polarized light wave

    Science.gov (United States)

    Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.

    2018-04-01

    The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.

  14. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  15. Microbial interspecies electron transfer via electric currents through conductive minerals

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2012-01-01

    In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802

  16. Effect of Microstructure on Electrical Conductivity of Nickel-Base Superalloys

    Science.gov (United States)

    Nagarajan, Balasubramanian; Castagne, Sylvie; Annamalai, Swaminathan; Fan, Zheng; Chan, Wai Luen

    2017-08-01

    Eddy current spectroscopy is one of the promising non-destructive methods for residual stress evaluation along the depth of subsurface-treated nickel-base superalloys, but it is limited by its sensitivity to microstructure. This paper studies the influence of microstructure on the electrical conductivity of two nickel-base alloys, RR1000 and IN100. Different microstructures were attained using heat treatment cycles ranging from solution annealing to aging, with varying aging time and temperature. Eddy current conductivity was measured using conductivity probes of frequencies ranging between 1 and 5 MHz. Qualitative and quantitative characterization of the microstructure was performed using optical and scanning electron microscopes. For the heat treatment conditions between the solution annealing and the peak aging, the electrical conductivity of RR1000 increased by 6.5 pct, which is duly substantiated by the corresponding increase in hardness (12 pct) and the volume fraction of γ' precipitates (41 pct). A similar conductivity rise of 2.6 pct for IN100 is in agreement with the increased volume fraction of γ' precipitates (12.5 pct) despite an insignificant hardening between the heat treatment conditions. The observed results with RR1000 and IN100 highlight the sensitivity of electrical conductivity to the minor microstructure variations, especially the volume fraction of γ' precipitates, within the materials.

  17. Fabrication of highly conductive carbon nanotube fibers for electrical application

    International Nuclear Information System (INIS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-01-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)

  18. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications

    DEFF Research Database (Denmark)

    Holtappels, P.; Poulsen, F.W.; Mogensen, Mogens Bjerg

    2000-01-01

    Pyrochlores with praseodymium as the A-site cation and zirconium, tin, cerium and manganese cations on the B-site were prepared in air and their electrical conductivities were investigated as a function of oxygen partial pressure and temperature. Pure Pr2Zr2O7+/-delta as well as samples modified...

  19. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.

    Science.gov (United States)

    Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum

    2008-11-01

    To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation

  20. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs

    KAUST Repository

    Zhou, Jian; Lubineau, Gilles

    2013-01-01

    concentration (0.3 wt %). To tailor the electrical properties of the conductive polymer coating, we used a polar solvent ethylene glycol, and we can tune the final properties of the nanocomposite by controlling the concentrations of the elementary constituents

  1. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    Science.gov (United States)

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  2. Magneto-acousto-electrical Measurement Based Electrical Conductivity Reconstruction for Tissues.

    Science.gov (United States)

    Zhou, Yan; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-05-01

    Based on the interaction of ultrasonic excitation and magnetoelectrical induction, magneto-acousto-electrical (MAE) technology was demonstrated to have the capability of differentiating conductivity variations along the acoustic transmission. By applying the characteristics of the MAE voltage, a simplified algorithm of MAE measurement based conductivity reconstruction was developed. With the analyses of acoustic vibration, ultrasound propagation, Hall effect, and magnetoelectrical induction, theoretical and experimental studies of MAE measurement and conductivity reconstruction were performed. The formula of MAE voltage was derived and simplified for the transducer with strong directivity. MAE voltage was simulated for a three-layer gel phantom and the conductivity distribution was reconstructed using the modified Wiener inverse filter and Hilbert transform, which was also verified by experimental measurements. The experimental results are basically consistent with the simulations, and demonstrate that the wave packets of MAE voltage are generated at tissue interfaces with the amplitudes and vibration polarities representing the values and directions of conductivity variations. With the proposed algorithm, the amplitude and polarity of conductivity gradient can be restored and the conductivity distribution can also be reconstructed accurately. The favorable results demonstrate the feasibility of accurate conductivity reconstruction with improved spatial resolution using MAE measurement for tissues with conductivity variations, especially suitable for nondispersive tissues with abrupt conductivity changes. This study demonstrates that the MAE measurement based conductivity reconstruction algorithm can be applied as a new strategy for nondestructive real-time monitoring of conductivity variations in biomedical engineering.

  3. Radioactive liquid waste discharged from Nuclear Electric licensed sites during 1991

    International Nuclear Information System (INIS)

    Austin, L.S.; Odell, K.J.

    1993-03-01

    This report presents the detailed isotopic composition of radioactive liquid waste discharged from Nuclear Electric licensed sites in 1991. Liquid discharges from those Magnox stations using pond storage of irradiated fuel contained low levels of activation and fission products, while those from Wylfa and the AGR stations contained lower levels of activation products with only traces of fission products. Discharges were similar to those observed in previous years, with any changes concordant with changes in stations' generation performance. (author)

  4. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrali, Mohammad, E-mail: mohamad.mehrali@siswa.um.edu.my [University of Malaya, Department of Mechanical Engineering and Advanced Material Research Centre (Malaysia); Sadeghinezhad, Emad, E-mail: esn802001@yahoo.com [University of Malaya, Department of Mechanical Engineering (Malaysia); Rashidi, Mohammad Mehdi [Tongji University, Shanghai Automotive Wind Tunnel Center (China); Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis [University of Malaya, Department of Mechanical Engineering and Advanced Material Research Centre (Malaysia)

    2015-06-15

    Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.

  5. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids

    Science.gov (United States)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis

    2015-06-01

    Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.

  6. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis

    2015-01-01

    Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results

  7. Thermal and electrical conductivities of high purity tantalum

    International Nuclear Information System (INIS)

    Archer, S.L.

    1978-01-01

    The electrical resistivity and thermal conductivity of three high purity tantalum samples have been measured as functions of temperature over a temperature range of 5K to 65K. Sample purities ranged up to a resistivity ratio of 1714. The highest purity sample had a residual resistivity of .76 x 10 -10 OMEGA-m. The intrinsic resistivity varied as T 3 . 9 from 10K to 31K. The thermal conductivity of the purest sample had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity varied as T 2 . 4 from 10K to 35K. At low temperatures electrons were scattered primarily by impurities and by phonons with both interband and intraband transitions observed. The electrical and thermal resistivity is departed from Matthiessen's rule at low temperatures

  8. Field-Controlled Electrical Switch with Liquid Metal.

    Science.gov (United States)

    Wissman, James; Dickey, Michael D; Majidi, Carmel

    2017-12-01

    When immersed in an electrolyte, droplets of Ga-based liquid metal (LM) alloy can be manipulated in ways not possible with conventional electrocapillarity or electrowetting. This study demonstrates how LM electrochemistry can be exploited to coalesce and separate droplets under moderate voltages of ~1-10 V. This novel approach to droplet interaction can be explained with a theory that accounts for oxidation and reduction as well as fluidic instabilities. Based on simulations and experimental analysis, this study finds that droplet separation is governed by a unique limit-point instability that arises from gradients in bipolar electrochemical reactions that lead to gradients in interfacial tension. The LM coalescence and separation are used to create a field-programmable electrical switch. As with conventional relays or flip-flop latch circuits, the system can transition between bistable (separated or coalesced) states, making it useful for memory storage, logic, and shape-programmable circuitry using entirely liquids instead of solid-state materials.

  9. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  10. Electrical conductivity measurement and thermogravimetric study of chromium-doped uranium dioxide

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The electrical conductivity and nonstoichiometric composition of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.001 and 0.05) were measured in the range 1173 -17 2 ) -2 Pa by the four inserted wires method and thermogravimetry, respectively. The electrical conductivities of (Usub(1-y)Crsub(y))Osub(2+x) (y=0.01 and 0.05) were about one-order lower than that of UOsub(2+x), probably due to the presence of the chromium ion as an electron donor. The activation energies of (Usub(0.99)Crsub(0.01))Osub(2+x) and (Usub(0.95)Crsub(0.05))Osub(2+x) for the extrinsic conduction in the low oxygen partial pressure region were calculated to be 24.7+-1.3 and 25.9+-1.0 kJ.mol -1 , respectively from the Arrhenius plots of the electrical conductivities. These small values of the activation energy of (Usub(1-y)Crsub(y))Osub(2+x) may suggest the presence of the hopping mechanism for hole conduction, similarly to the case of UOsub(2+x). From the oxygen partial pressure dependences of both the electrical conductivity and the deviation x in (Usub(1-y)Crsub(y))Osub(2+x), the defect structure was discussed with the complex defect model consisting of oxygen vacancies and two kinds of interstitial oxygens. (orig.)

  11. Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.

    Science.gov (United States)

    Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J

    2017-05-01

    Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.

  12. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  13. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  14. Solving hyperbolic heat conduction using electrical simulation

    International Nuclear Information System (INIS)

    Gheitaghy, A. M.; Talaee, M. R.

    2013-01-01

    In the present study, the electrical network simulation method is proposed to solve the hyperbolic and parabolic heat conduction problem considering Cattaneo-Vernoute (C.V) constitutive relation. Using this new proposed numerical model and the electrical circuit simulation program HSPICE, transient temperature and heat flux profiles at slab can be obtained easily and quickly. To verify the proposed method, the obtained numerical results for cases of one dimensional two-layer slab under periodic boundary temperature with perfect and imperfect thermal contact are compared with the published results. Comparisons show the proposed technique might be considered as a useful tool in the analysis of parabolic and hyperbolic thermal problems.

  15. Experimental characterization of MHD pressure drop of liquid sodium flow under uniform magnetic field

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Park, Jon Ho; Kim, Jong Man; Nam, Ho Yoon; Choi, Jong Hyun

    2001-01-01

    Magnetic field has many effects on the hydraulic pressure drop of fluids with high electrical conductivity. The theoretical solution about MHD pressure drop is sought for the uniform current density model with simplified physical geometry. Using the MHD equation in the rectangular duct of the sodium liquid flow under a transverse magnetic field, the electrical potential is sought in terms of the duct geometry and the electrical parameters of the liquid metal and duct material. By the product of the induced current inside the liquid metal and transverse magnetic field, the pressure gradients is found as a function of the duct size and the electrical conductivity of the liquid metal. The theoretically predicted pressure drop is compared with experimental results on the change of flow velocity and magnetic flux density

  16. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Science.gov (United States)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  17. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    Science.gov (United States)

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  18. Onset of flows of weakly conducting media in an inhomogeneous electric field

    International Nuclear Information System (INIS)

    Kozyrenko, V.E.

    1986-01-01

    This paper attempts to take account of the effect of the inhomogeneous nature of the field occurring in real conditions on the onset of liquid flow. The electric field distribution in the liquid and the motion ensuing under its influence are described by a closed system of equations for the stationary case. The author considers the case when the field, induced by the space charge, is appreciably smaller than the applied field. The results obtained permit one to pass on to the determination of the velocity field. The procedures discussed can be considerably simplified

  19. Electrically conducting nanobiocomposites using carbon nanotubes and collagen waste fibers

    International Nuclear Information System (INIS)

    Meiyazhagan, Ashokkumar; Thangavel, Saravanamoorthy; Hashim, Daniel P.; Ajayan, Pulickel M.; Palanisamy, Thanikaivelan

    2015-01-01

    Electrically conducting hybrid biocomposite films were prepared using a simple and cost-effective method by incorporating different types of carbon nanotubes (XCNTs) viz., few walled carbon nanotube (FWCNT) and boron doped carbon nanotube (BCNT) into biopolymers. Collagen extracted from animal skin wastes was blended with guar gum and XCNTs in varying proportions to form flexible and electrically conducting hybrid films. We found that the electrical conductivity of both types of hybrid films increases radically as the XCNT loading increases. BCNT incorporated hybrid films show better electrical conductivity (3.0 × 10 −1 S/cm) than their FWCNT loaded counter parts (4.8 × 10 −4 S/cm) at a dosage of 2 wt.%. On the other hand, mechanical and other physical properties such as transparency, flexibility and surface smoothness of the developed hybrid films were affected as a function of XCNT concentration. We also demonstrated that the developed hybrid films lit up a LED lamp when inserted between batteries and the brightness of the emitted light depended on the XCNT loading. These results suggest a new way to transform an industrial biowaste into innovative advanced materials for applications in fields related to biomedicine, biosensors and electronics. - Highlights: • Hybrid nanobiocomposite films prepared using collagen, guar gum and CNTs. • Examined the effect of CNT doping on the properties of hybrid biocomposite films. • Higher CNT loading improved the conductivity radically, especially for BCNT. • The ability of developed hybrid films to lit up a LED lamp was demonstrated. • The results suggest a new way to transform biowaste into advanced materials

  20. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  1. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  2. Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan

    2007-01-01

    In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder

  3. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-05-09

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  4. Predicting permeability and electrical conductivity of sedimentary rocks from microgeometry

    International Nuclear Information System (INIS)

    Schlueter, E.M.; Cook, N.G.W.

    1991-02-01

    The determination of hydrologic parameters that characterize fluid flow through rock masses on a large scale (e.g., hydraulic conductivity, capillary pressure, and relative permeability) is crucial to activities such as the planning and control of enhanced oil recovery operations, and the design of nuclear waste repositories. Hydraulic permeability and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. The cross-sectional areas and perimeters of the individual pores are estimated from two-dimensional scanning electron micrographs of rock sections. The hydraulic and electrical conductivities of the individual pores are determined from these geometrical parameters, using Darcy's law and Ohm's law. Account is taken of the fact that the cross-sections are randomly oriented with respect to the channel axes, and for possible variation of cross-sectional area along the length of the pores. The effective medium theory from solid-state physics is then used to determine an effective average conductance of each pore. Finally, the pores are assumed to be arranged on a cubic lattice, which allows the calculation of overall macroscopic values for the permeability and the electrical conductivity. Preliminary results using Berea, Boise, Massilon and Saint-Gilles sandstones show reasonably close agreement between the predicted and measured transport properties. 12 refs., 5 figs., 1 tab

  5. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  6. Apparatus for simultaneously measuring electrical conductivity and oxygen fugacity

    Energy Technology Data Exchange (ETDEWEB)

    Netherton, R.; Duba, A.

    1978-01-31

    Electrical conductivity studies of silicates are useful in determining temperature vs depth in the earth. Realistic laboratory measurements of conduction mechanisms require that exact determinations of oxygen fugacity (fo{sub 2}) be made in the experimental environment. An apparatus is described that monitors system fo{sub 2} with a calcia-doped zirconia-oxygen cell while measuring electrical conductivity of iron-bearing silicates at high temperature (greater than 1000 K). The fo{sub 2} calculated thermodynamically from CO/CO{sub 2} mixing ratios agreed well with measurements made with the zirconia cell at 1473 K, except for fo{sub 2} greater than 10{sup -4} Pa, where, on a log{sub 10} scale, mixing-ratio errors were as large as +- 0.2. These errors are attributed to oxygen contamination in the CO{sub 2} and to mobile carbon deposits that formed in the apparatus.

  7. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  8. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  9. Thermal stability and electrical conductivity in polyethers-molybdenum disulfide nanocomposites

    International Nuclear Information System (INIS)

    Mirabal, N.; Aguirre, P.; Santa Ana, M.A.; Benavente, E.; Gonzalez, Guillermo

    2003-01-01

    The intercalation of poly(ethylene oxide) (PEO), into molybdenum disulfide, like that of other electron pair donors, leads to mixed ionic-electronic conductors. At room temperature, intercalates show electrical and lithium-ion conductivities better than MoS 2 and bulk PEO composites, respectively. However, these products are known to be sensitive to temperature; indeed, in the range 80-100 deg. C an irreversible decrease of the electrical conductivity is observed. In order to investigate these features, the thermal behavior of a series of polyethers of different molecular weights (poly(ethylene glycol) (Mw 3400) and PEO with Mw in the range 10 4 -4x10 6 , pure and intercalated in MoS 2 , (Li x (MoS 2 )(polyether) y with x∼0.1 and y=1.1-1.5), was comparatively analyzed. Furthermore, the effect of thermal treatment of the sample on the electrical conductivity was studied for one of the intercalated products. Results indicate that irreversible changes, detected by both loss of weight and a significant conductivity lowering, are occurring in the range from about 100 deg. C to a temperature near to the decomposition point of the organic phase at about 350 deg. C

  10. Study on Exploding Wire Compression for Evaluating Electrical Conductivity in Warm-Dense Diamond-Like-Carbon

    International Nuclear Information System (INIS)

    Sasaki, Toru; Takahashi, Kazumasa; Kudo, Takahiro; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Fujioka, Shinsuke; Horioka, Kazuhiko

    2016-01-01

    To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC. (paper)

  11. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  12. Development of electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  13. Development of electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  14. Soil water sensor response to bulk electrical conductivity

    Science.gov (United States)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  15. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  16. Challenges associated with nerve conduction block using kilohertz electrical stimulation

    Science.gov (United States)

    Patel, Yogi A.; Butera, Robert J.

    2018-06-01

    Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.

  17. Application of Electromagnetic Induction to Monitor Changes in Soil Electrical Conductivity Profiles in Arid Agriculture

    KAUST Repository

    Jadoon, K.Z.

    2015-09-06

    In this research, multi-configuration electromagnetic induction (EMI) measurements were conducted in a corn field to estimate variation in soil electrical conductivity profiles in the roots zone. Electromagnetic forward model based on the full solution of Maxwell\\'s equation was used to simulate the apparent electrical conductivity measured with EMI system (the CMD mini-Explorer). Joint inversion of multi-configuration EMI measurements were performed to estimate the vertical soil electrical conductivity profiles. The inversion minimizes the misfit between the measured and modeled soil apparent electrical conductivity by DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is based on Bayesain approach. Results indicate that soil electrical conductivity profiles have low values close to the corn plants, which indicates loss of soil moisture due to the root water uptake. These results offer valuable insights into future potential and emerging challenges in the development of joint analysis of multi-configuration EMI measurements to retrieve effective soil electrical conductivity profiles.

  18. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Consumer demand for fresh-like products with little or no degradation of nutritional and organoleptic properties has led to the study of new technologies in food preservation. Pulsed electric fields (PEF) is a nonthermal preservation method used to inactivate microorganisms mainly in liquid foods. Microorganisms in the presence of PEF suffer cell membrane damage. Nisin is a natural antimicrobial known to disrupt cell membrane integrity. Thus the combination of PEF and nisin represents a hurdle for the survival of Listeria innocua in liquid whole egg (LWE). L. innocua suspended in LWE was subjected to two different treatments: PEF and PEF followed by exposure to nisin. The selected frequency and pulse duration for PEF was 3.5 Hz and 2 micros, respectively. Electric field intensities of 30, 40 and 50 kV/cm were used. The number of pulses applied to the LWE was 10.6, 21.3 and 32. The highest extent of microbial inactivation with PEF was 3.5 log cycles (U) for an electric field intensity of 50 kV/cm and 32 pulses. Treatment of LWE by PEF was conducted at low temperatures, 36 degrees C being the highest. Exposure of L. innocua to nisin following the PEF treatment exhibited an additive effect on the inactivation of the microorganism. Moreover, a synergistic effect was observed as the electric field intensity, number of pulses and nisin concentration increased. L. innocua exposed to 10 IU nisin/ml after PEF exhibited a decrease in population of 4.1 U for an electric field intensity of 50 kV/cm and 32 pulses. Exposure of L. innocua to 100 IU nisin/ml following PEF resulted in 5.5 U for an electric field intensity of 50 kV/cm and 32 pulses. The model developed for the inactivation of L. innocua by PEF and followed by exposure to nisin proved to be accurate (p = 0.05) when used to model the inactivation of the microorganism by PEF in LWE with 1.2 or 37 IU nisin/ml. The presence of 37 IU nisin/ml in LWE during the PEF treatment for an electric field intensity of 50 kV/cm and

  19. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    Science.gov (United States)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  20. Redox transitions in strontium vanadates: Electrical conductivity and dimensional changes

    International Nuclear Information System (INIS)

    Macías, J.; Yaremchenko, A.A.; Frade, J.R.

    2014-01-01

    Highlights: • Electrical conductivity and thermal expansion of strontium vanadates are measured. • Conductivity of SrVO 3−δ is 10 6 –10 8 times higher compared to Sr 2 V 2 O 7 and Sr 3 V 2 O 8 . • Sr 2 V 2 O 7 transforms on reduction to SrVO 3−δ via (5Sr 3 V 2 O 8 + SrV 6 O 11 ) intermediate. • This process is kinetically stagnated due to good redox stability of Sr 3 V 2 O 8 . • Large volume changes on Sr 2 V 2 O 7 ↔ SrVO 3 transformation are confirmed by dilatometry. - Abstract: The reversibility of redox-induced phase transformations and accompanying electrical conductivity and dimensional changes in perovskite-type SrVO 3−δ , a parent material for a family of potential solid oxide fuel cell anode materials, were evaluated employing X-ray diffraction, thermal analysis, dilatometry and electrical measurements. At 873–1273 K, the electrical conductivity of SrVO 3−δ is metallic-like and 6–8 orders of magnitude higher compared to semiconducting V 5+ -based strontium pyrovanadate Sr 2 V 2 O 7 and strontium orthovanadate Sr 3 V 2 O 8 existing under oxidizing conditions. SrVO 3−δ is easily oxidized to a pyrovanadate phase at atmospheric oxygen pressure. Inverse reduction in 10%H 2 –90%N 2 atmosphere occurs in two steps through (5Sr 3 V 2 O 8 + SrV 6 O 11 ) intermediate. As Sr 3 V 2 O 8 is relatively stable even under reducing conditions, the perovskite phase and its high level of electrical conductivity cannot be recovered completely in a reasonable time span at temperatures ⩽1273 K. Dilatometric studies confirmed that SrVO 3 ↔ Sr 2 V 2 O 7 redox transformation is accompanied with significant dimensional changes. Their extent depends on the degree of phase conversion and, apparently, on microstructural features

  1. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki

    2010-03-16

    Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.

  2. Relative contribution of ionospheric conductivity and electric field to the auroral electrojets

    International Nuclear Information System (INIS)

    Kamide, Y.; Vickrey, J.F.

    1983-01-01

    Data from continuous scans of the Chatanika radar beam along the magnetic meridian plane are used to the determine the latitudinal profile of height-integrated ionospheric conductivities and horizontal electric fields, from which the latitudinal distribution of ionospheric currents is deduced. The observations cover invariant latitudes between 62 0 and 68 0 , where the IMS Alaska meridian chain of magnetometers was also in operation. Although the conductivities and the electric fields are interrelated, the relative importance of the two in driving the eastward and westward auroral electrojet currents can be assessed. It is found that for moderate and large current densities (i.e., > or approx. =0.2 A/m), the northward electric field strength increases as the magnitude of the eastward electrojet in the evening sector increases. The height-integrated Hall conductivity stays generally at the level of 10 mhos even when the current density becomes as large as 1 A/m. However, when the eastward electrojet is small, substantial electric fields of 10-20 mV/m may still exist as if the magnetosphere has a persistent voltage source. There appear to be two distinct components to the westward electrojet. In the midnight and early morning sestors (>0300 MLT) intensity is characterized by a weak southward electric field and a high Hall conductivity, whereas its late morning portion (>0300 MLT) is dominated by a strong southward electric field

  3. Probability of conductive bond formation in a percolating network of nanowires with fusible tips

    Science.gov (United States)

    Rykaczewski, Konrad; Wang, Robert Y.

    2018-03-01

    Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.

  4. The electrical conductivity of a weakly non-ideal, dense plasma

    NARCIS (Netherlands)

    Rosado, R.J.; Leclair, J.; Schram, D.C.

    1977-01-01

    The electrical conductance of a non-ideal plasma was measured and compared with Spitzer's formula for ideal plasmas and a correction to this formula proposed by Rovinskii. The measured conductance proved to agree better with the Spitzer result

  5. Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles

    Science.gov (United States)

    Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.

    2018-05-01

    The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.

  6. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  7. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.co [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt); Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S. [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt)

    2009-11-15

    The structural and electrical conductivity (sigma) of annealed SrTiO{sub 3}-PbO{sub 2}-V{sub 2}O{sub 5} glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T{sub c} exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V{sup 4+}-V{sup 5+} pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above theta{sub D}/2 (theta{sub D}, the Debye temperature). The electrical conduction at T >theta{sub D}/2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  8. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S.

    2009-01-01

    The structural and electrical conductivity (σ) of annealed SrTiO 3 -PbO 2 -V 2 O 5 glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T c exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V 4+ -V 5+ pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above θ D /2 (θ D , the Debye temperature). The electrical conduction at T >θ D /2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  9. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  10. Shear-induced changes of electrical conductivity in suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Crawshaw, John; Meeten, Gerald [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    2006-12-15

    The effect of shear on electrical conductivity (rheo-conduction) is studied to give information about particle behaviour in suspensions. Past work is reviewed, and expressions are derived for the rheo-conduction of a suspension of nonconducting spheroids in a conducting matrix for current flow, parallel and normal to the suspension flow direction. A simple apparatus to study rheo-conduction in pipe flow is described, and measurements of steady and time-dependent effects are reported for various suspensions of colloidal particles. Suspensions of anisometric rod- and platelike particles at low concentrations showed rheo-conductive changes of sign, magnitude and relaxation that were consistent with the particle shape, concentration and interactions. The rheo-conductive response decreased with increasing volume fraction for platelike kaolinite particles, attributed to orientational jamming. Spherical latex particles gave unexpected rheo-conductive changes consistent with shear disruption of a conductive network of particles. It is concluded that rheo-conduction measurements are a useful adjunct to conventional rheometry. (orig.)

  11. Infrared transparency and electrical conductivity of non-stoichiometric InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2010-01-01

    In an effort to achieve both high infrared transparency and electrical conductivity, In x O y films having different oxygen atomic fractions, ranging from 0.27 to 0.6 were prepared. From AC electrical measurements it was determined that conductivity of In x O y films, having oxygen atomic fraction near 0.6, is governed by the hopping conduction mechanism via energy states located in the band gap. Conductivity of In x O y films having non-stoichiometric compositions was found to be governed by the free band conduction mechanism. The conduction activation energy was decreased from about 0.47 eV to about 0.02 eV as the deviation of the oxygen atomic fraction from the stoichiometric value of 0.6 was increased. The dielectric function of the films was determined by applying the Drude-Lorentz model to ellipsometric measurements in the infrared and visible wavelengths. In the visible range, the major source for optical transmission loss is interband absorption, which was modeled by the Lorentz model. In the infrared range, optical absorption was measured and attributed to the presence of free charge carriers according to the Drude model. Fitting the model to the optical measurements required a correction factor, which was correlated with the films polarizability. In order to determine the optimal tradeoff between optical transparency in the infrared and electrical conductivity, which were found to be affected mainly by the oxygen concentration in the films, a figure of merit parameter was established. It was found that by introducing non-stoichiometry in the form of oxygen deficiency, the electrical conductivity was improved by as much as two orders of magnitude while the infrared transparency was decreased by no more than 30% with respect to stoichiometric In 2 O 3 films.

  12. Nematic liquid crystal in a cylindrical sample: Theoretical analysis of the electrical response

    Science.gov (United States)

    Gomes, O. A.; Yednak, C. A. R.; da Silva, B. V. H. V.; Teixeira-Souza, R. T.

    2018-02-01

    The electrical responses of a nematic liquid crystal sample confined between two cylindrical surfaces are investigated in the framework of elastic continuum theory. The responses are the result of the molecular reorientation induced by both the applied electric field and the cylindrical geometry of the sample. The nematic medium is considered as a parallel RC circuit since the capacitance and the resistance are under the same difference of potential. The electrical properties, including the total electric current, are determined from the molecular reorientation of the director. The elastic anisotropy has been shown to influence substantially the profile of the electrical current, capacitance, and resistance characterizing the equivalent circuit for the medium.

  13. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  14. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    Directory of Open Access Journals (Sweden)

    Lawrence T. Drzal

    2010-02-01

    Full Text Available Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape, intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforcements used are exfoliated graphite nanoplatelets, carbon black, vapor grown carbon fibers and polyacrylonitrile carbon fibers. The composites are made using melt mixing followed by injection molding. A coating method is also employed to improve the nanofiller’s dispersion within the polymer and compression molding is used to alter the nanofiller’s alignment.

  15. Conductive composites of tapioca based bioplastic and electrochemical-mechanical liquid exfoliation (emle) graphene

    Science.gov (United States)

    Amri, A.; Rahmana, H.; Utami, S. P.; Iriyanti, R. S.; Jiang, Z. T.; Rahman, M. M.

    2018-04-01

    The conductive composites of tapioca based bioplastic and the electrochemical- mechanical liquid exfoliation (EMLE) graphene have been successfully synthesized via the solution intercalation method for conductive bioplastic applications. The synthesized EMLE graphene quality, the mechanical properties, the functional group interactions and the conductivity of bioplastic composites, respectively, were analyzed using Raman spectroscopy, Universal Testing Machine (UTM) via ASTM D882-92, Fourier Transform Infrared (FTIR) spectroscopy, Multitester via Four Probe Method. Raman spectroscopy analyses revealed that the graphene used is multi layer graphene (~ 3-10 layer) with deffects and minor impurity of graphene oxide (EMLE graphene). The tensile strength and the Young’s modulus increased with the increasing of the EMLE graphene content in the composites, while the elongation decreased. The bioplastic synthesized using the 9% EMLE graphene content and the mixing time of 50 minutes exhibited the best mechanical properties with the tensile strength of 4.116 Mpa, the Young’s modulus of 75.476 Mpa, and the elongation of 5.453%. The FTIR spectra indicated that there was a good interactions of EMLE graphene in the bioplastic matrix due to the hydrophylic properties and the secondary bonds between the EMLE graphene and the starch and glycerol plasticizer. The higher amount of graphene added, the higher conductivity of bioplastic would be, and vice versa for the resistivity. The best electrical properties of 1.57 x10‑1/ohm.cm (conductivity) and 6.34 ohm.cm (resistivity) was reached by the bioplastic synthesized with addition of 9% EMLE graphene and 50 minutes stirring time. EMLE Graphene is the promissing filler for further development of Tapioca based conductive bioplastics.

  16. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Bao, W S; Meguid, S A; Zhu, Z H; Meguid, M J

    2011-01-01

    We have developed an improved three-dimensional (3D) percolation model to investigate the effect of the alignment of carbon nanotubes (CNTs) on the electrical conductivity of nanocomposites. In this model, both intrinsic and contact resistances are considered, and a new method of resistor network recognition that employs periodically connective paths is developed. This method leads to a reduction in the size effect of the representative cuboid in our Monte Carlo simulations. With this new technique, we were able to effectively analyze the effects of the CNT alignment upon the electrical conductivity of nanocomposites. Our model predicted that the peak value of the conductivity occurs for partially aligned rather than perfectly aligned CNTs. It has also identified the value of the peak and the corresponding alignment for different volume fractions of CNTs. Our model works well for both multi-wall CNTs (MWCNTs) and single-wall CNTs (SWCNTs), and the numerical results show a quantitative agreement with existing experimental observations.

  17. Electrical properties of conducting loads produced from polyaniline deposited in natural fibers and nanoclays

    International Nuclear Information System (INIS)

    Kosenhoski, Dirlaine; Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla; Pachekoski, Wagner M.

    2015-01-01

    Conducting polymers are known for their excellent magnetic and electrical properties, but they still are an expensive and limited choice to their use as a conducting load for composite materials. An alternative to optimize the electrical conductivity of polymeric composites is the deposition of a conducting polymer on materials already used as loads, as the deposition on natural fibers or the encapsulation of polymeric chains in the voids of host structures. In this work, bananastem fiber and montmorillonite nanoclay (MMT) were used as host structures for polyaniline synthesis in order to produce conducting loads. Samples were characterized by FT-IR and X-Rays Diffraction in order to confirm the formation of polyanilina / bananastem fibers or polyanilina / nanoclays loads. Influence on the electrical properties of the composites were evaluated by Electrochemical Impedance Spectroscopy (EIS), showing the maintenance of the electric conductivity of polyaniline and its potential use as a load for the formation of conducting composites. (author)

  18. Near-wall molecular ordering of dilute ionic liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai; Seddon, James Richard Thorley

    2017-01-01

    The interfacial behavior of ionic liquids promises tunable lubrication as well as playing an integral role in ion diffusion for electron transfer. Diluting the ionic liquids optimizes bulk parameters, such as electric conductivity, and one would expect dilution to disrupt the near-wall molecular

  19. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  20. Floating liquid bridge charge dynamics

    Science.gov (United States)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  1. Safety and injury profile of conducted electrical weapons used by law enforcement officers against criminal suspects.

    Science.gov (United States)

    Bozeman, William P; Hauda, William E; Heck, Joseph J; Graham, Derrel D; Martin, Brian P; Winslow, James E

    2009-04-01

    Conducted electrical weapons such as the Taser are commonly used by law enforcement agencies. The safety of these weapons has been the subject of scrutiny and controversy; previous controlled studies in animals and healthy humans may not accurately reflect the risks of conducted electrical weapons used in actual conditions. We seek to determine the safety and injury profile of conducted electrical weapons used against criminal suspects in a field setting. This prospective, multicenter, observational trial tracked a consecutive case series of all conducted electrical weapon uses against criminal suspects at 6 US law enforcement agencies. Mandatory review of each conducted electrical weapon use incorporated physician review of police and medical records. Injuries were classified as mild, moderate, or severe according to a priori definitions. The primary outcome was a composite of moderate and severe injuries, termed significant injuries. Conducted electrical weapons were used against 1,201 subjects during 36 months. One thousand one hundred twenty-five subjects (94%) were men; the median age was 30 years (range 13 to 80 years). Mild or no injuries were observed after conducted electrical weapon use in 1,198 subjects (99.75%; 95% confidence interval 99.3% to 99.9%). Of mild injuries, 83% were superficial puncture wounds from conducted electrical weapon probes. Significant injuries occurred in 3 subjects (0.25%; 95% confidence interval 0.07% to 0.7%), including 2 intracranial injuries from falls and 1 case of rhabdomyolysis. Two subjects died in police custody; medical examiners did not find conducted electrical weapon use to be causal or contributory in either case. To our knowledge, these findings represent the first large, independent, multicenter study of conducted electrical weapon injury epidemiology and suggest that more than 99% of subjects do not experience significant injuries after conducted electrical weapon use.

  2. Study on a Haptic Sensor Using MCF (Magnetic Compound Fluid) Electric Conductive Rubber

    Science.gov (United States)

    Zheng, Yaoyang; Shimada, Kunio

    To provide a new composite material having a high degree of sensitivity regarding both electrical conduction and temperature for the field of robotics or sensing, we have developed magnetic rubber that contains a network-like magnetic cluster. We compared the temperature response of MCF rubber with others rubbers made under various experimental conditions, allowing us to find an optimum condition for making MCF rubber. The temperature response was obtained by an experimental equation. We also compared the electric conductivity of MCF rubber with that of ordinary electric conductive rubber and found that its electric sensitivity was lower at a small deformation, but increased at larger deformations. Therefore, MCF rubber has proven itself effective as a switching sensor when a small deformation is applied.

  3. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  4. D.C. electrical conductivity measurements on ADP single crystals ...

    Indian Academy of Sciences (India)

    Unknown

    Impurity added ADP crystals; density; electrical conductivity measurements. 1. Introduction ... determined by the intrinsic defects caused by thermal fluctuations in the ... beaker (corning glass vessel) and allowed to equilibrate at the desired ...

  5. Electrokinetic Power Generation from Liquid Water Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  6. Liquid-Phase Electrical Discharges: Fundamental Mechanisms and Applications

    Science.gov (United States)

    Franclemont, Joshua

    The increased demand in alternative energy in recent decades has generated significant interest in cleaner fuel sources including hydrogen and syngas (hydrogen and carbon monoxide). Hydrogen and syngas are both primarily produced through the steam reforming of hydrocarbons, specifically natural gas. Although other processes are known, the cheapest source of these fuels is currently through the heating of natural gas in the presence of steam and a catalyst. However, due to the emissions associated with the steam reforming of natural gas and the lack of low cost, efficient, and reliable onboard hydrogen storage technologies for fuel cell powered vehicles, attention has been focused on plasma-assisted reforming of hydrocarbons. Plasma processes can be implemented onboard and are able to directly reform liquid hydrocarbons and alcohols without external heating or catalysts. In addition to hydrogen and syngas, the plasma-assisted reforming of hydrocarbons and alcohols offers other desirable products such as C2 gases (ethane, ethylene, and acetylene), methanol and ethanol. The primary goal of this study is to investigate the fundamental chemical reactions occurring during plasma-assisted reforming of liquid hydrocarbons and alcohols using streamer-like pulsed electrical discharges. Due to the relatively unexplored field of chemical reactions in liquid plasmas, the focus of this study is on elucidating chemical pathways responsible for the formation of hydrogen, syngas, and other products during the direct reforming of liquid methanol, glycerol, and pentane as model species.

  7. Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)

    2016-11-01

    It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)

  8. Mantle electrical conductivity profile of Niger delta region

    Indian Academy of Sciences (India)

    The mantle electrical conductivity-depth profile of the Niger delta region in Nigeria has been determined using solar quiet day ionospheric current (Sq).The magnetometer data obtained in 2010 from geomagnetic stations installed in Lagos by magnetic dataset (MAGDAS) in 2008 and data from magnetometers installed in ...

  9. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    Science.gov (United States)

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2011-01-01

    The effect of thickness and composition on the electrical conductivity and optical transparency, mainly in the infrared, of ultrathin In x O y films was studied. In x O y films 35-470 A thick with oxygen atomic fractions of ∼0.3 and ∼0.5 were prepared via dc magnetron sputtering. All films were polycrystalline, consisting of only the cubic bixbiyte phase of In 2 O 3 . The average grain size of the films increased from 30 to 95 nm as the film thickness increased. The weak dependence of the electrical conductivity on the frequency and the low activation energies for conduction, a few hundredths of an eV, provided an indication that free band conduction was the primary electrical conduction mechanism in the case of all ultrathin In x O y films. It was found that introducing a high degree of nonstoichiometry in the form of oxygen deficiency did not help improve the electrical conductivity, since not all vacancies contributed two free electrons for conduction and due to impurity scattering. The optical nature of these films, studied mainly by ellipsometry, was found to be dependent on the film's composition and thickness. In the infrared, the dielectric function of all In x O y films was consistent with the Drude model, inferring that the transparency loss in this region was a result of free charge carriers. In the visible however, In x O y films under 170 A, which had an oxygen atomic fraction of ∼0.5, were modeled by extending the Drude model to the shorter wavelengths. Films over 170 A, with the same composition, were modeled using the Cauchy dispersion model, meaning that no absorption was measured. These results indicate that, optically, under specific compositions, ultrathin In x O y films undergo a transition from metalliclike behavior to dielectric behavior with increasing film thickness. Using a figure of merit approach, it was determined that a nonstoichiometric 230 A thick In x O y film, with an oxygen atomic fraction of ∼0.3, had the best combination

  11. Anelastic spherical dynamos with radially variable electrical conductivity

    Science.gov (United States)

    Dietrich, W.; Jones, C. A.

    2018-05-01

    A series of numerical simulations of the dynamo process operating inside gas giant planets has been performed. We use an anelastic, fully nonlinear, three-dimensional, benchmarked MHD code to evolve the flow, entropy and magnetic field. Our models take into account the varying electrical conductivity, high in the ionised metallic hydrogen region, low in the molecular outer region. Our suite of electrical conductivity profiles ranges from Jupiter-like, where the outer hydrodynamic region is quite thin, to Saturn-like, where there is a thick non-conducting shell. The rapid rotation leads to the formation of two distinct dynamical regimes which are separated by a magnetic tangent cylinder - mTC. Outside the mTC there are strong zonal flows, where Reynolds stress balances turbulent viscosity, but inside the mTC Lorentz force reduces the zonal flow. The dynamic interaction between both regions induces meridional circulation. We find a rich diversity of magnetic field morphologies. There are Jupiter-like steady dipolar fields, and a belt of quadrupolar dominated dynamos spanning the range of models between Jupiter-like and Saturn-like conductivity profiles. This diversity may be linked to the appearance of reversed sign helicity in the metallic regions of our dynamos. With Saturn-like conductivity profiles we find models with dipolar magnetic fields, whose axisymmetric components resemble those of Saturn, and which oscillate on a very long time-scale. However, the non-axisymmetric field components of our models are at least ten times larger than those of Saturn, possibly due to the absence of any stably stratified layer.

  12. Thermoelectric power and electrical conductivity of strontium-doped lanthanum manganite

    DEFF Research Database (Denmark)

    Ahlgren, E.O.; Poulsen, F.W.

    1996-01-01

    Thermoelectric power and electrical conductivity of pure and 5, 10 and 20% strontium-doped lanthanum manganite are determined as function of temperature in air and of P-O2 at 1000 degrees C. At high temperatures the thermoelectric power is negative. Both thermoelectric power and conductivity...

  13. Electrical resistivity for detecting subsurface non-aqueous phase liquids: A progress report

    International Nuclear Information System (INIS)

    Lee, K.H.; Shan, C.; Javandel, I.

    1995-06-01

    Soils and groundwater have been contaminated by hazardous substances at many places in the United States and many other countries. The contaminants are commonly either petroleum products or industrial solvents with very low solubility in water. These contaminants are usually called non-aqueous phase liquids (NAPLs). The cost of cleaning up the affected sites in the United States is estimated to be of the order of 100 billion dollars. In spite of the expenditure of several billion dollars during the last 15 years, to date, very few, if any major contaminated site has been restored. The presence of NAPL pools in the subsurface is believed to be the main cause for the failure of previous cleanup activities. Due to their relatively low water solubility, and depending on their volume, it takes tens or even hundreds of years to deplete the NAPL sources if they are not removed from the subsurface. The intrinsic electrical resistivity of most NAPLs is typically in the range of 10 7 to 10 12 Ω-m, which is several orders of magnitude higher than that of groundwater containing dissolved solids (usually in the range of a few Ω-m to a few thousand Ω-m). Although a dry soil is very resistive, the electrical resistivity of a wet soil is on the order of 100 Ω-m and is dependent on the extent of water saturation. For a given soil, the electrical resistivity increases with decrease of water saturation. Therefore, if part of the pore water is replaced by a NAPL, the electrical resistivity will increase. At many NAPL sites, both the vadose and phreatic zones can be partially occupied by NAPL pools. It is the great contrast in electrical resistivity between the NAPLs and groundwater that may render the method to be effective in detecting subsurface NAPLs at contaminated sites. The following experiments were conducted to investigate the change of the electrical resistivity of porous media when diesel fuel (NAPL) replaces part of the water

  14. Electrical conductivity measurements on gel grown KDP crystals ...

    Indian Academy of Sciences (India)

    Impurity added KDP crystals; gel method; electrical conductivity; activation energy. 1. Introduction. Potassium dihydrogen ... phate [(NH4)2SO4] along with double distilled water and ethyl alcohol were used. KDP was added with .... in the vicinity of electrodes or chemical changes in layers close to electrodes (Bunget and ...

  15. Investigation of electric fields for low-temperature treatment of soils and liquids

    International Nuclear Information System (INIS)

    Heath, W.O.; Goheen, S.C.; Miller, M.C.; Richardson, R.L.

    1992-02-01

    Work was performed to assess the feasibility of an in situ technology for decomposing and removing hazardous organic waste compounds from soils. The technology is based on conductive soil heating and partial electrical discharges (corona) combined with soil-vapor extraction. A pilot-scale facility was developed and used to evaluate the ability to heat and dry soils using polyphase electricity applied through inserted pipes. Uniform heating (100 ± 2 degrees C) and drying to 1.2-wt % moisture were observed. Heating and resultant in situ steam formation have been demonstrated in previous studies to be effective in removing volatile and semivolatile compounds. Corona reactors were constructed to investigate decomposition of organic compounds by oxidants produced in a point-to-liquid corona discharge in ambient air at room temperature and pressure. Point-to-liquid corona was found to be capable of destroying a wide variety of organics, including three aromatics, two polyaromatics, a pcp, a pcb, an alkane, an alkene, an amide, a complexant, a chelator, and an organic dye. Tests with trichloroethylene demonstrated a decontamination factor of 2 x 10 5 (equal to a destruction efficiency of 99.999995%) and nearly complete (99.7%) mineralization, with the main byproduct being aqueous chloride ions. Real-time data on the decolorization kinetics of aqueous methylene blue were obtained using in situ probe colorimetry. Reaction rates were directly proportional to the amount of unreacted dye present and the square of electrode current. Other exploratory tests were performed to investigate concepts for generating ac corona discharges in soil and the ability of those discharges to decompose adsorbed organic compounds. All findings are discussed in relation to a conceptual soil-treatment scenario that includes a description of the basic hardware requirements

  16. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  17. Electrical conductivity of uranium-antimony oxide catalysts

    International Nuclear Information System (INIS)

    Golunski, S.E.; Nevell, T.G.; Hucknall, D.J.

    1985-01-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO 5 have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb 3 O 10 together with small proportions of Sb 2 O 4 and USbO 5 ) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO 5 . Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO 5 in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation. (author)

  18. Electrical conductivity of uranium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, S.E.; Nevell, T.G. (Portsmouth Polytechnic (UK)); Hucknall, D.J. (Southampton Univ. (UK). Dept. of Chemistry)

    1985-05-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO/sub 5/ have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb/sub 3/O/sub 10/ together with small proportions of Sb/sub 2/O/sub 4/ and USbO/sub 5/) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO/sub 5/. Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO/sub 5/ in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation.

  19. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  20. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  1. Further study on heredity of liquid aluminum modified by electric pulse

    Directory of Open Access Journals (Sweden)

    Qi Jingang

    2011-08-01

    Full Text Available The remarkable heredity of liquid aluminum modified by electric pulse (EP, EPM has been uncovered. For better understanding from all aspects on the hereditary properties, the present research deals with the heredity destruction and the secondary EPM procedure. It is shown that the secondary EPM is capable of preventing the heredity reduction of EP-modified liquid aluminum, and that the final refining effect has a close relationship with technique parameters of the secondary EPM. Furthermore, at a certain superheated temperature depending on the initial EPM technique parameters, the heredity relationship of EP-modified liquid aluminum can be cut off during remelting. High temperature X-ray diffraction combining with the DSC tests also indicates that the EP-induced structure changes have almost disappeared at an elevated remelting temperature.

  2. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    Infiltration measurements using a double-ring infiltrometer were conducted on a sandy-loam soil located in Saudi Arabia. The measurements were performed for an undisturbed soil. The effect of sodium adsorption ratio (SAR) and electric conductivity (EC) of the applied water on infiltration rate was examined. The infiltration ...

  3. Pump effect of a capillary discharge in electrically conductive liquids

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.

    2007-01-01

    Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf

  4. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    ABSTRACT: This work being gingered by the big menace being posed on our environment by polymeric waste and it's rechanneling involved the studying of the electrical and thermal conductivities of the polymers PP, PE, PS and nylon66 doped with charcoal and graphite. Five grams of each polymer was mixed with ...

  5. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  6. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation.

    Science.gov (United States)

    Cui, Zhi; Ni, Nathan C; Wu, Jun; Du, Guo-Qing; He, Sheng; Yau, Terrence M; Weisel, Richard D; Sung, Hsing-Wen; Li, Ren-Ke

    2018-01-01

    Background: The post-myocardial infarction (MI) scar interrupts electrical impulse propagation and delays regional contraction, which contributes to ventricular dysfunction. We investigated the potential of an injectable conductive biomaterial to restore scar tissue conductivity and re-establish synchronous ventricular contraction. Methods: A conductive biomaterial was generated by conjugating conductive polypyrrole (PPY) onto chitosan (CHI) backbones. Trypan blue staining of neonatal rat cardiomyocytes (CMs) cultured on biomaterials was used to evaluate the biocompatibility of the conductive biomaterials. Ca 2+ imaging was used to visualize beating CMs. A cryoablation injury rat model was used to investigate the ability of PPY:CHI to improve cardiac electrical propagation in the injured heart in vivo . Electromyography was used to evaluate conductivity of scar tissue ex vivo . Results: Cell survival and morphology were similar between cells cultured on biomaterials-coated and uncoated-control dishes. PPY:CHI established synchronous contraction of two distinct clusters of spontaneously-beating CMs. Intramyocardial PPY:CHI injection into the cryoablation-induced injured region improved electrical impulse propagation across the scarred tissue and decreased the QRS interval, whereas saline- or CHI-injected hearts continued to have delayed propagation patterns and significantly reduced conduction velocity compared to healthy controls. Ex vivo evaluation found that scar tissue from PPY:CHI-treated rat hearts had higher signal amplitude compared to those from saline- or CHI-treated rat heart tissue. Conclusions: The PPY:CHI biomaterial is electrically conductive, biocompatible and injectable. It improved synchronous contraction between physically separated beating CM clusters in vitro . Intra-myocardial injection of PPY:CHI following cardiac injury improved electrical impulse propagation of scar tissue in vivo .

  7. Acceleration of liquid by boiling of other volatile liquid, (4)

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Mori, Yasuo

    1978-01-01

    In the development of liquid metal MHD power generation using liquid metal as a working fluid, it is one of the important problems to accelerate liquid metal efficiently by means of thermal energy. Though various accelerating methods have been proposed so far, those do not provide high cycle thermal efficiency because of either small electric conductivity, low accelerating efficiency or low gas-liquid separating efficiency. The authors proposed the method to accelerate through volume expansion by boiling a volatile liquid being blown into liquid metal at high temperature, and have investigated it experimentally and theoretically. In the study, efficiency has been discussed in case of the acceleration of fluid subjected to magneto-hydrodynamical force by boiling of droplets of other liquid. Theoretically, the field of flow and two-phase cycle and gas phase cycle were analyzed. The report describes on these results and discussions. It is concluded that efficiency is independent of the injected amount and position of droplets, final efficiency is little affected by external load and thermal conductivity of volatile liquid droplets, the efficiency for the combination of cesium and lead is about 50%, and the method proposed by authors seems to be better than the conventional methods with gas phase cycle proposed so far using inert gas bubbles in lieu of volatile liquid. (Wakatsuki, Y.)

  8. Electrical conductivity of short carbon fibers and carbon black-reinforced chloroprene rubber

    International Nuclear Information System (INIS)

    Khoshniat, A. R.; MirAli, M.; Hemmati, M.; Afshar Taromi, F.; Katbab, A.

    2002-01-01

    Elastomers and plastics are intrinsically insulating materials, but by addition of some conductive particles such as conductive carbon black, carbon fibers and metals, they can change to conductive form. Conductivity of these composites are due to formation of the lattices of conductive filler particles in polymer chains. In this report, conductivity of chloroprene rubber filled with carbon black and carbon fibers as a function of temperature and pressure are studied. Electrical conductivity of chloroprene in a function of temperature and pressure are studied. Electrical conductivity of chloroprene in the presence of carbon black with proper mixing conditions increases to the conductivity level of semiconductors and even in the presence of carbon fibers it increases to the level of a conductor material. Meanwhile, the sensitivity of this compound to heat and pressure rises. Thus these composites have found various applications in the manufacture of heat and pressure sensitive sensors

  9. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  10. Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors

    International Nuclear Information System (INIS)

    Pike, G.E.; Seager, C.H.

    1977-01-01

    This paper presents an experimental study of the electrical conduction mechanisms in thick-film (cermet) resistor. The resistors were made from one custom and three commercially formulated inks with sheet resistivities ranging from 10 2 to 10 6 Ω/D 7 Alembertian in decade increments. Their microstructure and composition have been examined using optical and scanning electron microscopy, electron microprobe analysis, x-ray diffraction, and various chemical analyses. This portion of our study shows that the resistors are heterogeneous mixtures of metallic metal oxide particles (approx.4 x 10 -5 cm in diameter) and a lead silicate glass. The metal oxide particles are ruthenium containing pyrochlores, and are joined to form a continuous three-dimensional network of chain segments. The principal experimental work reported here is an extensive study of the electrical transport properties of the resistors. The temperature dependence of conductance has been measured from 1.2 to 400 K, and two features common to all resistors are found. There is a pronounced decrease in conductance at low temperatures and a shallow maximum at several hundred Kelvin. Within the same range of temperatures the reversible conductance as a function of electric field from 0 to 28 kV/cm has been studied. The resistors are non-Ohmic at all temperatures, but particularly at cryogenic temperatures for low fields. At higher fields the conductance shows a linear variation with electric field. The thick-film resistors are found to have a small dielectric constant and a (nearly) frequency-independent conductance from dc to 50 MHz. The magnetoresistance to 100 kG, the Hall mobility, and the Seebeck coefficient of most of the resistors have been measured and discovered to be quite small. Many of the electrical transport properties have also been determined for the metal oxide particles which were extracted from the fired resistors

  11. Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.

    Science.gov (United States)

    Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo

    2017-11-15

    Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.

  12. Nanoionics phenomenon in proton-conducting oxide: Effect of dispersion of nanosize platinum particles on electrical conduction properties

    Directory of Open Access Journals (Sweden)

    Hiroshige Matsumoto et al

    2007-01-01

    Full Text Available High-temperature proton conductors are oxides in which low-valence cations are doped as electron acceptors; the incorporation of water molecules into the oxides results in the formation of protonic defects that act as charge carriers. Since the protons thus formed are in equilibrium with other electronic defects, electrons and holes, the oxides possibly have different proton-conduction properties at and near boundaries when they are in contact with another phase. In this paper, we present our recent experimental observation of a marked change in the electrical properties of a proton conductor upon the dispersal of fine platinum particles in the oxide. First, the material shows extremely low electrical conductivity in comparison with the original proton-conducting perovskite. Second, there was a threshold amount of platinum at which such a drop in conductivity occurred. A percolation model is employed to explain these experimental results; the fine platinum particles dispersed in the proton-conducting oxide wears highly resistive skin that is formed due to shifts in defect equilibriums, which prevents ionic/electronic conduction. The experiments suggest that the ion-conducting properties of oxides can be varied by introducing interfaces at a certain density; nanoionics is a key to yielding enhanced and/or controlled ionic conduction in solids.

  13. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  14. Superposition approach for description of electrical conductivity in sheared MWNT/polycarbonate melts

    Directory of Open Access Journals (Sweden)

    M. Saphiannikova

    2012-06-01

    Full Text Available The theoretical description of electrical properties of polymer melts, filled with attractively interacting conductive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile and can be easily broken in a shear flow with shear rates of about 1 s–1. In this study, measured shear-induced changes in electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by separated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of composites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic equation for a scalar structural parameter which describes the current state of filler network under particular flow conditions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled with multi-wall carbon nanotubes.

  15. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  16. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  17. The variation of electrical conductivity with temperature for Cu ...

    African Journals Online (AJOL)

    ZnS) alloy with temperature has been investigated. The electrical conductivity of the samples increases with temperature and obeys the Arrhenius relation, δ= δ° exp (-Eg/2kT) which is characteristic of semiconductors. The energy gaps ...

  18. Analysis of in-situ electrical conductivity data from the HFIR TRIST-ER1 experiment

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.; Shikama, T.

    1997-01-01

    The current vs. applied voltage data generated from the HFIR TRIST-ER1 experiment have been analyzed to determine the electrical conductivity of the 15 aluminum oxide specimens and the MgO-insulated electrical cables as a function of irradiation dose. With the exception of the 0.05%Cr-doped sapphire (ruby) specimen, the electrical conductivity of the alumina specimens remained at the expected radiation induced conductivity (RIC) level of -6 S/m during full-power reactor irradiation (10-16 kGy/s) at 450-500 degrees C up to a maximum dose of ∼3 dpa. The ruby specimen showed a rapid initial increase in conductivity to ∼2 x 10 -4 S/m after ∼0.1 dpa, followed by a gradual decrease to -6 S/m after 2 dpa. Nonohmic electrical behavior was observed in all of the specimens, and was attributed to preferential attraction of ionized electrons in the capsule gas to the unshielded low-side bare electrical leads emanating from the subcapsules. The electrical conductivity was determined from the slope of the specimen current vs. voltage curve at negative voltages, where the gas ionization effect was minimized. Dielectric breakdown tests performed on unirradiated mineral-insulated coaxial cables identical to those used in the high voltage coaxial cables during the 3-month irradiation is attributable to thermal dielectric breakdown in the glass seals at the end of the cables, as opposed to a radiation-induced electrical degradation (RIED) effect

  19. Electrical conductivity of sandstone, limestone, and granite

    Energy Technology Data Exchange (ETDEWEB)

    Duba, A.; Piwinskii, A.J.; Santor, M.; Weed, H.C.

    1978-01-01

    The electrical conductivity of cylindrical cores of Westerly granite, Indiana limestone and Nugget, St Peter and Kayenta sandstones was measured at about 25/sup 0/C in vacuo, in air, and after saturation in distilled water, tap water, and 0.1 M NaCl solution. The three-electrode technique with a guard ring and the two-electrode technique without a guard ring were used. Core aspect ratio over the range of 2.00 to 0.25, as well as frequency over the range of 50 Hz to 10 kHz, influences the conductivity of all rocks, especially those measured in vacuo. Measurements from water-saturated samples using a guard ring are not appreciably different from those obtained without a guard ring. The conductivity of rocks saturated in 0.1 M NaCl solution changes least with a change in aspect ratio; for these rocks a linear relationship, known as Archie's Law, exists between log porosity and log conductivity. No simple correlation was found between those factors in rocks saturated with tap or distilled water. Thus, it appears Archie's Law is of questionable value for correlating laboratory data from rocks saturated with low-conductivity fluids.

  20. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  1. Electrical conduction in 7 nm wires constructed on λ-DNA

    International Nuclear Information System (INIS)

    Lund, John; Dong Jianchun; Deng Zhaoxiang; Mao Chengde; Parviz, Babak A

    2006-01-01

    We examine the morphological and electrical characteristics of nanowires fabricated on DNA templates via palladium (Pd) reduction. λ-DNA molecules were stretched and aligned on a mica surface using a molecular combing technique, followed by an electroless deposition of palladium, resulting in formation of nanowires with nominal width of 7 nm. We investigated the size distribution of nanowires with atomic force microscopy and made electrical connections to the wires by metal evaporation through multiple shadow masks. Electrical characterization of the nanowires under various bias conditions, variable temperature, and with different contact metal work functions revealed a conduction mechanism resembling that of granular metals

  2. Electric conductivity and bootstrap current in tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Wang Maoquan

    1996-12-01

    A modified Ohm's law for the electric conductivity calculation is presented, where the modified ohmic current can be compensated by the bootstrap current. A comparison of TEXT tokamak experiment with the theories shows that the modified Ohm's law is a more close approximation to the tokamak experiments than the classical and neoclassical theories and can not lead to the absurd result of Z eff <1, and the extended neoclassical theory would be not necessary. (3 figs.)

  3. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  4. A generative modeling approach to connectivity-Electrical conduction in vascular networks

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav

    2016-01-01

    The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel...... to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks...... of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub...

  5. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy

    Science.gov (United States)

    Nayak, Alpana; Suresh, K. A.

    2008-08-01

    We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

  6. Measurement of temperature, electric conductivity and density of plasma

    International Nuclear Information System (INIS)

    Vasilevova, I.; Nefedov, A.; Oberman, F.; Urinson, A.

    1982-01-01

    Three instruments are briefly described developed by the High Temperatures Institute of the USSR Academy of Sciences for the measurement of plasma temperature, electric conductivity and density. The temperature measuring instrument uses as a standard a light source whose temperature may significantly differ from plasma temperature because three light fluxes are compared, namely the flux emitted by the plasma, the flux emitted directly by the standard source, and the flux emitted by the standard source after passage through the plasma. The results of measurement are computer processed. Electric conductivity is measured using a coil placed in a probe which is automatically extended for a time of maximally 0.3 seconds into the plasma stream. The equipment for measuring plasma density consists of a special single-channel monochromator, a temperature gauge, a plasma pressure gauge, and of a computer for processing the results of measurement. (Ha)

  7. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  8. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  9. Necessity of electrically conductive pili for methanogenesis with magnetite stimulation

    Directory of Open Access Journals (Sweden)

    Oumei Wang

    2018-03-01

    Full Text Available Background Magnetite-mediated direct interspecies electron transfer (DIET between Geobacter and Methanosarcina species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite have only been inferred in methanogenic systems. Methods Concentrations of methane and organic acid were analysed with a gas chromatograph and high-performance liquid chromatography, respectively. The concentration of HCl-extractable Fe(II was determined by the ferrozine method. The association of the defined co-cultures of G. metallireducens and M. barkeri with magnetite was observed with transmission electron micrographs. Results Magnetite stimulated ethanol metabolism and methane production in defined co-cultures of G. metallireducens and M. barkeri; however, magnetite did not promote methane production in co-cultures initiated with a culture of G. metallireducens that could not produce electrically conductive pili (e-pili, unlike the conductive carbon materials that facilitate DIET in the absence of e-pili. Transmission electron microscopy revealed that G. metallireducens and M. barkeri were closely associated when magnetite was present, as previously observed in G. metallireducens/G. sulfurreducens co-cultures. These results show that magnetite can promote DIET between Geobacter and Methanosarcina species, but not as a substitute for e-pili, and probably functions to facilitate electron transfer from the e-pili to Methanosarcina. Conclusion In summary, the e-pili are necessary for the stimulation of not only G. metallireducens/G. sulfurreducens, but also methanogenic G. metallireducens/M. barkeri co-cultures with magnetite.

  10. Analysis of in-situ electrical conductivity data from the HFIR TRIST-ER1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Snead, L.L. [Oak Ridge National Lab., TN (United States); Shikama, T. [Tohoku Univ. (Japan)] [and others

    1997-08-01

    The current vs. applied voltage data generated from the HFIR TRIST-ER1 experiment have been analyzed to determine the electrical conductivity of the 15 aluminum oxide specimens and the MgO-insulated electrical cables as a function of irradiation dose. With the exception of the 0.05%Cr-doped sapphire (ruby) specimen, the electrical conductivity of the alumina specimens remained at the expected radiation induced conductivity (RIC) level of <10{sup -6} S/m during full-power reactor irradiation (10-16 kGy/s) at 450-500{degrees}C up to a maximum dose of {approximately}3 dpa. The ruby specimen showed a rapid initial increase in conductivity to {approximately}2 x 10{sup -4} S/m after {approximately}0.1 dpa, followed by a gradual decrease to <1 x 10{sup -6} S/m after 2 dpa. Nonohmic electrical behavior was observed in all of the specimens, and was attributed to preferential attraction of ionized electrons in the capsule gas to the unshielded low-side bare electrical leads emanating from the subcapsules. The electrical conductivity was determined from the slope of the specimen current vs. voltage curve at negative voltages, where the gas ionization effect was minimized. Dielectric breakdown tests performed on unirradiated mineral-insulated coaxial cables identical to those used in the high voltage coaxial cables during the 3-month irradiation is attributable to thermal dielectric breakdown in the glass seals at the end of the cables, as opposed to a radiation-induced electrical degradation (RIED) effect.

  11. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

    Science.gov (United States)

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Zhang, Quanyu; Luo, Zhuojing

    2010-04-01

    Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.

  12. Electrical conductivity of oxides from molten state to glassy. Effect on the incorporation of RuO{sub 2} particles; Conductivite electrique des verres et fontes d'oxides. Effets de l'incorporation de particules RuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Simonnet, C

    2004-07-01

    This study concerns the electrical conductivity of oxides from molten state to glassy state and, in particular, the effect of the incorporation of RuO{sub 2} particles in the context of vitrification of radioactive waste. The material of interest in the nuclear field is basically a viscous or vitreous borosilicate containing a dispersion of RuO{sub 2} microcrystals. A very simple model of this heterogeneous material has been studied in particular (SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, RuO{sub 2}). An original method of impedance measurement in the liquid at high temperature yields reliable electrical conductivity values over a temperature range covering the liquid and vitreous phases of the borosilicates studied. In the borosilicate matrix, alkaline transport is mainly responsible for the ionic conduction. The temperature dependence of the conductivity may thus be represented by an equation combining a VFT law and an Arrhenius law to represent the electrical conductivity above and below T{sub g}. Beyond a critical volume fraction V{sub c} {approx} 0.01 of RuO{sub 2}, an electronic contribution is added to the ionic contribution of the matrix and the electrical conductivity increases significantly with the RuO{sub 2} content. This effect is described in terms of electrical percolation of the particle network. An electronic mechanism by tunnel transfer between particles is demonstrated. A mathematical model is developed to describe this mechanism in the solid composite. Beyond T{sub g}, conduction by the tunnel effect persists and the partial solubilization of RuO{sub 2} appears to be mainly responsible for the significant increase in electronic conductivity with the temperature. (author)

  13. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  14. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baei, Payam [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Jalili-Firoozinezhad, Sasan [Department of Biomedicine and Surgery, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel (Switzerland); Department of Bioengineeringand IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Rajabi-Zeleti, Sareh [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad [Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser, E-mail: Nasser.Aghdami@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m{sup −1} was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  15. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Baei, Payam; Jalili-Firoozinezhad, Sasan; Rajabi-Zeleti, Sareh; Tafazzoli-Shadpour, Mohammad; Baharvand, Hossein; Aghdami, Nasser

    2016-01-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m"−"1 was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  16. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2006-10-01

    Full Text Available We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS. This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  17. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Science.gov (United States)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  18. Electrical conductivity of H2O-NaCl fluids to 10 kbar

    Science.gov (United States)

    Sinmyo, R.; Keppler, H.

    2016-12-01

    Magnetotelluric studies often reveal zones of elevated electrical conductivity in the mantle wedge above subducting slabs, in the deep crust below fold belts, or below active volcanoes. Since both aqueous fluids and hydrous silivate melts may be highly conductive, they may both account for these observations. Distinguishing between these two posssibilities, however, is difficult. One reason for this problem is that while there are very good conductivity data for silicate melts, such data do not exist for aqueous fluids under the relevant conditions of pressure, temperature and solute concentration. Most crustal and mantle fluids likely contain some NaCl, which greatly enhances conductivity due to its partial dissociation into Na+ and Cl-. We therefore studied the electrical conductivity of 0.01, 0.1 and 1 m NaCl solutions in water to 10 kbar and 600 °C. The measurements were carried out in externally-heated diamond cells containing two gaskets separated by an insulating ring of diamond, following a method described by Ni et al. (2014). The two gaskets were used as electrodes and full impedance spectra were measured from 30 Hz to 10 MHz using a Solartron 1260 impedance analyzer. Electrical conductivity was generally found to increase with pressure temperature, and fluid density. The conductivity increase observed upon variation of NaCl concentration from 0.1m to 1m was smaller than from 0.01m to 0.1m, which reflects the reduced degree of dissociation at high NaCl concentration. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O-NaCl fluids may enhance electrical conductivities with little disturbance of vp or vp/vs ratios.

  19. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2012-01-01

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 μg/cm 2 SWCNTs exhibited the least sheet resistance (0.8 kΩ/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: ► We fabricated a CNT-coated silicone which has conductivity and biocompatibility. ► The conductivity was maintained after 100 cycles of stretching. ► CNT coatings enabled C2C12 cells adhere to the silicone surface. ► Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  20. Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology

    International Nuclear Information System (INIS)

    Haznedar, Galip; Cravanzola, Sara; Zanetti, Marco; Scarano, Domenica; Zecchina, Adriano; Cesano, Federico

    2013-01-01

    Graphite nanoplatelets (GNPs) and/or multiwalled-carbon nanotubes (MWCNTs)/low density polyethylene (LDPE) composites have been obtained either via melt-mixing or solvent assisted methods. Electrical properties of samples obtained through the above mentioned methods are compared and the conductance values as function of filler fraction are discussed. The corresponding percolation thresholds are evaluated. Conductivity maps images are acquired under low-potentials scanning electron microscopy (0.3 KV) and the relationship between the obtained conductivity images and electric properties is highlighted. The synergistic role of CNTs (1D) and GNPs (2D) in improving the conductive properties of the polymer composites has been shown. - Highlights: • Graphite nanoplatelets (GNPs) and GNPs/MWCNT LDPE composites. • Low potential SEM conductivity maps. • Conducting paths between 1D and 2D C-structures (synergistic effect) are obtained. • Composites based on hybrid 1D/2D combinations show lower percolation thresholds

  1. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    Science.gov (United States)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  2. Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation

    International Nuclear Information System (INIS)

    Jang, Sung-Hwan; Yin, Huiming

    2015-01-01

    A simplified model is presented to predict the effective electrical conductivity of carbon nanotube(CNT)-polymer composite with different material proportions, which is validated by the experiments of multi-walled CNT/polydimethylsiloxane (PDMS) composites. CNTs are well dispersed in a PDMS matrix, and the mixture is then cured and cast into thin films for electrical characterization. The CNTs are assumed to be statistically uniformly distributed in the PDMS matrix with the three-dimensional (3D) waviness. As the proportion of CNTs increases to a certain level, namely the percolation threshold, the discrete CNTs start to connect with each other, forming a 3D network which exhibits a significant increase of effective electrical conductivity. The eight-chain model has been used to predict the effective electrical conductivity of the composite, in which the contact resistance between CNTs has been considered through the Simmons’ equation. The eight-chain network features can be significantly changed with the modification to mixing process, CNT length and diameter, and CNT clustering and curling. A Gaussian statistics-based formulation is used to calculate the effective length of a single CNT well dispersed in the matrix. The modeling results of effective electrical conductivity agree with the experiments very well, which are highly dependent on a contact resistance between CNTs and the waviness of the CNTs. The effect of inner-nanotube distance and diameter of CNTs on the effective electrical conductivity of the CNT/PDMS composite is also discussed. (paper)

  3. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Science.gov (United States)

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. We have succeeded to measure both electrical conductivity due to EFs (σ ENV ) and electrical conductivity due to DNA molecule (σ DNA ) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε' DNA as a

  4. Electric conductivity of salt melts containing KCL, KF and K2TaF7

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Stangrit, P.T.; Konstantinov, V.I.

    1978-01-01

    Given are electric conductivity measurement results depending on the temperature and composition of the molten KF-K 2 TaF 7 , KCl-K 2 TaF 7 systems and also melts close in their composition to industrial electrolytes, KCl-KF (in mass ratio of 2:1) with addition of K 2 TaF 7 up to 25 mass%. Presented are electric conductivity molecular isotherms of the KF-K 2 TaF 7 , KCl-K 2 TaF 7 systems at 800 deg C and specific electric conductivity dependence of KCl-KF-K 2 TaF 7 melts on K 2 TaF 7 composition at 800 deg C and 900 deg C. Proceeding from the shape of molecular and specific electric conductivity isotherms a conclusion is made about existence of the following tantalum-containing ions: TaF 7 2- , TaF 6 - and TaF 6 Cl 2- in the investigated melts

  5. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  6. What we can learn from measurements of air electric conductivity in 222Rn-rich atmosphere

    Science.gov (United States)

    Seran, E.; Godefroy, M.; Pili, E.; Michielsen, N.; Bondiguel, S.

    2017-02-01

    Electric conductivity of air is an important characteristic of the electric properties of an atmosphere. Testing instruments to measure electric conductivity ranging from 10-13 to 10-9 S m-1 in natural conditions found in the Earth atmosphere is not an easy task. One possibility is to use stratospheric balloon flights; another (and a simpler one) is to look for terrestrial environments with significant radioactive decay. In this paper we present measurements carried out with different types of conductivity sensors in two 222Rn-rich environments, i.e., in the Roselend underground tunnel (French Alps) and in the Institute of Radioprotection and Nuclear Safety BACCARA (BAnC de CAllibrage du RAdon) chamber. The concept of the conductivity sensor is based on the classical time relaxation method. New elements in our design include isolation of the sensor sensitive part (electrode) from the external electric field and sensor miniaturization. This greatly extends the application domain of the sensor and permits to measure air electric conductivity when the external electric field is high and varies from few tens of V m-1 to up to few tens of kV m-1. This is suitable to propose the instrument for a planetary mission. Two-fold objectives were attained as the outcome of these tests and their analysis. First was directly related to the performances of the conductivity sensors and the efficiency of the conductivity sensor design to shield the external electric field. Second objective aimed at understanding the decay mechanisms of 222Rn and its progeny in atmosphere and the impact of the enclosed space on the efficiency of gas ionization.

  7. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study

    Science.gov (United States)

    Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry

    2018-05-01

    Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

  8. Anisotropic modelling of the electrical conductivity of fractured bedrock

    International Nuclear Information System (INIS)

    Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.

    1995-01-01

    The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)

  9. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    Science.gov (United States)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper

  10. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.

  11. Electric properties of a liquid crystalline methacrylic polymer

    International Nuclear Information System (INIS)

    Gonzalez Henriquez, C.M.; Soto Bustamante, E.A.; Haase, W.

    2009-01-01

    The formation of a liquid crystalline polymer called PM6R8 is reported. The polymers were obtained with different concentration of AIBN as initiator (0.25, 0.50, 1 and 2mg in 5ml solution) and time of reaction (24, 36 and 48 hours). The compounds were characterized by 1 H-NMR, differential thermal analysis (DTA), X-ray diffractometer and pyroelectric measurements. For the polymer a smectic C 2 phase occurs over broad temperature range, which is a possible explanation for the electric signal. The arrangement of the molecules within of the crystalline lattice is related with the kinetic of precipitation. (author)

  12. Electron transport in fast dielectric liquids at high applied electric fields

    International Nuclear Information System (INIS)

    Faidas, H.; McCorkle, D.L.

    1990-01-01

    The drift velocity, w, of excess electrons as a function of the applied uniform electric field, E, in liquid 2,2-dimethylpropane (TMC), tetramethylsilane (TMS), tetramethylgermanium (TMG), tetramethyltin (TMT), 2,2,4,4-tetramethylpentane (TMP) and in mixtures of TMS with TMP (mole ratio M = 1.31/1) and n-pentane (M = 102/1, 17/1, and 5.6/1) has been measured for E-values up to ∼10 5 V cm -1 . The thermal electron mobility in the above liquids is 71.5, 119.3, 114.7, 85.7, 31.8, 39.1, 118, 85, and 47.6 cm 2 s -1 V -1 , respectively. 8 refs., 2 figs., 1 tab

  13. Electrical conductivity imaging in the western Pacific subduction zone

    Science.gov (United States)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005

  14. INVESTIGATION OF HEAT CONDUCTION AND SPECIFIC ELECTRIC IMPEDANCE OF POROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    E. S. Golubtsova

    2004-01-01

    Full Text Available In this article there was investigated the influence of porosity and temperature change on heat condition and electrical resistance of porous iron (PZh4M nickel and steel 14X17H2. There are received the adequate equations of regression, establishing connection between heat conduction and electrical resistance of the investigated materials with their porosity and temperature.

  15. Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI.

    Science.gov (United States)

    Gibbs, Eric; Liu, Chunlei

    2015-12-01

    Tissue conductivity is a biophysical marker of tissue structure and physiology. Present methods of measuring tissue conductivity are limited. Electrical impedance tomography, and magnetic resonance electrical impedance tomography rely on passing external current through the object being imaged, which prevents its use in most human imaging. Recently, the RF field used for MR excitation has been used to non-invasively measure tissue conductivity. This technique is promising, but conductivity at higher frequencies is less sensitive to tissue structure. Measuring tissue conductivity non-invasively at low frequencies remains elusive. It has been proposed that eddy currents generated during the rise and decay of gradient pulses could act as a current source to map low-frequency conductivity. This work centers on a gradient echo pulse sequence that uses large gradients prior to excitation to create eddy currents. The electric and magnetic fields during a gradient pulse are simulated by a finite-difference time-domain simulation. The sequence is also tested with a phantom and an animal MRI scanner equipped with gradients of high gradient strengths and slew rate. The simulation demonstrates that eddy currents in materials with conductivity similar to biological tissue decay with a half-life on the order of nanoseconds and any eddy currents generated prior to excitation decay completely before influencing the RF signal. Gradient-induced eddy currents can influence phase accumulation after excitation but the effect is too small to image. The animal scanner images show no measurable phase accumulation. Measuring low-frequency conductivity by gradient-induced eddy currents is presently unfeasible.

  16. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  17. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Wen-Li Yuan

    2018-03-01

    Full Text Available The instructive structure-property relationships of ionic liquids (ILs can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN2], [C4m2im][N(CN2], N4442[N(CN2], and N8444[N(CN2] including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs, which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip, the diffusion coefficients (Do, the charge transfer rate constants (ks of Eu(III in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  18. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    Science.gov (United States)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  19. Influence of Electrical Conductivity, Days in Milk and Parity on Milk Production and Chemical Composition

    Directory of Open Access Journals (Sweden)

    Radu Ionel Neamț

    2016-10-01

    Full Text Available The aim of study was to assess milk production and chemical composition during the first 100 days of lactation, under the influence of electrical conductivity, parity and days in milk. Study was conducted at Research and Development Station for Bovine Arad, on 66 Romanian Spotted cows (20 primiparous, 46 multiparous. Significantly higher values (p≤0.017 of electrical conductivity were recorded for primiparous (10.15±0.09 mS/cm compared with multiparous (8.79±0.15 mS/cm. During the first 30 DIM electrical conductivity was higher (9.7±0.12 mS/cm than for 31 to 60 DIM (9.04±0.12 mS/cm; p≤0.001 and for 61 to 100 DIM (8.17±0.11 mS/cm, p≤0.001. Multifactorial regression model applied highlights significant influence of month of calving (p≤0.001 and DIM (p≤0.034 on the electrical conductivity, while parity had no influence (p>0.36. Medium and negative correlations were calculated between electrical conductivity and some chemical components (fat R=-0.15, protein R=-0.13, while to milk production correlation was positive (R=0.12. No significant correlations were obtained according to lactose content (R=-0.013. Dynamics of milk production and chemical composition have been significantly influenced by month of calving (p≤0.001, DIM (p≤0.001 and parity (p≤0.002. This study found no significant influence of milk electrical conductivity on milk production or chemical composition (p>0.59.

  20. The possibility for formation of macro-cell corrosion in a liquid with low electrical conductivity

    International Nuclear Information System (INIS)

    Matsumura, M.

    2011-01-01

    The possibility of electrochemical corrosion of carbon steel at the rate of 3.25 x 10 -5 A/cm 2 in water was examined under the conditions present during an accidental pipe rupture at the Mihama nuclear power plant: liquid conductivity, 7.5 μS/cm; dissolved oxygen concentration, 5 ppb or less; pH 8.6∝9.3; ferrous ion concentration, 20 ppb or less; temperature, 142 C. The corrosion rate of iron in a micro-cell with a dissolved oxygen reduction cathode was estimated to be only 1/400 of the preceding rate. On the other hand, that in a micro-cell with a hydrogen ion reduction cathode was estimated to be as high as 1/10 of the preceding rate, that is, 3.25 x 10 -6 A/cm 2 . Two important factors may have influenced the corrosion rate: the remarkable wall thinning, which must have been the direct cause of the rupture of the pipe, was located close to, and downstream from, an orifice; and, the water temperature was in the range at which carbon steel makes a transition from the active to the passive state. Taking these facts into consideration, it appears possible that micro-cells with different corrosion rates might be generated and integrated into a macro-cell, where the iron dissolution rate might be accelerated to as much as 10 times that of the micro-cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. State of hydration and electrical conductance of ichthyotic skin

    OpenAIRE

    A B Gupta; Manisha Bhattacharya; B Haldar

    1990-01-01

    Dry skin of twelve subjects suffering from ichthyosis vulgaris and the efficacy of a moisturiser-Cotaryl were quantitatively assessed by measuring the skin surface hydration and high frequency (3.5 MHz) electrical conductance of skin. The state of hydration and conductance of ichthyotic skin were 86.9 + 24.6 and 11.0 + 5.7 micro-mho respectively, being much less-compared to 132. 0 + 5.3 and 72.5 + 54.0 micro-mho ofnormal subjects. The moisturiser increased the state of hydration and also the ...

  2. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties.

    Science.gov (United States)

    Tissera, Nadeeka D; Wijesena, Ruchira N; Rathnayake, Samantha; de Silva, Rohini M; de Silva, K M Nalin

    2018-04-15

    Electrically conductive cotton fabric was fabricated by in situ one pot oxidative polymerization of aniline. Using a simple heterogeneous polymerization method, polyaniline (PANI) nano fibers with an average fiber diameter of 40-75 nm were grafted in situ onto cotton fabric. The electrical conductivity of the PANI nanofiber grafted fabric was improved 10 fold compared to fabric grafted with PANI nanoclusters having an average cluster size of 145-315 nm. The surface morphology of the cotton fibers was characterized using SEM and AFM. Electrical conductivity of PANI nanofibers on the cotton textile was further improved from 76 kΏ/cm to 1 kΏ/cm by increasing the HCl concentration from 1 M to 3 M in the polymerization medium. PANI grafted cotton fabrics were analyzed using FTIR, and the data showed the presence of polyaniline functional groups on the treated fabric. Further evidence was present for the chemical interaction of PANI with cellulose. Dopant level and morphology dependent electron transition behavior of PANI nanostructures grafted on cotton fabric was further characterized using UV-vis spectroscopy. The electrical conductivity of the PANI nano fiber grafted cotton fabric can be tuned by immersing the fabric in pH 2 and pH 6 solutions for multiple cycles. Copyright © 2018. Published by Elsevier Ltd.

  3. Influence of calcium and lithium on the densification and electrical conductivity of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Porfirio, Tatiane Cristina

    2011-01-01

    In this work, the use of calcium and lithium as sintering aid to gadolinia-doped ceria was systematically investigated. The main purpose was to verify the influence of these additives on the densification and electrical conductivity of sintered ceramics. Powder compositions containing up to 1.5 mol% (metal basis) of calcium or lithium were prepared by both solid state reaction and oxalate coprecipitation methods. The main characterization techniques were thermal analyses, X-ray diffraction, scanning electron microscopy and electrical conductivity by impedance spectroscopy. Both additives promoted densification of gadolinia-doped ceria. The densification increases with increasing the additive content. Different effects on microstructure and electrical conductivity result from the method of preparation, e.g., solid state reaction or coprecipitation. Calcium addition greatly enhances the grain growth compared to lithium addition. The electrical conductivity of specimens containing a second additive is lower than that of pure gadolinia-doped ceria. Both additives influence the intergranular conductivity and favor the exudation of gadolinium out of the solid solution. (author)

  4. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    Science.gov (United States)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  5. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    Science.gov (United States)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  6. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction

    International Nuclear Information System (INIS)

    Ma Qingyu; He Bin

    2007-01-01

    A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction

  8. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    International Nuclear Information System (INIS)

    Lotfi, E; Rezania, H; Arghavaninia, B; Yarmohammadi, M

    2016-01-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength. (paper)

  9. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    Science.gov (United States)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  10. Tokamak with liquid metal toroidal field coil

    International Nuclear Information System (INIS)

    Ohkawa, T.; Schaffer, M.J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof

  11. Electron mobility in nonpolar liquids: the effect of molecular structure, temperature and electric field

    International Nuclear Information System (INIS)

    Schmidt, W.F.

    1977-01-01

    A survey is given on the mobility of excess electrons in liquid hydrocarbons and related compounds. It was found that the mobility is strongly influenced by the molecular structure of the liquid, by the temperature, and by the electric field strength. The mobility in hydrocarbons increases as the shape of the molecule approaches a sphere. The temperature coefficient is positive in most liquids over a limited temperature although exceptions have been observed in liquid methane. The field dependence of the mobility in high mobility liquids (>10 cm 2 V -1 s -1 ) showed a decrease of the mobility at higher field strengths while in low mobility liquids ( 2 V -1 s -1 ) it showed an increase. These results are discussed on the basis of the extended and the localized electron models. The predictions of these theories are compared with the experimental results and conclusions on the validity of the underlying assumptions are drawn. (author)

  12. Dielectric constant and electrical conductivity of contaminated fine-grained soils and barrier materials

    International Nuclear Information System (INIS)

    Kaya, A.; Fang, H.Y.; Inyang, H.I.

    1997-01-01

    Characterization of contaminated fine-grained soils and tracking of contaminant migration within barriers have been challenging because current methods and/or procedures are labor and time-intensive, and destructive. To demonstrate the effective use of both dielectric constant and electrical conductivity in the characterization of contaminated fine-grained soils, pore fluids were prepared at different ionic strengths, and were used as permeates for kaolinite, bentonite and a local soil. Then, both dielectric constant and electrical conductivity of the soils were measured by means of a capacitor over a wide range of frequencies and moisture content. It was observed that although each soil has its unique dielectric constant and electrical conductivity at a given moisture content, increases in ionic strength cause a decrease in the dielectric constant of the system at very high frequencies (MHZ), whereas the dielectric constant increases at low frequencies (kHz). Electrical conductivity of a soil-water system is independent of frequency. However, it is a function of ionic strength of the pore fluid. It is clearly demonstrated that dielectric constant and electrical conductivity of soils are functions of both moisture content and ionic strength, and can be used to characterize the spatial and temporal levels of contamination. This method/procedure can be used in estimating the level of contamination as well as the direction of contaminant movement in the subsurface without the use of extensive laboratory testing. Based on obtained results, it was concluded that the proposed method/procedure is promising because it is non-destructive and provides a quick means of assessing the spatial distribution of contaminants in fine-grained soils and barriers

  13. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  14. Electrical conductivity and pH of groundwater: important exploratory ...

    African Journals Online (AJOL)

    Electrical conductivity and pH of groundwater: important exploratory tools in groundwater surveys. ... Journal of Technology and Education in Nigeria ... An analysis of the spatial variation of these parameters indicates that the EC and pH values of groundwater allow us to make deductions not only on the changes in the ...

  15. Influence of electrical conductivity on microorganisms and rate of ...

    African Journals Online (AJOL)

    Salt treatments included NaCI amendments to adjust the soil solution electrical conductivities (EC) to 40, 120 and 200 dSm-1. Treated soils were incubated at 28OC. Oil degradation was estimated from the gravimetric determinations of remaining oil. The results showed that amending the ultisol with crude oil stimulated the ...

  16. Evaluation of electrical and thermal conductivity of polymeric wastes ...

    African Journals Online (AJOL)

    This work being gingered by the big menace being posed on our environment by polymeric waste and it's rechanneling involved the studying of the electrical and thermal conductivities of the polymers PP, PE, PS and nylon66 doped with charcoal and graphite. Five grams of each polymer was mixed with varying ...

  17. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  18. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  19. The bedrock electrical conductivity structure of Northern Ireland

    Science.gov (United States)

    Beamish, David

    2013-08-01

    An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the conductivity estimates using a lithological classification of the bedrock formations. A 1:250k geological classification of the data is performed leading to a 56 unit lithological and geostatistical analysis of the conductivity information. The central moments (medians) of the classified data are used to provide a new digital bedrock conductivity map of Northern Ireland with values ranging from 0.32 to 41.36 mS m-1. This baseline map of conductivities displays a strong correspondence with an existing 4 quadrant, chrono-geological description of Northern Ireland. Once defined, the baseline conductivity map allows departures from the norm to be assessed across each specific lithological unit. Bulk electrical conductivity is controlled by a number of petrophysical parameters and it is their variation that is assessed by the procedures employed. The igneous rocks are found to display the largest variability in conductivity values and many of the statistical distributions are multi-modal. A sequence of low-value modes in these data are associated with intrusives within volcanic complexes. These and much older Neoproterzoic rocks appear to represent very low porosity formations that may be the product of rapid cooling during emplacement. By way of contrast, extensive flood basalts (the Antrim lavas) record a well-defined and much higher median value (12.24 mS m-1) although they display complex spatial behaviour in detail. Sedimentary rocks appear to follow the broad behaviours anticipated

  20. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  1. The effect of ZnS thin film's electrical conductivity on electromagnetic ...

    African Journals Online (AJOL)

    The effect of electrical conductivity on an electromagnetic wave propagating through ZnS thin film is analyzed using electromagnetic wave equation with relevant boundary condition. The solution of this equation enabled us to obtain a parameter known as the skin depth that relates to the conductivity of the thin film. This was ...

  2. Water-dispersible small monodisperse electrically conducting antimony doped tin oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Peters, K.; Zeller, P.; Štefanić, G.; Skoromets, Volodymyr; Němec, Hynek; Kužel, Petr; Fattakhova-Rohlfing, D.

    2015-01-01

    Roč. 27, č. 3 (2015), 1090-1099 ISSN 0897-4756 R&D Projects: GA ČR GA13-12386S Grant - others:AVČR(CZ) M100101218 Institutional support: RVO:68378271 Keywords : conducting nanoparticles * electrical conductivity * charge transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 9.407, year: 2015

  3. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    Science.gov (United States)

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  4. Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.

    Science.gov (United States)

    Li, Chen-Yu; Hemmig, Elisa A; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia; Keyser, Ulrich F; Aksimentiev, Aleksei

    2015-02-24

    The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.

  5. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  6. Modeling liver electrical conductivity during hypertonic injection.

    Science.gov (United States)

    Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni

    2018-01-01

    Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Heat transfer enhancement induced by electrically generated convection in a plane layer of dielectric liquid

    International Nuclear Information System (INIS)

    Traoré, P; Wu, J; Romat, H; Louste, C; Perez, A; Koulova, D

    2012-01-01

    The electro-thermo-convective motion in a plane horizontal dielectric liquid layer subjected to simultaneous action of electric field and thermal gradient is numerically investigated. We consider the case of a strong unipolar charge injection C = 10 from above or below. Therefore in this context, we only take into account the Coulomb force, disregarding the dielectric one. The effect of the electric field on the heat transfer is analyzed through the characterization of the time history of the Nusselt number as well as its evolution according to the characteristic dimensionless electric parameter T. It is demonstrated that the electric effects dominate the buoyancy ones resulting in an electrically induced convection which significantly enhance the heat transfer.

  8. Dependence of radiation electric conductivity on intensity of external electric field in polymeric dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Sichkar, V P; Tyutnev, A P; Vaisberg, S E [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1975-10-01

    The radiational conductivity (Gsub(p)) at different electric field potentials (E) for a number of low- and high-density polymers was investigated. In a number of cases temperature variations were introduced. Measurements were carried out also under conditions of a single impulse of high-power radiation dose. A relationship was obtained between Gsub(p) and E.

  9. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    International Nuclear Information System (INIS)

    Gaafar, M.

    2001-01-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σ DC . At the early stage of irradiation, σ DC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation

  10. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    Science.gov (United States)

    Gaafar, M.

    2001-05-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σDC. At the early stage of irradiation, σDC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation.

  11. Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons

    Science.gov (United States)

    Krompiewski, Stefan; Cuniberti, Gianaurelio

    2017-10-01

    Edge states in narrow quasi-two-dimensional nanostructures determine, to a large extent, their electric, thermoelectric, and magnetic properties. Nonmagnetic edge states may quite often lead to topological-insulator-type behavior. However, another scenario develops when the zigzag edges are magnetic and the time reversal symmetry is broken. In this work we report on the electronic band structure modifications, electrical conductance, and thermoelectric properties of narrow zigzag nanoribbons with spontaneously magnetized edges. Theoretical studies based on the Kane-Mele-Hubbard tight-binding model show that for silicene, germanene, and stanene both the Seebeck coefficient and the thermoelectric power factor are strongly enhanced for energies close to the charge neutrality point. A perpendicular gate voltage lifts the spin degeneracy of energy bands in the ground state with antiparallel magnetized zigzag edges and makes the electrical conductance significantly spin polarized. Simultaneously the gate voltage worsens the thermoelectric performance. Estimated room-temperature figures of merit for the aforementioned nanoribbons can exceed a value of 3 if phonon thermal conductances are adequately reduced.

  12. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    Science.gov (United States)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  13. Effect of the morphology in the electrical conductivity of poly (phenylene sulfide)

    International Nuclear Information System (INIS)

    Lunardi, G.J.; Bretas, R.E.S.

    1988-01-01

    Poly (phenylene sulfide), PPS, is a polymer that can become electrically conducally condutive after treated with strong oxidizing agents, such as AsF 5 AlCl 3 and SO 3 . A study of the influence of morphology on the PPS electrical conductivity was carried out, in which specimens (films) made by different processing conditions were employed. Specimens were characterized by Polarized Light Microscopy, Electron Scanning Microscopy and wide angle X-Ray Diffraction. doping of PPS with a solution of AlCl 3 in CH 2 Cl 2 (saturated) reveals that conductivity drops when crystallinity roses. Doping of PPS specimens with a gaseous mixture of AlCl 3 and dry HCl yields a conductivity value independent of the initial crystallinity. (author) [pt

  14. Enhanced electrical conductivity and hardness of silver-nickel composites by silver-coated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Dongmok; Sim, Jeonghyun; Baik, Seunghyun; Kim, Wonyoung; Moon, Chuldong; Cho, Wookdong

    2015-01-01

    We investigated electrical conductivity and Vickers hardness of Ag- and Ni-based composites prepared by powder metallurgy involving spark plasma sintering. The starting composition was Ag:Ni = 61:39 vol%, which provided an electrical conductivity of 3.30 × 10"5 S cm"−"1 and a hardness of 1.27 GPa. The addition of bare multi-walled carbon nanotubes (MWNTs, 1.45 vol%) increased hardness (1.31 GPa) but decreased electrical conductivity (2.99 × 10"5 S cm"−"1) and carrier mobility (11 cm"2 V"−"1 s"−"1) due to the formation of Ni_3C in the interface between the MWNTs and Ni during spark plasma sintering. The formation of Ni_3C was prevented by coating the surface of the nanotubes with Ag (nAgMWNTs), concomitantly increasing electrical conductivity (3.43 × 10"5 S cm"−"1) and hardness (1.37 GPa) of the sintered specimen (Ag:Ni:nAgMWNTs = 59.55:39:1.45 vol%). The electrical contact switching time (133 357) was also increased by 30%, demonstrating excellent feasibility as electrical contact materials for electric power industries. (paper)

  15. Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions

    Science.gov (United States)

    Verdel, Nada; Jerman, Igor; Krasovec, Rok; Bukovec, Peter; Zupancic, Marija

    2012-01-01

    The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical) treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon. PMID:22605965

  16. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures

    Directory of Open Access Journals (Sweden)

    L. Dai

    2018-03-01

    Full Text Available The electrical conductivity of gneiss samples with different chemical compositions (WA = Na2O + K2O + CaO  =  7.12, 7.27 and 7.64 % weight percent was measured using a complex impedance spectroscopic technique at 623–1073 K and 1.5 GPa and a frequency range of 10−1 to 106 Hz. Simultaneously, a pressure effect on the electrical conductivity was also determined for the WA = 7.12 % gneiss. The results indicated that the gneiss conductivities markedly increase with total alkali and calcium ion content. The sample conductivity and temperature conform to an Arrhenius relationship within a certain temperature range. The influence of pressure on gneiss conductivity is weaker than temperature, although conductivity still increases with pressure. According to various ranges of activation enthalpy (0.35–0.52 and 0.76–0.87 eV at 1.5 GPa, two main conduction mechanisms are suggested that dominate the electrical conductivity of gneiss: impurity conduction in the lower-temperature region and ionic conduction (charge carriers are K+, Na+ and Ca2+ in the higher-temperature region. The electrical conductivity of gneiss with various chemical compositions cannot be used to interpret the high conductivity anomalies in the Dabie–Sulu ultrahigh-pressure metamorphic belt. However, the conductivity–depth profiles for gneiss may provide an important constraint on the interpretation of field magnetotelluric conductivity results in the regional metamorphic belt.

  17. Electrical conductivity of molten SnCl2 at temperature as high as 1314 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten SnCl 2 was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  18. Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Lankhorst, M.H.R.; Lankhorst, M.H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    Electrical conductivity relaxation experiments were performed on thin specimens of La1–xSrxFeO3–delta (x = 0.1, 0.4) at oxygen partial pressures pO2 = 10–5 – 1 bar in the temperature range 923 to 1223 K. The transient response of the electrical conductivity after a sudden change of the ambient

  19. Influence of prehistory of polymer samples on radiation electric conductivity induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanina, O S; Sichkar' , V P; Vajsberg, S Eh [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1984-05-01

    Radiation electric conductivity of PS films prepared from solutions in various solvents at various initial concentrations and temperatures and various power of absorbed dose (..gamma..-radiation of /sup 60/Co) has been measured. The results are compared with the change of density of films and existing theoretical concepts of the role of microvoids and free volume in electrical conductivity of a polymer.

  20. Influence of prehistory of polymer samples on radiation electric conductivity induced by ionizing radiation

    International Nuclear Information System (INIS)

    Aleksanina, O.S.; Sichkar', V.P.; Vajsberg, S.Eh.

    1984-01-01

    Radiation electric conductivity of PS films prepared from solutions in various solvents at various initial concentrations and temperatures and various power of absorbed dose (γ-radiation of 60 Co) has been measured. The results are compared with the change of density of films and existing theoretical concepts of the role of microvoids and free volume in electrical conductivity of a polymer

  1. Nonideal ultrathin mantle cloak for electrically large conducting cylinders.

    Science.gov (United States)

    Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun

    2014-09-01

    Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

  2. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in an anisotropically etched V-groove is investigated for electrically controlled liquid crystal photonic bandgap fibre devices. The photoresist step coverage at the convex corners is compared with and without soft baking after photoresist spin...

  3. A Self-Oscillating System to Measure the Conductivity and the Permittivity of Liquids within a Single Triangular Signal

    Directory of Open Access Journals (Sweden)

    Sylvain Druart

    2014-01-01

    Full Text Available We present a methodology and a circuit to extract liquid resistance and capacitance simultaneously from the same output signal using interdigitated sensing electrodes. The principle consists in the generation of a current square wave and its application to the sensor to create a triangular output voltage which contains both the conductivity and permittivity parameters in a single periodic segment. This concept extends the Triangular Waveform Voltage (TWV signal generation technique and is implemented by a system which consists in a closed-loop current-controlled oscillator and only requires DC power to operate. The system interface is portable and only a small number of electrical components are used to generate the expected signal. Conductivities of saline NaCl and KCl solutions, being first calibrated by commercial equipment, are characterized by a system prototype. The results show excellent linearity and prove the repeatability of the measurements. Experiments on water-glycerol mixtures validate the proposed sensing approach to measure the permittivity and the conductivity simultaneously. We discussed and identified the sources of measurement errors as circuit parasitic capacitances, switching clock feedthrough, charge injection, bandwidth, and control-current quality.

  4. Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers

    NARCIS (Netherlands)

    Concellon, A.; Liang, T.; Schenning, A.P.H.J.; Luis Serrano, J.; Romero, P.; Marcos, M.

    2018-01-01

    In this work, we have successfully examined for the first time the use of ionic dendrimers as building blocks for the preparation of 1D and 2D proton conductive materials. For this purpose, a new family of liquid crystalline dendrimers has been synthesized by ionic self-assembly of poly(amidoamine)

  5. Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key

    Science.gov (United States)

    Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.

    2017-12-01

    Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.

  6. Method for electrically producing dispersions of a nonconductive fluid in a conductive medium

    Science.gov (United States)

    DePaoli, David W.; Tsouris, Constantinos; Feng, James Q.

    1998-01-01

    A method for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway.

  7. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  8. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    Science.gov (United States)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  9. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    Science.gov (United States)

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  10. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    Directory of Open Access Journals (Sweden)

    Ghazikhanlou-sani K.

    2016-06-01

    Full Text Available Introduction: There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method: A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA maps were performed using the FSL (FMRI software library software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result: The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05. Conclusion: DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  11. A deterministic model for the growth of non-conducting electrical tree structures

    International Nuclear Information System (INIS)

    Dodd, S J

    2003-01-01

    Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. In this paper a deterministic electrical tree growth model is described. The model is based on electrostatics and local electron avalanches to model partial discharge activity within the growing tree structure. Damage to the resin surrounding the tree structure is dependent on the local electrostatic energy dissipation by partial discharges within the tree structure and weighted by the magnitudes of the local electric fields in the resin surrounding the tree structure. The model is successful in simulating the formation of branched structures without the need of a random variable, a requirement of previous stochastic models. Instability in the spatial development of partial discharges within the tree structure takes the role of the stochastic element as used in previous models to produce branched tree structures. The simulated electrical trees conform to the experimentally observed behaviour; tree length versus time and electrical tree growth rate as a function of applied voltage for non-conducting electrical trees. The phase synchronous partial discharge activity and the spatial distribution of emitted light from the tree structure are also in agreement with experimental data for non-conducting trees as grown in a flexible epoxy resin and in polyethylene. The fact that similar tree growth behaviour is found using pure amorphous (epoxy resin) and semicrystalline (polyethylene) materials demonstrate that neither annealed or quenched noise, representing material inhomogeneity, is required for the formation of irregular branched structures (electrical trees). Instead, as shown in this paper, branched growth can occur due to the instability of individual discharges within the tree structure

  12. Relationships between seismic wave-Speed, density, and electrical conductivity beneath Australia from seismology, mineralogy, and laboratory-based conductivity profiles

    DEFF Research Database (Denmark)

    Khan, A.; Koch, S.; Shankland, T. J.

    2015-01-01

    We present maps of the three-dimensional density (ρ), electrical conductivity (σ), and shear-wave speed (VS) structure of the mantle beneath Australia and surrounding ocean in the depth range of 100–800 km. These maps derived from stochastic inversion of seismic surface-wave dispersion data...... shear-wave speeds, low densities, and high conductivities. This trend appears to continue to depths well below 300 km. The slow-fast shear-wave speed distribution found here is also observed in independent seismic tomographic models of the Australian region, whereas the coupled slow-fast shear......-wave speed, low-high density, and high-low electrical conductivity distribution has not been observed previously. Toward the bottom of the upper mantle at 400 km depth marking the olivine ⃗ wadsleyite transformation (the “410–km” seismic discontinuity), the correlation between VS, ρ, and σ weakens...

  13. An experimental evaluation of electrical skin conductivity changes in postmortem interval and its assessment for time of death estimation.

    Science.gov (United States)

    Cantürk, İsmail; Karabiber, Fethullah; Çelik, Safa; Şahin, M Feyzi; Yağmur, Fatih; Kara, Sadık

    2016-02-01

    In forensic medicine, estimation of the time of death (ToD) is one of the most important and challenging medico-legal problems. Despite the partial accomplishments in ToD estimations to date, the error margin of ToD estimation is still too large. In this study, electrical conductivity changes were experimentally investigated in the postmortem interval in human cases. Electrical conductivity measurements give some promising clues about the postmortem interval. A living human has a natural electrical conductivity; in the postmortem interval, intracellular fluids gradually leak out of cells. These leaked fluids combine with extra-cellular fluids in tissues and since both fluids are electrolytic, intracellular fluids help increase conductivity. Thus, the level of electrical conductivity is expected to increase with increased time after death. In this study, electrical conductivity tests were applied for six hours. The electrical conductivity of the cases exponentially increased during the tested time period, indicating a positive relationship between electrical conductivity and the postmortem interval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Electrical conductivity of molten CdCl2 at temperatures as high as 1474 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-01-01

    The electrical conductivity of molten CdCl 2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  15. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials

    Science.gov (United States)

    Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana

    2016-07-01

    Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.

  16. Evaluation of electrical conductivity of the fertiliser solution on ...

    African Journals Online (AJOL)

    The effects of three fertiliser solutions (20:20:20, 15:5:25 and 12:30:10 NPK) with electrical conductivity (EC) of 1, 1.5 or 2 mS cm-1 on growth and flowering of Cymbidium 'Sleeping Nymph' were investigated over three years. One-year-old tissue-cultured propagules of 'Sleeping Nymph' were planted singly in plastic pots in ...

  17. Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO

    International Nuclear Information System (INIS)

    Densakulprasert, Nataporn; Wannatong, Ladawan; Chotpattananont, Datchanee; Hiamtup, Piyanoot; Sirivat, Anuvat; Schwank, Johannes

    2005-01-01

    The effects of zeolite content, pore size and ion exchange capacity on electrical conductivity response to carbon monoxide (CO) of polyaniline/zeolite composites were investigated. Zeolite Y, 13X, and synthesized AlMCM41, all having the common cation Cu 2+ , were dry mixed with synthesized maleic acid (MA) doped polyaniline and compressed to form polyaniline (PANI)/zeolite pellet composites. The Y, 13X and AlMCM41 zeolite have the nominal pore sizes of 7, 10, 36 A, and the Cu 2+ exchange capacities of 0.161, 0.087, and 0.044 mol/g, respectively. With an addition of 13X zeolite to pristine polyaniline, the electrical conductivity sensitivity to CO/N 2 gas increases with zeolite content. For the effect of zeolite type, the highest electrical conductivity sensitivity is obtained with the 13X zeolite, followed by the Y zeolite, and the AlMCM41 zeolite, respectively. Poor sensitivity of zeolite AlMCM41 is probably due to its very large pore size and its lowest Cu 2+ exchange capacity. Y zeolite and 13X zeolite have comparable pore sizes but the latter has a greater pore free volume and a more favorable location distribution of the Cu 2+ ions within the pore. The temporal response time increases with the amount of zeolite in the composites but it is inversely related to the amount of ion exchange capacity

  18. Modelling the effect of hydration on skin conductivity.

    Science.gov (United States)

    Davies, L; Chappell, P; Melvin, T

    2017-08-01

    Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity. A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration. The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease. The variation in impedance with conductivity between 5 and 50 mSm -1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm -1 can be modelled with a double exponential decay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effects of γ-rays on electrical conductivity of polyvinyl alcohol-polypyrrole composite polymer films

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Elias Saion; Noorhana Yahya; Anuar Kassim; Ekramul Mahmud; Muhammad Yousuf Hussain; Iskandar Shahrim Mustafa; Azian Othman; Norazimah Mohd Yusof; Mohd Ahmad Ali Omer

    2007-01-01

    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of γ-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of choloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10 -5 Scm -1 indicates that γ-ray is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 ≤ S ≤ 0.49 and obeyed simple power law dispersion ω S . The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased. (Author)

  20. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  1. On the electrical conductivity for the mixed-valence model with d-f correlations

    International Nuclear Information System (INIS)

    Borgiel, W.; Matlak, M.

    1984-08-01

    The static electrical conductivity of mixed-valence systems is calculated in the model of Matlak and Nolting [Solid State Commun., 47, 11 (1983); Z. Phys., B55, 103 (1984)]. The method takes into account the atomic properties more exactly than those connected with bands, and hence emphasizes the ionic aspect of the problem in some way; indeed, the calculations overestimate the atomic properties. Some results are presented in a graph. It is found that the electrical conductivity depends strongly on temperature and the electron-hole attraction constant

  2. Proton-conducting ionic liquid-based proton exchange membrane fuel cell membranes: The key role of ionomer-ionic liquid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mathieu; Cointeaux, Laure; Iojoiu, Cristina; Lepretre, Jean-Claude; Sanchez, Jean-Yves [LEPMI, UMR 5631, CNRS-INP-UJF, PHELMA-Campus, BP.75, 1130 rue de la Piscine, 38402 Saint-Martin-d' Heres Cedex (France); Molmeret, Yannick; El Kissi, Nadia [Laboratoire de Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, 38041 Grenoble (France); Judeinstein, Patrick [Institut de Chimie Moleculaire et des Materiaux d' Orsay (UMR 8182), Batiment 410, Universite Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-09-15

    The paper deals with the synthesis and characterisation of proton-conducting ionic liquids (PCILs) and their polymer electrolytes obtained by blending modified Nafion membranes with different concentrations of PCILs. The PCILs are obtained by the neutralization of triethylamine with different organic acids. The first part of the paper studies the influence of acidity and acid structure on PCIL thermal and electrochemical performance, while the second part examines membrane conductivity and reveals it to depend more on PCIL structure than on its intrinsic conductivity. At 130 C, conductivities exceeding 10 mS cm{sup -1} were obtained in fully anhydrous conditions. (author)

  3. Modeling of conductive particle motion in viscous medium affected by an electric field considering particle-electrode interactions and microdischarge phenomenon

    Science.gov (United States)

    Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.

    2016-10-01

    Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.

  4. The physics and chemistry of room-temperature liquid-filled ionization chambers

    International Nuclear Information System (INIS)

    Holroyd, R.A.

    1985-01-01

    The properties of excess electrons in non-polar liquids, such as tetramethylsilane and 2,2,4,4-tetramethylpentane, which are suitable for room-temperature liquid-filled ionization chambers are reviewed. Such properties as mobility, ionization yield, conduction band energy, trapping, and the influence of the electric field are considered. (orig.)

  5. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  6. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    Directory of Open Access Journals (Sweden)

    Marcin Molenda

    2014-01-01

    Full Text Available Conductive carbon nanocoatings (conductive carbon layers—CCL were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA. We demonstrate that these properties originate from a specific morphology of this layer that showed nanopores (3-4 nm capable of assuring easy pathways for ion transport in real electrode materials. The proposed, water mediated, method of carbon coating of powdered supports combines coating from solution and solid phase and is easy to scale up process. The optimal polymer carbon precursor composition was used to prepare conductive carbon nanocoatings on LiFePO4 cathode material. Charge-discharge tests clearly show that C/LiFePO4 composites obtained using poly-N-vinylformamide modified with pyromellitic acid exhibit higher rechargeable capacity and longer working time in a battery cell than standard carbon/lithium iron phosphate composites.

  7. The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings

    Science.gov (United States)

    Tong, Yao; Bohm, Siva; Song, Mo

    2017-12-01

    Graphite and graphene particles were used to reinforce the electrical conductivity and anti-corrosion properties of polyurethane (PU) coatings. The effect of graphite and graphene were compared. Hybrid filler using carbon nanotube was adopted as well and the performance in electrical conductivity was much superior to single filler system. At the same filler loading, the electrical conductivity of hybrid filler system was significantly higher than single filler system (0.77 S/m at 5 wt% while single filler system was not conductive). The conductive mechanism was revealed. In terms of anti-corrosion properties, the coatings with low filler loading had better anti-corrosion properties. The resistance values obtained from EIS (Electrochemical Impedance Spectroscopy) and four point probe method were compared and discussed.

  8. Electrical conductivity and shear viscosity of quark gluon plasma in a quasiparticle model

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Mohanty, B.

    2014-01-01

    Relativistic heavy-ion collisions (HIC) have reported the formation of a strongly coupled quark gluon plasma (sQGP). To study the properties of this sQGP is the main focus nowadays. Among these the shear viscosity (η) and electrical conductivity (σ el ) could reflect the transport properties of the medium. By studying the shear viscosity or more specifically shear viscosity to entropy density ratio (η/s), one can understand the nature of interactions among the constituents of the produced medium, it gives a measure of the fluidity. Electrical conductivity represents the linear response of the system to an applied external electric field. The basic question one could ask is that whether the matter created at heavy ion collision experiment is an electrical conductor or an insulator. Recent lattice QCD as well as phenomenological studies have shown that these transport quantities show some kind of minimum in its variation with respect to temperature near the temperature corresponding to the transition from hadronic phase to quark-gluon phase

  9. Density scaling of the transport properties of molecular and ionic liquids.

    Science.gov (United States)

    López, Enriqueta R; Pensado, Alfonso S; Comuñas, María J P; Pádua, Agílio A H; Fernández, Josefa; Harris, Kenneth R

    2011-04-14

    Casalini and Roland [Phys. Rev. E 69, 062501 (2004); J. Non-Cryst. Solids 353, 3936 (2007)] and other authors have found that both the dielectric relaxation times and the viscosity, η, of liquids can be expressed solely as functions of the group (TV (γ)), where T is the temperature, V is the molar volume, and γ a state-independent scaling exponent. Here we report scaling exponents γ, for the viscosities of 46 compounds, including 11 ionic liquids. A generalization of this thermodynamic scaling to other transport properties, namely, the self-diffusion coefficients for ionic and molecular liquids and the electrical conductivity for ionic liquids is examined. Scaling exponents, γ, for the electrical conductivities of six ionic liquids for which viscosity data are available, are found to be quite close to those obtained from viscosities. Using the scaling exponents obtained from viscosities it was possible to correlate molar conductivity over broad ranges of temperature and pressure. However, application of the same procedures to the self-diffusion coefficients, D, of six ionic and 13 molecular liquids leads to superpositioning of poorer quality, as the scaling yields different exponents from those obtained with viscosities and, in the case of the ionic liquids, slightly different values for the anion and the cation. This situation can be improved by using the ratio (D∕T), consistent with the Stokes-Einstein relation, yielding γ values closer to those of viscosity.

  10. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    Science.gov (United States)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    propagation of the electromagnetic waves generated by lightning has also been studied in the frequency range 1 kHz-1MHz at distances lower than 1000 km from the lightning source. A propagation model has been developed to determine the ground waves which propagate in a homogenous medium using the analytical expression given by Maclean and Wu [1993]. This approach takes into account the electric finite conductivity and the fact that the Earth is spherical, which allow us to deal with over-the-horizon propagation. We installed in 2008 four stations which were more or less aligned - the maximum distance between two stations was about 870 km. Two stations were located close to the Mediterranean Sea and the two others inside the continent, at the centre of France. This station distribution and the observation period (from August to December) allowed statistical and physical studies, such as the influence of the electric conductivity on wave propagation. Comparison of electric field spectra, measured after propagation only over sea and only over ground, showed clearly the effects of ground conductivity on propagation. Comparison between observations and modelling has been used to evaluate the ground conductivity. In the future we will implement the sky-wave inside our model and validate it with the database.

  11. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  12. Note: Development of a microfabricated sensor to measure thermal conductivity of picoliter scale liquid samples.

    Science.gov (United States)

    Park, Byoung Kyoo; Yi, Namwoo; Park, Jaesung; Kim, Dongsik

    2012-10-01

    This paper presents a thermal analysis device, which can measure thermal conductivity of picoliter scale liquid sample. We employ the three omega method with a microfabricated AC thermal sensor with nanometer width heater. The liquid sample is confined by a micro-well structure fabricated on the sensor surface. The performance of the instrument was verified by measuring the thermal conductivity of 27-picoliter samples of de-ionized (DI) water, ethanol, methanol, and DI water-ethanol mixtures with accuracies better than 3%. Furthermore, another analytical scheme allows real-time thermal conductivity measurement with 5% accuracy. To the best of our knowledge, this technique requires the smallest volume of sample to measure thermal property ever.

  13. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Lengálová, A.; Sáha, P.

    2011-01-01

    Roč. 46, č. 9 (2011), s. 3186-3190 ISSN 0022-2461 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics Impact factor: 2.015, year: 2011

  14. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.

    1998-01-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 (Ω m) -1 at 20 deg. C to 550 (Ω m) -1 at 1000 deg.C. The irradiation reduced only slightly the magnitude of σ indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  15. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R.; Greeff, J. de; Vinche, C. [Commission Europeenne Community, JRC, Vatican City State, Holy See (Italy)

    1998-07-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 ({omega} m){sup -1} at 20 deg. C to 550 ({omega} m){sup -1} at 1000 deg.C. The irradiation reduced only slightly the magnitude of {sigma} indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  16. Electrical conduction at domain walls in multiferroic BiFeO3

    Science.gov (United States)

    Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy

    2009-03-01

    We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.

  17. Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy

    KAUST Repository

    Lubineau, Gilles; Sulaimani, Anwar Ali; El Yagoubi, Jalal; Mulle, Matthieu; Verdu, Jacques

    2017-01-01

    Monitoring changes in electrical conductivity is a simple way to assess the water uptake from environmental moisture in polymers. However, the relation between water uptake and changes in conductivity is not fully understood. We monitored changes

  18. Generation of electricity using liquid metal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Goodwin, F.E.

    1992-01-01

    With liquid metal magnetohydrodynamics, a column of molten lead is passed through a magnetic field, thereby generating a voltage potential according to Faraday's law. The molten lead is propelled through a closed loop by steam from water injected just above where the lead is heated at the bottom of the loop. This water in turn boils explosively, propelling the lead upward through the loop and past the point where the steam escapes through a separator. Electricity can be generated more efficiently from steam with LMMHD than with conventional turbines. With the DC current generated by LMMHD, industriell cogeneration is seen as the most likely application, where the byproduct steam still has enough pressure to also power other steam-driven machinery. Furthermore, the byproduct steam is essentially lead-free since the operating temperature of the LMMHD generator is well below the temperature where lead could dissolve into the steam. (orig.) [de

  19. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses

    Science.gov (United States)

    Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.

    2016-09-01

    The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.

  20. Evaluation of Cow Milk Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Constantin Gavan

    2017-11-01

    Full Text Available The efficiency of subclinical mastitis diagnosis using an electrical conductivity (EC meter was evaluated in the dairy farm of Agricultural Research and Development Station ( ARDS Simnic Craiova. The results were compared with those obtained by using the California Mastitis Test (CMT and the Somatic Cell Count (SCC.The milk quarter samples ( 1176 from Holstein Friesian cows were analyzed between September and December 2015. The EC evaluation with  the EC meter  ,showed a high proportion of results differing from SCC and CMT results. The CMT still shows to be the most accessible and efficient test in comparison to the EC meter tested.