WorldWideScience

Sample records for electrical stimulation impairs

  1. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    Science.gov (United States)

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Neuromuscular Electrical Stimulation for Treatment of Muscle Impairment: Critical Review and Recommendations for Clinical Practice

    Science.gov (United States)

    Houghton, Pamela; Anthony, Joseph; Rennie, Sandy; Shay, Barbara L.; Hoens, Alison M.

    2017-01-01

    Purpose: In response to requests from physiotherapists for guidance on optimal stimulation of muscle using neuromuscular electrical stimulation (NMES), a review, synthesis, and extraction of key data from the literature was undertaken by six Canadian physical therapy (PT) educators, clinicians, and researchers in the field of electrophysical agents. The objective was to identify commonly treated conditions for which there was a substantial body of literature from which to draw conclusions regarding the effectiveness of NMES. Included studies had to apply NMES with visible and tetanic muscle contractions. Method: Four electronic databases (CINAHL, Embase, PUBMED, and SCOPUS) were searched for relevant literature published between database inceptions until May 2015. Additional articles were identified from bibliographies of the systematic reviews and from personal collections. Results: The extracted data were synthesized using a consensus process among the authors to provide recommendations for optimal stimulation parameters and application techniques to address muscle impairments associated with the following conditions: stroke (upper or lower extremity; both acute and chronic), anterior cruciate ligament reconstruction, patellofemoral pain syndrome, knee osteoarthritis, and total knee arthroplasty as well as critical illness and advanced disease states. Summaries of key details from each study incorporated into the review were also developed. The final sections of the article outline the recommended terminology for describing practice using electrical currents and provide tips for safe and effective clinical practice using NMES. Conclusion: This article provides physiotherapists with a resource to enable evidence-informed, effective use of NMES for PT practice. PMID:29162949

  3. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment.

    NARCIS (Netherlands)

    Luijpen, M.W.; Swaab, D.F.; Sergeant, J.A.; Dijk, K.R.A.; Scherder, E.J.

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  4. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment

    NARCIS (Netherlands)

    Luijpen, MW; Swaab, DF; Sergeant, JA; van Dijk, KRA; Scherder, EJA

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  5. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    Directory of Open Access Journals (Sweden)

    Meadmore Katie L

    2012-06-01

    Full Text Available Abstract Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL, a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  6. Effects of transcutaneous electrical nerve stimulation (TENS) on self-efficacy and mood in elderly with mild cognitive impairment

    NARCIS (Netherlands)

    Luijpen, Marijn W.; Swaab, Dick F.; Sergeant, Joseph A.; Scherder, Erik J. A.

    2004-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) has been applied to patients with either Alzheimer's disease (AD) or incipient dementia, resulting in an enhancement in memory and verbal fluency. Moreover, affective behavior was shown to improve. Based on the positive effects

  7. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  9. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...

  10. Braille line using electrical stimulation

    International Nuclear Information System (INIS)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G

    2007-01-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards

  11. Braille line using electrical stimulation

    Science.gov (United States)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  12. Braille line using electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G [Gabinete de TecnologIa Medica. Universidad N. de San Juan (Argentina)

    2007-11-15

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  13. Electrical stimulation in exercise training

    Science.gov (United States)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  14. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction.

    Science.gov (United States)

    Steiner, Jennifer L; Lang, Charles H

    2014-11-15

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr(421)/Ser(424) (20-52%), S6K1 Thr(389) (45-57%), and its substrate rpS6 Ser(240/244) (37-72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser(65) was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr(202)/Tyr(204) was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling. Copyright © 2014 the American Physiological Society.

  15. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  16. Electrical stimulation of mechanoreceptors

    International Nuclear Information System (INIS)

    Echenique, A M; Graffigna, J P

    2011-01-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  17. Electrical stimulation of mechanoreceptors

    Science.gov (United States)

    Echenique, A. M.; Graffigna, J. P.

    2011-12-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  18. [Electrical stimulation therapy and its effects on the general activity of motor impaired cerebral palsied children; a comparative study of the Bobath physiotherapy and its combination with the Hufschmidt electrical stimulation therapy (author's transl)].

    Science.gov (United States)

    Leyendecker, C

    1975-08-01

    The purpose of this study was to answer the following questions: (1) Is it more effective to treat spastic cerebral palsy with the Hufschmidt electrical stimulation therapy combined with the Bobath neuro-development treatment or only with the Bobath therapy? (2) Can a general increase in activity be obtained by the electrotherapeutic muscle stimulation? A test group (combined Hufschmidt/Bobath therapy) and a control group (Bobath), both consisting of 10 subjects, were observed for four months. The duration of observation was divided into two four months treatment periods with a rest interval of two months in between. At the start of therapeutic measures, motor activity and psychic condition were tested with corresponding motormetric and psychodiagnostic techniques; three check-up examinations were carried out at the end of the first, and at the beginning and end of the second period of treatment. The motor-metric control examination showed that at the end of the first period the test group had achieved by far the better results, but at the end of the second therapeutic period, both groups were equally successful. The combined electrophysiotherapy hence reached in a relatively shorter time - as it were by leaps and bounds - the optimal obtainable state of functional improvements which, with the Bobath therapy alone, can be effected more slowly but with more continuity. The psychodiagnostic controls clearly indicate that the electrical stimulation produced an unspecified increase in activity, especially after the first phase of treatment, whereas in the second phase this could only be proven in a graded form. The report closes with an examination of the results and their consequences for the implementation of the treatment for cerebral palsied children.

  19. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  20. Artificial theta stimulation impairs encoding of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Arto Lipponen

    Full Text Available Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.

  1. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  2. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  3. Noradrenergic Stimulation Impairs Memory Generalization in Women.

    Science.gov (United States)

    Kluen, Lisa Marieke; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars

    2017-07-01

    Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.

  4. [Electrical acupoint stimulation increases athletes' rapid strength].

    Science.gov (United States)

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  5. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  6. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  7. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  8. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  9. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum; Møller, Kirsten; Jensen, Claus V

    2011-01-01

    Objective: Intensive care unit admission is associated with muscle wasting and impaired physical function. We investigated the effect of early transcutaneous electrical muscle stimulation on quadriceps muscle volume in patients with septic shock. Design: Randomized interventional study using...

  10. A wireless wearable surface functional electrical stimulator

    Science.gov (United States)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  11. Binaural hearing with electrical stimulation.

    Science.gov (United States)

    Kan, Alan; Litovsky, Ruth Y

    2015-04-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Binaural hearing with electrical stimulation

    Science.gov (United States)

    Kan, Alan; Litovsky, Ruth Y.

    2014-01-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. PMID:25193553

  13. Anal sphincter responses after perianal electrical stimulation

    DEFF Research Database (Denmark)

    Pedersen, Ejnar; Klemar, B; Schrøder, H D

    1982-01-01

    By perianal electrical stimulation and EMG recording from the external anal sphincter three responses were found with latencies of 2-8, 13-18 and 30-60 ms, respectively. The two first responses were recorded in most cases. They were characterised by constant latency and uniform pattern, were...... not fatigued by repeated stimulation, were most dependent on placement of stimulating and recording electrodes, and always had a higher threshold than the third response. The third response was constantly present in normal subjects. It had the longest EMG response and the latency decreased with increasing...... stimulation to a minimum of 30-60 ms. This response represented the clinical observable spinal reflex, "the classical anal reflex". The latencies of the two first responses were so short that they probably do not represent spinal reflexes. This was further supported by the effect of epidural anaesthesia which...

  14. Metallic taste from electrical and chemical stimulation.

    Science.gov (United States)

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  15. Emerging modalities in dysphagia rehabilitation: neuromuscular electrical stimulation.

    Science.gov (United States)

    Huckabee, Maggie-Lee; Doeltgen, Sebastian

    2007-10-12

    The aim of this review article is to advise the New Zealand medical community about the application of neuromuscular electrical stimulation (NMES) as a treatment for pharyngeal swallowing impairment (dysphagia). NMES in this field of rehabilitation medicine has quickly emerged as a widely used method overseas but has been accompanied by significant controversy. Basic information is provided about the physiologic background of electrical stimulation. The literature reviewed in this manuscript was derived through a computer-assisted search using the biomedical database Medline to identify all relevant articles published until from the initiation of the databases up to January 2007. The reviewers used the following search strategy: [(deglutition disorders OR dysphagia) AND (neuromuscular electrical stimulation OR NMES)]. In addition, the technique of reference tracing was used and very recently published studies known to the authors but not yet included in the database systems were included. This review elucidates not only the substantive potential benefit of this treatment, but also potential key concerns for patient safety and long term outcome. The discussion within the clinical and research communities, especially around the commercially available VitalStim stimulator, is objectively explained.

  16. Electrical stimulation in dysphagia treatment: a justified controversy?

    NARCIS (Netherlands)

    Bogaardt, H. C. A.

    2008-01-01

    Electrical stimulation in dysphagia treatment: a justified controversy? Neuromuscular electrostimulation (LAMES) is a method for stimulating muscles with short electrical pulses. Neuromuscular electrostimulation is frequently used in physiotherapy to strengthen healthy muscles (as in sports

  17. Medical back belt with integrated neuromuscular electrical stimulation

    NARCIS (Netherlands)

    Bottenberg, E. (Eliza); Brinks, G.J. (Ger); Hesse, J. (Jenny)

    2014-01-01

    The medical back belt with integrated neuromuscular electrical stimulation is anorthopedic device, which has two main functions. The first function is to stimulate the backmuscles by using a neuromuscular electrical stimulation device that releases regular,electrical impulses. The second function of

  18. Effect of electrical stimulation on consumer acceptance of mutton ...

    African Journals Online (AJOL)

    MarianaD

    -voltage electrical stimulation, HVES – high-voltage electrical stimulation, ... Electrical stimulation varied between 21 V – 1100 V. The drop in pH was significantly faster in the .... Table 2 Gender and age distribution of consumer panel (n=229).

  19. Electrical stimulation superimposed onto voluntary muscular contraction.

    Science.gov (United States)

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  20. Electrical stimulation in treatment of pharyngolaryngeal dysfunctions.

    Science.gov (United States)

    Miller, Simone; Jungheim, Michael; Kühn, Daniela; Ptok, Martin

    2013-01-01

    Neuromuscular electrical stimulation (NMES) has been proposed in the treatment of laryngopharyngeal dysfunctions (dysphonia, dyspnoea, dysphagia) for more than 40 years. Several studies have investigated possible therapeutic effects. Some researchers described favourable results, whereas others did not find relevant benefits. This article aims to review available studies to give an overview regarding the current state of knowledge. We conducted a selective literature search using PubMed. In total, 356 papers were identified: 6 case reports, 11 reviews, 43 prospective clinical trials and 3 retrospective trials were found. Due to different stimulation protocols, electrode positioning and various underlying pathological conditions, summarizing the present studies appears to be difficult. However, there is evidence that NMES is a valuable adjunct in patients with dysphagia and in patients with vocal fold paresis. Nevertheless, more empirical data is needed to fully understand the benefits provided by NMES. Further research suggestions are put forward. © 2013 S. Karger AG, Basel.

  1. Electrical Stimulation of the Upper Limb in Stroke: Stimulation of the Extensors of the Hand vs. Alternate Stimulation of Flexors and Extensors

    NARCIS (Netherlands)

    de Kroon, J.R.; IJzerman, Maarten Joost; Lankhorst, G.J.; Zilvold, G.

    2004-01-01

    Objective: To investigate whether there is a difference in functional improvement in the affected arm of chronic stroke patients when comparing two methods of electrical stimulation. Design: Explanatory trial in which 30 chronic stroke patients with impaired arm function were randomly allocated to

  2. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  3. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    Science.gov (United States)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  4. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  5. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  6. Wireless distributed functional electrical stimulation system

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S

    2012-08-01

    Full Text Available Abstract Background The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. Methods The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype’s software. Results The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers. One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. Conclusions The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  7. Wireless distributed functional electrical stimulation system.

    Science.gov (United States)

    Jovičić, Nenad S; Saranovac, Lazar V; Popović, Dejan B

    2012-08-09

    The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype's software. The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers). One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  8. Influence of electrical stimulation on carcass and meat quality of ...

    African Journals Online (AJOL)

    In a previous study regarding the effects of Kosher and conventional slaughter techniques on carcass and meat quality of cattle, it was speculated that electrical stimulation may have affected some of the meat qualities. Therefore, the objective of this study was to investigate the effects of electrical stimulation (ES) and ...

  9. Augmenting nerve regeneration with electrical stimulation.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Chan, K M

    2008-12-01

    Poor functional recovery after peripheral nerve injury is generally attributed to irreversible target atrophy. In rats, we addressed the functional outcomes of prolonged neuronal separation from targets (chronic axotomy for up to 1 year) and atrophy of Schwann cells (SCs) in distal nerve stumps, and whether electrical stimulation (ES) accelerates axon regeneration. In carpal tunnel syndrome (CTS) patients with severe axon degeneration and release surgery, we asked whether ES accelerates muscle reinnervation. Reinnervated motor unit (MUs) and regenerating neuron numbers were counted electrophysiologically and with dye-labeling after chronic axotomy, chronic SC denervation and after immediate nerve repair with and without trains of 20 Hz ES for 1 hour to 2 weeks in rats and in CTS patients. Chronic axotomy reduced regenerative capacity to 67% and was alleviated by exogenous growth factors. Reduced regeneration to approximately 10% by SC denervation atrophy was ameliorated by forskolin and transforming growth factor-beta SC reactivation. ES (1 h) accelerated axon outgrowth across the suture site in association with elevated neuronal neurotrophic factor and receptors and in patients, promoted the full reinnervation of thenar muscles in contrast to a non-significant increase in MU numbers in the control group. The rate limiting process of axon outgrowth, progressive deterioration of both neuronal growth capacity and SC support, but not irreversible target atrophy, account for observed poor functional recovery after nerve injury. Brief ES accelerates axon outgrowth and target muscle reinnervation in animals and humans, opening the way to future clinical application to promote functional recovery.

  10. Outcomes of electrically stimulated gracilis neosphincter surgery.

    Science.gov (United States)

    Tillin, T; Chambers, M; Feldman, R

    2005-07-01

    To examine patient quality of life (QoL) and long-term costs of electrically stimulated gracilis neosphincter surgery (ESGNS). Independently conducted prospective case-comparison study of patients at the Royal London Hospital (RLH), plus a cross-sectional study of outcomes of ESGNS performed at three other UK centres. Cases were patients who underwent ESGNS at the participating hospitals during a 5-year period from 1977. Comparisons were made with two groups of people with similar bowel disorders who did not undergo ESGNS. ESGNS is a procedure designed to improve bowel function for people living with severe faecal incontinence or stomas. It involves transposition of the gracilis muscle to form a neo-anal sphincter. The transposed muscle is electrically stimulated via an electronic pulse generator implanted beneath the skin of the abdomen. Clinical success and symptomatic outcomes of surgery. Generic, domain and condition specific measures of QoL. Comparative costs to the NHS of ESGNS and conventional alternatives. At 3 years after surgery approximately three-quarters of patients still had functioning neosphincters. At this stage, bowel-related QoL and continence improved by more than 20% for nearly two-thirds of RLH patients. However, ongoing bowel evacuation difficulties occurred in half of those with good continence outcomes. QoL improvements were maintained in the smaller group of RLH patients who had reached 4 and 5 years of follow-up, although at this stage the proportion with failed neosphincters had increased. The RLH findings were supported by those from the three other UK centres. No significant changes in QoL were observed in the comparison groups during the follow-up period. The mean cost of patient care at RLH, was 23,253 pounds. In the other three centres, the estimated mean cost of the intervention per patient was 11,731 pounds, reflecting fewer planned operations and repeat admissions. Costs of patient care for those with stomas who did not undergo

  11. Functional electrical stimulation on paraplegic patients

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2014-07-01

    Full Text Available We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern`s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively

  12. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    Science.gov (United States)

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5

  15. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    Science.gov (United States)

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers

  16. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    Directory of Open Access Journals (Sweden)

    Fuwang Wang

    2014-01-01

    Full Text Available Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8 of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD is used to extract θ, α, and β subbands of drivers’ electroencephalogram (EEG signals. Performances of the two algorithms (θ+α/(α+β and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8 using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  17. Neurocontrol of the inverse dynamics in functional electrical stimulation

    NARCIS (Netherlands)

    Spaanenburg, L; Nijhuis, JAG; Ypma, A; Silva, FL; Principe, JC; Almeida, LB

    1997-01-01

    The rehabilitation of paraplegia can be pursued by functional electrical stimulation (FES) combined with biofeedback This requires control by surface electromyographical (EMG) signals to predict the muscle stimulation patterns while compensating the inherent phase lag. This can be realized by a

  18. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  19. New electrical stimulation techniques in dynamic myopasty

    NARCIS (Netherlands)

    Zonnevylle, Erik Dirk Hendrik

    2002-01-01

    It has become common practice in reconstructive surgery to transpose or transplant a variety of autologous tissues to fill defects at a recipient site. Using muscle tissue, it becomes possible to dynamically assist or replace an impaired or lost function. For these procedures the term ‘dynamic

  20. Wanding Through Space: Interactive Calibration for Electric Muscle Stimulation

    DEFF Research Database (Denmark)

    Pohl, Henning; Hornbæk, Kasper; Knibbe, Jarrod

    2018-01-01

    Electric Muscle Stimulation (EMS) has emerged as an interaction paradigm for HCI. It has been used to confer object affordance, provide walking directions, and assist with sketching. However, the electrical signals used for EMS are multi-dimensional and require expert calibration before use...

  1. Approximating transcranial magnetic stimulation with electric stimulation in mouse: a simulation study.

    Science.gov (United States)

    Barnes, Walter L; Lee, Won Hee; Peterchev, Angel V

    2014-01-01

    Rodent models are valuable for preclinical examination of novel therapeutic techniques, including transcranial magnetic stimulation (TMS). However, comparison of TMS effects in rodents and humans is confounded by inaccurate scaling of the spatial extent of the induced electric field in rodents. The electric field is substantially less focal in rodent models of TMS due to the technical restrictions of making very small coils that can handle the currents required for TMS. We examine the electric field distributions generated by various electrode configurations of electric stimulation in an inhomogeneous high-resolution finite element mouse model, and show that the electric field distributions produced by human TMS can be approximated by electric stimulation in mouse. Based on these results and the limits of magnetic stimulation in mice, we argue that the most practical and accurate way to model focal TMS in mice is electric stimulation through either cortical surface electrodes or electrodes implanted halfway through the mouse cranium. This approach could allow much more accurate approximation of the human TMS electric field focality and strength than that offered by TMS in mouse, enabling, for example, focal targeting of specific cortical regions, which is common in human TMS paradigms.

  2. Sensory adaptation to electrical stimulation of the somatosensory nerves.

    Science.gov (United States)

    Graczyk, Emily Lauren; Delhaye, Benoit; Schiefer, Matthew A; Bensmaia, Sliman J; Tyler, Dustin J

    2018-03-19

    Sensory systems adapt their sensitivity to ambient stimulation levels to improve their responsiveness to changes in stimulation. The sense of touch is also subject to adaptation, as evidenced by the desensitization produced by prolonged vibratory stimulation of the skin. Electrical stimulation of nerves elicits tactile sensations that can convey feedback for bionic limbs. In this study, we investigate whether artificial touch is also subject to adaptation, despite the fact that the peripheral mechanotransducers are bypassed. Approach: Using well-established psychophysical paradigms, we characterize the time course and magnitude of sensory adaptation caused by extended electrical stimulation of the residual somatosensory nerves in three human amputees implanted with cuff electrodes. Main results: We find that electrical stimulation of the nerve also induces perceptual adaptation that recovers after cessation of the stimulus. The time course and magnitude of electrically-induced adaptation are equivalent to their mechanically-induced counterparts. Significance: We conclude that, in natural touch, the process of mechanotransduction is not required for adaptation, and artificial touch naturally experiences adaptation-induced adjustments of the dynamic range of sensations. Further, as it does for native hands, adaptation confers to bionic hands enhanced sensitivity to changes in stimulation and thus a more natural sensory experience. . Creative Commons Attribution license.

  3. Magnetic stimulation of visual cortex impairs perceptual learning.

    Science.gov (United States)

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electrical stimulation promotes regeneration of injured oculomotor nerves in dogs

    Directory of Open Access Journals (Sweden)

    Lei Du

    2016-01-01

    Full Text Available Functional recovery after oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oculomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. Thus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction.

  5. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  6. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  7. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  8. Dobutamine use for arrhythmia induction during electrical programmed heart stimulation

    International Nuclear Information System (INIS)

    Vanegas, Diego I; Perez, Climaco de J; Montenegro, Juan de J; Orjuela, Alejandro

    2006-01-01

    isoproterenol is the traditionally used drug for incrementing arrhythmia induction when this induction is not achieved during electric programmed heart stimulation under basal conditions. Dobutamine is an adrenergic agent, chemical precursor of isoproterenol, which can be an alternative for inducing arrhythmia during electrical programmed heart stimulation (PES). Patients and methods: a retrospective comparative study of the experience with dobutamine for inducing arrhythmia during electrical programmed heart stimulation was performed. The following data were collected: number of studies, data about the patient (medical record, age, gender, and study indication) protocol of programmed electrical stimulation, basal and under dobutamine or isoproterenol, and result of the study. Isoproterenol was used in doses of 1 to 3 micrograms per minute until the basal heart rate was incremented at least in 25%. Dobutamine was used in doses of 10 to 40 micrograms per kg of body weight, until obtaining the same increment in the basal heart rate. Results: 1054 electrophysiological studies were evaluated. In 144 patients (group A) isoproterenol was used and in 140, dobutamine (group B). In A group the mean age was 39.2 ± 16.2 and 58.3% were females. In-group B, mean age was 41.9 ± 18.6 and 51% were females. The most frequent symptom was palpitation and the most commonly induced arrhythmia was AV nodal reentry tachycardia in both groups. The induction of arrhythmia during the electrical programmed heat stimulation under drugs was similar in-group A (isoproterenol) respect to group B (dobutamine). Conclusions: There were no statistical significant differences in the induction of arrhythmia during electrical programmed heart stimulation using dobutamine or isoproterenol. Dobutamine may be safe and may be successfully used as an alternative to isoproterenol for arrhythmia induction during electrical programmed stimulation

  9. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Science.gov (United States)

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  10. Remote-Activated Electrical Stimulation via Piezoelectric Scaffold System for Functional Peripheral and Central Nerve Regeneration

    OpenAIRE

    Low, Karen Gail

    2017-01-01

    A lack of therapeutic technologies that enable electrically stimulating nervous tissues in a facile and clinically relevant manner has partly hindered the advancement in treating nerve injuries for full functional recovery. Currently, the gold standard for nerve repair is autologous nerve grafting. However, this method has several disadvantages, such as necessity for multiple surgeries, creation of functionally impaired region where graft was taken from, disproportion of graft to nerve tissue...

  11. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  12. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  13. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  14. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable...

  15. Electrical stimulation induces propagated colonic contractions in an experimental model.

    Science.gov (United States)

    Aellen, S; Wiesel, P H; Gardaz, J-P; Schlageter, V; Bertschi, M; Virag, N; Givel, J-C

    2009-02-01

    Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.

  16. Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2013-07-01

    Full Text Available Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session. Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers.

  17. Challenges associated with nerve conduction block using kilohertz electrical stimulation

    Science.gov (United States)

    Patel, Yogi A.; Butera, Robert J.

    2018-06-01

    Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.

  18. Comparison of percutaneous electrical nerve stimulation with transcutaneous electrical nerve stimulation for long-term pain relief in patients with chronic low back pain.

    Science.gov (United States)

    Yokoyama, Masataka; Sun, Xiaohui; Oku, Satoru; Taga, Naoyuki; Sato, Kenji; Mizobuchi, Satoshi; Takahashi, Toru; Morita, Kiyoshi

    2004-06-01

    The long-term effect of percutaneous electrical nerve stimulation (PENS) on chronic low back pain (LBP) is unclear. We evaluated the number of sessions for which PENS should be performed to alleviate chronic LBP and how long analgesia is sustained. Patients underwent treatment on a twice-weekly schedule for 8 wk. Group A (n = 18) received PENS for 8 wk, group B (n = 17) received PENS for the first 4 wk and transcutaneous electrical nerve stimulation (TENS) for the second 4 wk, and group C (n = 18) received TENS for 8 wk. Pain level, degree of physical impairment, and the daily intake of nonsteroidal antiinflammatory drugs (NSAIDs) were assessed before the first treatment, 3 days after Week 2, Week 4, and Week 8 treatments, and at 1 and 2 mo after the sessions. During PENS therapy, the pain level decreased significantly from Week 2 in Groups A and B (P pain level decreased significantly only at Week 8 (P TENS for chronic LBP but must be continued to sustain the analgesic effect. A cumulative analgesic effect was observed in patients with chronic low back pain (LBP) after repeated percutaneous electrical nerve stimulation (PENS), but this effect gradually faded after the treatment was terminated. Results indicate that although PENS is effective for chronic LBP, treatments need to be continued to sustain analgesia.

  19. Electrical stimulation of transplanted motoneurons improves motor unit formation

    Science.gov (United States)

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  20. Recording of the Neural Activity Induced by the Electrical Subthalamic Stimulation Using Ca2+ Imaging

    Science.gov (United States)

    Tamura, Atsushi; Yagi, Tetsuya; Osanai, Makoto

    The basal ganglia (BG) have important roles in some kind of motor control and learning. Parkinson's disease is one of the motor impairment disease. Recently, to recover a motor severity in patients of Parkinsonism, the stimulus electrode is implanted to the subthalamic nucleus, which is a part of the basal ganglia, and the deep brain stimulation (DBS) is often conducted. However, the effects of the DBS on the subthalamic neurons have not been elucidated. Thus, to analyze the effects of the electrical stimulation on the subthalamic neurons, we conducted the calcium imaging at the mouse subthalamic nucleus. When the single stimulus was applied to the subthalamic nucleus, the intracellular calcium ([Ca2+]i) transients were observed. In the case of application of the single electrical stimulation, the [Ca2+]i arose near the stimulus position. When 100 Hz 10-100 times tetanic stimulations were applied, the responded area and the amplitudes of [Ca2+]i transients were increased. The [Ca2+]i transients were disappeared almost completely on the action potential blockade, but blockade of the excitatory and the inhibitory synaptic transmission had little effects on the responded area and the amplitudes of the [Ca2+]i transients. These results suggested that the electrical stimulation to the subthalamic neurons led to activate the subthalamic neurons directly but not via synaptic transmissions. Thus, DBS may change the activity of the subthalamic neurons, hence, may alter the input-output relationship of the subthalamic neurons

  1. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Science.gov (United States)

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P hemiparesis more than peroneal FES alone. PMID:23097635

  2. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (. In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.

  3. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  4. Bio mathematical aspects of chronic cardiac electric stimulation

    International Nuclear Information System (INIS)

    Suarez Antola, R

    1984-01-01

    In the framework a mathematical model of the electrode-tissue system new several concepts are introduced(global versus local threshold variables,critical region for electric stimulation,mechanical hysteresis amongst others) several well known facts are explained,and some guidelines for electrode design are derived

  5. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  6. Effect of electrical stimulation of carcasses from Dorper sheep with ...

    African Journals Online (AJOL)

    Three consumer sensory tests, namely the hedonic rating of the acceptability of each sensory attribute, a preference test and a food action rating test, were conducted in sequence. The acceptability of the juiciness, tenderness, flavour and overall acceptability were not significantly influenced by the electrical stimulation of ...

  7. Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke

    DEFF Research Database (Denmark)

    Bath, Philip M W; Scutt, Polly; Love, Jo

    2016-01-01

    BACKGROUND AND PURPOSE: Dysphagia is common after stroke, associated with increased death and dependency, and treatment options are limited. Pharyngeal electric stimulation (PES) is a novel treatment for poststroke dysphagia that has shown promise in 3 pilot randomized controlled trials. METHODS...

  8. Comparison of the Effect of Neuromuscular Electrical Stimulation ...

    African Journals Online (AJOL)

    Children with cerebral palsy (CP) often demonstrate poor hand function due to spasticity. Thus spasticity in the wrist and finger flexors poses a great deal of functional limitations. This study was therefore designed to compare the effectiveness of Cryotherapy and Neuromuscular Electrical Stimulation (NMES) on spasticity ...

  9. Electric stimulation with sinusoids and white noise for neural prostheses

    Directory of Open Access Journals (Sweden)

    Daniel K Freeman

    2010-02-01

    Full Text Available We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell’s spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with peak response that occur 25ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS.

  10. Power amplifier circuits for functional electrical stimulation systems

    Directory of Open Access Journals (Sweden)

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  11. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  12. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (cyborg insects or biobots.

  13. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Directory of Open Access Journals (Sweden)

    Hao Yu Choo

    Full Text Available Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera. A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs, flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%, rapid response time (< 1.0 s, and small variation (< 0.33 s; indicating little habituation. Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  14. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    Science.gov (United States)

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  16. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    Science.gov (United States)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  17. ELECTRICAL MUSCLE STIMULATION (EMS IMPLEMENTATION IN EXPLOSIVE STRENGTH DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Zoran Đokić

    2013-07-01

    Full Text Available Electrical muscle stimulation (EMS, is also known as neuromuscular electrical stimulation (NMES may be used for therapeutic purposes and training. EMS is causing muscle contractions via electrical impulses. The survey was conducted as a case study. The study was conducted on subject of 3 male of different ages. The study lasted 4 weeks, and the respondents have not used any type of training or activity, which would affect the development of explosive strength of the lower extremities. Electrical stimulation was performed in the evening, every other day, with COMPEX mi sport apparatus (Medical SA - All rights reserved - 07/06 - Art. 885,616 - V.2 model. In 4 week period, a total of 13 treatments were performed on selected muscle groups - quadriceps femoris and gastrocnemius. Program of plyometric training (Plyometric (28 min per treatment, for each muscle group were applied. The main objective of this study was to quantify and compare explosive leg strength, using different vertical jump protocols, before and after the EMS program. The initial and final testing was conducted in the laboratory of the Faculty of Sport and Tourism in Novi Sad, on the contact plate AXON JUMP (Bioingeniería Deportiva, VACUMED, 4538 Westinghouse Street Ventura, CA 93 003 under identical conditions. In all three of the respondents indicated an increase in vertical jump in all applied protocols.

  18. Upper-Limb Recovery After Stroke: A Randomized Controlled Trial Comparing EMG-Triggered, Cyclic, and Sensory Electrical Stimulation.

    Science.gov (United States)

    Wilson, Richard D; Page, Stephen J; Delahanty, Michael; Knutson, Jayme S; Gunzler, Douglas D; Sheffler, Lynne R; Chae, John

    2016-11-01

    This study compared the effect of cyclic neuromuscular electrical stimulation (NMES), electromyographically (EMG)-triggered NMES, and sensory stimulation on motor impairment and activity limitations in patients with upper-limb hemiplegia. This was a multicenter, single-blind, multiarm parallel-group study of nonhospitalized hemiplegic stroke survivors within 6 months of stroke. A total of 122 individuals were randomized to receive either cyclic NMES, EMG-triggered NMES, or sensory stimulation twice every weekday in 40-minute sessions, over an 8 week-period. Patients were followed for 6 months after treatment concluded. There were significant increases in the Fugl-Meyer Assessment [F(1, 111) = 92.6, P stimulation therapy applied within 6 months of stroke. Improvements were likely a result of spontaneous recovery. There was no difference based on the type of electrical stimulation that was administered. © The Author(s) 2016.

  19. Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects

    DEFF Research Database (Denmark)

    Taylor, Janet L; Petersen, Nicolas Caesar; Butler, Jane E

    2002-01-01

    Transcranial magnetic stimulation activates corticospinal neurones directly and transsynaptically and hence, activates motoneurones and results in a response in the muscle. Transmastoid stimulation results in a similar muscle response through activation of axons in the spinal cord. This study...... was designed to determine whether the two stimuli activate the same descending axons. Responses to transcranial magnetic stimuli paired with electrical transmastoid stimuli were examined in biceps brachii in human subjects. Twelve interstimulus intervals (ISIs) from -6 ms (magnet before transmastoid) to 5 ms......-wave, facilitation still occurred at ISIs of -6 and -5 ms and depression of the paired response at ISIs of 0, 1, 4 and 5 ms. The interaction of the response to transmastoid stimulation with the multiple descending volleys elicited by magnetic stimulation of the cortex is complex. However, depression of the response...

  20. Electrically responsive microstructured polypyrrole-polyurethane composites for stimulated osteogenesis

    Science.gov (United States)

    Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra

    2018-03-01

    In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.

  1. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    Science.gov (United States)

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  2. Neuromuscular electrical stimulation for mobility support of elderly

    Directory of Open Access Journals (Sweden)

    Winfried Mayr

    2015-10-01

    Full Text Available The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC and maximum stimulation induced contraction (MSC were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period

  3. Automatic Calibration of High Density Electric Muscle Stimulation

    DEFF Research Database (Denmark)

    Knibbe, Jarrod; Strohmeier, Paul; Boring, Sebastian

    2017-01-01

    . (2) EMS requires time consuming, expert calibration -- confining these interaction techniques to the lab. EMS arrays have been shown to increase stimulation resolution, but as calibration complexity increases exponentially as more electrodes are used, we require heuristics or automated procedures......Electric muscle stimulation (EMS) can enable mobile force feedback, support pedestrian navigation, or confer object affordances. To date, however, EMS is limited by two interlinked problems. (1) EMS is low resolution -- achieving only coarse movements and constraining opportunities for exploration...... for successful calibration. We explore the feasibility of using electromyography (EMG) to auto-calibrate high density EMS arrays. We determine regions of muscle activity during human-performed gestures, to inform stimulation patterns for EMS-performed gestures. We report on a study which shows that auto...

  4. 3D stroke rehabilitation using electrical stimulation and robotics

    OpenAIRE

    Tong, Daisy; Cai, Zhonglun; Meadmore, Katie; Hughes, Anne-Marie; Freeman, Christopher; Burridge, Jane; Rogers, E

    2011-01-01

    Stroke is the third leading cause of death and foremost cause of adult disability in the UK. A third of the surviving patients suffer from some degree of motor disability and depend on others to undertake daily activities. Conventional rehabilitation can mitigate this disability, but only 5% of the severely paralysed patients regain full upper limb function. Past studies have shown evidence of more effective technologies such as rehabilitation robotics and functional electrical stimulation (F...

  5. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  6. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    Science.gov (United States)

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  8. The importance of stimulation of sensory perception by preschool-aged children with visual impairment

    OpenAIRE

    NOHAVOVÁ, Lenka

    2014-01-01

    This bachelor thesis engages in the topic "Stimulation of sense perception for sight-impaired children at preschool age". The theoretical section of the bachelor thesis is divided into four chapters. The first chapter focuses on the sight-impaired individual, the second chapter deals with the development of a preschool-aged child, the next chapter is concerned with the preschool education of sight-impaired children and the last chapter focuses on sense perception for those children. The main ...

  9. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  10. Effectiveness of functional electrical stimulation (fes) versus conventional electrical stimulation in gait rehabilitation of patients with stroke

    International Nuclear Information System (INIS)

    Sharif, F.; Ghulam, S.; Malik, A.N.

    2017-01-01

    To compare the effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke for finding the most appropriate problem-oriented treatment for foot drop patients in a shorter time period. Study Design: Randomized controlled trial. Place and Duration of Study:Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, from July to December 2016. Methodology: Subjects with foot drop due to stroke were allotted randomly into 1 of 2 groups receiving standard rehabilitation with Functional Electrical Stimulation (FES) or Electrical Muscle Stimulation (EMS). FES was applied on tibialis anterior 30 minutes/day, five days/week for six weeks. EMS was also applied on the tibialis anterior five days/week for six weeks. Outcome measures included Fugl-Meyer Assessment Scale, Modified Ashworth Scale, Berg Balance Scale (BBS), Time Up and Go Test (TUG) and Gait Dynamic Index (GDI). They were recorded at baseline, after 3 and 6 weeks. Pre- and post-treatment scores were analyzed between two groups on SPSS-20. Results: After six weeks of intervention, significant improvement was recorded in Fugl-Meyer Assessment score (p<0.001), modified Ashworth Scale score (p=0.027), Berg Balance Scale score (p<0.001), Time Up and Go Test (p<0.001) and Gait Dynamic Index (p=0.012) of the group subjected to FES. Conclusion: Gait training with FES is more effective than EMS in improving mobility, balance, gait performance and reducing spasticity in stroke patients. The research will help clinicians to select appropriate treatment of foot drop in stroke patients. (author)

  11. Giovanni Aldini: from animal electricity to human brain stimulation.

    Science.gov (United States)

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.

  12. Gender differences in current received during transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Michael eRussell

    2014-08-01

    Full Text Available Low current transcranial electrical stimulation is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation (GETS modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, Proton Density MRIs from 24 adult subjects (12 male and 12 female were modeled with virtual electrodes placed at F3, F4, C3 and C4. Two sizes of electrodes 20 mm round and 50 x 45 mm square were examined at 0.5, 1 and 2 mA input currents. The intensity of current received was sampled in a one centimeter sphere placed at the cortex directly under each scalp electrode. There was a tenfold range in the current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P <0.05. Larger electrodes delivered somewhat larger amounts of current then the smaller ones (P <0.01. Electrodes in the frontal regions delivered less current than those in the parietal region (P<0.05. There were large individual differences in current levels the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancellous parietal bone and females more dense parietal bone (p<0.01. These differences should be considered when planning transcranial electrical stimulation studies and call into question earlier reports of gender differences due to hormonal influences.

  13. Training and orthotic effects related to functional electrical stimulation of the peroneal nerve in stroke.

    Science.gov (United States)

    Street, Tamsyn; Swain, Ian; Taylor, Paul

    2017-01-31

    To examine the evidence for a training effect on the lower limb of functional electrical stimulation. Cohort study. A total of 133 patients >6 months post-stroke. Training and orthotic effects were determined from walking speed over 10 m, associated minimal and substantial clinically important differences (i.e. >0.05 and >0.10 m/s), and Functional Ambulation Category (FAC), ranging from household walking to independent walking in the community. An overall significant (p training effect was found that was not a clinically important difference (0.02 m/s); however, "community" FAC (≥ 0.8 m/s) and "most limited community walkers" FAC (0.4-0.58 m/s), but not "household walkers" (effect (0.10 m/s) was found. In terms of overall improvement of one or more FACs, 23% achieved this due to a training effect, compared with 43% due to an orthotic effect. The findings suggest that functional electrical stimulation provides a training effect in those who are less impaired. Further work, which optimizes the use of the device for restoration of function, rather than as an orthotic device, will provide greater clarity on the effectiveness of functional electrical stimulation for eliciting a training effect.

  14. Nonpainful remote electrical stimulation alleviates episodic migraine pain.

    Science.gov (United States)

    Yarnitsky, David; Volokh, Lana; Ironi, Alon; Weller, Boaz; Shor, Merav; Shifrin, Alla; Granovsky, Yelena

    2017-03-28

    To evaluate the efficacy of remote nonpainful electrical upper arm skin stimulation in reducing migraine attack pain. This is a prospective, double-blinded, randomized, crossover, sham-controlled trial. Migraineurs applied skin electrodes to the upper arm soon after attack onset for 20 minutes, at various pulse widths, and refrained from medications for 2 hours. Patients were asked to use the device for up to 20 attacks. In 71 patients (299 treatments) with evaluable data, 50% pain reduction was obtained for 64% of participants based on best of 200-μs, 150-μs, and 100-μs pulse width stimuli per individual vs 26% for sham stimuli. Greater pain reduction was found for active stimulation vs placebo; for those starting at severe or moderate pain, reduction (1) to mild or no pain occurred in 58% (25/43) of participants (66/134 treatments) for the 200-μs stimulation protocol and 24% (4/17; 8/29 treatments) for placebo ( p = 0.02), and (2) to no pain occurred in 30% (13/43) of participants (37/134 treatments) and 6% (1/17; 5/29 treatments), respectively ( p = 0.004). Earlier application of the treatment, within 20 minutes of attack onset, yielded better results: 46.7% pain reduction as opposed to 24.9% reduction when started later ( p = 0.02). Nonpainful remote skin stimulation can significantly reduce migraine pain, especially when applied early in an attack. This is presumably by activating descending inhibition pathways via the conditioned pain modulation effect. This treatment may be proposed as an attractive nonpharmacologic, easy to use, adverse event free, and inexpensive tool to reduce migraine pain. NCT02453399. This study provides Class III evidence that for patients with an acute migraine headache, remote nonpainful electrical stimulation on the upper arm skin reduces migraine pain. © 2017 American Academy of Neurology.

  15. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    Science.gov (United States)

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  16. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  17. Electrical stimulation vs thermal effects in a complex electromagnetic environment

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel

    2009-01-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10 -4 ) than that based on thermal considerations (exposure quotient 0.16 10 -4 ). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  18. Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework

    Science.gov (United States)

    Yavari, Fatemeh; Nitsche, Michael A.; Ekhtiari, Hamed

    2017-01-01

    During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be taken into account. These factors contribute to the complexity of selecting potentially effective protocols for each disorder, different clusters of each disorder, and even each single patient. Expanding knowledge in different dimensions of basic and clinical neuroscience could help researchers and clinicians to select potentially effective protocols based on tES modulatory mechanisms for future clinical studies. In this article, we propose a heuristic spatiomechanistic framework which contains nine levels to address tES effects on brain functions. Three levels refer to the spatial resolution (local, small-scale networks and large-scale networks) and three levels of tES modulatory effects based on its mechanisms of action (neurochemical, neuroelectrical and oscillatory modulations). At the group level, this framework could be helpful to enable an informed and systematic exploration of various possible protocols for targeting a brain disorder or its neuroscience-based clusters. Considering recent advances in exploration of neurodiversity at the individual level with different brain mapping technologies, the proposed framework might also be used in combination with personal data to design individualized protocols for tES in the context of precision medicine in the future. PMID:28450832

  19. Perceptual embodiment of prosthetic limbs by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Mulvey, Matthew R; Fawkner, Helen J; Radford, Helen E; Johnson, Mark I

    2012-01-01

      In able-bodied participants, it is possible to induce a sense of perceptual embodiment in an artificial hand using a visual-tactile illusion. In amputee patients, electrical stimulation of sensory afferents using transcutaneous electrical nerve stimulation (TENS) has been shown to generate somatic sensations in an amputee's phantom limb(s). However, the effects of TENS on the perceptual embodiment of an artificial limb are not known. Our objective was to investigate the effects of TENS on the perceptual embodiment of an artificial limb in fully intact able-bodied participants.   We used a modified version of the rubber hand illusion presented to 30 able-bodied participants (16 women, 14 men) to convey TENS paresthesia to an artificial hand. TENS electrodes were located over superficial radial nerve on the lateral aspect of the right forearm (1 cm proximal to the wrist), which was hidden from view. TENS intensity was increased to a strong non-painful TENS sensation (electrical paresthesia) was felt beneath the electrodes and projecting into the fingers of the hand. The electrical characteristics of TENS were asymmetric biphasic electrical pulsed waves, continuous pulse pattern, 120 Hz pulse frequency (rate), and 80 µs pulse duration (width).   Participants reported significantly higher intensities of the rubber hand illusion during the two TENS conditions (mean = 5.8, standard deviation = 1.9) compared with the two non-TENS conditions (mean = 4.9, standard deviation = 1.7), p embodiment of an artificial hand. Further exploratory studies involving an amputee population are warranted. © 2011 International Neuromodulation Society.

  20. Schwann cell response on polypyrrole substrates upon electrical stimulation.

    Science.gov (United States)

    Forciniti, Leandro; Ybarra, Jose; Zaman, Muhammad H; Schmidt, Christine E

    2014-06-01

    Current injury models suggest that Schwann cell (SC) migration and guidance are necessary for successful regeneration and synaptic reconnection after peripheral nerve injury. The ability of conducting polymers such as polypyrrole (PPy) to exhibit chemical, contact and electrical stimuli for cells has led to much interest in their use for neural conduits. Despite this interest, there has been very little research on the effect that electrical stimulation (ES) using PPy has on SC behavior. Here we investigate the mechanism by which SCs interact with PPy in the presence of an electric field. Additionally, we explored the effect that the adsorption of different serum proteins on PPy upon the application of an electric field has on SC migration. The results indicate an increase in average displacement of the SC with ES, resulting in a net anodic migration. Moreover, indirect effects of protein adsorption due to the oxidation of the film upon the application of ES were shown to have a larger effect on migration speed than on migration directionality. These results suggest that SC migration speed is governed by an integrin- or receptor-mediated mechanism, whereas SC migration directionality is governed by electrically mediated phenomena. These data will prove invaluable in optimizing conducting polymers for their different biomedical applications such as nerve repair. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Human perception of electrical stimulation on the surface of somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    Full Text Available Recent advancement in electrocorticography (ECoG-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.

  2. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    Science.gov (United States)

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  3. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    to be affected by the inductive link. Neural stimulators are affected to a lesser degree, but still benefit from the partitioning. As a test case, we have designed a transceiver and a sensor chip which implement this partitioning policy. The transceiver is designed to operate in the 6.78 MHz ISM band......Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...... to these problems by partitioning the RF transceiver and sensor/actuator functions onto separate integrated circuits. By amplifying measured neural signals directly at the measurements site and converting them into the digital domain before passing them to the transceiver the signal integrity is less likely...

  4. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  5. Electromyographic control of functional electrical stimulation in selected patients.

    Science.gov (United States)

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  6. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  7. Effects of contraction mode and stimulation frequency on electrical stimulation-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Ashida, Yuki; Himori, Koichi; Tatebayashi, Daisuke; Yamada, Ryotaro; Ogasawara, Riki; Yamada, Takashi

    2018-02-01

    We compared the skeletal muscle hypertrophy resulting from isometric (Iso) or eccentric (Ecc) electrical stimulation (ES) training with different stimulation frequencies. Male Wistar rats were assigned to the Iso and Ecc groups. These were divided into three further subgroups that were stimulated at 10 Hz (Iso-10 and Ecc-10), 30 Hz (Iso-30 and Ecc-30), or 100 Hz (Iso-100 and Ecc-100). In experiment 1, the left plantarflexor muscles were stimulated every other day for 3 wk. In experiment 2, mammalian target of rapamycin complex 1 (mTORC1) signaling was investigated 6 h after one bout of ES. The contralateral right muscle served as a control (non-ES). Ecc contractions comprised forced dorsiflexion combined with ES. The peak torque and torque-time integral during ES were higher in the Ecc group than that in the Iso group in all stimulation frequencies examined. The gastrocnemius muscle weight normalized to body weight in ES side was increased compared with the non-ES side by 6, 7, and 17% in the Ecc-30, Iso-100, and Ecc-100 groups, respectively, with a greater gain in Ecc-100 than the Ecc-30 and Iso-100 groups. The p70S6K (Thr389) phosphorylation level was higher in the Ecc-30 and -100 than in the Iso-30 and -100 groups, respectively. The peak torque and torque-time integral were highly correlated with the magnitude of increase in muscle mass and the phosphorylation of p70S6K. These data suggest that ES-induced muscle hypertrophy and mTORC1 activity are determined by loading intensity and volume during muscle contraction independent of the contraction mode. NEW & NOTEWORTHY Eccentric contraction and high-frequency stimulation (HFS) are regarded as an effective way to increase muscle mass by electrical stimulation (ES) training. However, little is known about whether muscle hypertrophy is affected by contraction mode and stimulation frequency in ES training. Here, we provide the evidence that muscle hypertrophy and mammalian target of rapamycin complex 1 activity are

  8. Preventing Ischial Pressure Ulcers: I. Review of Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hilton M. Kaplan

    2011-01-01

    Full Text Available Objective: Pressure ulcers (PUs are common and debilitating wounds that arise when immobilized patients cannot shift their weight. Treatment is expensive and recurrence rates are high. Pathophysiological mechanisms include reduced bulk and perfusion of chronically atrophic muscles as well as prolonged occlusion of blood flow to soft tissues from lack of voluntary postural shifting of body weight. This has suggested that PUs might be prevented by reanimating the paralyzed muscles using neuromuscular electrical stimulation (NMES. A review of the published literature over the past 2 decades is detailed.

  9. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review.

    Science.gov (United States)

    Kasat, Vikrant; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-12-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS.

  10. Gastric electrical stimulation: a report of two cases.

    LENUS (Irish Health Repository)

    Sibartie, V

    2012-02-03

    Gastroparesis refractory to prokinetic agents poses a major challenge to the physician and patient, alike. In the past 5 years, electrical methods to treat gastroparesis have emerged from animal and human experiments to a potentially valuable tool in clinical gastroenterology. One of these methods, known as gastric electrical stimulation (GES), is being increasingly used in specialized centres worldwide, but had never been tried in Ireland. We describe here our experience with the first two implantations of gastric neurostimulators performed in Ireland and the outcome with these 2 patients. Our results at 6 months show reduction in symptoms and improvement in quality of life, which is encouraging and should prompt further evaluation of GES for patients with gastroparesis refractory to medical therapy.

  11. WITHDRAWN: Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    Science.gov (United States)

    Gadsby, J G; Flowerdew, M W

    2007-07-18

    In view of the claims and counter-claims of the effectiveness of transcutaneous electrical nerve stimulation, it would seem appropriate to systematically review the literature. To determine the effectiveness of transcutaneous electrical nerve stimulation in reducing pain and improving range of movement in patients with chronic low back pain. Electronic searches of EMBASE, MEDLINE, CISCOM, AMED for all studies of TENS in the English language, identifying those treating chronic low back pain and hand searching their references. The inclusion criterion for studies included in this review, 6 of 68 identified, was comparisons of TENS/ALTENS versus placebo in patients with chronic low back pain. Outcome data on pain reduction, range of movement, functional status and work was extracted by two independent reviewers together with trial design qualities to construct a Quality Index. The ratio of odds of improvement in pain for each comparison was calculated: TENS vs. placebo at 1.62 (95% CI 0.90, 2.68); ALTENS vs. placebo at 7.22 (95% CI 2.60, 20.01) and TENS/ALTENS vs. placebo at 2.11 (95% CI 1.32, 3.38) times that of placebo. An improvement in pain reduction was seen in 45.80% (CI 37.00%, 55.00%) of TENS; 86.70% (CI 80.00%, 93.00%) of ALTENS; 54.00% (CI 46.20%, 61.80%) of TENS/ ALTENS and 36.40% (95%CI 28.40%, 44.40%) of placebo subjects. The odds of improvement in range of movement on ALTENS vs. placebo was 6.61 times (95% CI 2.36, 18.55) that of placebo. Transcutaneous electrical nerve stimulation appears to reduce pain and improve the range of movement in chronic low back pain subjects. A definitive randomised controlled study of ALTENS, TENS, placebo/no treatment controls, of sufficient power, is needed to confirm these findings.

  12. Sex and Electrode Configuration in Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Michael J. Russell

    2017-08-01

    Full Text Available Transcranial electrical stimulation (tES can be an effective non-invasive neuromodulation procedure. Unfortunately, the considerable variation in reported treatment outcomes, both within and between studies, has made the procedure unreliable for many applications. To determine if individual differences in cranium morphology and tissue conductivity can account for some of this variation, the electrical density at two cortical locations (temporal and frontal directly under scalp electrodes was modeled using a validated MRI modeling procedure in 23 subjects (12 males and 11 females. Three different electrode configurations (non-cephalic, bi-cranial, and ring commonly used in tES were modeled at three current intensities (0.5, 1.0, and 2.0 mA. The aims were to assess the effects of configuration and current intensity on relative current received at a cortical brain target directly under the stimulating electrode and to characterize individual variation. The different electrode configurations resulted in up to a ninefold difference in mean current densities delivered to the brains. The ring configuration delivered the least current and the non-cephalic the most. Female subjects showed much less current to the brain than male subjects. Individual differences in the current received and differences in electrode configurations may account for significant variability in current delivered and, thus, potentially a significant portion of reported variation in clinical outcomes at two commonly targeted regions of the brain.

  13. Models of the electrically stimulated binaural system: A review.

    Science.gov (United States)

    Dietz, Mathias

    2016-01-01

    In an increasing number of countries, the standard treatment for deaf individuals is moving toward the implantation of two cochlear implants. Today's device technology and fitting procedure, however, appears as if the two implants would serve two independent ears and brains. Many experimental studies have demonstrated that after careful matching and balancing of left and right stimulation in controlled laboratory studies most patients have almost normal sensitivity to interaural level differences and some sensitivity to interaural time differences (ITDs). Mechanisms underlying the limited ITD sensitivity are still poorly understood and many different aspects may contribute. Recent pioneering computational approaches identified some of the functional implications the electric input imposes on the neural brainstem circuits. Simultaneously these studies have raised new questions and certainly demonstrated that further refinement of the model stages is necessary. They join the experimental study's conclusions that binaural device technology, binaural fitting, specific speech coding strategies, and binaural signal processing algorithms are obviously missing components to maximize the benefit of bilateral implantation. Within this review, the existing models of the electrically stimulated binaural system are explained, compared, and discussed from a viewpoint of a "CI device with auditory system" and from that of neurophysiological research.

  14. Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis: A Randomized Trial.

    Science.gov (United States)

    Knutson, Jayme S; Gunzler, Douglas D; Wilson, Richard D; Chae, John

    2016-10-01

    It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES). Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl-Meyer and Arm Motor Abilities Test were also measured. At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2-7.0), than the cNMES group, 1.8 (95% CI, 0.6-3.0), between-group difference of 2.8 (95% CI, 0.1-5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl-Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6-13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7-6.5), between-group difference of 5.5 (95% CI, 0.8-10.2), P=0.023. CCFES improved hand dexterity more than cNMES in chronic stroke survivors. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00891319. © 2016 American Heart Association, Inc.

  15. Electrical stimulation (ES) in the management of sexual pain disorders.

    Science.gov (United States)

    Nappi, Rossella E; Ferdeghini, Francesea; Abbiati, Ileana; Vercesi, Claudia; Farina, Claudio; Polatti, Franco

    2003-01-01

    We performed an open study to investigate the use of electrical stimulation (ES) on the vestibular area and vaginal introitus in women with sexual pain disorders. We recruited 29 women (age range 20-45 years) from among the patients at our Reproductive Psychobiology Unit to participate in the present study. They each experienced vestibular pain, inducing dyspareunia and vaginism. We performed ES with an ECL43400 apparatus (Elite, EssediEsse srl, Milan, Italy) once a week for 10 weeks. To evaluate the muscular activity of the perineal floor and sexual function, we employed the same apparatus with a vaginal probe for recording myoelectrical activity (muV), we employed a VAS scale for evaluating pain, and we administered the Female Sexual Function Index (FSFI; Rosen et al., 2000) before and after the study protocol. We analyzed data by parametric and nonparametric comparisons and correlations, as appropriate. Our major findings were as follows: (a) the contractile ability of pelvic floor muscles (p vaginism went back to coital activity; (d) FSFI pain score and the current intensity tolerated, both before (R = .59; p < 0.006) and at the end (R = .53; p < 0.02) of the stimulation protocol, positively correlated. ES may be effective in the management of sexual pain disorders. Further controlled studies are necessary to standardize stimulation protocols according to the severity of pain and to better clarify the long-term clinical effects of ES.

  16. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  17. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  18. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  19. Interferential electrical stimulation improves peripheral vasodilatation in healthy individuals

    Directory of Open Access Journals (Sweden)

    Francisco V. Santos

    2013-06-01

    Full Text Available BACKGROUND: Interferential electrical stimulation (IES, which may be linked to greater penetration of deep tissue, may restore blood flow by sympathetic nervous modulation; however, studies have found no association between the frequency and duration of the application and blood flow. We hypothesized that 30 min of IES applied to the ganglion stellate region might improve blood flow redistribution. OBJECTIVES: The purpose of this study was to determine the effect of IES on metaboreflex activation in healthy individuals. METHOD: Interferential electrical stimulation or a placebo stimulus (same protocol without electrical output was applied to the stellate ganglion region in eleven healthy subjects (age 25±1.3 years prior to exercise. Mean blood pressure (MBP, heart rate (HR, calf blood flow (CBF and calf vascular resistance (CVR were measured throughout exercise protocols (submaximal static handgrip exercise and with recovery periods with or without postexercise circulatory occlusion (PECO+ and PECO -, respectively. Muscle metaboreflex control of calf vascular resistance was estimated by subtracting the area under the curve when circulation was occluded from the area under the curve from the AUC without circulatory occlusion. RESULTS: At peak exercise, increases in mean blood pressure were attenuated by IES (p<0.05, and the effect persisted under both the PECO+ and PECO- treatments. IES promoted higher CBF and lower CVR during exercise and recovery. Likewise, IES induced a reduction in the estimated muscle metaboreflex control (placebo, 21±5 units vs. IES, 6±3, p<0.01. CONCLUSION: Acute application of IES prior to exercise attenuates the increase in blood pressure and vasoconstriction during exercise and metaboreflex activation in healthy subjects.

  20. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete

    2017-06-01

    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  1. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  2. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  3. Development of Functional Electrical Stimulation Rowing: The Rowstim Series.

    Science.gov (United States)

    Andrews, Brian; Gibbons, Robin; Wheeler, Garry

    2017-11-01

    Potentially, functional electrical stimulation (FES)-assisted exercise may have an important therapeutic role in reducing comorbidities associated with spinal cord injury (SCI). Here, we present an overview of these secondary life-threatening conditions, discuss the rationale behind the development of a hybrid exercise called FES rowing, and describe our experience in developing FES rowing technology. FES rowing and sculling are unique forms of adaptive rowing for those with SCI. The paralyzed leg musculature is activated by multiple channels of electrical pulses delivered via self-adhesive electrodes attached to the skin. The stimulated muscle contractions are synchronized with voluntary rowing movements of the upper limbs. A range of steady-state FES rowing exercise intensities have been demonstrated from 15.2 ± 1.8 mL/kg/min in tetraplegia to 22.9 ±7.1 mL/kg/min in paraplegia. We expect that such high levels may help some to achieve significant reductions in the risks to their health, particularly where a dose-response relationship exists as is the case for cardiovascular disease and Type II diabetes. Furthermore, preliminary results suggest that cyclical forces more than 1.5 times body weight are imposed on the leg long bones which may help to reduce the risk of fragility fractures. We have demonstrated the feasibility of FES rowing on land and water using adapted rowing technology that includes; a fixed stretcher indoor ergometer (adapted Concept 2, Model E), a floating stretcher indoor ergometer (adapted Concept 2 Dynamic), a turbine powered water rowing tank, a custom hydraulic sculling simulator and a single scull (adapted Alden 16). This has involved volunteers with paraplegia and tetraplegia with SCI ranging from C4 to T12 AIS A using at least 4-channels of surface electrical stimulation. FES rowers, with SCI, have competed alongside non-SCI rowers over the Olympic distance of 2000 m at the British Indoor Rowing Championships in 2004, 2005, and 2006

  4. Subthalamic nucleus stimulation impairs emotional conflict adaptation in Parkinson's disease.

    Science.gov (United States)

    Irmen, Friederike; Huebl, Julius; Schroll, Henning; Brücke, Christof; Schneider, Gerd-Helge; Hamker, Fred H; Kühn, Andrea A

    2017-10-01

    The subthalamic nucleus (STN) occupies a strategic position in the motor network, slowing down responses in situations with conflicting perceptual input. Recent evidence suggests a role of the STN in emotion processing through strong connections with emotion recognition structures. As deep brain stimulation (DBS) of the STN in patients with Parkinson's disease (PD) inhibits monitoring of perceptual and value-based conflict, STN DBS may also interfere with emotional conflict processing. To assess a possible interference of STN DBS with emotional conflict processing, we used an emotional Stroop paradigm. Subjects categorized face stimuli according to their emotional expression while ignoring emotionally congruent or incongruent superimposed word labels. Eleven PD patients ON and OFF STN DBS and eleven age-matched healthy subjects conducted the task. We found conflict-induced response slowing in healthy controls and PD patients OFF DBS, but not ON DBS, suggesting STN DBS to decrease adaptation to within-trial conflict. OFF DBS, patients showed more conflict-induced slowing for negative conflict stimuli, which was diminished by STN DBS. Computational modelling of STN influence on conflict adaptation disclosed DBS to interfere via increased baseline activity. © The Author (2017). Published by Oxford University Press.

  5. Prolonged fasting impairs neural reactivity to visual stimulation.

    Science.gov (United States)

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  6. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... of proinflammatory cytokines compared with young men, but this difference was blurred by ageing. No relation was found between circulating plasma levels of TNF-alpha and levels after in vitro LPS stimulation. In conclusion, decreased production of TNF-alpha and IL-1 beta after exposure to LPS may reflect impaired...

  7. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  8. Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Wijkstra, H.; van Kerrebroeck, P. E.; Debruyne, F. M.

    1997-01-01

    Electrical sacral nerve root stimulation can be used in spinal cord injury patients to induce urinary bladder contraction. However, existing stimulation methods activate simultaneously both the detrusor muscle and the urethral sphincter. Urine evacuation is therefore only possible using poststimulus

  9. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  10. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  11. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  12. Biceps brachii muscle oxygenation in electrical muscle stimulation.

    Science.gov (United States)

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

  13. Electrical stimulation enhances sensory recovery: a randomized controlled trial.

    Science.gov (United States)

    Wong, Joshua N; Olson, Jaret L; Morhart, Michael J; Chan, K Ming

    2015-06-01

    Brief postsurgical electrical stimulation (ES) has been shown to enhance peripheral nerve regeneration in animal models following axotomy and crush injury. However, whether this treatment is beneficial in humans with sensory nerve injury has not been tested. The goal of this study was to test the hypothesis that ES would enhance sensory nerve regeneration following digital nerve transection compared to surgery alone. Patients with complete digital nerve transection underwent epineurial nerve repair. After coaptation of the severed nerve ends, fine wire electrodes were implanted before skin closure. Postoperatively, patients were randomized to receiving either 1 hour of 20Hz continuous ES or sham stimulation in a double-blinded manner. Patients were followed monthly for 6 months by a blinded evaluator to monitor physiological recovery of spatial discrimination, pressure threshold, and quantitative small fiber sensory testing. Functional disability was measured using the Disability of Arm, Shoulder, and Hand questionnaire. A total of 36 patients were recruited, with 18 in each group. Those in the ES group showed consistently greater improvements in all sensory modalities by 5 to 6 months postoperatively compared to the controls. Although there was a trend of greater functional improvements in the ES group, it was not statistically significant (p > 0.01). Postsurgical ES enhanced sensory reinnervation in patients who sustained complete digital nerve transection. The conferred benefits apply to a wide range of sensory functions. © 2015 American Neurological Association.

  14. The value of electrical stimulation as an exercise training modality

    Science.gov (United States)

    Currier, Dean P.; Ray, J. Michael; Nyland, John; Noteboom, Tim

    1994-01-01

    Voluntary exercise is the traditional way of improving performance of the human body in both the healthy and unhealthy states. Physiological responses to voluntary exercise are well documented. It benefits the functions of bone, joints, connective tissue, and muscle. In recent years, research has shown that neuromuscular electrical stimulation (NMES) simulates voluntary exercise in many ways. Generically, NMES can perform three major functions: suppression of pain, improve healing of soft tissues, and produce muscle contractions. Low frequency NMES may gate or disrupt the sensory input to the central nervous system which results in masking or control of pain. At the same time NMES may contribute to the activation of endorphins, serotonin, vasoactive intestinal polypeptides, and ACTH which control pain and may even cause improved athletic performances. Soft tissue conditions such as wounds and inflammations have responded very favorably to NMES. NMES of various amplitudes can induce muscle contractions ranging from weak to intense levels. NMES seems to have made its greatest gains in rehabilitation where directed muscle contractions may improve joint ranges of motion correct joint contractures that result from shortening muscles; control abnormal movements through facilitating recruitment or excitation into the alpha motoneuron in orthopedically, neurologically, or healthy subjects with intense sensory, kinesthetic, and proprioceptive information; provide a conservative approach to management of spasticity in neurological patients; by stimulation of the antagonist muscle to a spastic muscle stimulation of the agonist muscle, and sensory habituation; serve as an orthotic substitute to conventional bracing used with stroke patients in lieu of dorsiflexor muscles in preventing step page gait and for shoulder muscles to maintain glenohumeral alignment to prevent subluxation; and of course NMES is used in maintaining or improving the performance or torque producing

  15. Necessity of electrically conductive pili for methanogenesis with magnetite stimulation

    Directory of Open Access Journals (Sweden)

    Oumei Wang

    2018-03-01

    Full Text Available Background Magnetite-mediated direct interspecies electron transfer (DIET between Geobacter and Methanosarcina species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite have only been inferred in methanogenic systems. Methods Concentrations of methane and organic acid were analysed with a gas chromatograph and high-performance liquid chromatography, respectively. The concentration of HCl-extractable Fe(II was determined by the ferrozine method. The association of the defined co-cultures of G. metallireducens and M. barkeri with magnetite was observed with transmission electron micrographs. Results Magnetite stimulated ethanol metabolism and methane production in defined co-cultures of G. metallireducens and M. barkeri; however, magnetite did not promote methane production in co-cultures initiated with a culture of G. metallireducens that could not produce electrically conductive pili (e-pili, unlike the conductive carbon materials that facilitate DIET in the absence of e-pili. Transmission electron microscopy revealed that G. metallireducens and M. barkeri were closely associated when magnetite was present, as previously observed in G. metallireducens/G. sulfurreducens co-cultures. These results show that magnetite can promote DIET between Geobacter and Methanosarcina species, but not as a substitute for e-pili, and probably functions to facilitate electron transfer from the e-pili to Methanosarcina. Conclusion In summary, the e-pili are necessary for the stimulation of not only G. metallireducens/G. sulfurreducens, but also methanogenic G. metallireducens/M. barkeri co-cultures with magnetite.

  16. High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.

    Science.gov (United States)

    Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M

    2018-03-16

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.

  17. Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    Science.gov (United States)

    Gadsby, J G; Flowerdew, M W

    2000-01-01

    Transcutaneous electrical nerve stimulation (TENS), originally based on the gate-control theory of pain, is widely used for the treatment of chronic low back pain. Despite its wide use and theoretical rationale, there appears at first glance little scientific evidence to support its use. This Cochrane review examines the available evidence on TENS for the treatment of chronic back pain through an exhaustive search of the literature. Transcutaneous electrical nerve stimulation (TENS) and acupuncture-like transcutaneous electrical nerve stimulation (ALTENS) for chronic low back pain management have experienced a tremendous growth over the past 25 years. The objective of this review was to assess the effects of TENS and ALTENS for reducing pain and improving function in patients with chronic back pain. We searched MEDLINE up to November 1997, EMBASE from 1985 to September 1995, Amed and Ciscom to January 1995, reference lists of the retrieved articles, proceedings of conferences and contacted investigators in the field. Randomised trials comparing TENS or ALTENS therapy to placebo in patients with chronic low back pain. Two reviewers independently assessed trial quality and extracted data on pain reduction, range of movement, functional and work status. Six trials were included. The trials included 288 participants with an average age range of 45 to 50 years and approximately equal numbers of women and men. The overall odds ratio for improvement in pain for each comparison was: TENS/ALTENS versus placebo 2.11 (95% confidence interval 1.32 to 3. 38), ALTENS versus placebo 7.22 (95% confidence interval 2.60 to 20.01) and TENS versus placebo 1.52 (95% confidence interval 0.90 to 2.58). The odds ration for improvement in range of motion on ALTENS versus placebo was 6.61 (95% confidence interval 2.36 to 18.55). There is evidence from the limited data available that TENS/ALTENS reduces pain and improves range of motion in chronic back pain patients, at least in the short

  18. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    Science.gov (United States)

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Control system design for electrical stimulation in upper limb rehabilitation modelling, identification and robust performance

    CERN Document Server

    Freeman, Chris

    2016-01-01

    This book presents a comprehensive framework for model-based electrical stimulation (ES) controller design, covering the whole process needed to develop a system for helping people with physical impairments perform functional upper limb tasks such as eating, grasping and manipulating objects. The book first demonstrates procedures for modelling and identifying biomechanical models of the response of ES, covering a wide variety of aspects including mechanical support structures, kinematics, electrode placement, tasks, and sensor locations. It then goes on to demonstrate how complex functional activities of daily living can be captured in the form of optimisation problems, and extends ES control design to address this case. It then lays out a design methodology, stability conditions, and robust performance criteria that enable control schemes to be developed systematically and transparently, ensuring that they can operate effectively in the presence of realistic modelling uncertainty, physiological variation an...

  20. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    Science.gov (United States)

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  1. Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke

    Science.gov (United States)

    Scutt, Polly; Love, Jo; Clavé, Pere; Cohen, David; Dziewas, Rainer; Iversen, Helle K.; Ledl, Christian; Ragab, Suzanne; Soda, Hassan; Warusevitane, Anushka; Woisard, Virginie; Hamdy, Shaheen

    2016-01-01

    Background and Purpose— Dysphagia is common after stroke, associated with increased death and dependency, and treatment options are limited. Pharyngeal electric stimulation (PES) is a novel treatment for poststroke dysphagia that has shown promise in 3 pilot randomized controlled trials. Methods— We randomly assigned 162 patients with a recent ischemic or hemorrhagic stroke and dysphagia, defined as a penetration aspiration score (PAS) of ≥3 on video fluoroscopy, to PES or sham treatment given on 3 consecutive days. The primary outcome was swallowing safety, assessed using the PAS, at 2 weeks. Secondary outcomes included dysphagia severity, function, quality of life, and serious adverse events at 6 and 12 weeks. Results— In randomized patients, the mean age was 74 years, male 58%, ischemic stroke 89%, and PAS 4.8. The mean treatment current was 14.8 (7.9) mA and duration 9.9 (1.2) minutes per session. On the basis of previous data, 45 patients (58.4%) randomized to PES seemed to receive suboptimal stimulation. The PAS at 2 weeks, adjusted for baseline, did not differ between the randomized groups: PES 3.7 (2.0) versus sham 3.6 (1.9), P=0.60. Similarly, the secondary outcomes did not differ, including clinical swallowing and functional outcome. No serious adverse device-related events occurred. Conclusions— In patients with subacute stroke and dysphagia, PES was safe but did not improve dysphagia. Undertreatment of patients receiving PES may have contributed to the neutral result. Clinical Trial Registration— URL: http://www.controlled-trials.com. Unique identifier: ISRCTN25681641. PMID:27165955

  2. Development of a neuromuscular electrical stimulation protocol for sprint training.

    Science.gov (United States)

    Russ, David W; Clark, Brian C; Krause, Jodi; Hagerman, Fredrick C

    2012-09-01

    Sprint training is associated with several beneficial adaptations in skeletal muscle, including an enhancement of sarcoplasmic reticulum (SR) Ca(2+) release. Unfortunately, several patient populations (e.g., the elderly, those with cardiac dysfunction) that might derive great benefit from sprint exercise are unlikely to tolerate it. The purpose of this report was to describe the development of a tolerable neuromuscular electrical stimulation (NMES) protocol that induces skeletal muscle adaptations similar to those observed with sprint training. Our NMES protocol was modeled after a published sprint exercise protocol and used a novel electrode configuration and stimulation sequence to provide adequate training stimulus while maintaining subject tolerance. Nine young, healthy subjects (four men) began and completed the training protocol of the knee extensor muscles. All subjects completed the protocol, with ratings of discomfort far less than those reported in studies of traditional NMES. Training induced significant increases in SR Ca(2+) release and citrate synthase activity (~16% and 32%, respectively), but SR Ca(2+) uptake did not change. The percentage of myosin heavy chain IIx isoform was decreased significantly after training. At the whole muscle level, neither central activation nor maximum voluntary isometric contraction force were significantly altered, although isometric force did exhibit a trend toward an increase (~3%, P = 0.055). Surprisingly, the NMES training produced a significant increase in muscle cross-sectional area (~3%, P = 0.04). It seems that an appropriately designed NMES protocol can mimic many of the benefits of sprint exercise training, with a low overall time commitment and training volume. These findings suggest that NMES has the potential to bring the benefits of sprint exercise to individuals who are unable to tolerate traditional sprint training.

  3. Blue-yellow colour vision impairment and cognitive deficits in occasional and dependent stimulant users.

    Science.gov (United States)

    Hulka, Lea M; Wagner, Michael; Preller, Katrin H; Jenni, Daniela; Quednow, Boris B

    2013-04-01

    Specific blue-yellow colour vision impairment has been reported in dependent cocaine users and it was postulated that drug-induced changes in retinal dopamine neurotransmission are responsible. However, it is unclear whether these changes are confined to chronic cocaine users, whether they are specific for dopaminergic stimulants such as cocaine and amphetamine and whether they are related to cognitive functions such as working memory, encoding and consolidation. In 47 occasional and 29 dependent cocaine users, 23 MDMA (commonly known as 'ecstasy') users and 47 stimulant-naive controls, colour vision discrimination was measured with the Lanthony Desaturated Panel D-15 Test and memory performance with the Auditory Verbal Learning Test. Both occasional and dependent cocaine users showed higher colour confusion indices than controls. Users of the serotonergic stimulant MDMA (26%), occasional (30%) and dependent cocaine users (34%) exhibited more frequent blue-yellow colour vision disorders compared to controls (9%). Inferior performance of MDMA users was caused by a subgroup with high amphetamine co-use (55%), while MDMA use alone was not associated with decreased blue-yellow discrimination (0%). Cognitive performance was worse in cocaine users with colour vision disorder compared to users and controls with intact colour vision and both colour vision impairment and cognitive deficits were related to cocaine use. Occasional cocaine and amphetamine use might induce blue-yellow colour vision impairment, whereas the serotonergic stimulant MDMA does not impair colour vision. The association between colour vision impairment and cognitive deficits in cocaine users may reflect that retinal and cerebral dopamine alterations are linked to a certain degree.

  4. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  5. Transcutaneous periorbital electrical stimulation in the treatment of dry eye.

    Science.gov (United States)

    Pedrotti, Emilio; Bosello, Francesca; Fasolo, Adriano; Frigo, Anna C; Marchesoni, Ivan; Ruggeri, Alfredo; Marchini, Giorgio

    2017-06-01

    To evaluate efficacy and safety of transcutaneous application of electrical current on symptoms and clinical signs of dry eye (DE). 27 patients with DE underwent transcutaneous electrostimulation with electrodes placed onto the periorbital region of both eyes and manual stimulation with a hand-piece conductor moved by the operator. Each patient underwent 12 sessions of 22 min spread over 2 months, two sessions per week in the first month and one session per week in the second month. Ocular Surface Disease Index (OSDI) questionnaire, tear break-up time (TBUT), fluorescein staining of the cornea, Schirmer I test and adverse events were evaluated at baseline, at end of treatment and at 6 and 12 months. OSDI improved from 43.0±19.2 at baseline to 25.3±22.1 at end of treatment (mean±SD, p=0.001). These effects were substantially maintained at 6-month and 12-month follow-up evaluations. Improvement of the values of TBUT was recorded for the right eye at the end of treatment (p=0.003) and found in the left eye after 12 months (p=0.02). The Oxford scores changed in both eyes at the end of treatment and at the 6-month evaluation (peye at the 12-month evaluation (p=0.035). Schirmer I improved significantly at the end of treatment in the left eye (p=0.001) and in both eyes at the 12-month evaluation (p=0.004 and p=0.039 for the left and right eye, respectively). A significant reduction of the use of tear substitutes was found at the end of treatment (p=0.003), and was maintained during the follow-up (ptreatment satisfying. Transcutaneous electrical stimulation was shown to improve DE, both subjectively and objectively, without any adverse effects and has the potential to enlarge the armamentarium for treating DE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Electrical vestibular stimulation after vestibular deafferentation and in vestibular schwannoma.

    Directory of Open Access Journals (Sweden)

    Swee Tin Aw

    Full Text Available BACKGROUND: Vestibular reflexes, evoked by human electrical (galvanic vestibular stimulation (EVS, are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas. METHODS: EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0] mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD, 12 unilateral vestibular deafferented (UVD, four unilateral vestibular schwannoma (UVS patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS. RESULTS: After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response. CONCLUSIONS: The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.

  7. Electrical field stimulation promotes anastomotic healing in poorly perfused rat colon.

    LENUS (Irish Health Repository)

    Kennelly, Rory

    2011-03-01

    Hypoperfusion of the bowel is a risk factor for anastomotic failure. Electrical field stimulation has been shown to improve repair in ischemic tissue, but its influence in hypoperfused colon has not been investigated. The hypothesis of this experimental animal study was that electrical field stimulation improves anastomotic healing in ischemic bowel.

  8. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  9. Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.

    Science.gov (United States)

    Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F

    2017-04-01

    In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.

  10. Colon electrical stimulation: potential use for treatment of obesity.

    Science.gov (United States)

    Sallam, Hanaa S; Chen, Jiande D Z

    2011-09-01

    Obesity is one of the most prevalent health problems in the United States. Current therapeutic strategies for the treatment of obesity are unsatisfactory. We hypothesized the use of colon electrical stimulation (CES) to treat obesity by inhibiting upper gastrointestinal motility. In this preliminary study, we aimed at studying the effects of CES on gastric emptying of solid, intestinal motility, and food intake in dogs. Six dogs, equipped with serosal colon electrodes and a jejunal cannula, were randomly assigned to receive sham-CES or CES during the assessment of: (i) gastric emptying of solids, (ii) postprandial intestinal motility, (iii) autonomic functions, and (iv) food intake. We found that (i) CES delayed gastric emptying of solids by 77%. Guanethidine partially blocked the inhibitory effect of CES on solid gastric emptying; (ii) CES significantly reduced intestinal contractility and the effect lasted throughout the recovery period; (iii) CES decreased vagal activity in both fasting and fed states, increased the sympathovagal balance and marginally increased sympathetic activity in the fasting state; (iv) CES resulted in a reduction of 61% in food intake. CES reduces food intake in healthy dogs and the anorexigenic effect may be attributed to its inhibitory effects on gastric emptying and intestinal motility, mediated via the autonomic mechanisms. Further studies are warranted to investigate the therapeutic potential of CES for obesity.

  11. Transcutaneous electrical nerve stimulation therapy in reduction of orofacial pain

    Directory of Open Access Journals (Sweden)

    Đorđević Igor

    2014-01-01

    Full Text Available Introduction. Patients with craniomandibular disorders suffer from hypertonic, fatigued and painful masticatory muscles. This condition can lead to limitation of mandibular jaw movements. All of these symptoms and signs are included in myofascial pain dysfunction syndrome. Transcutaneous electrical nerve stimulation (TENS has been used for treatment of these patients. Objective. The aim of this study was to assess the effect of TENS therapy on chronic pain reduction in patients with the muscular dysfunction symptom. Methods. In order to evaluate the effect of TENS therapy before and after the treatment, Craniomandibular Index (Helkimo was used. Pain intensity was measured by VAS. Patients had TENS treatment over two-week period. BURST TENS modality was used. Current intensity was individually adjusted. Results. Two patients did not respond to TENS therapy. Complete pain reduction was recorded in 8 patients, while pain reduction was not significantly different after TENS therapy in 10 patients. Conclusion. TENS therapy was confirmed as therapeutic procedure in orofacial muscle relaxation and pain reduction.

  12. Effects of pharyngeal electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takeishi, Ryosuke; Magara, Jin; Watanabe, Masahiro; Tsujimura, Takanori; Hayashi, Hirokazu; Hori, Kazuhiro; Inoue, Makoto

    2018-01-01

    Pharyngeal electrical stimulation (PEStim) has been found to facilitate voluntary swallowing. This study investigated how PEStim contributed to modulation of swallowing function in 15 healthy humans. In the involuntary swallowing test, water was injected onto the pharynx at 0.05 ml/s and the onset latency of the first swallow was measured. In the voluntary swallowing test, subjects swallowed their own saliva as quickly as possible for 30 s and the number of swallows was counted. Voluntary and involuntary swallowing was evaluated before (baseline), immediately after, and every 10 min after 10-min PEStim for 60 min. A voluntary swallowing test with simultaneous 30-s PEStim was also conducted before and 60 min after 10-min PEStim. The number of voluntary swallows with simultaneous PEStim significantly increased over 60 min after 10-min PEStim compared with the baseline. The onset latency of the first swallow in the involuntary swallowing test was not affected by 10-min PEStim. The results suggest that PEStim may have a long-term facilitatory effect on the initiation of voluntary swallowing in healthy humans, but not on peripherally-evoked swallowing. The physiological implications of this modulation are discussed.

  13. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  14. Transcutaneous electrical nerve stimulation improves low back pain during pregnancy.

    Science.gov (United States)

    Keskin, E A; Onur, O; Keskin, H L; Gumus, I I; Kafali, H; Turhan, N

    2012-01-01

    To compare the efficiency of transcutaneous electrical nerve stimulation (TENS) with those of exercise and acetaminophen for the treatment of pregnancy-related low back pain (LBP) during the third trimester of pregnancy. This prospective study included 79 subjects (≥32 gestational weeks) with visual analog scale (VAS) pain scores ≥5. Participants were divided randomly into a control group (n = 21) and three treatment groups [exercise (n = 19); acetaminophen (n = 19); TENS (n = 20)]. The VAS and the Roland-Morris disability questionnaire (RMDQ) were completed before and 3 weeks after treatment to assess the impact of pain on daily activities. During the study period, pain intensity increased in 57% of participants in the control group, whereas pain decreased in 95% of participants in the exercise group and in all participants in the acetaminophen and TENS groups. Post-treatment VAS and RMDQ values were significantly lower in the treatment groups (p pain relief in the TENS group than in the exercise and acetaminophen groups (p TENS application on pregnant women was observed during the study. TENS is an effective and safe treatment modality for LBP during pregnancy. TENS improved LBP more effectively than did exercise and acetaminophen. Copyright © 2012 S. Karger AG, Basel.

  15. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  16. Feedback controlled electrical nerve stimulation: a computer simulation.

    Science.gov (United States)

    Doruk, R Ozgur

    2010-07-01

    The role of repetitive firing in neurophysiologic or neuropsychiatric disorders, such as Parkinson, epilepsy and bipolar type disorders, has always been a topic of medical research as therapies target either the cease of firing or a decrease in its frequency. In electrotherapy, one of the mechanisms to achieve the purpose in point is to apply a low density electric current to the nervous system. In this study, a computer simulation is provided of a treatment in which the stimulation current is computed by nerve fiber cell membrane potential feedback so that the level of the current is automatically instead of manually adjusted. The behavior of the nerve cell is represented by the Hodgkin-Huxley (HH) model, which is slightly modified into a linear model with state dependent coefficients. Due to this modification, the algebraic and differential Riccati equations can be applied, which allows an optimal controller minimizing a quadratic performance index given by the user. Using a controlled current injection can decrease unnecessarily long current injection times that may be harmful to the neuronal network. This study introduces a prototype for a possible future application to a network of neurons as it is more realistic than a single neuron. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Videoradiography at submental electrical stimulation during apnea in obstructive sleep apnea syndrome

    International Nuclear Information System (INIS)

    Hillarp, B.; Rosen, I.; Wickstroem, O.; Malmoe Allmaenna Sjukhus

    1991-01-01

    Percutaneous submental electrical stimulation during sleep may be a new therapeutic method for patients with obstructive sleep apnea syndrome (OSAS). Electrical stimulation to the submental region during obstructive apnea is reported to break the apnea without arousal and to diminish apneic index, time spent in apnea, and oxygen desaturation. The mode of breaking the apnea by electrical stimulation has not yet been shown. However, genioglossus is supposed to be the muscle responsible for breaking the apnea by forward movement of the tongue. To visualize the effect of submental electrical stimulation, one patient with severe OSAS has been examined with videoradiography. Submental electrical stimulation evoked an immediate complex muscle activity in the tongue, palate, and hyoid bone. This was followed by a forward movement of the tongue which consistently broke obstructive apnea without apparent arousal. Time spent in apnea was diminished but intervals between apnea were not affected. (orig.)

  18. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  19. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    Science.gov (United States)

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  20. Psychophysical Evaluation of Subdermal Electrical Stimulation in Relation to Prosthesis Sensory Feedback.

    Science.gov (United States)

    Geng, Bo; Dong, Jian; Jensen, Winnie; Dosen, Strahinja; Farina, Dario; Kamavuako, Ernest Nlandu

    2018-03-01

    This paper evaluated the psychophysical properties of subdermal electrical stimulation to investigate its feasibility in providing sensory feedback for limb prostheses. The detection threshold (DT), pain threshold (PT), just noticeable difference (JND), as well as the elicited sensation quality, comfort, intensity, and location were assessed in 16 healthy volunteers during stimulation of the ventral and dorsal forearm with subdermal electrodes. Moreover, the results were compared with those obtained from transcutaneous electrical stimulation. Despite a lower DT and PT, subdermal stimulation attained a greater relative dynamic range (i.e., PT/DT) and significantly smaller JNDs for stimulation amplitude. Muscle twitches and movements were more commonly elicited by surface stimulation, especially at the higher stimulation frequencies, whereas the pinprick sensation was more often reported with subdermal stimulation. Less comfort was perceived in subdermal stimulation of the ventral forearm at the highest tested stimulation frequency of 100 Hz. In summary, subdermal electrical stimulation was demonstrated to be able to produce similar sensation quality as transcutaneous stimulation and outperformed the latter in terms of energy efficiency and sensitivity. These results suggest that stimulation through implantable subdermal electrodes may lead to an efficient and compact sensory feedback system for substituting the lost sense in amputees.

  1. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  2. Electrical and optical co-stimulation in the deaf white cat

    Science.gov (United States)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  3. A Novel In Vitro System for Comparative Analyses of Bone Cells and Bacteria under Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Josef Dauben

    2016-01-01

    Full Text Available Electrical stimulation is a promising approach to enhance bone regeneration while having potential to inhibit bacterial growth. To investigate effects of alternating electric field stimulation on both human osteoblasts and bacteria, a novel in vitro system was designed. Electric field distribution was simulated numerically and proved by experimental validation. Cells were stimulated on Ti6Al4V electrodes and in short distance to electrodes. Bacterial growth was enumerated in supernatant and on the electrode surface and biofilm formation was quantified. Electrical stimulation modulated gene expression of osteoblastic differentiation markers in a voltage-dependent manner, resulting in significantly enhanced osteocalcin mRNA synthesis rate on electrodes after stimulation with 1.4VRMS. While collagen type I synthesis increased when stimulated with 0.2VRMS, it decreased after stimulation with 1.4VRMS. Only slight and infrequent influence on bacterial growth was observed following stimulations with 0.2VRMS and 1.4VRMS after 48 and 72 h, respectively. In summary this novel test system is applicable for extended in vitro studies concerning definition of appropriate stimulation parameters for bone cell growth and differentiation, bacterial growth suppression, and investigation of general effects of electrical stimulation.

  4. Transcutaneous electrical nerve stimulation (TENS) for pain management in labour

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2014-01-01

    Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No

  5. Transcutaneous electrical nerve stimulation (TENS) for pain relief in labour.

    Science.gov (United States)

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2009-04-15

    Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. The TENS unit is frequently operated by women, which may increase sense of control in labour. To assess the effects of TENS on pain in labour. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (November 2008). Randomised controlled trials comparing women receiving TENS for pain relief in labour versus routine care, alternative pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. The search identified 25 studies; we excluded six and included 19 studies including 1671 women. Fifteen examined TENS applied to the back, two to acupuncture points and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (risk ratio 0.41, 95% confidence interval 0.32 to 0.55). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No adverse events were reported. There is only limited evidence that TENS reduces pain in labour and it does not seem to have any impact (either positive or

  6. Gastric electrical stimulation for treatment of clinically severe gastroparesis

    Directory of Open Access Journals (Sweden)

    Naga Venkatesh G Jayanthi

    2013-01-01

    Full Text Available Background: Severe, drug-resistant gastroparesis is a debilitating condition. Several, but not all, patients can get significant relief from nausea and vomiting by gastric electrical stimulation (GES. A trial of temporary, endoscopically delivered GES may be of predictive value to select patients for laparoscopic-implantation of a permanent GES device. Materials and Methods: We conducted a clinical audit of consecutive gastroparesis patients, who had been selected for GES, from May 2008 to January 2012. Delayed gastric emptying was diagnosed by scintigraphy of ≥50% global improvement in symptom-severity and well-being was a good response. Results: There were 71 patients (51 women, 72% with a median age of 42 years (range: 14-69. The aetiology of gastroparesis was idiopathic (43 patients, 61%, diabetes (15, 21%, or post-surgical (anti-reflux surgery, 6 patients; Roux-en-Y gastric bypass, 3; subtotal gastrectomy, 1; cardiomyotomy, 1; other gastric surgery, 2 (18%. At presentation, oral nutrition was supplemented by naso-jejunal tube feeding in 7 patients, surgical jejunostomy in 8, or parenterally in 1 (total 16 patients; 22%. Previous intervention included endoscopic injection of botulinum toxin (botox into the pylorus in 16 patients (22%, pyloroplasty in 2, distal gastrectomy in 1, and gastrojejunostomy in 1. It was decided to directly proceed with permanent GES in 4 patients. Of the remaining, 51 patients have currently completed a trial of temporary stimulation and 39 (77% had a good response and were selected for permanent GES, which has been completed in 35 patients. Outcome data are currently available for 31 patients (idiopathic, 21 patients; diabetes, 3; post-surgical, 7 with a median follow-up period of 10 months (1-28; 22 patients (71% had a good response to permanent GES, these included 14 (68% with idiopathic, 5 (71% with post-surgical, and remaining 3 with diabetic gastroparesis. Conclusions: Overall, 71% of well-selected patients

  7. Feasibility of using Lokomat combined with functional electrical stimulation for the rehabilitation of foot drop

    Directory of Open Access Journals (Sweden)

    Christian B. Laursen

    2016-08-01

    Full Text Available This study investigated the clinical feasibility of combining the electromechanical gait trainer Lokomat with functional electrical therapy (LokoFET, stimulating the common peroneal nerve during the swing phase of the gait cycle to correct foot drop as an integrated part of gait therapy. Five patients with different acquired brain injuries trained with LokoFET 2-3 times a week for 3-4 weeks. Pre- and post-intervention evaluations were performed to quantify neurophysiological changes related to the patients’ foot drop impairment during the swing phase of the gait cycle. A semi-structured interview was used to investigate the therapists’ acceptance of LokoFET in clinical practice. The patients showed a significant increase in the level of activation of the tibialis anterior muscle and the maximal dorsiflexion during the swing phase, when comparing the pre- and post-intervention evaluations. This showed an improvement of function related to the foot drop impairment. The interview revealed that the therapists perceived the combined system as a useful tool in the rehabilitation of gait. However, lack of muscle selectivity relating to the FES element of LokoFET was assessed to be critical for acceptance in clinical practice.

  8. Feasibility of Using Lokomat Combined with Functional Electrical Stimulation for the Rehabilitation of Foot Drop.

    Science.gov (United States)

    Laursen, Christian B; Nielsen, Jørgen F; Andersen, Ole K; Spaich, Erika G

    2016-06-13

    This study investigated the clinical feasibility of combining the electromechanical gait trainer Lokomat with functional electrical therapy (LokoFET), stimulating the common peroneal nerve during the swing phase of the gait cycle to correct foot drop as an integrated part of gait therapy. Five patients with different acquired brain injuries trained with LokoFET 2-3 times a week for 3-4 weeks. Pre- and post-intervention evaluations were performed to quantify neurophysiological changes related to the patients' foot drop impairment during the swing phase of the gait cycle. A semi-structured interview was used to investigate the therapists' acceptance of LokoFET in clinical practice. The patients showed a significant increase in the level of activation of the tibialis anterior muscle and the maximal dorsiflexion during the swing phase, when comparing the pre- and post-intervention evaluations. This showed an improvement of function related to the foot drop impairment. The interview revealed that the therapists perceived the combined system as a useful tool in the rehabilitation of gait. However, lack of muscle selectivity relating to the FES element of LokoFET was assessed to be critical for acceptance in clinical practice.

  9. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    Science.gov (United States)

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  10. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.

    Science.gov (United States)

    Corbet, Tiffany; Iturrate, Iñaki; Pereira, Michael; Perdikis, Serafeim; Millán, José Del R

    2018-04-21

    Motor imagery (MI) has been largely studied as a way to enhance motor learning and to restore motor functions. Although it is agreed that users should emphasize kinesthetic imagery during MI, recordings of MI brain patterns are not sufficiently reliable for many subjects. It has been suggested that the usage of somatosensory feedback would be more suitable than standardly used visual feedback to enhance MI brain patterns. However, somatosensory feed-back should not interfere with the recorded MI brain pattern. In this study we propose a novel feedback modality to guide subjects during MI based on sensory threshold neuromuscular electrical stimulation (St-NMES). St-NMES depolarizes sensory and motor axons without eliciting any muscular contraction. We hypothesize that St-NMES does not induce detectable ERD brain patterns and fosters MI performance. Twelve novice subjects were included in a cross-over design study. We recorded their EEG, comparing St-NMES with visual feed-back during MI or resting tasks. We found that St-NMES not only induced significantly larger desynchronization over sensorimotor areas (p<0.05) but also significantly enhanced MI brain connectivity patterns. Moreover, classification accuracy and stability were significantly higher with St-NMES. Importantly, St-NMES alone did not induce detectable artifacts, but rather the changes in the detected patterns were due to an increased MI performance. Our findings indicate that St-NMES is a promising feedback in order to foster MI performance and cold be used for BMI online applications. Copyright © 2018. Published by Elsevier Inc.

  11. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.

    Science.gov (United States)

    Petrofsky, J; Suh, H J; Fish, A; Hernandez, V; Abdo, A; Collins, K; Mendoza, E; Yang, T-N

    2008-01-01

    When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.

  12. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults.

    Science.gov (United States)

    Gibson, William; Wand, Benedict M; O'Connell, Neil E

    2017-09-14

    Neuropathic pain, which is due to nerve disease or damage, represents a significant burden on people and society. It can be particularly unpleasant and achieving adequate symptom control can be difficult. Non-pharmacological methods of treatment are often employed by people with neuropathic pain and may include transcutaneous electrical nerve stimulation (TENS). This review supersedes one Cochrane Review 'Transcutaneous electrical nerve stimulation (TENS) for chronic pain' (Nnoaham 2014) and one withdrawn protocol 'Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults' (Claydon 2014). This review replaces the original protocol for neuropathic pain that was withdrawn. To determine the analgesic effectiveness of TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. We searched CENTRAL, MEDLINE, Embase, PsycINFO, AMED, CINAHL, Web of Science, PEDro, LILACS (up to September 2016) and various clinical trials registries. We also searched bibliographies of included studies for further relevant studies. We included randomised controlled trials where TENS was evaluated in the treatment of central or peripheral neuropathic pain. We included studies if they investigated the following: TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. Two review authors independently screened all database search results and identified papers requiring full-text assessment. Subsequently, two review authors independently applied inclusion/exclusion criteria to these studies. The same review authors then independently extracted data, assessed for risk of bias using the Cochrane standard tool and rated the quality of evidence using GRADE. We included 15 studies with 724 participants. We found a

  13. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  14. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    Science.gov (United States)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  15. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  16. The difference between electrical microstimulation and direct electrical stimulation - towards new opportunities for innovative functional brain mapping?

    Science.gov (United States)

    Vincent, Marion; Rossel, Olivier; Hayashibe, Mitsuhiro; Herbet, Guillaume; Duffau, Hugues; Guiraud, David; Bonnetblanc, François

    2016-04-01

    Both electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the 'gold standard' for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).

  17. Effects of somatosensory electrical stimulation on motor function and cortical oscillations.

    Science.gov (United States)

    Tu-Chan, Adelyn P; Natraj, Nikhilesh; Godlove, Jason; Abrams, Gary; Ganguly, Karunesh

    2017-11-13

    Few patients recover full hand dexterity after an acquired brain injury such as stroke. Repetitive somatosensory electrical stimulation (SES) is a promising method to promote recovery of hand function. However, studies using SES have largely focused on gross motor function; it remains unclear if it can modulate distal hand functions such as finger individuation. The specific goal of this study was to monitor the effects of SES on individuation as well as on cortical oscillations measured using EEG, with the additional goal of identifying neurophysiological biomarkers. Eight participants with a history of acquired brain injury and distal upper limb motor impairments received a single two-hour session of SES using transcutaneous electrical nerve stimulation. Pre- and post-intervention assessments consisted of the Action Research Arm Test (ARAT), finger fractionation, pinch force, and the modified Ashworth scale (MAS), along with resting-state EEG monitoring. SES was associated with significant improvements in ARAT, MAS and finger fractionation. Moreover, SES was associated with a decrease in low frequency (0.9-4 Hz delta) ipsilesional parietomotor EEG power. Interestingly, changes in ipsilesional motor theta (4.8-7.9 Hz) and alpha (8.8-11.7 Hz) power were significantly correlated with finger fractionation improvements when using a multivariate model. We show the positive effects of SES on finger individuation and identify cortical oscillations that may be important electrophysiological biomarkers of individual responsiveness to SES. These biomarkers can be potential targets when customizing SES parameters to individuals with hand dexterity deficits. NCT03176550; retrospectively registered.

  18. Gender effect on discrimination of location and frequency in surface electrical stimulation.

    Science.gov (United States)

    Geng, Bo; Paramanathan, Senthoopiya A; Pedersen, Karina F; Lauridsen, Mette V; Gade, Julie; Lontis, Romulus; Jensen, Winnie

    2015-01-01

    This work investigated the gender effect on discrimination of surface electrical stimulation applied on the human forearm. Three experiments were conducted to examine the abilty of discriminating stimulation frequency, location, or both parameters in 14 healthy subjects. The results indicated a statistically significant impact of gender on the discrimination performance in all the three experiments (p gender difference in perceiving and interpreting electrical stimulation. Considering the gender difference may improve the efficacy of electrically evoked sensory feedback in applications such as prosthetic use and pain relief.

  19. Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Ramiro Velázquez

    2015-01-01

    Full Text Available Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.

  20. Transcutaneous electrical nerve stimulation (TENS) for chronic low back pain.

    Science.gov (United States)

    Milne, S; Welch, V; Brosseau, L; Saginur, M; Shea, B; Tugwell, P; Wells, G

    2001-01-01

    Low back pain (LBP) affects a large proportion of the population. Transcutaneous electrical nerve stimulation (TENS) was introduced more than 30 years ago as an alternative therapy to pharmacological treatments for chronic pain. However, despite its widespread use, the effectiveness of TENS is still controversial. The aim of this systematic review was to determine the efficacy of TENS in the treatment of chronic LBP. We searched MEDLINE, EMBASE, PEDro and the Cochrane Controlled Trials Register up to June 1, 2000. Only randomized controlled clinical trials of TENS for the treatment of patients with a clinical diagnosis of chronic LBP were included. Abstracts were excluded unless further data could be obtained from the authors. Two reviewers independently selected trials and extracted data using predetermined forms. Heterogeneity was tested with Cochran's Q test. A fixed effects model was used throughout for continuous variables, except where heterogeneity existed, in which case, a random effects model was used. Results are presented as weighted mean differences (WMD) with 95% confidence intervals (95% CI), where the difference between the treated and control groups was weighted by the inverse of the variance. Standardized mean differences (SMD) were calculated by dividing the difference between the treated and control by the baseline variance. SMD were used when different scales were used to measure the same concept. Dichotomous outcomes were analyzed with odds ratios. Five trials were included, with 170 subjects randomized to the placebo group receiving sham-TENS and 251 subjects receiving active TENS (153 for conventional mode, 98 for acupuncture-like TENS). The schedule of treatments varied greatly between studies ranging from one treatment/day for two consecutive days, to three treatments/day for four weeks. There were no statistically significant differences between the active TENS group when compared to the placebo TENS group for any outcome measures

  1. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    International Nuclear Information System (INIS)

    Miranda, P C; Correia, L; Salvador, R; Basser, P J

    2007-01-01

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m -1 to 0.333 S m -1 , simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation

  2. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  3. Hypoalgesia in response to transcutaneous electrical nerve stimulation (TENS) depends on stimulation intensity.

    Science.gov (United States)

    Moran, Fidelma; Leonard, Tracey; Hawthorne, Stephanie; Hughes, Ciara M; McCrum-Gardner, Evie; Johnson, Mark I; Rakel, Barbara A; Sluka, Kathleen A; Walsh, Deirdre M

    2011-08-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrophysical modality used for pain management. This study investigated the dose response of different TENS intensities on experimentally induced pressure pain. One hundred and thirty TENS naïve healthy individuals (18-64 years old; 65 males, 65 females) were randomly allocated to 5 groups (n = 26 per group): Strong Non Painful TENS; Sensory Threshold TENS; Below Sensory Threshold TENS; No Current Placebo TENS; and Transient Placebo TENS. Active TENS (80 Hz) was applied to the forearm for 30 minutes. Transient Placebo TENS was applied for 42 seconds after which the current amplitude automatically reset to 0 mA. Pressure pain thresholds (PPT) were recorded from 2 points on the hand and forearm before and after TENS to measure hypoalgesia. There were significant differences between groups at both the hand and forearm (ANOVA; P = .005 and .002). At 30 minutes, there was a significant hypoalgesic effect in the Strong Non Painful TENS group compared to: Below Sensory Threshold TENS, No Current Placebo TENS and Transient Placebo TENS groups (P TENS and No Current Placebo TENS groups at the hand (P = .001). There was no significant difference between Strong Non Painful TENS and Sensory Threshold TENS groups. The area under the curve for the changes in PPT significantly correlated with the current amplitude (r(2) = .33, P = .003). These data therefore show that there is a dose-response effect of TENS with the largest effect occurring with the highest current amplitudes. This study shows a dose response for the intensity of TENS for pain relief with the strongest intensities showing the greatest effect; thus, we suggest that TENS intensity should be titrated to achieve the strongest possible intensity to achieve maximum pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Mild electrical stimulation with heat stimulation increase heat shock protein 70 in articular chondrocyte.

    Science.gov (United States)

    Hiraoka, Nobuyuki; Arai, Yuji; Takahashi, Kenji A; Mazda, Osam; Kishida, Tsunao; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Morino, Saori; Suico, Mary Ann; Kai, Hirofumi; Kubo, Toshikazu

    2013-06-01

    The objective of this study is to investigate the effects of mild electrical stimulation (MES) and heat stress (HS) on heat shock protein 70 (HSP70), that protects chondrocytes and enhances cartilage matrix metabolism, in chondrocyte and articular cartilage. Rabbit articular chondrocytes were treated with MES and/or HS. The safeness was assessed by LDH assay and morphology. HSP70 protein, ubiquitinated proteins and HSP70 mRNA were examined by Western blotting and real-time PCR. Rat knee joints were treated with MES and/or HS. HSP70 protein, ubiquitinated proteins, HSP70 mRNA and proteoglycan core protein (PG) mRNA in articular cartilage were investigated. In vitro, HS increased HSP70 mRNA and HSP70 protein. MES augmented ubiquitinated protein and HSP70 protein, but not HSP70 mRNA. MES + HS raised HSP70 mRNA and ubiquitinated protein, and significantly increased HSP70 protein. In vivo, HS and MES + HS treatment augmented HSP70 mRNA. HS modestly augmented HSP70 protein. MES + HS significantly increased HSP70 protein and ubiquitinated proteins. PG mRNA was markedly raised by MES + HS. This study demonstrated that MES, in combination with HS, increases HSP70 protein in chondrocytes and articular cartilage, and promotes cartilage matrix metabolism in articular cartilage. MES in combination with HS can be a novel physical therapy for osteoarthritis by inducing HSP70 in articular cartilage. Copyright © 2013 Orthopaedic Research Society.

  5. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    Science.gov (United States)

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  6. [Efficacy observation of dysphagia after acute stroke treated with acupuncture and functional electric stimulation].

    Science.gov (United States)

    Chang, Ling; He, Peng-Lan; Zhou, Zhen-Zhong; Li, Yan-Hua

    2014-08-01

    To observe the impacts on the recovery of swallowing function in patients of dysphagia after acute stroke treated with acupuncture and functional electric stimulation. Seventy-four patients were randomized into an acupuncture plus electric stimulation group (38 cases) and an electric stimulation group (36 cases). The functional electric stimulator was used in the two groups. The electric pads were placed on the hyoid bone, the upper part of thyroid cartilage, the masseter muscle and the mandibular joint. The treatment lasted for 30 mm each time. In the acupuncture plus electric stimulation group, acupuncture was supplemented at motor area of Jiao's scalp acupuncture, lower 2/5 of sensory area, Baihui (CV 20), Lianquan (CV 23), Jinjin (EX-HN 12) and Yuye (EX-HN 13), 30 mm each time. The treatment was given once a day, 6 treatments for one session and there was 1 day at interval between the sessions, 4 sessions were required totally in the two groups. The dysphagia scale was adopted for efficacy evaluation before treatment and after 4 sessions of treatment in the two groups. The removal rate of nasal feeding tube was observed after treatment. The dysphagia score was increased apparently after treatment compared with that before treatment in the two groups (both P vs 6.73 +/- 1.36, P stroke and promotes the early removal of nasal feeding tube. The efficacy is better than that of the simple electric stimulation therapy.

  7. Electrical nerve stimulation as an aid to the placement of a brachial plexus block : clinical communication

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2002-07-01

    Full Text Available Most local anaesthetic blocks are placed blindly, based on a sound knowledge of anatomy. Very often the relationship between the site of deposition of local anaesthetic and the nerve to be blocked is unknown. Large motor neurons may be stimulated with the aid of an electrical current. By observing for muscle twitches, through electrical stimulation of the nerve, a needle can be positioned extremely close to the nerve. The accuracy of local anaesthetic blocks can be improved by this technique. By using the lowest possible current a needle could be positioned within 2-5mm of a nerve. The correct duration of stimulation ensures that stimulation of sensory nerves does not occur. The use of electrical nerve stimulation in veterinary medicine is a novel technique that requires further evaluation.

  8. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    Science.gov (United States)

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  9. Passive reach and grasp with functional electrical stimulation and robotic arm support

    NARCIS (Netherlands)

    Westerveld, Ard J.; Schouten, Alfred C.; Veltink, Peter H.; van der Kooij, Herman

    2014-01-01

    Rehabilitation of arm and hand function is crucial to increase functional independence of stroke subjects. Here, we investigate the technical feasibility of an integrated training system combining robotics and functional electrical stimulation (FES) to support reach and grasp during functional

  10. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin

    DEFF Research Database (Denmark)

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-01-01

    , supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment...

  11. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase to neutral......Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase......-and-fire neuron with two partitions responding individually to anodic and cathodic stimulation. Membrane noise was parameterized based on reported relative spread of AN neurons. Firing efficiency curves and spike-latency distributions were simulated for monophasic and symmetric biphasic stimulation...

  12. Experimental electrical stimulation of the bladder using a new device

    DEFF Research Database (Denmark)

    Petersen, T.; Christiansen, P.; Nielsen, B.

    1986-01-01

    Repeated bladder contractions were evoked during a six month period in three unanaesthetized female minipigs by using unipolar carbon fiber electrodes embedded in the bladder wall adjacent to the ureterovesical junction. In contrast to bipolar and direct bladder muscle stimulation unipolar...... electrodes at each ureterovesical junction evoked bladder pressure increase similar to those produced in previous investigations in dogs. Sacral nerve stimulation of S2 evoked bladder contraction at a minimal current. Microscopic examination revealed no cellular reactions to the carbon fibers...

  13. Electrical stimulation of superior colliculus affects strabismus angle in monkey models for strabismus

    Science.gov (United States)

    Upadhyaya, Suraj; Meng, Hui

    2017-01-01

    Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different (P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus. PMID:28031397

  14. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  15. Medical devices; neurological devices; classification of the transcutaneous electrical nerve stimulator to treat headache. Final order.

    Science.gov (United States)

    2014-07-03

    The Food and Drug Administration (FDA) is classifying the transcutaneous electrical nerve stimulator to treat headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcutaneous electrical nerve stimulator to treat headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  16. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    Science.gov (United States)

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  17. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone 5b

  18. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic

  19. Cycle-to-cycle control of swing phase of paraplegic gait induced by surface electrical stimulation

    NARCIS (Netherlands)

    Franken, H.M.; Franken, H.M.; Veltink, Petrus H.; Baardman, G.; Redmeijer, R.A.; Boom, H.B.K.

    1995-01-01

    Parameterised swing phase of gait in paraplegics was obtained using surface electrical stimulation of the hip flexors, hamstrings and quadriceps; the hip flexors were stimulated to obtain a desired hip angle range, the hamstrings to provide foot clearance in the forward swing, and the quadriceps to

  20. Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator.

    Science.gov (United States)

    Shalaby, Alaa A; El-Saed, Aiman; Nemec, Jan; Moossy, John J; Balzer, Jeffrey R

    2007-12-01

    A patient with advanced ischemic cardiomyopathy underwent implantation of a vagal stimulator in an attempt to control recurrent drug refractory ventricular arrhythmia. Electrical storm was exacerbated after the implant and continued after neurostimulation was discontinued. The report aims to provide a cautionary note to application of vagal stimulation for control of cardiac arrhythmia.

  1. Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop

    NARCIS (Netherlands)

    Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan

    2018-01-01

    The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.

  2. Concepts and methods in neuromodulation and functional electrical stimulation: an introduction.

    Science.gov (United States)

    Holsheimer, J

    1998-04-01

    This article introduces two clinical fields in which stimulation is applied to the nervous system: neuromodulation and functional electrical stimulation. The concepts underlying these fields and their main clinical applications, as well as the methods and techniques used in each field, are described. Concepts and techniques common in one field that might be beneficial to the other are discussed. 1998 Blackwell Science, Inc.

  3. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Science.gov (United States)

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...

  4. Effectiveness of transcutaneous electrical nerve stimulation on saliva production in post-radiated oral cancer patients

    OpenAIRE

    Sakshi Ojha; Thimmarasa V Bhovi; Prashant P Jaju; Manas Gupta; Neha Singh; Kriti Shrivastava

    2016-01-01

    Aims and Objectives: To determine the effectiveness of transcutaneous electrical nerve stimulation (TENS) in stimulating salivary flow in post-radiated oral cancer patients, and to compare the salivary flow rate between unstimulated saliva and saliva stimulated with TENS in post-radiated oral cancer patients. Materials and Methods: In 30 patients who underwent radiotherapy for oral cancer, unstimulated saliva was collected every minute for 5 min in a graduated test tube. The TENS unit was act...

  5. The Spatial Extent of Epiretinal Electrical Stimulation in the Healthy Mouse Retina

    Directory of Open Access Journals (Sweden)

    Zohreh Hosseinazdeh

    2017-07-01

    Full Text Available Background/Aims: Retinal prostheses use electrical stimulation to restore functional vision to patients blinded by retinitis pigmentosa. A key detail is the spatial pattern of ganglion cells activated by stimulation. Therefore, we characterized the spatial extent of network-mediated electrical activation of retinal ganglion cells (RGCs in the epiretinal monopolar electrode configuration. Methods: Healthy mouse RGC activities were recorded with a micro-electrode array (MEA. The stimuli consisted of monophasic rectangular cathodic voltage pulses and cycling full-field light flashes. Results: Voltage tuning curves exhibited significant hysteresis, reflecting adaptation to electrical stimulation on the time scale of seconds. Responses decreased from 0 to 300 µm, and were also dependent on the strength of stimulation. Applying the Rayleigh criterion to the half-width at half-maximum of the electrical point spread function suggests a visual acuity limit of no better than 20/946. Threshold voltage showed only a modest increase across these distances. Conclusion: The existence of significant hysteresis requires that future investigations of electrical retinal stimulation control for such long-memory adaptation. The spread of electrical activation beyond 200 µm suggests that neighbouring electrodes in epiretinal implants based on indirect stimulation of RGCs may be indiscriminable at interelectrode spacings as large as 400 µm.

  6. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults.

    Science.gov (United States)

    Hurlow, Adam; Bennett, Michael I; Robb, Karen A; Johnson, Mark I; Simpson, Karen H; Oxberry, Stephen G

    2012-03-14

    Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominantly used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role in pain management but the effectiveness of TENS is currently unknown. This is an update of the original review published in Issue 3, 2008. The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. The initial review searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, PsychINFO, AMED and PEDRO databases in April 2008. We performed an updated search of CENTRAL, MEDLINE, EMBASE, CINAHL and PEDRO databases in November 2011. We included only randomised controlled trials (RCTS) investigating the use of TENS for the management of cancer-related pain in adults. The search strategy identified a further two studies for possible inclusion. One of the review authors screened each abstract using a study eligibility tool. Where eligibility could not be determined, a second author assessed the full paper. One author used a standardised data extraction sheet to collect information on the studies and independently assess the quality of the studies using the validated five-point Oxford Quality Scale. The small sample sizes and differences in patient study populations of the three included studies (two from the original review and a third included in this update) prevented meta-analysis. For the original review the search strategy identified 37 possible published studies; we divided these between two pairs of review authors who decided on study selection; all four review authors discussed and agreed final scores. Only one additional RCT met the eligibility criteria (24 participants) for this updated review. Although this was a feasibility study, not designed to investigate intervention effect, it suggested that TENS may improve bone pain on movement in a

  7. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    Science.gov (United States)

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low

  8. The contribution of a psychomotor stimulation to the process of independence for a visually impaired

    Directory of Open Access Journals (Sweden)

    Thaynara Rodrigues da Silva

    2013-01-01

    Full Text Available This study aimed at developing and implementing a program of psychomotor stimulation process-based orientation and mobility of the visually impaired, since this type of commitment has a direct influence on psychomotor development of the individual, affecting their autonomy and independence. The program was implemented in the Laboratory of Psychomotor Stimulation of the Federal University of Viçosa, with the theoretical basis of Psychomotricity. We chose the intrinsic case study, to observe and evaluate better the difficulties encountered by the technique of systematic observation and informal interviews with parents. One can perceive evolutions in visually handicapped studied in terms equilibrium, concept space and body schema, and also willing to perform activities of daily living, which interfere in their locomotion. We concluded that the process of orientation and mobility is paramount in the work of independence of the visually impaired, and that it is needed a psychomotor development stimulus since the beginning of his life, because the delays that may arise during their growth and maturation. It becomes important to apply qualitative approaches for further studies but with larger samples.

  9. The Efficacy of Cognitive Stimulation on Depression and Cognition in Elderly Patients with Cognitive Impairment: A Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Federerico Filipin

    2015-12-01

    Full Text Available Cognitive decline due to neurodegenerative diseases is a prevalent worldwide problem. Both pharmacological and non-pharmacological treatments to improve, delay or stop disease progression are of vital importance. Cognitive stimulation is frequently used in clinical practice; however, there are few studies that demonstrate its efficacy. Aim: To evaluate the efficacy of cognitive stimulation in patients with mild cognitive impairment (CDR = 0.5 and dementia (CDR = 1. Methods: A retrospective cohort study was performed. Patients with cognitive impairment receiving weekly cognitive stimulation (16 or 24 sessions were evaluated with a complete neuropsychological battery before and after the stimulation program. Each stimulation session was carried out by a trained neuropsychologist. Results: Forty two patients receiving cognitive stimulation were evaluated over a period of 12.53 months (SD 5.5. Patients were grouped as 11 amnesic mild cognitive impairment (aMCI, 23 multi domain mild cognitive impairment (mMCI and 8 Mild Alzheimer's Dementia (CDR 1. None of the groups improved their cognitive functions after the cognitive stimulation program. MCI group was also divided according to their global intelligence quotient (IQ into two groups: low (IQ < 98.5 and high (IQ > 98.5. Each group was compared before and after the stimulation program and no significant difference was found (p ≥ 0.05. Moreover, MCI group was also analyzed according to the duration of the stimulation program: less than 9, between 9 and 13 and more than 13 months. Different duration groups were compared before and after the cognitive stimulation program and no significant differences were found. Depression, anxiety and subjective memory symptoms were also analysed and neither improvement nor worsening could be demonstrated. Conclusions: Patients remained stable, both in cognitive and behavioural domains, for more than 18 months. However, no significant cognitive or behavioural

  10. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    OpenAIRE

    Gozani, Shai

    2016-01-01

    Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background: Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be ...

  11. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  12. Effect of bilateral subthalamic electrical stimulation in Parkinson's disease.

    Science.gov (United States)

    Broggi, G; Franzini, A; Ferroli, P; Servello, D; D'Incerti, L; Genitrini, S; Soliveri, P; Girotti, F; Caraceni, T

    2001-08-01

    Bilateral high frequency subthalamic stimulation has been reported to be effective in the treatment of Parkinson's disease and levodopa-induced dyskinesias. To analyze the results of this surgical procedure we critically reviewed 17 parkinsonian patients with advanced disease complicated by motor fluctuations and dyskinesias. Between January 1998 and June 1999 these 17 consecutive patients (age 48-68 years; illness duration 8-27 years) underwent bilateral stereotactically guided implantation of electrodes into the subthalamic nucleus in the Department of Neurosurgery of the Istituto Nazionale Neurologico "C. Besta." Parameters used for continuous high-frequency stimulation were: frequency 160 Hz, pulse width 90 microsec, mean amplitude 2.05 +/- 0.45 V. Parts II and III of the UPDRS were used to assess motor performance before and after operation by the neurologic team. The follow-up ranged between 6 and 18 months. At latest examination, mean UPDRS II and III scores had improved by 30% (on stimulation, off therapy) with mean 50% reduction in daily off time. Peak dyskinesias and early morning dystonias also improved in relation to therapy reduction. Side effects were persistent postoperative supranuclear oculomotor palsy and postural instability in one case, worsened off-medication hypophonia in three, and temporary nocturnal confusion episodes in three. Postoperative MRI revealed a clinically silent intracerebral haematoma in one case. One electrode required repositioning. Continuous high frequency STN stimulation is an effective treatment for advanced PD. A functionally useful and safe electrode placement can be performed without microrecording.

  13. TRANSCUTANEOUS ELECTRICAL NERVE-STIMULATION (TENS) IN RAYNAUDS-PHENOMENON

    NARCIS (Netherlands)

    MULDER, P; DOMPELING, EC; VANSLOCHTERENVANDERBOOR, JC; KUIPERS, WD; SMIT, AJ

    Transcutaneous nerve stimulation (TENS) has been described as resulting in vasodilatation. The effect of 2 Hz TENS of the right hand during forty-five minutes on skin temperature and plethysmography of the third digit of both hands and feet and on transcutaneous oxygen tension (TcpO2) of the right

  14. Torque, Current, and Discomfort During 3 Types of Neuromuscular Electrical Stimulation of Tibialis Anterior.

    Science.gov (United States)

    Wiest, Matheus J; Bergquist, Austin J; Collins, David F

    2017-08-01

    The benefits of neuromuscular electrical stimulation (NMES) for rehabilitation depend on the capacity to generate functionally relevant torque with minimal fatigability and discomfort. Traditionally, NMES is delivered either over a muscle belly (mNMES) or a nerve trunk (nNMES). Recently, a technique that minimizes contraction fatigability by alternating pulses between the mNMES and nNMES sites, termed "interleaved" NMES (iNMES), was developed. However, discomfort and the ability to generate large torque during iNMES have not been explored adequately. The study objective was to compare discomfort and maximal torque between mNMES, nNMES, and iNMES. Stimulation trains (12 pulses at 40 Hz) were delivered to produce dorsiflexion torque using mNMES, nNMES, and iNMES. Discomfort was assessed using a visual analogue scale for contractions that generated 5-30% of a maximal voluntary isometric contraction (MVIC), and for the maximal tolerable torque. Discomfort scores were not different between NMES types when torque was ≤20% MVIC. At 30% MVIC, mNMES produced more discomfort than nNMES and iNMES. nNMES produced the most torque (65% MVIC), followed by iNMES (49% MVIC) and mNMES (33% MVIC); in these trials, mNMES produced more discomfort than nNMES, but not iNMES. The present results may be limited to individuals with no history of neuromusculoskeletal impairment. In terms of discomfort, there were no differences between mNMES, nNMES, or iNMES for contractions between 5-20% MVIC. However, mNMES produced more discomfort than nNMES and iNMES for contractions of 30% MVIC, while for larger contractions, mNMES only produced more discomfort than nNMES. The advantages and disadvantages of each NMES type should be considered prior to implementation in rehabilitation programs. © 2017 American Physical Therapy Association

  15. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction.

    Science.gov (United States)

    Rofes, L; Arreola, V; López, I; Martin, A; Sebastián, M; Ciurana, A; Clavé, P

    2013-11-01

    Chronic poststroke oropharyngeal dysfunction (OD) is a common condition, leading to severe complications, including death. Treatments for chronic poststroke OD are scarce. The aim of our study was to assess and compare the efficacy and safety of treatment with surface electrical stimulation (e-stim) at sensory and motor intensities in patients with chronic poststroke OD. Twenty chronic poststroke patients with OD were randomly assigned to (i) sensory e-stim (treatment intensity: 75% of motor threshold) or (ii) motor e-stim (treatment intensity: motor threshold). Patients were treated during 10 days, 1 h/day. Videofluoroscopy was performed at the beginning and end of the study to assess signs of impaired efficacy and safety of swallow and timing of swallow response. Patients presented advanced age (74.95 ± 2.18), 75% were men. The mean days poststroke was 336.26 ± 89.6. After sensory stimulation, the number of unsafe swallows was reduced by 66.7% (p swallows was reduced by 62.5% (p = 0.002), the laryngeal vestibule closure time by 38.26% (p = 0.009) and maximal vertical hyoid extension time by 24.8% (p = 0.008). Moreover, the motor stimulus reduced the pharyngeal residue by 66.7% (p = 0.002), the upper esophageal sphincter opening time by 39.39% (p = 0.009), and increased bolus propulsion force by 211.1% (p = 0.008). No serious adverse events were detected during the treatment. Surface e-stim is a safe and effective treatment for chronic poststroke dysphagic patients. © 2013 John Wiley & Sons Ltd.

  16. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings

    Science.gov (United States)

    O'Shea, Daniel J.; Shenoy, Krishna V.

    2018-04-01

    Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.

  17. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    Science.gov (United States)

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  18. Modifications of baropodograms after transcutaneous electric stimulation of the abductor hallucis muscle in humans standing erect.

    Science.gov (United States)

    Gaillet, Jean-Claude; Biraud, Jean-Claude; Bessou, Monique; Bessou, Paul

    2004-12-01

    Objective data on abductor hallucis muscle biomechanical function in the loaded foot (subject standing erect on both legs) are unavailable. To evaluate the effects of electrical stimulation of the abductor hallucis muscle in the loaded foot on the change of plantar pressures, as measured by digital baropodograms. Six indices were defined to compare baropodograms. The abductor hallucis muscle in 1 foot was subjected to transcutaneous electrical stimulation (20 min) while the subject was standing erect on the floor. Baropodograms were recorded before, immediately thereafter, then 15 days and 2 months later. Differences between baropodogram indices were subjected to one-way anova. Electrical abductor hallucis muscle stimulation induced, on the stimulation side, a post-contraction state easily detected on baropodograms as the increased plantar pressure on the anterior-medial part of the sole, and lateral displacements of the anterior maximal pressure point and the foot thrust center. These mechanical signs, consistent with foot inversion, induce external rotation of the leg and pelvic rotation on the stimulated side, leading to contralateral plantar-pressure changes: decreased maximal pressure point and thrust in the posterior part of the footprint and lateral displacement of the foot thrust center. Electrical stimulation of the abductor hallucis muscle in the loaded foot induces immediate specific changes in baropodogram indices, some of which persist 2 months later. The mechanical effect of abductor hallucis muscle stimulation (foot inversion) and its post-contraction state could be useful in podiatric and postural rehabilitation.

  19. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  20. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors

    Directory of Open Access Journals (Sweden)

    Laura Barberi

    2015-08-01

    Full Text Available The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers, alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.

  1. Treatment of refractory chest angina with spinal electrical stimulator: literature review

    International Nuclear Information System (INIS)

    Gomezese, Omar F; Paola, Aranda; Echeverria, Luis E; Saibi, Jose F; Calderon, Jaime; Barrera, Juan G

    2008-01-01

    There is a group of patients with chronic refractory chest angina, who are not ideal candidates for surgical or percutaneous revascularization and who although having a good medical handling continues to experience severe episodes of angina. The spinal electrical stimulator is a neuromodulators used as an alternative to treat these patients. The objective is to realize a review of scientific literature regarding the spinal electric stimulation in the treatment of chest angina, its mechanism of action, benefits and its cost effectiveness. Materials and methods: using the Cochrane methodology, a search of articles published from January 1980 to January 2007 in Medline using the terms spinal cord stimulation, was realized. The papers considered most pertinent were selected. Conclusions: the anti-ischemic effect of the electrical spinal stimulator reduces the episodes of chest angina, improves the quality of life and the tolerance to exercise, diminishes the hospital stay and delays the appearance of ischemic signs

  2. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  3. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    Science.gov (United States)

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  4. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  5. Can preoperative electrical nociceptive stimulation predict acute pain after groin herniotomy?

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Hansen, J.B.; Kehlet, H.

    2008-01-01

    Preoperative identification of patients at risk for high-intensity postoperative pain may be used to predict patients at risk for development of a persistent pain state and allocate patients to more intensive specific pain therapy. Preoperative pain threshold to electrocutaneus stimulation has...... repair. The correlation between the pain data for electrical stimulation was compared with the postoperative pain during the first week in 165 patients, whereof 3 were excluded. Preoperative electrical pain detection threshold and electrical pain tolerance threshold did not correlate to postoperative...... pain (rho = -0.13, P = .09, and rho = -1.2, P = .4, respectively. PERSPECTIVE: Although preoperative electrical nociceptive stimulation may predict patients at risk of high-intensity acute pain after other surgical procedures, this was not the case in groin hernia repair patients receiving concomitant...

  6. Electrical stimulation in white oyster mushroom (Pleurotus florida) production

    Science.gov (United States)

    Roshita, I.; Nurfazira, K. M. P.; Fern, C. Shi; Ain, M. S. Nur

    2017-09-01

    White oyster mushroom (Pleurotus florida) is an edible mushroom that gained popularity due to its nutritional values, low production cost and ease of cultivation. There are several research reported on the mushroom fruiting bodies which were actively developed when applying electrical shock treatment. This study was aimed to investigate the effects of different electrical voltages on the growth and yield of white oyster mushroom (Pleurotus florida). Five different electrical voltages had been applied during spawning period which were 6V, 9V, 12V, 15V and mushroom bags without any treatment served as control. Treatment at 6V showed the highest rate for mycelium growth while 15V took the shortest time for fruiting body formation. However, no significant different (P>0.05) among all the treatments was observed for the time taken for the mycelium to fill-up the bag and pinhead emergence. The total fresh weight and percentage of biological efficiency for treatment at 9V showed higher values compared to control. Treatment at 9V also showed the largest pileus diameter and the most firm in the pileus texture. Meanwhile, treatment at 6V showed the highest a* value (redness). In addition, different electrical voltage treatments applied did not show any significant effect on substrate utilization efficiency, colour L* and b* values. In conclusion, among all the electrical treatments applied, 9V could be considered as the best treatment to enhance the yield of white oyster mushroom.

  7. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  8. MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    Directory of Open Access Journals (Sweden)

    Sofia I. Lampropoulou

    2012-12-01

    Full Text Available The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB in the single pulse Interpolation Twitch Technique (ITT. 14 healthy participants (31±7 years participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG from the BB, the triceps brachii m. (TB and the abductor pollicis brevis m. (APB were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N and magnetic (0.81 ± 0.49 N stimulation (p > 0.05, and the maximum VA of BB was comparable between electrical (95% and magnetic (93% stimulation (p > 0. 05. No differences (p >0.05 were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms and magnetic (12.61 ± 0.58 mV.ms stimulation. The TB M-waves were also similar (p > 0.05 but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05. The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05. Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05. The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising

  9. Epilepsia partialis continua responsive to neocortical electrical stimulation.

    Science.gov (United States)

    Valentin, Antonio; Ughratdar, Ismail; Cheserem, Beverly; Morris, Robert; Selway, Richard; Alarcon, Gonzalo

    2015-08-01

    Epilepsia partialis continua (EPC), defined as a syndrome of continuous focal jerking, is a rare form of focal status epilepticus that usually affects a distal limb, and when prolonged, can produce long-lasting deficits in limb function. Substantial electrophysiologic evidence links the origin of EPC to the motor cortex; thus surgical resection carries the risk of significant handicap. We present two patients with focal, drug-resistant EPC, who were admitted for intracranial video-electroencephalography monitoring to elucidate the location of the epileptogenic focus and identification of eloquent motor cortex with functional mapping. In both cases, the focus resided at or near eloquent motor cortex and therefore precluded resective surgery. Chronic cortical stimulation delivered through subdural strips at the seizure focus (continuous stimulation at 60-130 Hz, 2-3 mA) resulted in >90% reduction in seizures and abolition of the EPC after a follow-up of 22 months in both patients. Following permanent implantation of cortical stimulators, no adverse effects were noted. EPC restarted when intensity was reduced or batteries depleted. Battery replacement restored previous improvement. This two-case report opens up avenues for the treatment of this debilitating condition. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  10. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    Science.gov (United States)

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.

    Directory of Open Access Journals (Sweden)

    David A X Nayagam

    Full Text Available To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis.Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG, optical coherence tomography (OCT and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue.All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses.Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained

  12. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    ) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  13. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    Science.gov (United States)

    1983-08-25

    Simple Neurorraphy 0 Lt. Two main theories have evolved as to the mechanism of the effect of electricity on re- The area under the curve representing...Pt bimetallic electrode is placed distal to the The right leg was imp!i.nted with an electrode neurorraphy site, and a comparable reduction in

  14. FUNCTIONAL ELECTRICAL STIMULATION FOR CONTROL OF EPILEPTIC SEIZURES

    DEFF Research Database (Denmark)

    Jiao, Jianhang

    Nearly 50 million people worldwide have epilepsy and one-third of them do not respond well to any antiepileptic drugs. Given the large population of patients experiencing drug resistant epilepsy, increased attention has been paid over the last two decades to the development of electrical stimulat...

  15. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    Science.gov (United States)

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  16. Modification of electrical pain threshold by voluntary breathing-controlled electrical stimulation (BreEStim in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Shengai Li

    Full Text Available BACKGROUND: Pain has a distinct sensory and affective (i.e., unpleasantness component. BreEStim, during which electrical stimulation is delivered during voluntary breathing, has been shown to selectively reduce the affective component of post-amputation phantom pain. The objective was to examine whether BreEStim increases pain threshold such that subjects could have improved tolerance of sensation of painful stimuli. METHODS: Eleven pain-free healthy subjects (7 males, 4 females participated in the study. All subjects received BreEStim (100 stimuli and conventional electrical stimulation (EStim, 100 stimuli to two acupuncture points (Neiguan and Weiguan of the dominant hand in a random order. The two different treatments were provided at least three days apart. Painful, but tolerable electrical stimuli were delivered randomly during EStim, but were triggered by effortful inhalation during BreEStim. Measurements of tactile sensation threshold, electrical sensation and electrical pain thresholds, thermal (cold sensation, warm sensation, cold pain and heat pain thresholds were recorded from the thenar eminence of both hands. These measurements were taken pre-intervention and 10-min post-intervention. RESULTS: There was no difference in the pre-intervention baseline measurement of all thresholds between BreEStim and EStim. The electrical pain threshold significantly increased after BreEStim (27.5±6.7% for the dominant hand and 28.5±10.8% for the non-dominant hand, respectively. The electrical pain threshold significantly decreased after EStim (9.1±2.8% for the dominant hand and 10.2±4.6% for the non-dominant hand, respectively (F[1, 10] = 30.992, p = .00024. There was no statistically significant change in other thresholds after BreEStim and EStim. The intensity of electrical stimuli was progressively increased, but no difference was found between BreEStim and EStim. CONCLUSION: Voluntary breathing controlled electrical stimulation

  17. Electrical stimulation of acupoint combinations against deep venous thrombosis in elderly bedridden patients after major surgery.

    Science.gov (United States)

    Hou, Lili; Chen, Cuiping; Xu, Lei; Yin, Peihao; Peng, Wen

    2013-04-01

    To compare the effects of electrical stimulation of different acupoint combinations among postoperative bedridden elderly patients on hemorheology and deep venous blood flow velocity and investigate the.role of electrical stimulation against deep vein thrombosis (DVT). From November 2010 to October 2011, a total of 160 elderly bedridden patients after major surgery were divided into the conventional care group, invigorating and promoting Qi group, blood-activating and damp-eliminating group, and acupoint-combination stimulation group. Whole blood viscosity, plasma viscosity, D-dimer levels, lower limb skin temperature, lower limb circumference, and flow velocities of the external iliac vein, femoral vein, popliteal vein, and deep calf veins in all patients were documented and compared among the four groups. Whole blood viscosity, plasma viscosity, D-dimer levels, and lower limb circumference were significantly reduced in the blood-activating and damp-eliminating group compared with the conventional care group (P 0.05). Lower limb venous flow velocities were accelerated in the invigorating and promoting Qi group compared with the other groups, excluding the acupoint-combination stimulation group (P bedridden elderly patients were improved after combined electrical stimulation at Yinlingquan (SP 9) and Sanyinjiao (SP 6). Combined electrical stimulation at Zusanli (ST 36) and Taichong (LR 3), on the other hand, accelerated lower limb venous flow.

  18. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  19. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Science.gov (United States)

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  20. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    Science.gov (United States)

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  1. Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Science.gov (United States)

    Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746

  2. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Directory of Open Access Journals (Sweden)

    David B Green

    Full Text Available One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus. By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG, hypothalamus, amygdala, and anterior cingulate cortex (ACC. Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  3. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Science.gov (United States)

    Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  4. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    Science.gov (United States)

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. © 2015 Wiley Periodicals, Inc.

  5. Cognitive Impairment After Sleep Deprivation Rescued by Transcranial Magnetic Stimulation Application in Octodon degus.

    Science.gov (United States)

    Estrada, C; López, D; Conesa, A; Fernández-Gómez, F J; Gonzalez-Cuello, A; Toledo, F; Tunez, I; Blin, O; Bordet, R; Richardson, J C; Fernandez-Villalba, E; Herrero, M T

    2015-11-01

    Sleep is indispensable for maintaining regular daily life activities and is of fundamental physiological importance for cognitive performance. Sleep deprivation (SD) may affect learning capacity and the ability to form new memories, particularly with regard to hippocampus-dependent tasks. Transcranial magnetic stimulation (TMS) is a non-invasive procedure of electromagnetic induction that generates electric currents, activating nearby nerve cells in the stimulated cortical area. Several studies have looked into the potential therapeutic use of TMS. The present study was designed to evaluate how TMS could improve learning and memory functions following SD in Octodon degus. Thirty juvenile (18 months old) females were divided into three groups (control, acute, and chronic TMS treatment-with and without SD). TMS-treated groups were placed in plastic cylindrical cages designed to keep them immobile, while receiving head magnetic stimulation. SD was achieved by gently handling the animals to keep them awake during the night. Behavioral tests included radial arm maze (RAM), Barnes maze (BM), and novel object recognition. When TMS treatment was applied over several days, there was significant improvement of cognitive performance after SD, with no side effects. A single TMS session reduced the number of errors for the RAM test and improved latency and reduced errors for the BM test, which both evaluate spatial memory. Moreover, chronic TMS treatment brings about a significant improvement in both spatial and working memories.

  6. Electric field stimulation setup for photoemission electron microscopes.

    Science.gov (United States)

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  7. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    Science.gov (United States)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  8. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    Science.gov (United States)

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  9. Electrical stimulation of the primate lateral habenula suppresses saccadic eye movement through a learning mechanism.

    Directory of Open Access Journals (Sweden)

    Masayuki Matsumoto

    Full Text Available The lateral habenula (LHb is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events.

  10. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    Science.gov (United States)

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Muscle reflexes during gait elicited by electrical stimulation of the posterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Fischer-Rasmussen, T; Krogsgaard, M R; Jensen, D B

    2002-01-01

    over the vastus medialis, rectus femoris, vastus lateralis, biceps femoris caput longum, and semitendinosus muscles. The stimuli consisted of four pulses delivered at 200 Hz; the stimulus amplitude was two to three times the sensory threshold. The electrical stimulation of the PCL inhibited the ongoing......We investigated the influence of electrical stimulation of the posterior cruciate ligament (PCL) on the motoneuron pool of the thigh and calf muscle during gait. The study group comprised eight young men without any history of injury to the knee joints. Multistranded teflon-insulated stainless...... steel wires were inserted into the PCL guided by sonography and in four subjects also into the fat pad of the knee. The PCL was electrically stimulated during gait on a treadmill at heel strike and 100 ms after heel strike. Electromyographic signals were recorded with bipolar surface electrodes placed...

  12. Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery.

    Science.gov (United States)

    Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian

    2016-04-22

    Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients' ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  13. Non-Invasive Brain Stimulation: A New Strategy in Mild Cognitive Impairment?

    Science.gov (United States)

    Birba, Agustina; Ibáñez, Agustín; Sedeño, Lucas; Ferrari, Jesica; García, Adolfo M.; Zimerman, Máximo

    2017-01-01

    Non-invasive brain stimulation (NIBS) techniques can significantly modulate cognitive functions in healthy subjects and patients with neuropsychiatric disorders. Recently, they have been applied in patients with mild cognitive impairment (MCI) and subjective cognitive impairment (SCI) to prevent or delay the development of Alzheimer’s disease (AD). Here we review this emerging empirical corpus and discuss therapeutic effects of NIBS on several target functions (e.g., memory for face-name associations and non-verbal recognition, attention, psychomotor speed, everyday memory). Available studies have yielded mixed results, possibly due to differences among their tasks, designs, and samples, let alone the latter’s small sizes. Thus, the impact of NIBS on cognitive performance in MCI and SCI remains to be determined. To foster progress in this direction, we outline methodological approaches that could improve the efficacy and specificity of NIBS in both conditions. Furthermore, we discuss the need for multicenter studies, accurate diagnosis, and longitudinal approaches combining NIBS with specific training regimes. These tenets could cement biomedical developments supporting new treatments for MCI and preventive therapies for AD. PMID:28243198

  14. TENS (transcutaneous electrical nerve stimulation) for labour pain.

    Science.gov (United States)

    Francis, Richard

    2012-05-01

    Because TENS is applied inconsistently and not always in line with optimal TENS application theory, this may explain why TENS for labour pain appears to be effective in some individuals and not in others. This article reviews TENS theory, advises upon optimal TENS application for labour pain and discusses some of the limitations of TENS research on labour pain. TENS application for labour pain may include TENS applied to either side of the lower spine, set to 200 mus pulse duration and 100 pulses per second. As pain increases, TENS intensity should be increased and as pain decreases, TENS intensity should be reduced to maintain a strong but pain free intensity of stimulation. This application may particularly reduce back pain during labour.

  15. Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study

    Science.gov (United States)

    Drumond Marra, Hellen Livia; Myczkowski, Martin Luiz; Maia Memória, Cláudia; Arnaut, Débora; Leite Ribeiro, Philip; Sardinha Mansur, Carlos Gustavo; Lancelote Alberto, Rodrigo; Boura Bellini, Bianca; Alves Fernandes da Silva, Adriano; Ciampi de Andrade, Daniel; Teixeira, Manoel Jacobsen; Forlenza, Orestes Vicente; Marcolin, Marco Antonio

    2015-01-01

    Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique with potential to improve memory. Mild cognitive impairment (MCI), which still lacks a specific therapy, is a clinical syndrome associated with increased risk of dementia. This study aims to assess the effects of high-frequency repetitive TMS (HF rTMS) on everyday memory of the elderly with MCI. We conducted a double-blinded randomized sham-controlled trial using rTMS over the left dorsolateral prefrontal cortex (DLPFC). Thirty-four elderly outpatients meeting Petersen's MCI criteria were randomly assigned to receive 10 sessions of either active TMS or sham, 10 Hz rTMS at 110% of motor threshold, 2,000 pulses per session. Neuropsychological assessment at baseline, after the last session (10th) and at one-month follow-up, was applied. ANOVA on the primary efficacy measure, the Rivermead Behavioural Memory Test, revealed a significant group-by-time interaction (p = 0.05), favoring the active group. The improvement was kept after one month. Other neuropsychological tests were heterogeneous. rTMS at 10 Hz enhanced everyday memory in elderly with MCI after 10 sessions. These findings suggest that rTMS might be effective as a therapy for MCI and probably a tool to delay deterioration. PMID:26160997

  16. [Quality of life in visual impaired children treated for Early Visual Stimulation].

    Science.gov (United States)

    Messa, Alcione Aparecida; Nakanami, Célia Regina; Lopes, Marcia Caires Bestilleiro

    2012-01-01

    To evaluate the quality of life in visually impaired children followed in the Early Visual Stimulation Ambulatory of Unifesp in two moments, before and after rehabilitational intervention of multiprofessional team. A CVFQ quality of life questionnaire was used. This instrument has a version for less than three years old children and another one for children older than three years (three to seven years) divided in six subscales: General health, General vision health, Competence, Personality, Family impact and Treatment. The correlation between the subscales on two moments was significant. There was a statistically significant difference in general vision health (p=0,029) and other important differences obtained in general health, family impact and quality of life general score. The questionnaire showed to be effective in order to measure the quality of life related to vision on families followed on this ambulatory. The multidisciplinary interventions provided visual function and familiar quality of life improvement. The quality of life related to vision in children followed in Early Visual Stimulation Ambulatory of Unifesp showed a significant improvement on general vision health.

  17. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain.

    Science.gov (United States)

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-08-06

    Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Male C57 black mice (initial ages of 6-8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4-6 months of repetitive stimulation/recording. We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models.

  18. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation

    International Nuclear Information System (INIS)

    Truong, Tien Van; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-01-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle. (paper)

  19. Wearable Neural Prostheses - Restoration of Sensory-Motor Function by Transcutaneous Electrical Stimulation

    OpenAIRE

    Micera, Silvestro; Keller, Thierry; Lawrence, Marc; Morari, Manfred; Popovic, Dejan B.

    2010-01-01

    In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue...

  20. Wearable neural prostheses. Restoration of sensory-motor function by transcutaneous electrical stimulation.

    Science.gov (United States)

    Micera, Silvestro; Keller, Thierry; Lawrence, Marc; Morari, Manfred; Popović, Dejan B

    2010-01-01

    In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue damage.

  1. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  2. Effects of electrical stimulation on House-Brackmann scores in early Bell's palsy.

    Science.gov (United States)

    Alakram, Prisha; Puckree, Threethambal

    2010-04-22

    ABSTRACT Limited evidence may support the application of electrical stimulation in the subacute and chronic stages of facial palsy, yet some physiotherapists in South Africa have been applying this modality in the acute stage in the absence of published evidence of clinical efficacy. This preliminary study's aim was to determine the safety and potential efficacy of applying electrical stimulation to the facial muscles during the early phase of Bells palsy. A pretest posttest control vs. experimental groups design composed of 16 patients with Bell's palsy of less than 30 days' duration. Adult patients with clinical diagnosis of Bell's palsy were systematically (every second patient) allocated to the control and experimental groups. Each group (n = 8) was pretested and posttested using the House-Brackmann index. Both groups were treated with heat, massage, exercises, and a home program. The experimental group also received electrical stimulation. The House-Brackmann Scale of the control group improved between 17% and 50% with a mean of 30%. The scores of the experimental group ranged between 17% and 75% with a mean of 37%. The difference between the groups was not statistically significant (two-tailed p = 0.36). Electrical stimulation as used in this study during the acute phase of Bell's palsy is safe but may not have added value over spontaneous recovery and multimodal physiotherapy. A larger sample size or longer stimulation time or both should be investigated.

  3. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  4. Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia

    Science.gov (United States)

    Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.

    2014-01-01

    BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816

  5. Intraoperative hemidiaphragm electrical stimulation reduces oxidative stress and upregulates autophagy in surgery patients undergoing mechanical ventilation: exploratory study

    Directory of Open Access Journals (Sweden)

    Robert T. Mankowski

    2016-10-01

    Full Text Available Abstract Background Mechanical ventilation (MV during a cardio-thoracic surgery contributes to diaphragm muscle dysfunction that impairs weaning and can lead to the ventilator- induced diaphragm dysfunction. Especially, it is critical in older adults who have lower muscle reparative capacity following MV. Reports have shown that the intraoperative intermittent hemidiaphragm electrical stimulation can maintain and/or improve post-surgery diaphragm function. In particular, from a molecular point of view, intermittent electrical stimulation (ES may reduce oxidative stress and increase regulatory autophagy levels, and therefore improve diaphragm function in animal studies. We have recently shown in humans that intraoperative ES attenuates mitochondrial dysfunction and force decline in single diaphragm muscle fibers. The aim of this study was to investigate an effect of ES on oxidative stress, antioxidant status and autophagy biomarker levels in the human diaphragm during surgery. Methods One phrenic nerve was simulated with an external cardiac pacer in operated older subjects (62.4 ± 12.9 years (n = 8 during the surgery. The patients received 30 pulses per min every 30 min. The muscle biopsy was collected from both hemidiaphragms and frozen for further analyses. 4-hydroxynonenal (4-HNE, an oxidative stress marker, and autophagy marker levels (Beclin-1 and the ratio of microtubule-associated protein light chain 3, I and II-LC3 II/I protein concentrations were detected by the Western Blot technique. Antioxidant enzymatic activity copper-zinc (CuZnSOD and manganese (MnSOD superoxide dismutase were analyzed. Results Levels of lipid peroxidation (4-HNE were significantly lower in the stimulated side (p  0.05. Additionally, the protein concentrations of Beclin-1 and the LC3 II/I ratio were higher in the stimulated side (p < 0.05. Conclusion These results suggest that the intraoperative electrical stimulation decreases oxidative stress levels

  6. Local electric stimulation causes conducted calcium response in rat interlobular arteries

    DEFF Research Database (Denmark)

    Salomonsson, Max; Gustafsson, Finn; Andreasen, Ditte

    2002-01-01

    microscope. Local electrical pulse stimulation (200 ms, 100 V) was administered by means of an NaCl-filled microelectrode (0.7-1 M(Omega)) juxtaposed to one end of the vessel. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured with an image system at a site approximately 500 microm from......The purpose of the present study was to investigate the conducted Ca(2+) response to local electrical stimulation in isolated rat interlobular arteries. Interlobular arteries were isolated from young Sprague-Dawley rats, loaded with fura 2, and attached to pipettes in a chamber on an inverted...

  7. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  8. Synchronization of FitzHugh-Nagumo neurons in external electrical stimulation via nonlinear control

    International Nuclear Information System (INIS)

    Wang Jiang; Zhang Ting; Deng Bin

    2007-01-01

    Synchronization of FitzHugh-Nagumo neural system under external electrical stimulation via the nonlinear control is investigated in this paper. Firstly, the different dynamical behavior of the nonlinear cable model based on the FitzHugh-Nagumo model responding to various external electrical stimulations is studied. Next, using the result of the analysis, a nonlinear feedback linearization control scheme and an adaptive control strategy are designed to synchronization two neurons. Computer simulations are provided to verify the efficiency of the designed synchronization schemes

  9. Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2006-01-01

    Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller. In this paper, the backstepping control is used to synchronize two coupled chaotic neurons in external electrical stimulation. The coupled model is based on the nonlinear cable model and only one state variable can be controlled in practice. The backstepping design needs only one controller to synchronize two chaotic systems and it can be applied to a variety of chaotic systems whether they contain external excitation or not, so the two coupled chaotic neurons in external electrical stimulation can be synchronized perfectly by backstepping control. Numerical simulations demonstrate the effectiveness of this design

  10. An investigation into the induced electric fields from transcranial magnetic stimulation

    Science.gov (United States)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  11. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  12. Effectiveness of transcutaneous electrical nerve stimulation on saliva production in post-radiated oral cancer patients

    Directory of Open Access Journals (Sweden)

    Sakshi Ojha

    2016-01-01

    Full Text Available Aims and Objectives: To determine the effectiveness of transcutaneous electrical nerve stimulation (TENS in stimulating salivary flow in post-radiated oral cancer patients, and to compare the salivary flow rate between unstimulated saliva and saliva stimulated with TENS in post-radiated oral cancer patients. Materials and Methods: In 30 patients who underwent radiotherapy for oral cancer, unstimulated saliva was collected every minute for 5 min in a graduated test tube. The TENS unit was activated and stimulated saliva was collected for 5 min in a separate graduated test tube, and the flow rate was compared with the unstimulated salivary flow rate. Results: A statistically significant improvement was seen in saliva production during stimulation (P < 0.001. In addition, statistically significant increase in TENS stimulated saliva was observed in patients aged ≥50 years compared to that in patients aged <50 years (P < 0.05. There was no significant difference in salivary flow rate between the two genders in both stimulated and unstimulated conditions, however, statistically significant increase in salivary flow rate was observed in males under stimulated condition (P < 0.01. Conclusion: TENS was highly effective in stimulating the whole salivary flow rate in post-radiated oral cancer patients. It is an effective supportive treatment modality in xerostomia patients caused by radiotherapy in oral cancer patients.

  13. Mandarin speech perception in combined electric and acoustic stimulation.

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    Full Text Available For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI and hearing aid (HA typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0 information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2 information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects' HA-aided pure-tone average (PTA thresholds between 250 and 2000 Hz; subjects were divided into two groups: "better" PTA (50 dB HL. The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12, further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception.

  14. Stuttered swallowing: Electric stimulation of the right insula interferes with water swallowing. A case report

    Directory of Open Access Journals (Sweden)

    Shoemaker J

    2011-02-01

    Full Text Available Abstract Background Various functional resonance imaging, magnetoencephalographic and lesion studies suggest the involvement of the insular cortex in the control of swallowing. However, the exact location of insular activation during swallowing and its functional significance remain unclear. Case presentation Invasive electroencephalographic monitoring was performed in a 24-year-old man with medically intractable stereotyped nocturnal hypermotor seizures due to a ganglioglioma. During stimulation of the right inferior posterior insular cortex with depth electrodes the patient spontaneously reported a perception of a "stutter in swallowing". Stimulation of the inferior posterior insular cortex at highest intensity (4 mA was also associated with irregular and delayed swallows. Swallowing was not impaired during stimulation of the superior posterior insular cortex, regardless of stimulation intensity. Conclusions These results indicate that the right inferior posterior insular cortex is involved in the neural circuitry underlying the control of swallowing.

  15. Sensory electrical stimulation for suppression of postural tremor in patients with essential tremor.

    Science.gov (United States)

    Heo, Jae-Hoon; Kim, Ji-Won; Kwon, Yuri; Lee, Sang-Ki; Eom, Gwang-Moon; Kwon, Do-Young; Lee, Chan-Nyeong; Park, Kun-Woo; Manto, Mario

    2015-01-01

    Essential tremor is an involuntary trembling of body limbs in people without tremor-related disease. In previous study, suppression of tremor by sensory electrical stimulation was confirmed on the index finger. This study investigates the effect of sensory stimulation on multiple segments and joints of the upper limb. It denotes the observation regarding the effect's continuity after halting the stimulation. 18 patients with essential tremor (8 men and 10 women) participated in this study. The task, "arms stretched forward", was performed and sensory electrical stimulation was applied on four muscles of the upper limb (Flexor Carpi Radialis, Extensor Carpi Radialis, Biceps Brachii, and Triceps Brachii) for 15 seconds. Three 3-D gyro sensors were used to measure the angular velocities of segments (finger, hand, and forearm) and joints (metacarpophalangeal and wrist joints) for three phases of pre-stimulation (Pre), during-stimulation (On), and 5 minute post-stimulation (P5). Three characteristic variables of root-mean-squared angular velocity, peak power, and peak power frequency were derived from the vector sum of the sensor signals. At On phase, RMS velocity was reduced from Pre in all segments and joints while peak power was reduced from Pre in all segments and joints except for forearm segment. Sensory stimulation showed no effect on peak power frequency. All variables at P5 were similar to those at On at all segments and joints. The decrease of peak power of the index finger was noted by 90% during stimulation from that of On phase, which was maintained even after 5 min. The results indicate that sensory stimulation may be an effective clinical method to treat the essential tremor.

  16. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  17. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  18. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  19. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Agustina Birba

    2017-06-01

    Full Text Available Recent works evince the critical role of visual short-term memory (STM binding deficits as a clinical and preclinical marker of Alzheimer’s disease (AD. These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer’s patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a the usefulness of the task to target prodromal stages of AD; (b the role of a posterior network in STM binding and in AD; and (c the potential opportunity to improve STM binding through brain stimulation.

  20. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation

    Directory of Open Access Journals (Sweden)

    Francisco Resquín

    2016-07-01

    Full Text Available Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  1. Neuropsychological syndromes in patients with Parkinson’s disease after deep electric stimulation of pallidar complex structures

    Directory of Open Access Journals (Sweden)

    Yu V Mikadze

    2013-01-01

    Full Text Available The paper provides the results of neuropsychological examinations in 10 patients with Parkinson’s disease who underwent deep electrical stimulation of pallidar complex structures. The general neuropsychological test battery that had been developed by A.R. Luria and allowed the qualitative classification of the cognitive impairment symptoms detectable on examination to be made was used to study cognitive functions. The patients were examined before and just after surgery and in the late period (following 1—2 years. The examinations have shown that the syndromes indicative of dysfunctions in the deep, parietal, and occipital and prefrontal regions of the left hemisphere and in the parietooccipital regions of the right hemisphere are stable components that determine the pattern of cognitive disorders and are preserved throughout all examinations.

  2. Encapsulated cell device approach for combined electrical stimulation and neurotrophic treatment of the deaf cochlea.

    Science.gov (United States)

    Konerding, W S; Janssen, H; Hubka, P; Tornøe, J; Mistrik, P; Wahlberg, L; Lenarz, T; Kral, A; Scheper, V

    2017-07-01

    Profound hearing impairment can be overcome by electrical stimulation (ES) of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Thus, SGN survival is critical for CI efficacy. Application of glial cell line-derived neurotrophic factor (GDNF) has been shown to reduce SGN degeneration following deafness. We tested a novel method for local, continuous GDNF-delivery in combination with ES via a CI. The encapsulated cell (EC) device contained a human ARPE-19 cell-line, genetically engineered for secretion of GDNF. In vitro, GDNF delivery was stable during ES delivered via a CI. In the chronic in vivo part, cats were systemically deafened and unilaterally implanted into the scala tympani with a CI and an EC device, which they wore for six months. The implantation of control devices (same cell-line not producing GDNF) had no negative effect on SGN survival. GDNF application without ES led to an unexpected reduction in SGN survival, however, the combination of GDNF with initial, short-term ES resulted in a significant protection of SGNs. A tight fibrous tissue formation in the scala tympani of the GDNF-only group is thought to be responsible for the increased SGN degeneration, due to mechanisms related to an aggravated foreign body response. Furthermore, the fibrotic encapsulation of the EC device led to cell death or cessation of GDNF release within the EC device during the six months in vivo. In both in vitro and in vivo, fibrosis was reduced by CI stimulation, enabling the neuroprotective effect of the combined treatment. Thus, fibrous tissue growth limits treatment possibilities with an EC device. For a stable and successful long-term neurotrophic treatment of the SGN via EC devices in human CI users, it would be necessary to make changes in the treatment approach (provision of anti-inflammatories), the EC device surface (reduced cell adhesion) and the ES (initiation prior to fibrosis formation). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat.

    Science.gov (United States)

    Di Scala, G; Mana, M J; Jacobs, W J; Phillips, A G

    1987-01-01

    Stimulation of the periaqueductal grey (PAG) has been used to support aversive conditioning in a variety of species with several experimental paradigms. However, it has not been clearly demonstrated whether the behavioral changes produced by PAG stimulation in these paradigms are mediated by associative or nonassociative mechanisms. The present studies demonstrate that electrical stimulation of the PAG in the rat may be used to support associative learning in a Pavlovian paradigm. In each experiment, a fully controlled conditional emotional response (CER) procedure was used to examine the unconditional aversive properties of PAG stimulation. In Experiment 1a, weak associative conditioning was observed when a light CS was paired with PAG stimulation over 6 conditioning trials. In Experiment 1b, robust associative conditioning was obtained with a light CS when 18 conditioning trials were used. In Experiment 2, robust associative conditioning was demonstrated with a tone CS when 6 conditioning trials were used. The results parallel those found when other aversive stimuli are used as a UCS (e.g., footshock or intraorbital air puff), and because the present experiments included the proper control procedures the results clearly indicate that the behavioral changes produced by PAG stimulation are mediated by associative Pavlovian learning mechanisms rather than nonassociative mechanisms such as sensitization or pseudoconditioning. The present technique may be useful for assessing the neuroanatomical and neurochemical substrates underlying the aversive effects of brain-stimulation, and for screening the effects of drugs on the conditional and unconditional responses produced by such stimulation.

  4. Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke

    DEFF Research Database (Denmark)

    Ghaziani, Emma; Couppé, Christian; Henkel, Cecilie

    2017-01-01

    functioning is most pronounced during the first 4 weeks post stroke, there are few studies investigating the effect of rehabilitation during this critical time window. The purpose of this trial is to determine the effect of electrical somatosensory stimulation (ESS) initiated in the acute stroke phase...

  5. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...

  6. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  7. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    Science.gov (United States)

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  8. Effects of transcutaneous electrical nerve stimulation (TENS) on cognition and behaviour in aging

    NARCIS (Netherlands)

    Scherder, E.J A; van Someren, E.W J; Bouma, J.M.; van der Berg, M

    2000-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) improved cognition and behaviour in patients with Alzheimer's disease (AD). The rationale underlying these studies was that TENS could activate, e.g. the septo-hippocampal region and the hypothalamus through direct and indirect

  9. Transcutaneous electrical nerve stimulation (TENS) improves the rest-activity rhythm in midstage Alzheimer's disease

    NARCIS (Netherlands)

    Scherder, E. J.; van Someren, E. J.; Swaab, D. F.

    1999-01-01

    Nightly restlessness in patients with Alzheimer's disease (AD) is probably due to a disorder of circadian rhythms. Transcutaneous electrical nerve stimulation (TENS) was previously reported to increase the strength of coupling of the circadian rest activity rhythm to Zeitgebers in early stage

  10. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries

    DEFF Research Database (Denmark)

    Ladouceur, M.; Barbeau, H.

    2000-01-01

    This study investigated the changes in maximal overground walking speed (MOWS) that occurred during; walking training with a functional electrical stimulation (FES) orthosis by chronic spinal cord injured persons with incomplete motor function loss. The average walking: speed over a distance of 10...

  11. Anxiolytic and antidepressive effects of electric stimulation of the paleocerebellar cortex in pentylenetetrazol kindled rats

    NARCIS (Netherlands)

    Godlevsky, L.S.; Muratova, T.N.; Kresyun, N.V.; Luijtelaar, E.L.J.M. van; Coenen, A.M.L.

    2014-01-01

    Anxiety and depression are component of interictal behavioral deteriorations that occur as a consequence of kindling, a procedure to induce chronic epilepsy. The aim of this study was to evaluate the possible effects of electrical stimulation (ES) of paleocerebellar cortex on anxiety and

  12. Peripheral electrical stimulation in Alzheimer's disease - A randomized controlled trial on cognition and behavior

    NARCIS (Netherlands)

    van Dijk, Koene R.A.; Scheltens, Philip; Luijpen, Marijn W.; Sergeant, Joseph A.; Scherder, Erik J.A.

    2005-01-01

    In a number of studies, peripheral electrical nerve stimulation has been applied to Alzheimer's disease (AD) patients who lived in a nursing home. Improvements were observed in memory, verbal fluency, affective behavior, activities of daily living and on the rest-activity rhythm and pupillary light

  13. Effects of electric stimulation-assisted cycling training in people with chronic stroke

    NARCIS (Netherlands)

    Janssen, T.W.J.; Beltman, J.M.; Elich, P.; Koppe, P.A.; Konijnenbelt, H.; de Haan, A.; Gerrits, K.H.L.

    2008-01-01

    Janssen TW, Beltman JM, Elich P, Koppe PA, Konijnenbelt H, de Haan A, Gerrits KH. Effects of electric stimulation-assisted cycling training in people with chronic stroke. Objective: To evaluate whether leg cycling training in subjects with chronic stroke can improve cycling performance, aerobic

  14. Clinical efficacy of electrical stimulation exercise training : Effects on health, fitness, and function

    NARCIS (Netherlands)

    Janssen, T. W J; Glaser, R. M.; Shuster, D. B.

    1998-01-01

    The purpose of this article is to summarize research findings pertaining to the effects of functional electrical stimulation (FES) lower limb exercise training on health, fitness, and function in individuals with spinal cord injury. This lays the foundation for defining the potential clinical

  15. Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on cognition and behaviour in aging

    NARCIS (Netherlands)

    Scherder, E.J.A.; Bouma, A.; van den Berg, M.

    2000-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) improved cognition and behaviour in patients with Alzheimer's disease (AD). The rationale underlying these studies was that TENS could activate, e.g. the septo-hippocampal region and the hypothalamus through direct and indirect

  16. Electrical Stimulation of Schwann Cells Promotes Sustained Increases in Neurite Outgrowth

    OpenAIRE

    Koppes, Abigail N.; Nordberg, Andrea L.; Paolillo, Gina M.; Goodsell, Nicole M.; Darwish, Haley A.; Zhang, Linxia; Thompson, Deanna M.

    2013-01-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite ou...

  17. The Use of Functional Electrical Stimulation on the Upper Limb and Interscapular Muscles of Patients with Stroke for the Improvement of Reaching Movements: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Alicia Cuesta-Gómez

    2017-05-01

    Full Text Available IntroductionReaching movements in stroke patients are characterized by decreased amplitudes at the shoulder and elbow joints and greater displacements of the trunk, compared to healthy subjects. The importance of an appropriate and specific contraction of the interscapular and upper limb (UL muscles is crucial to achieving proper reaching movements. Functional electrical stimulation (FES is used to activate the paretic muscles using short-duration electrical pulses.ObjectiveTo evaluate whether the application of FES in the UL and interscapular muscles of stroke patients with motor impairments of the UL modifies patients’ reaching patterns, measured using instrumental movement analysis systems.DesignA cross-sectional study was carried out.SettingThe VICON Motion System® was used to conduct motion analysis.ParticipantsTwenty-one patients with chronic stroke.InterventionThe Compex® electric stimulator was used to provide muscle stimulation during two conditions: a placebo condition and a FES condition.Main outcome measuresWe analyzed the joint kinematics (trunk, shoulder, and elbow from the starting position until the affected hand reached the glass.ResultsParticipants receiving FES carried out the movement with less trunk flexion, while shoulder flexion elbow extension was increased, compared to placebo conditions.ConclusionThe application of FES to the UL and interscapular muscles of stroke patients with motor impairment of the UL has improved reaching movements.

  18. Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception.

    Science.gov (United States)

    Cicmil, Nela; Krug, Kristine

    2015-09-19

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the 'causal map' of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.

  19. Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception

    Science.gov (United States)

    Cicmil, Nela; Krug, Kristine

    2015-01-01

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421

  20. Dopamine D4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia.

    Science.gov (United States)

    Miyauchi, Masanori; Neugebauer, Nichole M; Meltzer, Herbert Y

    2017-04-01

    Several atypical antipsychotic drugs (APDs) have high affinity for the dopamine (DA) D 4 receptor, but the relevance to the efficacy for the treatment of cognitive impairment associated with schizophrenia (CIAS) is poorly understood. The aim of this study was to investigate the effects of D 4 receptor stimulation or blockade on novel object recognition (NOR) in normal rats and on the sub-chronic phencyclidine (PCP)-induced novel object recognition deficit. The effect of the D 4 agonist, PD168077, and the D 4 antagonist, L-745,870, were studied alone, and in combination with clozapine and lurasidone. In normal rats, L-745,870 impaired novel object recognition, whereas PD168077 had no effect. PD168077 acutely reversed the sub-chronic phencyclidine-induced novel object recognition deficit. Co-administration of a sub-effective dose (SED) of PD168077 with a sub-effective dose of lurasidone also reversed this deficit, but a sub-effective dose of PD168077 with a sub-effective dose of clozapine, a more potent D 4 antagonist than lurasidone, did not reverse the sub-chronic phencyclidine-induced novel object recognition deficit. At a dose that did not induce a novel object recognition deficit, L-745,870 blocked the ability of clozapine, but not lurasidone, to reverse the novel object recognition deficit. D 4 receptor agonism has a beneficial effect on novel object recognition in sub-chronic PCP-treated rats and augments the cognitive enhancing efficacy of an atypical antipsychotic drug that lacks affinity for the D 4 receptor, lurasidone.

  1. Emotion recognition impairment and apathy after subthalamic nucleus stimulation in Parkinson's disease have separate neural substrates.

    Science.gov (United States)

    Drapier, D; Péron, J; Leray, E; Sauleau, P; Biseul, I; Drapier, S; Le Jeune, F; Travers, D; Bourguignon, A; Haegelen, C; Millet, B; Vérin, M

    2008-09-01

    To test the hypothesis that emotion recognition and apathy share the same functional circuit involving the subthalamic nucleus (STN). A consecutive series of 17 patients with advanced Parkinson's disease (PD) was assessed 3 months before (M-3) and 3 months (M+3) after STN deep brain stimulation (DBS). Mean (+/-S.D.) age at surgery was 56.9 (8.7) years. Mean disease duration at surgery was 11.8 (2.6) years. Apathy was measured using the Apathy Evaluation Scale (AES) at both M-3 and M3. Patients were also assessed using a computerised paradigm of facial emotion recognition [Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Palo Alto: Consulting Psychologist Press] before and after STN DBS. Prior to this, the Benton Facial Recognition Test was used to check that the ability to perceive faces was intact. Apathy had significantly worsened at M3 (42.5+/-8.9, p=0.006) after STN-DBS, in relation to the preoperative assessment (37.2+/-5.5). There was also a significant reduction in recognition percentages for facial expressions of fear (43.1%+/-22.9 vs. 61.6%+/-21.4, p=0.022) and sadness (52.7%+/-19.1 vs. 67.6%+/-22.8, p=0.031) after STN DBS. However, the postoperative worsening of apathy and emotion recognition impairment were not correlated. Our results confirm that the STN is involved in both the apathy and emotion recognition networks. However, the absence of any correlation between apathy and emotion recognition impairment suggests that the worsening of apathy following surgery could not be explained by a lack of facial emotion recognition and that its behavioural and cognitive components should therefore also be taken into consideration.

  2. [Real-time Gait Training System with Embedded Functional Electrical Stimulation].

    Science.gov (United States)

    Gu, Linyan; Ruan, Zhaomin; Jia, Guifeng; Xla, Jing; Qiu, Lijian; Wu, Changwang; Jin, Xiaoqing; Ning, Gangmin

    2015-07-01

    To solve the problem that mostly gait analysis is independent from the treatment, this work proposes a system that integrates the functions of gait training and assessment for foot drop treatment. The system uses a set of sensors to collect gait parameters and designes multi-mode functional electrical stimulators as actuator. Body area network technology is introduced to coordinate the data communication and execution of the sensors and stimulators, synchronize the gait analysis and foot drop treatment. Bluetooth 4.0 is applied to low the power consumption of the system. The system realizes the synchronization of treatment and gait analysis. It is able to acquire and analyze the dynamic parameters of ankle, knee and hip in real-time, and treat patients by guiding functional electrical stimulation delivery to the specific body locations of patients.

  3. Effect of Neuromuscular Electrical Muscle Stimulation on Energy Expenditure in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2011-02-01

    Full Text Available Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES at different intensities on energy expenditure (oxygen and calories in healthy adults. The secondary aim was to develop a generalized linear regression (GEE model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1, motor threshold (E2, and maximal intensity comfortably tolerated (E3. Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  4. Effect of neuromuscular electrical muscle stimulation on energy expenditure in healthy adults.

    Science.gov (United States)

    Hsu, Miao-Ju; Wei, Shun-Hwa; Chang, Ya-Ju

    2011-01-01

    Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject's demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  5. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  6. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  7. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  8. Basic study on electrically stimulated luminescence (ESL) as a dosimetry and dating method

    International Nuclear Information System (INIS)

    Sato, H.; Yamanaka, C.; Ikeya, M.

    2003-01-01

    Electrically stimulated luminescence (ESL) of calcium carbonate has been studied for application as dosimetry and dating. A powdered calcium carbonate was sandwiched by electrodes, which supplied electric field. Luminescence and surface current through a powdered sample were measured using a photomultiplier and a digital multimeter, respectively. A linear dependence of ESL on the absorbed dose by γ-rays was found when the applied voltage was below the breakdown threshold. Reciprocal electric charges through the sample had also linear relation with the absorbed dose. We propose that the luminescence and electric charge under intense electric field in calcium carbonate become new methods for dosimetry and dating on the basis of the surface defects of the calcium carbonate grains produced by the irradiation of γ-rays

  9. Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation.

    Science.gov (United States)

    Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F

    2017-07-01

    Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

  10. Effects of sensitive electrical stimulation based cueing in Parkinson's disease: a preliminary study

    Directory of Open Access Journals (Sweden)

    Benoît Sijobert

    2016-06-01

    Full Text Available This study aims to investigate the effect of a sensitive cueing on Freezing of Gait (FOG and gait disorders in subjects suffering from Parkinson’s disease (PD. 13 participants with Parkinson’s disease were equipped with an electrical stimulator and a foot mounted inertial measurement unit (IMU. An IMU based algorithm triggered in real time an electrical stimulus applied on the arch of foot at heel off detection. Starting from standing, subjects were asked to walk at their preferred speed on a path comprising 5m straight, u-turn and walk around tasks. Cueing globally decreased the time to achieve the different tasks in all the subjects. In “freezer” subjects, the time to complete the entire path was reduced by 19%. FOG events occurrence was lowered by 12% compared to baseline before and after cueing. This preliminary work showed a positive global effect of an electrical stimulation based cueing on gait and FOG in PD.

  11. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    Science.gov (United States)

    Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  12. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  13. Effect of electrical stimulation of hamstrings and L3/4 dermatome on gait in spinal cord injury

    NARCIS (Netherlands)

    van der Salm, Arjan; Veltink, Petrus H.; Hermens, Hermanus J.; Nene, A.V.; IJzerman, Maarten Joost

    2006-01-01

    Objective. To determine the effect of electrical stimulation of hamstrings and L3/4 dermatome on the swing phase of gait. Materials and Methods. Five subjects with incomplete spinal cord injury (SCI) with spasticity were included. Two electrical stimulation methods were investigated, i.e.,

  14. Foot salvage and improvement of microvascular blood flow as a result of epidural spinal cord electrical stimulation

    NARCIS (Netherlands)

    Jacobs, M. J.; Jörning, P. J.; Beckers, R. C.; Ubbink, D. T.; van Kleef, Maarten; Slaaf, D. W.; Reneman, R. S.

    1990-01-01

    Epidural spinal cord electrical stimulation has been suggested as an alternative treatment in patients with limb-threatening ischemia in whom vascular reconstructive surgery is not possible anymore. We studied the effects of epidural spinal cord electrical stimulation on microcirculatory blood flow

  15. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    Science.gov (United States)

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-03-22

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subjects were impaired in a motion but not a form 'pop-out' task when TMS was applied over V5. When motion was present, but irrelevant, or when attention to colour and form were required, TMS applied to V5 enhanced performance. When attention to motion was required in a motion-form conjunction search task, irrespective of whether the target was moving or stationary, TMS disrupted performance. These data suggest that attention to different visual attributes involves mutual inhibition between different extrastriate visual areas.

  16. Influence of patterned electrical neuromuscular stimulation on quadriceps activation in individuals with knee joint injury.

    Science.gov (United States)

    Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan

    2014-12-01

    Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical

  17. Transient Sensory Recovery in Stroke Patients After Pulsed Radiofrequency Electrical Stimulation on Dorsal Root Ganglia: A Case Series.

    Science.gov (United States)

    Apiliogullari, Seza; Gezer, Ilknur A; Levendoglu, Funda

    2017-01-01

    The integrity of the somatosensory system is important for motor recovery and neuroplasticity after strokes. Peripheral stimulation or central stimulation in patients with central nervous system lesions can be an effective modality in improving function and in facilitating neuroplasticity. We present 2 hemiplegic cases with sensory motor deficit and the result of the pulsed radiofrequency (PRF) electrical stimulation to the dorsal root ganglia. After PRF electrical stimulation, significant improvement was achieved in the examination of patients with superficial and deep sensation. However, during the follow-up visits were observed that the effect of PRF electrical stimulation disappeared. We believe that these preliminary results could be used in the development of future prospective cohort studies and randomized controlled trials that focus on the effect of PRF electrical stimulation on dorsal root ganglia to treat sensory deficits in poststroke patients.

  18. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    Science.gov (United States)

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    Science.gov (United States)

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  20. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  1. In situ electric fields causing electro-stimulation from conductor contact of charged human

    International Nuclear Information System (INIS)

    Nagai, T.; Hirata, A.

    2010-01-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength- duration curves with parameters used in previous studies. (authors)

  2. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    Science.gov (United States)

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all pbands were significantly lower than those at the 1st and 5th stimuli (all pbands than for non-taut bands (both pband itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  3. Efficacy of Carcass Electrical Stimulation in Meat Quality Enhancement: A Review

    Science.gov (United States)

    Adeyemi, Kazeem Dauda; Sazili, Awis Qurni

    2014-01-01

    The use of electrical stimulation (ES) as a management tool to improve meat quality and efficiency of meat processing is reviewed. The basis of the efficacy of ES is its ability to fast track postmortem glycolysis, which in turn stimulates myriad histological, physical, biochemical, biophysical and physiological changes in the postmortem muscle. Electrical stimulation hastens the onset and resolution of rigor mortis thereby reducing processing time and labor and plays a vital role in improving meat tenderness and other meat quality traits. However, ES may have negative impacts on some meat quality traits such as color stability and water holding capacity in some animals. Electrical stimulation is not an end in itself. In order to achieve the desired benefits from its application, the technique must be properly used in conjunction with various intricate antemortem, perimortem and postmortem management practices. Despite extensive research on ES, the fundamental mechanisms and the appropriate commercial applications remained obscured. In addition, muscles differ in their response to ES. Thus, elementary knowledge of the various alterations with respect to muscle type is needed in order to optimize the effectiveness of ES in the improvement of meat quality. PMID:25049973

  4. Efficacy of Carcass Electrical Stimulation in Meat Quality Enhancement: A Review

    Directory of Open Access Journals (Sweden)

    Kazeem Dauda Adeyemi

    2014-03-01

    Full Text Available The use of electrical stimulation (ES as a management tool to improve meat quality and efficiency of meat processing is reviewed. The basis of the efficacy of ES is its ability to fast track postmortem glycolysis, which in turn stimulates myriad histological, physical, biochemical, biophysical and physiological changes in the postmortem muscle. Electrical stimulation hastens the onset and resolution of rigor mortis thereby reducing processing time and labor and plays a vital role in improving meat tenderness and other meat quality traits. However, ES may have negative impacts on some meat quality traits such as color stability and water holding capacity in some animals. Electrical stimulation is not an end in itself. In order to achieve the desired benefits from its application, the technique must be properly used in conjunction with various intricate antemortem, perimortem and postmortem management practices. Despite extensive research on ES, the fundamental mechanisms and the appropriate commercial applications remained obscured. In addition, muscles differ in their response to ES. Thus, elementary knowledge of the various alterations with respect to muscle type is needed in order to optimize the effectiveness of ES in the improvement of meat quality.

  5. Transcutaneous electrical nerve stimulation: nonparallel antinociceptive effects on chronic clinical pain and acute experimental pain.

    Science.gov (United States)

    Cheing, G L; Hui-Chan, C W

    1999-03-01

    To investigate to what extent a single 60-minute session of transcutaneous electrical nerve stimulation (TENS) would modify chronic clinical pain, acute experimental pain, and the flexion reflex evoked in chronic low back pain patients. Thirty young subjects with chronic low back pain were randomly allocated to two groups, receiving either TENS or placebo stimulation to the lumbosacral region for 60 minutes. The flexion reflex was elicited by an electrical stimulation applied to the subject's right sole and recorded electromyographically from the biceps femoris and the tibialis anterior muscles. Subjective sensation of low back pain and the electrically induced pain were measured by two separate visual analog scales, termed VAS(LBP) and VAS(FR), respectively. Data obtained before, during, and 60 minutes after TENS and placebo stimulations were analyzed using repeated measures ANOVA. The VAS(LBP) score was significantly reduced to 63.1% of the prestimulation value after TENS (pTENS protocol had different degrees of antinociceptive influence on chronic and acute pain in chronic low back pain patients.

  6. Functional electrical stimulation of intrinsic laryngeal muscles under varying loads in exercising horses.

    Directory of Open Access Journals (Sweden)

    Jon Cheetham

    Full Text Available Bilateral vocal fold paralysis (BVCP is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES. Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis.

  7. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  8. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    Directory of Open Access Journals (Sweden)

    Malešević Nebojša M

    2012-09-01

    Full Text Available Abstract Background Functional electrical stimulation (FES applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments.

  9. Intraoperative direct electrical stimulations of central nervous system during surgery of gliomas near eloquent areas

    Directory of Open Access Journals (Sweden)

    WANG Wei-min

    2012-12-01

    Full Text Available Objective To report our experiences of direct cortical stimulation in surgery of gliomas located in eloquent areas. Methods Clinical data of 157 patients with gliomas underwent awake craniotomy with the direct electrical stimulation for functional mapping of the eloquent areas were analysed retrospectively. Results Negative cortical stimulation was found in 4 patients, and positive cortical stimulation was achieved in 153 patients (97.45% . Four hundred and ninty -six cortical sites in 139 patients were detected for motor response by direct electrical stimulation, 70 sites in 21 patients for sensory, 112 sites in 91 patients for language (such as counting and naming. The positive areas of counting disturbance were mainly seen at the lower part of left precentral gyri operculum of left inferior frontal gyri, triangular part of left inferior frontal gyri, posterior part of left middle frontal gyri, and posterior part of left superior frontal gyri. Postoperative MRI showed 92 patients (58.60% achieved total resection, 55 cases (35.03% subtotal and 10 cases (6.37% partial. One hundred and ten patients (70.06% were diagnosed as having low grade glimas, including 71 cases of astrocytoma, 26 cases of oligodendroglioma, and 13 cases of mixed astro ? oligodendroglioma, 47 patients (29.94% were high grade gliomas, including 19 cases of glioblastoma, 15 cases of anaplastic astrocytoma, and 13 cases of anaplastic oligodendroglioma. After operation 53 patients (33.76% occurred transient postoperative paralysis, 39 patients (24.84% transient language disturbance and 4 patients (2.55% permanent neurological deficits. Conclusion Intraoperative direct electrical stimulation is a reliable, precise and safety method for functional mapping of the eloquent areas. This technique allows us to achieve 'maximal safety resection' in glioma surgery.

  10. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Sahba Mobini

    2017-01-01

    Full Text Available Background Electrical stimulation (ES has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM- and adipose tissue- (AT- derived mesenchymal stem cells (MSCs to direct current electrical stimulation (DC ES and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  11. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  12. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  13. Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain - A comparative study

    Directory of Open Access Journals (Sweden)

    Rajpurohit Bharat

    2010-01-01

    Full Text Available Objectives: To compare the effectiveness of transcutaneous electrical nerve stimulation (TENS and microcurrent electrical nerve stimulation (MENS on masticatory muscles pain bruxism patient. Materials and Methods : A total of 60 subjects with the clinical diagnosis of bruxism were randomly allocated to two study groups. Group A received TENS (50 Hz, pulse width 0.5 mSec, intensity 0-60 mA for 20 minutes for a period of seven days and Group B received MENS (0.5 Hz, intensity 1,000 μA for 20 minutes for a period of seven days. The outcome measures were assessed in term of Visual Analog Scale (VAS and digital pressometer of 2 Kgf. Results : The study showed significant change in intensity of pain as per VAS score ( P ≤ 0.0001 and tenderness as per digital pressometer ( P ≤ 0.0001. Conclusion : MENS could be used as an effective pain-relieving adjunct to TENS in the treatment of masticatory muscle pain due to bruxism.

  14. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Dyhre-Poulsen, P; Krogsgaard, M R

    2000-01-01

    no sign of ACL disease, thin wire electrodes were inserted into the proximal and mid parts of the ACL. Postoperatively, the sensory nerve fibers inside the ACL were stimulated electrically while motor activity in the knee muscles was recorded using electromyography. In seven of the eight patients......, a muscular contraction of the semitendinosus muscle could be elicited with stimulus trains consisting of at least two stimuli. The latency was 95 +/- 35 ms. Stimulation during isometric contraction of either extensor or flexor muscles elicited a short, complete inhibition of the muscle activity...

  15. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  16. Study of nerve fibers nature reinforcing duodenal contractions by electrical stimulation of sympathetic nerve

    Directory of Open Access Journals (Sweden)

    Sveshnikov D.S.

    2011-09-01

    Full Text Available The subject of the article is to investigate the mechanism of increased reactions by electrical stimulation of the sympathetic nerve. Materials and methods: Experiments on dogs have shown that stimulant reactions during blockade of a-adrenergic by phentolamine and (3-adrenergic receptors with propranolol were completely eliminated by lizer-gol —the blocker of 5-HT12-receptors. Results: Infusion of lizergol did not influence on duodenal motor activity and the function of the vagus nerve. Conclusion: Effector neuron is found out to be serotonergic and its action is provided by 5-HT1 2 receptors

  17. A methodological reappraisal of non invasive high voltage electrical stimulation of lumbosacral nerve roots.

    Science.gov (United States)

    Troni, Walter; Di Sapio, Alessia; Berra, Eliana; Duca, Sergio; Merola, Aristide; Sperli, Francesca; Bertolotto, Antonio

    2011-10-01

    To describe a neurophysiological method to locate the optimal stimulation site (OSS) over the vertebral column, customized to the individual subject, to achieve maximal activation of lumbosacral roots by means of non-invasive high voltage electrical stimulation (HVES). OSS was located in 30 volunteers by testing different stimulation points of a surface multi-electrode array placed over the dorso-lumbar junction of the vertebral column. The dorso-ventral stimulating montage was used (Troni et al., 1996). Motor responses to root stimulation (rCMAPs) were bilaterally recorded from Vastus Medialis (VM), Tibialis Anterior (TA), Soleus (SL) and Flexor Hallucis Brevis (FHB) muscles. The direct nature of rCMAPs was tested by delivering two maximal stimuli 50 ms apart. Except for a few subjects with large girth, maximal rCMAPs could be obtained from all muscles with a stimulating current intensity up to 550 V (1050 mA). Maximal double HVES excluded any reflex component in the recorded rCMAPs. The procedure was well tolerated and no side effects were observed. A single maximal electric shock delivered at the proper vertebral level by means of the dorso-ventral montage is able to safely achieve synchronous, bilateral maximal activation of several roots, from L3 to S1. Maximal activation of lumbosacral roots at their origin, unattainable with magnetic stimulation, is the essential requirement for direct detection of proximal nerve conduction slowing and block in lower limbs. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  19. Stimulated bremsstrahlung of soft x-ray in a longitudinal undulating electric field

    International Nuclear Information System (INIS)

    Kim, S.H.

    1991-01-01

    It is shown that a high-energy electron beam injected into a longitudinal undulating electric field (electric undulator) in the field direction can emit a laser light in the field direction through both stimulated and unstimulated free-electron two-quantum Stark emission. Based on the momentum and energy conservation laws and the time-reversal invariance of the transition probability, a new quantum kinetic equation for the net energy transfer from an electron to the laser wave is derived. By using this equation, the photon concept, and the transition probability calculated by the Dirac equation, the gain spectrum and wavelength of the free-electron laser using the electric undulator are derived. The gain appears to scale as the inverse of the electron beam energy and the cube of the wavelength of the electric undulator

  20. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  1. Effects of Electrical Stimulation in Sympathetic Neuron-Cardiomyocyte Co-cultures

    Science.gov (United States)

    Takeuchi, Akimasa; Tani, Hiromasa; Mori, Masahide; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    The sympathetic nervous system is one of the principal sources for regulating cardiovascular functions. Little is known, however, about the network-level interactions between sympathetic neurons and cardiomyocytes. In this study, a semi-separated co-culture system of superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) was developed by using a polydimethylsyloxane (PDMS) chamber placed on a microelectrode-array (MEA) substrate. Neurites of SCG neurons passed through a conduit of the chamber and reached VMs. Evoked activities of SCG neurons were observed from several electrodes immediately after applying constant-voltage stimulation (1 V, 1 ms, biphasic square pulses) to SCG neurons by using 32 electrodes. Furthermore, this stimulation was applied to SCG neurons at the frequency of 1, 5 and 10 Hz. After applying these three kinds of stimulations, mean minute contraction rate of VMs increased with an increase in the frequency of stimulation. These results suggest that changes in contraction rate of VMs after applying electrical stimulations to SCG neurons depend on frequencies of these stimulations and that the heart-regulating mechanisms as well as that in the body were formed in this co-culture system.

  2. Childhood lead toxicity and impaired release of thyrotropin-stimulating hormone

    International Nuclear Information System (INIS)

    Huseman, C.A.; Moriarty, C.M.; Angle, C.R.

    1987-01-01

    Decreased stature of children is epidemiologically associated with increased blood lead independent of multiple socioeconomic and nutritional variables. Since endocrine dysfunction occurs in adult lead workers, they studied two girls, 2 years of age, before and after calcium disodium edetate chelation for blood leads (PbB) of 19-72 μg/dl. The height of both children had crossed from the 50th to below the 10th percentile during the course of chronic lead toxicity. Basal free T 4 , T 4 , T 3 , cortisol, somatomedin C, and sex steroids were normal. A decrease in the growth hormone response and elevation of basal prolcatin and gonadotropins were noted in one. Both children demonstrated blunted thyrotropin-stimulating hormone (TSH) responses to thyrotropin-releasing hormone (TRH) in six of seven challenges. This prompted in vitro studies of cultured cells from rat pituitarities. After incubation of pituitary cells with 0.1-10 μM Pb 2+ for 2 hr, followed by the addition of TRH, there was a dose-dependent inhibition of TSH release Lead did not interfere with the assay of TSH. To investigate the interaction of lead and calcium, 45 Ca 2+ kinetic analyses were done on rat pituitary slices after 1 hr incubation with 1.0 μM lead. The impaired late efflux was consistent with a decrease in the size and exchangeability of the tightly bound pool of intracellular microsomal or mitochondrial calcium. The rat pituitary cell model provides a model for the decreased TSH release of lead poisoning, supports the biological plausibility of a neuroendocrine effect on growth, and suggests that interference with calcium-mediated intracellular responses is a basic mechanism of lead toxicity

  3. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: dependence of required stimulation current on interstimulus interval value.

    Science.gov (United States)

    Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas

    2015-05-01

    To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.

  4. Effects of electrical stimulation in early Bells palsy on facial disability index scores

    OpenAIRE

    P. Alakram; T. Puckree

    2011-01-01

    Recovery following facial nerve palsy is variable. Physiotherapists try  to restore  function  in  patients  with  Bell’s  palsy.  The  choice  of treatment modality  depends  on  the  stage  of  the  condition.  Although limited  evidence  exists  for  the  use  of  electrical  stimulation  in  the acute  stage  of  Bell’s  palsy, some physiotherapists in South Africa have been applying this modality. This study examined the effects of electrical stimulation on functional recovery from  Bell...

  5. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  6. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    Science.gov (United States)

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  7. Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism

    DEFF Research Database (Denmark)

    Castrillon, Eduardo

    Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism Eduardo Enrique, Castrillon Watanabe, DDS, MSc, PhD Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neuroscience...... Summary: Bruxism is a parafunctional activity, which involves the masticatory muscles and probably it is as old as human mankind. Different methods such as portable EMG devices have been proposed to diagnose and understand the pathophysiology of bruxism. Biofeedback / contingent electrical stimulation...... characteristics make it complicated to assess bruxism using portable EMG devices. The possibility to assess bruxism like EMG activity on a portable device made it possible to use biofeedback and CES approaches in order to treat / manage bruxism. The available scientific information about CES effects on bruxism...

  8. Electrical Stimulation Elicit Neural Stem Cells Activation:New Perspectives in CNS Repair

    Directory of Open Access Journals (Sweden)

    Ratrel eHuang

    2015-10-01

    Full Text Available Researchers are enthusiastically concerned about neural stem cell (NSC therapy in a wide array of diseases, including stroke, neurodegenerative disease, spinal cord injury (SCI and depression. Although enormous evidences have demonstrated that neurobehavioral improvement may benefit from NSC-supporting regeneration in animal models, approaches to endogenous and transplanted NSCs are blocked by hurdles of migration, proliferation, maturation and integration of NSCs. Electrical stimulation (ES may be a selective nondrug approach for mobilizing NSCs in the central nervous system (CNS. This technique is suitable for clinic application, because it is well established and its potential complications are manageable. Here, we provide a comprehensive review of the emerging positive role of different electrical cues in regulating NSC biology in vitro and in vivo, as well as biomaterial-based and chemical stimulation of NSCs. In the future, ES combined with stem cell therapy or other cues probably becomes an approach for promoting brain repair.

  9. A pelvic motion driven electrical stimulator for drop-foot treatment.

    Science.gov (United States)

    Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son

    2009-01-01

    Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.

  10. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  11. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Directory of Open Access Journals (Sweden)

    King Christine E

    2011-08-01

    Full Text Available Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG-based BCI with a noninvasive functional electrical stimulation (FES system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77 with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions, and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower

  12. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    Science.gov (United States)

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications

  13. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    Science.gov (United States)

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  14. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    Science.gov (United States)

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  15. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    OpenAIRE

    Hyuck Joon Kwon; Gyu Seok Lee; Honggu Chun

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels...

  16. Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement.

    LENUS (Irish Health Repository)

    Monaghan, Brenda

    2010-01-01

    Total knee replacement has been demonstrated to be one of the most successful procedures in the treatment of osteoarthritis. However quadriceps weakness and reductions in function are commonly reported following surgery. Recently Neuromuscular Electrical Stimulation (NMES) has been used as an adjunct to traditional strengthening programmes. This review considers the effectiveness of NMES as a means of increasing quadriceps strength in patients before and after total knee replacement.

  17. Home electrical stimulation for women with fecal incontinence: a preliminary randomized controlled trial.

    Science.gov (United States)

    Cohen-Zubary, Nira; Gingold-Belfer, Rachel; Lambort, Inna; Wasserberg, Nir; Krissi, Haim; Levy, Sigal; Niv, Yaron; Dickman, Ram

    2015-04-01

    The purpose of this study is to compare the effectiveness and cost of home electrical stimulation and standardized biofeedback training in females with fecal incontinence Thirty-six females suffering from fecal incontinence were randomized into two groups, matched for mean age (67.45 ± 7.2 years), mean body mass index (kg/m2) (26.2 ± 3.9), mean disease duration (4.1 ± 0.8 years), mean number of births (2.7 ± 1.3), and reports of obstetric trauma (25%). Questionnaires were used to evaluate their demographics, medical, and childbearing history. Subjects were randomized to home electrical stimulation or standardized biofeedback training for a period of 6 weeks. Subjective outcome measures included the frequency of fecal, urine, and gas incontinence by visual analog scale, Vaizey incontinence score, and subjects' levels of fecal incontinence related anxiety. Objective outcome measures included pelvic floor muscle strength assessed by surface electromyography. We also compared the cost of each treatment modality. Only females who received home electrical stimulation (HES) reported a significant improvement in Vaizey incontinence score (p = 0.001), anxiety (p = 0.046), and in frequency of leaked solid stool (p = 0.013). A significant improvement in pelvic floor muscle strength was achieved by both groups. HES was much cheaper compared to the cost of standardized biofeedback training (SBT) (US $100 vs. US $220, respectively). Our study comprised a small female population, and the study endpoints did not include objective measures of anorectal function test, such as anorectal manometry, before and after treatment. Home electrical stimulation may offer an alternative to standardized biofeedback training as it is effective and generally well-tolerated therapy for females with fecal incontinence.

  18. Transcutaneous electrical nerve stimulation and transcutaneous spinal electroanalgesia: a preliminary efficacy and mechanisms-based investigation.

    Science.gov (United States)

    Palmer, Shea; Cramp, Fiona; Propert, Kate; Godfrey, Helen

    2009-09-01

    To determine the effects of transcutaneous electrical nerve stimulation (TENS) and transcutaneous spinal electroanalgesia (TSE) on mechanical pain threshold (MPT) and vibration threshold (VT). A prospective, single-blind, randomised, placebo-controlled trial. Laboratory based. Thirty-four healthy volunteers (12 men and 22 women; mean age+/-standard deviation 30+/-8 years). Exclusion criteria were conditions affecting upper limb sensation and contraindications to electrical stimulation. Participants were allocated at random to receive TENS (n=8), TSE (n=8), placebo (n=9) or control (n=9). Electrical stimulation was applied for 30 minutes (from time 18 minutes to 48 minutes) via electrodes (5 cmx5 cm) placed centrally above and below the space between the C6 and C7 spinous processes, with 5 cm between electrodes. MPT (using an algometer) and VT (using a vibrameter) were recorded on seven occasions from the first dorsal interosseous muscle of the right hand - at baseline (0 minutes) and then at 10-minute intervals until the end of the 60-minute testing period. There were no statistically significant group differences in MPT (all p>0.05). Significant group differences in VT were found at 20, 30 and 40 minutes (all ptests showed that the TENS group had significantly greater VT than both the placebo [median difference 0.30 microm, 95% confidence interval (CI) -0.05 to 0.66] and control (0.51 microm, 95% CI 0.05 to 0.97) groups at 20 minutes, and significantly greater VT than the control group (0.69 microm, 95% CI 0.20 to 1.17) at 30 minutes (all p<0.008). Electrical stimulation did not alter MPT. The increase in VT during TENS may be due to distraction or antidromic block of large-diameter nerve fibres. TSE failed to alter either outcome measure significantly.

  19. Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2005-01-01

    The synchronization of n(n 3) neurons coupled with gap junction in external electrical stimulation is investigated. In this paper, the coupled model is established on the basis of nonlinear cable model, and then the relation between coupling strength of the gap junction and the synchronization is discussed in detail. The sufficient condition of complete synchronization is attained from rigorous mathematical derivation. The synchronizations of periodic neurons and chaotic neurons are studied respectively

  20. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A pilot study of a new method of cognitive stimulation using abacus arithmetic in healthy and cognitively impaired elderly subjects.

    Science.gov (United States)

    Matías-Guiu, J A; Pérez-Martínez, D A; Matías-Guiu, J

    2016-06-01

    This study explores the applicability of a cognitive stimulation method based on abacus arithmetic in elderly people with and without cognitive impairment. This observational and prospective pilot study was performed in 2 hospitals. The study assessed the applicability of a programme of arithmetic training developed for use in the elderly population. The primary endpoint was an evaluation of the stimulation programme, in terms of usability, satisfaction, and participation, in healthy elderly controls and elderly patients with mild cognitive impairment or Alzheimer disease. Secondary endpoints were family satisfaction, caregiver burden, and the behaviour and cognition of patients. Usability, satisfaction, and degree of participation were high. The Mini-Mental State Examination showed significant changes (23.1±4.8 before the intervention vs 24.9±4.2 afterwards, P=.002); there were no changes on the Trail Making Test parts A and B, Yesavage Geriatric Depression scale, and Zarit caregiver burden scale. The study suggests that cognitive stimulation with abacus arithmetic may be used in elderly people with and without cognitive impairment. Further studies will be needed to evaluate the efficacy of this kind of programmes. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  3. Development of a Pain Measurement Device Using Electrical Stimulation and Pressure: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Seung Ho Lee

    2018-01-01

    Full Text Available Understanding and precise assessment of pain level are key factors in rehabilitation therapy. Pain is a complex and subjective experience that is affected by an individual’s emotion and health conditions. Various methods have been developed for quantitative evaluation of pain level; however, these methods have several drawbacks. In this work, we developed a pain measurement device for quantitative pain assessment. The system consists of two parts, a component for electrical stimulation and a pressure dolorimeter, for application of two different stresses. Regarding electrical stimulation, the degree of pain is assessed by the applied current. Skin resistance was also analyzed by applying current to remove the effects caused by skin conditions. The electrical stimulation did not induce any histological changes or inflammation in the tissues. Using the pressure dolorimeter, the pain level was assessed according to the degree of inflammation. This system could be used for the quantitative assessment of pain induced by inflammation, wounds, and other factors. Since the described system is the first of its kind, there are many problems that remain to be solved. However, with continuous development, our system could provide more accurate pain assessment by removing skin condition effects and through cross-validation.

  4. Therapeutic efficacy of neuromuscular electrical stimulation and electromyographic biofeedback on Alzheimer's disease patients with dysphagia.

    Science.gov (United States)

    Tang, Yi; Lin, Xiang; Lin, Xiao-Juan; Zheng, Wei; Zheng, Zhi-Kai; Lin, Zhao-Min; Chen, Jian-Hao

    2017-09-01

    To study the therapeutic effect of neuromuscular electrical stimulation and electromyographic biofeedback (EMG-biofeedback) therapy in improving swallowing function of Alzheimer's disease patients with dysphagia.A series of 103 Alzheimer's disease patients with dysphagia were divided into 2 groups, among which the control group (n = 50) received swallowing function training and the treatment group (n = 53) received neuromuscular electrical stimulation plus EMG-biofeedback therapy. The mini-mental state scale score was performed in all patients along the treatment period. Twelve weeks after the treatment, the swallowing function was assessed by the water swallow test. The nutritional status was evaluated by Mini Nutritional Assessment (MNA) as well as the levels of hemoglobin and serum albumin. The frequency and course of aspiration pneumonia were also recorded.No significant difference on mini-mental state scale score was noted between 2 groups. More improvement of swallowing function, better nutritional status, and less frequency and shorter course of aspiration pneumonia were presented in treatment group when compared with the control group.Neuromuscular electrical stimulation and EMG-biofeedback treatment can improve swallowing function in patients with Alzheimer's disease and significantly reduce the incidence of adverse outcomes. Thus, they should be promoted in clinical practice.

  5. The Methodical Aspects of Material Stimulation in the Motivation System at Enterprises of Electricity Industry

    Directory of Open Access Journals (Sweden)

    Kostіn Dmytro Yu.

    2017-09-01

    Full Text Available The article improves the methodical aspects of estimating material stimulation at enterprises of electricity industry. It has been determined that the provided taxonomy coefficients synthetically characterize changes in the values of attributes of the groups studied. Their most important advantage is that, in the course of analysis, we can now use only one indicator, which characterizes the direction and scope of changes in the processes described by the set of arbitrary numbers of incoming attributes. The level of material stimulation in the motivation system of enterprises of electricity in 2012–2015 was researched. It has been noted that during the outlined period there has been a general trend towards an increase in the integral indicator. This results from the economic crisis occurrences and the lack of a well-functioning organizational and economic mechanism for managing the motivation system at enterprises of this industry branch. The integrated assessment of enterprises extends the economic essence of the concept of material stimulation in the motivation system at enterprises of electricity industry, allowing it to be used to characterize the enterprise’s ability to return to its equilibrium status, preserve the parameters and move to a new stage of development in the conditions of accidental changes in the external and internal environment.

  6. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2013-01-01

    Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. To quantify the electric field focality and depth of penetration of various TMS coils. The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d(1/2), and focality by the tangential spread, S(1/2), defined as the half-value volume (V(1/2)) divided by the half-value depth, S(1/2) = V(1/2)/d(1/2). The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth-focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d(1/2) are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0-3.5 cm and 0.9-3.4 cm, respectively. However, figure-8 field coils are more focal, having S(1/2) as low as 5 cm(2) compared to 34 cm(2) for circular field coils. For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d(1/2) and S(1/2). Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-12-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  8. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia.

    Science.gov (United States)

    Meinzer, Marcus; Darkow, Robert; Lindenberg, Robert; Flöel, Agnes

    2016-04-01

    Transcranial direct current stimulation has shown promise to improve recovery in patients with post-stroke aphasia, but previous studies have only assessed stimulation effects on impairment parameters, and evidence for long-term maintenance of transcranial direct current stimulation effects from randomized, controlled trials is lacking. Moreover, due to the variability of lesions and functional language network reorganization after stroke, recent studies have used advanced functional imaging or current modelling to determine optimal stimulation sites in individual patients. However, such approaches are expensive, time consuming and may not be feasible outside of specialized research centres, which complicates incorporation of transcranial direct current stimulation in day-to-day clinical practice. Stimulation of an ancillary system that is functionally connected to the residual language network, namely the primary motor system, would be more easily applicable, but effectiveness of such an approach has not been explored systematically. We conducted a randomized, parallel group, sham-controlled, double-blind clinical trial and 26 patients with chronic aphasia received a highly intensive naming therapy over 2 weeks (8 days, 2 × 1.5 h/day). Concurrently, anodal-transcranial direct current stimulation was administered to the left primary motor cortex twice daily at the beginning of each training session. Naming ability for trained items (n = 60 pictures that could not be named during repeated baseline assessments), transfer to untrained items (n = 284 pictures) and generalization to everyday communication were assessed immediately post-intervention and 6 months later. Naming ability for trained items was significantly improved immediately after the end of the intervention in both the anodal (Cohen's d = 3.67) and sham-transcranial direct current stimulation groups (d = 2.10), with a trend for larger gains in the anodal-transcranial direct current stimulation group (d

  9. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording

    Science.gov (United States)

    Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han

    2018-04-01

    Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.

  10. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  11. The assessment of a novel electrical stimulation waveform recently introduced for the treatment of overactive bladder

    International Nuclear Information System (INIS)

    Slovak, M; Barker, A T; Chapple, C R

    2013-01-01

    Transdermal amplitude modulated signal (TAMS) is a novel electrical stimulus which has been recently introduced for the treatment of overactive bladder (OAB) syndrome. It has been suggested that it has advantages over conventional waveforms by providing more effective penetration of the skin to enhance the efficacy of therapy. As there is no literature which supports this, we performed this study to evaluate potential advantages of the TAMS signal for electrical stimulation of subcutaneous nerves as compared to conventional stimuli. The stimuli were applied on forearms of ten healthy volunteers and electrical parameters of stimuli and sensation measurements were recorded. None of the recorded electrical parameters showed significant differences (paired t-test p ≥ 0.250) between the TAMS and conventional waveforms. Similarly, the mean sensation recorded at motor threshold level and at 50% of maximal motor response level showed no differences (paired t-test p = 0.242 and p = 0.687 respectively). It is unlikely, based on the results of this study, that TAMS provides any enhancement of the efficacy of conventional stimuli. We would recommend that further studies are carried out to clearly demonstrate in man what, if any, advantages the TAMS waveform has over conventional stimulation before it is widely deployed into clinical practice. (paper)

  12. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Giovanna Distefano

    Full Text Available Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES for 1 or 4 weeks following muscle-derived stem cell (MDSC transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.

  13. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations.

    Science.gov (United States)

    Mandonnet, Emmanuel; Winkler, Peter A; Duffau, Hugues

    2010-02-01

    While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. Here, we critically review exactly what DES can tell us about cerebral function. First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.

  14. Temporal code-driven stimulation: definition and application to electric fish signaling

    Directory of Open Access Journals (Sweden)

    Angel Lareo

    2016-10-01

    Full Text Available Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox.

  15. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    Science.gov (United States)

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  16. Chronological changes in astrocytes induced by chronic electrical sensorimotor cortex stimulation in rats.

    Science.gov (United States)

    Morishita, Takashi; Yamashita, Akiko; Katayama, Yoichi; Oshima, Hideki; Nishizaki, Yuji; Shijo, Katsunori; Fukaya, Chikashi; Yamamoto, Takamitsu

    2011-01-01

    Motor cortex stimulation (MCS) is a treatment option for various disorders such as medically refractory pain, poststroke hemiplegia, and movement disorders. However, the exact mechanisms underlying its effects remain unknown. In this study, the effects of long-term chronic MCS were investigated by observing changes in astrocytes. A quadripolar stimulation electrode was implanted on the dura over the sensorimotor cortex of adult rats, and the cortex was continuously stimulated for 3 hours, 1 week, 4 weeks, and 8 weeks. Immunohistochemical staining of microglia (ionized calcium-binding adaptor molecule 1 [Iba1] staining) and astrocytes (glial fibrillary acidic protein [GFAP] staining), and neuronal degeneration histochemistry (Fluoro-Jade B staining) were carried out to investigate the morphological changes following long-term chronic MCS. Iba1 staining and Fluoro-Jade B staining showed no evidence of Iba1-positive microglial changes or neurodegeneration. Following continuous MCS, GFAP-positive astrocytes were enlarged and their number increased in the cortex and the thalamus of the stimulated hemisphere. These findings indicate that chronic electrical stimulation can continuously activate astrocytes and result in morphological and quantitative changes. These changes may be involved in the mechanisms underlying the neuroplasticity effect induced by MCS.

  17. Blood flow variation in human muscle during electrically stimulated exercise bouts.

    Science.gov (United States)

    Vanderthommen, Marc; Depresseux, Jean-Claude; Dauchat, Luc; Degueldre, Christian; Croisier, Jean-Louis; Crielaard, Jean-Michel

    2002-07-01

    To evaluate, with a high spatial resolution, the blood flow variations in human skeletal muscle during neuromuscular electric stimulation (NMES) and hence to gain better understanding of the mechanisms of muscle spatial recruitment during NMES. One thigh was submitted to 3 stimulation bouts of different durations (S1=4min, S2=8min, S3=12min) with a workload corresponding to 10% of quadriceps maximal isometric voluntary torque. A cyclotron research center at a Belgian university. Ten healthy male volunteers. Not applicable. Participants were studied with positron emission tomography and H(2)(15)O. Tissue blood flow was evaluated during the last 4 minutes of each stimulation bout in multiple regions of interest (ROIs) selected in the transverse section of the stimulated thigh. Mean tissue blood flow was significantly lower during S1 (5.9+/-1.3mL. min(-1). 100g(-1)) than during S2 (10.6+/-3.4mL. min(-1). 100g(-1)) and S3 (11.6+/-3.7mL. min(-1). 100g(-1)) (Precruited ROIs were preferentially located far from the electrode. During NMES, new muscular regions situated far from the stimulation site are recruited. These recruitment mechanisms are particular and contrast with the recruitment of motor units seen during voluntary contraction. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  18. Navigated Transcranial Magnetic Stimulation: A Biologically Based Assay of Lower Extremity Impairment and Gait Velocity

    OpenAIRE

    Peters, Heather T.; Dunning, Kari; Belagaje, Samir; Kissela, Brett M.; Ying, Jun; Laine, Jarmo; Page, Stephen J.

    2017-01-01

    Objectives. (a) To determine associations among motor evoked potential (MEP) amplitude, MEP latency, lower extremity (LE) impairment, and gait velocity and (b) determine the association between the presence of a detectable MEP signal with LE impairment and with gait velocity. Method. 35 subjects with chronic, stable LE hemiparesis were undergone TMS, the LE section of the Fugl-Meyer Impairment Scale (LE FM), and 10-meter walk test. We recorded presence, amplitude, and latency of MEPs in the a...

  19. Neuromuscular electrical stimulation improves exercise tolerance in chronic obstructive pulmonary disease patients with better preserved fat-free mass

    Directory of Open Access Journals (Sweden)

    Lara Maris Nápolis

    2011-01-01

    Full Text Available BACKGROUND: High-frequency neuromuscular electrical stimulation increases exercise tolerance in patients with advanced chronic obstructive pulmonary disease (COPD patients. However, it is conceivable that its benefits are more prominent in patients with better-preserved peripheral muscle function and structure. OBJECTIVE: To investigate the effects of high-frequency neuromuscular electrical stimulation in COPD patients with better-preserved peripheral muscle function. Design: Prospective and cross-over study. METHODS: Thirty COPD patients were randomly assigned to either home-based, high-frequency neuromuscular electrical stimulation or sham stimulation for six weeks. The training intensity was adjusted according to each subject's tolerance. Fat-free mass, isometric strength, six-minute walking distance and time to exercise intolerance (Tlim were assessed. RESULTS: Thirteen (46.4% patients responded to high-frequency neuromuscular electrical stimulation; that is, they had a post/pre Δ Tlim >10% after stimulation (unimproved after sham stimulation. Responders had a higher baseline fat-free mass and six-minute walking distance than their seventeen (53.6% non-responding counterparts. Responders trained at higher stimulation intensities; their mean amplitude of stimulation during training was significantly related to their fat-free mass (r = 0.65; p<0.01. Logistic regression revealed that fat-free mass was the single independent predictor of Tlim improvement (odds ratio [95% CI] = 1.15 [1.04-1.26]; p<0.05. CONCLUSIONS: We conclude that high-frequency neuromuscular electrical stimulation improved the exercise capacity of COPD patients with better-preserved fat-free mass because they tolerated higher training stimulus levels. These data suggest that early training with high-frequency neuromuscular electrical stimulation before tissue wasting begins might enhance exercise tolerance in patients with less advanced COPD.

  20. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    Science.gov (United States)

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Effect of Contour Shape of Nervous System Electromagnetic Stimulation Coils on the Induced Electrical Field Distribution

    Directory of Open Access Journals (Sweden)

    Daskalov Ivan K

    2002-05-01

    Full Text Available Abstract Background Electromagnetic stimulation of the nervous system has the advantage of reduced discomfort in activating nerves. For brain structures stimulation, it has become a clinically accepted modality. Coil designs usually consider factors such as optimization of induced power, focussing, field shape etc. In this study we are attempting to find the effect of the coil contour shape on the electrical field distribution for magnetic stimulation. Method and results We use the maximum of the induced electric field stimulation in the region of interest as the optimization criterion. This choice required the application of the calculus of variation, with the contour perimeter taken as a pre-set condition. Four types of coils are studied and compared: circular, square, triangular and an 'optimally' shaped contour. The latter yields higher values of the induced electrical field in depths up to about 30 mm, but for depths around 100 mm, the circular shape has a slight advantage. The validity of the model results was checked by experimental measurements in a tank with saline solution, where differences of about 12% were found. In view the accuracy limitations of the computational and measurement methods used, such differences are considered acceptable. Conclusion We applied an optimization approach, using the calculus of variation, which allows to obtain a coil contour shape corresponding to a selected criterion. In this case, the optimal contour showed higher intensities for a longer line along the depth-axis. The method allows modifying the induced field structure and focussing the field to a selected zone or line.

  2. A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties

    Directory of Open Access Journals (Sweden)

    Colin eHorne

    2016-02-01

    Full Text Available We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs. The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability under both monophasic and cathodic-anodic biphasic stimulation, without changing the model’s parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions.Our work extends the stochastic leaky integrate and fire (SLIF neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  3. Neuronal Activation in the Periaqueductal Gray Matter Upon Electrical Stimulation of the Bladder

    Directory of Open Access Journals (Sweden)

    Céline Meriaux

    2018-05-01

    Full Text Available Reflexes, that involve the spinobulbospinal pathway control both storage and voiding of urine. The periaqueductal gray matter (PAG, a pontine structure is part of the micturition pathway. Alteration in this pathway could lead to micturition disorders and urinary incontinence, such as the overactive bladder symptom complex (OABS. Although different therapeutic options exist for the management of OABS, these are either not effective in all patients. Part of the pathology of OABS is faulty sensory signaling about the filling status of the urinary bladder, which results in aberrant efferent signaling leading to overt detrusor contractions and the sensation of urgency and frequent voiding. In order to identify novel targets for therapy (i.e., structures in the central nervous system and explore novel treatment modalities such as neuromodulation, we aimed at investigating which areas in the central nervous system are functionally activated upon sensory afferent stimulation of the bladder. Hence, we designed a robust protocol with multiple readout parameters including immunohistological and behavioral parameters during electrical stimulation of the rat urinary bladder. Bladder stimulation induced by electrical stimulation, below the voiding threshold, influences neural activity in: (1 the caudal ventrolateral PAG, close to the aqueduct; (2 the pontine micturition center and locus coeruleus; and (3 the superficial layers of the dorsal horn, sacral parasympathetic nucleus and central canal region of the spinal cord. In stimulated animals, a higher voiding frequency was observed but was not accompanied by increase in anxiety level and locomotor deficits. Taken together, this work establishes a critical role for the vlPAG in the processing of sensory information from the urinary bladder and urges future studies to investigate the potential of neuromodulatory approaches for urological diseases.

  4. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study

    Science.gov (United States)

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = –2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = –1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  5. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study.

    Science.gov (United States)

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  6. A new visual stimulation program for improving visual acuity in children with visual impairment: a pilot study

    Directory of Open Access Journals (Sweden)

    Li-Ting eTsai

    2016-04-01

    Full Text Available The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS program combining checkerboard pattern reversal (passive stimulation with oddball stimuli (attentional modulation for improving the visual acuity (VA of visually impaired (VI children and children with amblyopia and additional developmental problems. Six children (3 females, 3 males; mean age = 3.9 ± 2.3 years with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week of at least 8 sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards, visual evoked potential (VEP, and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ were carried out before and after the VS program. Significant gains in VA were found after the VS training (VA=1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z=-2.20, asymptotic significance (2-tailed =0.028. No significant changes were observed in the FVQ assessment (92.8 ± 12.6 to 100.8 ± SD=15.4, Z=-1.46, asymptotic significance (2-tailed = 0.144. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  7. The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Taylor, Janet L; Gandevia, Simon C

    2002-01-01

    In healthy human subjects, descending motor pathways including the corticospinal tract were stimulated electrically at the level of the cervicomedullary junction to determine the effects on the discharge of motoneurones innervating the biceps brachii. Post-stimulus time histograms (PSTHs) were...... constructed for 15 single motor units following electrical stimulation of the corticospinal tract and for 11 units following electrical stimulation of large diameter afferents at the brachial plexus. Responses were assessed during weak voluntary contraction. Both types of stimulation produced a single peak...... in the two conditions when the intensity of the stimulation was adjusted so that responses of the same size could be compared. Estimates of the descending conduction velocity and measurements of presumed peripheral conduction time suggest that there is less than 0.5 ms for spinal events (including synaptic...

  8. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of experimental diabetes on cholinergic, purinergic and peptidergic motor responses of the isolated rat bladder to electrical field stimulation or capsaicin.

    Science.gov (United States)

    Benkó, Rita; Lázár, Zsófia; Pórszász, Róbert; Somogyi, George T; Barthó, Loránd

    2003-09-30

    in precontracted preparations treated with tachykinin receptor antagonists. (e) ATP-induced contractions were strongly reduced by PPADS plus suramin (50 plus 100 microM) and to a similar degree by 100 plus 200 microM, respectively. It is concluded that experimental diabetes selectively impairs peptidergic, capsaicin-sensitive responses (especially those that involve impulse conduction) in the rat detrusor preparation. The contractile response to electrical field stimulation that remains after atropine plus the P(2) purinoceptor antagonists has a yet unknown transmitter background.

  10. Effects of electrical stimulation in early Bells palsy on facial disability index scores

    Directory of Open Access Journals (Sweden)

    P. Alakram

    2011-01-01

    Full Text Available Recovery following facial nerve palsy is variable. Physiotherapists try  to restore  function  in  patients  with  Bell’s  palsy.  The  choice  of treatment modality  depends  on  the  stage  of  the  condition.  Although limited  evidence  exists  for  the  use  of  electrical  stimulation  in  the acute  stage  of  Bell’s  palsy, some physiotherapists in South Africa have been applying this modality. This study examined the effects of electrical stimulation on functional recovery from  Bell’s palsy using the Facial Disability Index, a tool that documents recovery from the patients’ perspective. A two group pre-test post-test experimental design comprising of 16 patients with Bell’s Palsy of less than 30 days duration was utilized. Patients with a clinical diagnosis of Bell’s Palsy were systematically allocated to the control and experimental groups. Patients (n=16 were pre-tested and post-tested using the Facial Disability Index. Both groups were treated with heat, massage, exercises and given a home program. The experimental group also received electrical stimulation. The FDI of the control group improved between 17, 8% and 95, 4% with a mean of 52, 8%. The improvement in the experimental group ranged between 14, 8% and 126% with a mean of 49, 8%. Certain clinical residuals persisted in a mild form in both groups on discharge from the study.  The effects of electrical stimulation as used in this study during the acute phase of Bell’s palsy, quantified as the FDI was clinically but not statistically significant. A larger sample size, longer stimulation time or both should be investigated.

  11. Effects of Neuromuscular Electrical Stimulation During Hemodialysis on Peripheral Muscle Strength and Exercise Capacity: A Randomized Clinical Trial.

    Science.gov (United States)

    Brüggemann, Ana Karla; Mello, Carolina Luana; Dal Pont, Tarcila; Hizume Kunzler, Deborah; Martins, Daniel Fernandes; Bobinski, Franciane; Pereira Yamaguti, Wellington; Paulin, Elaine

    2017-05-01

    To evaluate the effects of neuromuscular electrical stimulation of high and low frequency and intensity, performed during hemodialysis, on physical function and inflammation markers in patients with chronic kidney disease (CKD). Randomized clinical trial. Hemodialysis clinic. Patients with CKD (N=51) were randomized into blocks of 4 using opaque sealed envelopes. They were divided into a group of high frequency and intensity neuromuscular electrical stimulation and a group of low frequency and intensity neuromuscular electrical stimulation. The high frequency and intensity neuromuscular electrical stimulation group was submitted to neuromuscular electrical stimulation at a frequency of 50Hz and a medium intensity of 72.90mA, and the low frequency and intensity neuromuscular electrical stimulation group used a frequency of 5Hz and a medium intensity of 13.85mA, 3 times per week for 1 hour, during 12 sessions. Peripheral muscle strength, exercise capacity, levels of muscle trophism marker (insulin growth factor 1) and levels of proinflammatory (tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines. The high frequency and intensity neuromuscular electrical stimulation group showed a significant increase in right peripheral muscle strength (155.35±65.32Nm initial vs 161.60±68.73Nm final; P=.01) and left peripheral muscle strength (156.60±66.51Nm initial vs 164.10±69.76Nm final; P=.02) after the training, which did not occur in the low frequency and intensity neuromuscular electrical stimulation group for both right muscle strength (109.40±32.08Nm initial vs 112.65±38.44Nm final; P=.50) and left muscle strength (113.65±37.79Nm initial vs 116.15±43.01Nm final; P=.61). The 6-minute walk test distance (6MWTD) increased in both groups: high frequency and intensity neuromuscular electrical stimulation group (435.55±95.81m initial vs 457.25±90.64m final; P=.02) and low frequency and intensity neuromuscular electrical stimulation group (403.80

  12. Gait training assisted by multi-channel functional electrical stimulation early after stroke: study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Bloemendaal, M. van; Bus, S.A.; Boer, C.E. de; Nollet, F.; Geurts, A.C.H.; Beelen, A.

    2016-01-01

    BACKGROUND: Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence

  13. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  14. A probabilistic map of the human ventral sensorimotor cortex using electrical stimulation.

    Science.gov (United States)

    Breshears, Jonathan D; Molinaro, Annette M; Chang, Edward F

    2015-08-01

    The human ventral sensorimotor cortex (vSMC) is involved in facial expression, mastication, and swallowing, as well as the dynamic and highly coordinated movements of human speech production. However, vSMC organization remains poorly understood, and previously published population-driven maps of its somatotopy do not accurately reflect the variability across individuals in a quantitative, probabilistic fashion. The goal of this study was to describe the responses to electrical stimulation of the vSMC, generate probabilistic maps of function in the vSMC, and quantify the variability across individuals. Photographic, video, and stereotactic MRI data of intraoperative electrical stimulation of the vSMC were collected for 33 patients undergoing awake craniotomy. Stimulation sites were converted to a 2D coordinate system based on anatomical landmarks. Motor, sensory, and speech stimulation responses were reviewed and classified. Probabilistic maps of stimulation responses were generated, and spatial variance was quantified. In 33 patients, the authors identified 194 motor, 212 sensory, 61 speech-arrest, and 27 mixed responses. Responses were complex, stereotyped, and mostly nonphysiological movements, involving hand, orofacial, and laryngeal musculature. Within individuals, the presence of oral movement representations varied; however, the dorsal-ventral order was always preserved. The most robust motor responses were jaw (probability 0.85), tongue (0.64), lips (0.58), and throat (0.52). Vocalizations were seen in 6 patients (0.18), more dorsally near lip and dorsal throat areas. Sensory responses were spatially dispersed; however, patients' subjective reports were highly precise in localization within the mouth. The most robust responses included tongue (0.82) and lips (0.42). The probability of speech arrest was 0.85, highest 15-20 mm anterior to the central sulcus and just dorsal to the sylvian fissure, in the anterior precentral gyrus or pars opercularis. The

  15. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  16. Investigation of Balance Function Using Dynamic Posturography under Electrical-Acoustic Stimulation in Cochlear Implant Recipients

    Directory of Open Access Journals (Sweden)

    B. Schwab

    2010-01-01

    Full Text Available Introduction. The purpose of the present study is to investigate the effect of electrical-acoustic stimulation on vestibular function in CI patients by using the EquiTest and to help answer the question of whether electrically stimulating the inner ear using a cochlear implant influences the balance system in any way. Material and Methods. A test population (=50 was selected at random from among the cochlear implant recipients. Dynamic posturography (using the EquiTest was performed with the device switched off an switched on. Results. In summary, it can be said that an activated cochlear implant affects the function of the vestibular system and may, to an extent, even lead to a stabilization of balance function under the static conditions of dynamic posturography, but nevertheless also to a significant destabilization. Significant improvements in vestibular function were seen mainly in equilibrium scores under conditions 4 and 5, the composite equilibrium score, and the vestibular components as revealed by sensory analysis. Conclusions. Only under the static conditions are significantly poorer scores achieved when stimulation is applied. It may be that the explanation for any symptoms of dizziness lies precisely in the fact that they occur in supposedly noncritical situations, since, when the cochlear implant makes increased demands on the balance system, induced disturbances can be centrally suppressed.

  17. The use of transcutaneous electrical nerve stimulation (tens in the treatment of the spasticity - a review

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  18. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.

    Science.gov (United States)

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun

    2013-09-03

    Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.

  19. Neuromuscular electrical stimulation of the cricothyroid muscle in patients with suspected superior laryngeal nerve weakness.

    Science.gov (United States)

    Guzman, Marco; Rubin, Adam; Cox, Paul; Landini, Fernando; Jackson-Menaldi, Cristina

    2014-03-01

    In this retrospective case study, we report the apparent clinical effectiveness of neuromuscular electrical stimulation (NMES) in combination with voice therapy (VT) for rehabilitating dysphonia secondary to suspected superior laryngeal nerve (SLN) weakness in two female patients. Both patients failed or plateaued with traditional VT but had significant improvement with the addition of NMES of the cricothyroid muscle and SLN using a VitalStim unit. Stimulation was provided simultaneously with voice exercises based on musical phonatory tasks. Both acoustic analysis and endoscopic evaluation demonstrated important improvements after treatment. In the first patient, the major change was obtained within the primo passaggio region; specifically, a decrease in voice breaks was demonstrated. In the second patient, an improvement in voice quality (less breathiness) and vocal range were the most important findings. Additionally, each patient reported a significant improvement in their voice complaints. Neuromuscular laryngeal electrical stimulation in combination with vocal exercises might be a useful tool to improve voice quality in patients with SLN injury. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  20. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment.

    Science.gov (United States)

    Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes

    2017-07-26

    Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.

  1. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    OpenAIRE

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2006-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potent...

  2. On the effect of long-term electrical stimulation on three-dimensional cell cultures: Hen embryo brain spheroids

    OpenAIRE

    Uroukov, Ivan S; Bull, Larry

    2008-01-01

    A comprehensive dataset of multielectrode array recordings was collected from three-dimensional hen embryo brain cell cultures, termed spheroids, under long-term electrical stimulation. The aim is to understand the ongoing changes in the spiking activity under electrical stimulation within the lifetime of 14–72DIV of the neuronal networks contained therein. The spiking dynamics were analyzed and behavioral characteristics derived. Some effects on spiking patterns and exhaustion were followed ...

  3. Pelvic floor muscle exercises with or without electric stimulation and post-prostectomy urinary incontinence: a systematic review

    OpenAIRE

    Zaidan,Patrícia; Silva,Elirez Bezerra da

    2016-01-01

    Abstract Introduction: Urinary incontinence (UI) after prostatectomy is difficult to treat and causes profound adverse impacts on the individual's quality of life. The main clinical treatments available for post-prostatectomy UI consist of behavioral techniques and physical therapy techniques, such as exercises, electrical stimulation and biofeedback for pelvic floor muscles (PFMs). Objective: To investigate the effectiveness of PFM exercises with or without electrical stimulation for reduc...

  4. [Electrical stimulation of the facial nerve with a prognostic function in parotid surgery].

    Science.gov (United States)

    García-Losarcos, N; González-Hidalgo, M; Franco-Carcedo, C; Poch-Broto, J

    Continuous electromyography during parotidectomies and direct stimulation of the facial nerve as an intraoperative identification technique significantly lower the rate of post-operative morbidity. To determine the usefulness of intra-operative neurophysiological parameters registered by means of electrical stimulation of the facial nerve as values capable of predicting the type of lesion and the functional prognosis. Our sample consisted of a correlative series of 20 cases of monitored parotidectomies. Post-operative facial functioning, type of lesion and its prognosis were compared with the variations in latency/amplitude of the muscle response between two stimulations of the facial nerve before and after resection, as well as in the absence or presence of muscle response to stimulation after resection. All the patients except one presented motor evoked potentials (MEP) to stimulation after resection. There was no facial damage following the operation in 55% of patients and 45% presented some kind of paresis. The 21% drop in the amplitude of the intra-operative MEP and the mean increase in latency of 13.5% correspond to axonal and demyelinating insult, respectively, with a mean recovery time of three and six months. The only case of absence of response to the post-resection stimulation presented permanent paresis. The presence of MEP following resection does not ensure that functioning of the nerve remains undamaged. Nevertheless, it can be considered a piece of data that suggests a lower degree of compromise, if it is present, and a better prognosis. The variations in latency and amplitude of the MEP tend to be intra-operative parameters that indicate the degree of compromise and functional prognosis.

  5. Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy.

    Science.gov (United States)

    Manenti, Rosa; Brambilla, Michela; Benussi, Alberto; Rosini, Sandra; Cobelli, Chiara; Ferrari, Clarissa; Petesi, Michela; Orizio, Italo; Padovani, Alessandro; Borroni, Barbara; Cotelli, Maria

    2016-05-01

    Parkinson's disease (PD) is characterized by both motor and cognitive deficits. In PD, physical exercise has been found to improve physical functioning. Recent studies demonstrated that repeated sessions of transcranial direct current stimulation led to an increased performance in cognitive and motor tasks in patients with PD. The present study investigated the effects of anodal transcranial direct current stimulation applied over the dorsolateral prefrontal cortex and combined with physical therapy in PD patients. A total of 20 patients with PD were assigned to 1 of 2 study groups: group 1, anodal transcranial direct current stimulation plus physical therapy (n = 10) or group 2, placebo transcranial direct current stimulation plus physical therapy (n = 10). The 2 weeks of treatment consisted of daily direct current stimulation application for 25 minutes during physical therapy. Long-term effects of treatment were evaluated on clinical, neuropsychological, and motor task performance at 3-month follow-up. An improvement in motor abilities and a reduction of depressive symptoms were observed in both groups after the end of treatment and at 3-month follow-up. The Parkinson's Disease Cognitive Rating Scale and verbal fluency test performances increased only in the anodal direct current stimulation group with a stable effect at follow-up. The application of anodal transcranial direct current stimulation may be a relevant tool to improve cognitive abilities in PD and might be a novel therapeutic strategy for PD patients with mild cognitive impairment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  6. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    Science.gov (United States)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  7. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    Science.gov (United States)

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  8. INFLUENCE OF ADDITIONAL VIBRATION IMPACT ON THE EFFECTIVENESS OF ELECTRICAL STIMULATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2017-01-01

    Full Text Available An experimental instrument complex which includes hardware for performing complex procedures using electrical shock massager frictional action was performed. The aim of the study was to influence the additional vibration effect on the efficiency of the procedure of electrostimulation.In order to increase the efficiency of the procedure electrostimulation authors proposed to carry it out with using of massager shock-friction action. The changes of muscular indicator on different stimulation treatments was shown after a series of seven treatments .Results of the processing of the experimental data and its subsequent analysis found that the use of the vibration exposure is accompanied by increase of load parameters in untrained volunteers. The increase in contact area due to decrease in the distance between the nozzle and the axis of rotation of the tumbler body surface, increases the electrical efficiency of the procedure.On the basis of a generalized analysis of data reflecting the effect of inappropriate electrical stimulation, it was established that, in order to achieve the best results, oscillatory systems providing shock-friction mode of its interaction with the skin surface, in particular a shock-frictional massager, were used.

  9. Face-to-Face or Telematic Cognitive Stimulation in Patients with Multiple Sclerosis and Cognitive Impairment: Why Not Both?

    Directory of Open Access Journals (Sweden)

    C. Guijarro-Castro

    2017-01-01

    Full Text Available Introduction. Cognitive impairment (CI affects 40–65% of patients with multiple sclerosis (MS. Few studies address telematic cognitive stimulation (TCS in MS. The objective of this study is to evaluate the efficacy and impact of telestimulation or distance cognitive stimulation (TCS, with and without the support of face-to-face cognitive stimulation (FCS in cognitive impairment in MS. Methods. Multicentre, prospective, randomised, controlled study. We will include 98 MS patients with EDSS ≤ 6, symbol digit modality test (SDMT ≤ Pc 25, and Multiple Sclerosis Neuropsychological Screening Questionnaire (MSNQ > 26 points. Patients will be randomised into 3 groups, a TCS group, a mixed TCS/FCS group, and a control group. CS is performed 3 days a week for 3 months. Processing speed, memory, attention, and executive functions will be rehabilitated. FCS will include ecological exercises and strategies. EDSS and a cognitive evaluation (SDMT, CTMT, PASAT, and TAVEC, MSNQ, psychological impact scales (MSIS, and depression (BDI will be carried out, baseline, postrehabilitation, and also 6 and 12 months later, to evaluate the effect of CS in the longer term. Conclusion. This study could help to establish the usefulness of TCS or, in its absence, TCS with face-to-face help for CI in MS. The interest lies in the clear benefits of remote rehabilitation in the daily life of patients.

  10. Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Soltanzadeh, Ramin; Afsharipour, Elnaz; Shafai, Cyrus; Anssari, Neda; Mansouri, Behzad; Moussavi, Zahra

    2017-11-21

    Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.

  11. Modulating Spatial Processes and Navigation via Transcranial Electrical Stimulation: A Mini Review

    Directory of Open Access Journals (Sweden)

    Tad T. Brunyé

    2018-01-01

    Full Text Available Transcranial electrical stimulation (tES uses low intensity current to alter neuronal activity in superficial cortical regions, and has gained popularity as a tool for modulating several aspects of perception and cognition. This mini-review article provides an overview of tES and its potential for modulating spatial processes underlying successful navigation, including spatial attention, spatial perception, mental rotation and visualization. Also considered are recent advances in empirical research and computational modeling elucidating several stable cortical-subcortical networks with dynamic involvement in spatial processing and navigation. Leveraging these advances may prove valuable for using tES, particularly transcranial direct and alternating current stimulation (tDCS/tACS, to indirectly target subcortical brain regions by altering neuronal activity in distant yet functionally connected cortical areas. We propose future research directions to leverage these advances in human neuroscience.

  12. Deep-brain-stimulation does not impair deglutition in Parkinson's disease.

    Science.gov (United States)

    Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias

    2012-08-01

    A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Electric field stimulation through a substrate influences Schwann cell and extracellular matrix structure

    Science.gov (United States)

    Nguyen, Hieu T.; Wei, Claudia; Chow, Jacqueline K.; Nguy, Lindsey; Nguyen, Hieu K.; Schmidt, Christine E.

    2013-08-01

    Objective. Electric field (EF) stimulation has been used to cue cell growth for tissue engineering applications. In this study, we explore the electrical parameters and extracellular mechanisms that elicit changes in cell behavior when stimulated through the substrate. Approach. Rat Schwann cell morphology was compared when exposed to EF through the media or a conductive indium tin oxide substrate. Ionic and structural effects were then analyzed on Matrigel and collagen I, respectively. Main results. When stimulating through media, cells had greater alignment perpendicular to the EF with higher current densities (106 mA cm-2 at 245 mV mm-1), and reached maximum alignment within 8 h. Stimulation through the substrate with EF (up to 110 mV mm-1) did not affect Schwann cell orientation, however the EF caused extracellular matrix (ECM) coatings on substrates to peel away, suggesting EF can physically change the ECM. Applying alternating current (ac) 2-1000 Hz signals through the media or substrate both caused cells to flatten and protrude many processes, without preferential alignment. Matrigel exposed to a substrate EF of 10 mV mm-1 for 2 h had a greater calcium concentration near the cathode, but quickly dissipated when the EF was removed. Schwann cells seeded 7 d after gels were exposed to substrate EF still aligned perpendicular to the EF direction. Microscopy of collagen I exposed to substrate EF shows alignment and bundling of fibrils. Significance. These findings demonstrate EF exposure can control Schwann cell alignment and morphology, change ECM bulk/surface architecture, and align ECM structures.

  14. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    Science.gov (United States)

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  15. AICAR stimulation metabolome widely mimics electrical contraction in isolated rat epitrochlearis muscle.

    Science.gov (United States)

    Miyamoto, Licht; Egawa, Tatsuro; Oshima, Rieko; Kurogi, Eriko; Tomida, Yosuke; Tsuchiya, Koichiro; Hayashi, Tatsuya

    2013-12-15

    Physical exercise has potent therapeutic and preventive effects against metabolic disorders. A number of studies have suggested that 5'-AMP-activated protein kinase (AMPK) plays a pivotal role in regulating carbohydrate and lipid metabolism in contracting skeletal muscles, while several genetically manipulated animal models revealed the significance of AMPK-independent pathways. To elucidate significance of AMPK and AMPK-independent signals in contracting skeletal muscles, we conducted a metabolomic analysis that compared the metabolic effects of 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) stimulation with the electrical contraction ex vivo in isolated rat epitrochlearis muscles, in which both α1- and α2-isoforms of AMPK and glucose uptake were equally activated. The metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry detected 184 peaks and successfully annotated 132 small molecules. AICAR stimulation exhibited high similarity to the electrical contraction in overall metabolites. Principal component analysis (PCA) demonstrated that the major principal component characterized common effects whereas the minor principal component distinguished the difference. PCA and a factor analysis suggested a substantial change in redox status as a result of AMPK activation. We also found a decrease in reduced glutathione levels in both AICAR-stimulated and contracting muscles. The muscle contraction-evoked influences related to the metabolism of amino acids, in particular, aspartate, alanine, or lysine, are supposed to be independent of AMPK activation. Our results substantiate the significance of AMPK activation in contracting skeletal muscles and provide novel evidence that AICAR stimulation closely mimics the metabolomic changes in the contracting skeletal muscles.

  16. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  17. Pilot acute study of feedback-controlled retrograde peristalsis invoked by neural gastric electrical stimulation

    International Nuclear Information System (INIS)

    Aelen, P; Jurkov, A; Aulanier, A; Mintchev, M P

    2009-01-01

    Neural gastric electrical stimulation (NGES) is a new method for invoking gastric contractions under microprocessor control. However, optimization of this technique using feedback mechanisms to minimize power consumption and maximize effectiveness has been lacking. The present pilot study proposes a prototype feedback-controlled neural gastric electric stimulator for the treatment of obesity. Both force-based and inter-electrode impedance-based feedback neurostimulators were implemented and tested. Four mongrel dogs (2 M, 2 F, weight 14.9 ± 2.3 kg) underwent subserosal implantation of two-channel, 1 cm, bipolar electrode leads and two force transducers in the distal antrum. Two of the dogs were stimulated with a force feedback system utilizing the force transducers, and the other two animals were stimulated utilizing an inter-electrode impedance-based feedback system utilizing the proximal electrode leads. Both feedback systems were able to recognize erythromycin-driven contractions of the stomach and were capable of overriding them with NGES-invoked retrograde contractions which exceeded the magnitudes of the erythromycin-driven contractions by an average of 100.6 ± 33.5% in all animals. The NGES-invoked contractions blocked the erythromycin-driven contractions past the proximal electrode pair and induced temporary gastroparesis in the vicinity of the distal force transducer despite the continuing erythromycin infusion. The amplitudes of the erythromycin-invoked contractions in the vicinity of the proximal force transducer decreased abruptly by an average of 47.9 ± 6.3% in all four dogs after triggering-invoked retrograde contractions, regardless of the specific feedback-controlled mechanism. The proposed technique could be helpful for retaining food longer in the stomach, thus inducing early satiety and diminishing food intake

  18. Transcutaneous electrical nerve stimulation and temporary S3 neuromodulation in idiopathic detrusor instability.

    Science.gov (United States)

    Hasan, S T; Robson, W A; Pridie, A K; Neal, D E

    1996-06-01

    We studied the effects of electrical stimulation on idiopathic detrusor instability. Between January 1993 and December 1994, 30 men and 41 women (mean age plus or minus standard deviation 48 +/- 16 years) underwent transcutaneous electrical nerve stimulation (TENS) of the S2-S3 dermatomes, and 13 men and 22 women (mean age 48 +/- 12 years) underwent S3 neuromodulation. Subjective assessment was performed using a diary and symptom score of 0 to 14. Objective outcome was analyzed with urodynamic studies. Mean duration of TENS was 3 +/- 1 weeks (range 2 to 4). Although there were no major complications 31% of the patients reported local skin irritation. The overall urinary symptom scores improved from 10 +/- 2 (range 5 to 14) before the study to 7 +/- 3 (range 1 to 14) during stimulation. Urodynamic analysis revealed significant (p neuromodulation was 6 +/- 1 days (range 4 to 8 days). Four procedures failed due to electrode displacement in 3 cases and procedure intolerance in 1. Hemorrhage from the puncture site occurred in 1 patient. Overall urinary symptom scores were 10 +/- 3 (range 5 to 14) before the study and 5 +/- 2 (range 2 to 10) during stimulation. Although symptomatic relief was more pronounced with S3 neuromodulation, no statistically significant differences were found regarding urinary symptoms compared to TENS. In patients with severe detrusor instability refractory to conservative treatments the use of TENS and S3 neuromodulation produced significant changes in urodynamic parameters and presenting symptoms. Our results appear to justify evaluation with neuromodulatory techniques before definitive surgical intervention in these patients.

  19. Navigated Transcranial Magnetic Stimulation: A Biologically Based Assay of Lower Extremity Impairment and Gait Velocity

    Directory of Open Access Journals (Sweden)

    Heather T. Peters

    2017-01-01

    Full Text Available Objectives. (a To determine associations among motor evoked potential (MEP amplitude, MEP latency, lower extremity (LE impairment, and gait velocity and (b determine the association between the presence of a detectable MEP signal with LE impairment and with gait velocity. Method. 35 subjects with chronic, stable LE hemiparesis were undergone TMS, the LE section of the Fugl-Meyer Impairment Scale (LE FM, and 10-meter walk test. We recorded presence, amplitude, and latency of MEPs in the affected tibialis anterior (TA and soleus (SO. Results. MEP presence was associated with higher LEFM scores in both the TA and SO. MEP latency was larger in subjects with lower LEFM and difficulty walking. Conclusion. MEP latency appears to be an indicator of LE impairment and gait. Significance. Our results support the precept of using TMS, particularly MEP latency, as an adjunctive LE outcome measurement and prognostic technique.

  20. Navigated Transcranial Magnetic Stimulation: A Biologically Based Assay of Lower Extremity Impairment and Gait Velocity.

    Science.gov (United States)

    Peters, Heather T; Dunning, Kari; Belagaje, Samir; Kissela, Brett M; Ying, Jun; Laine, Jarmo; Page, Stephen J

    2017-01-01

    Objectives . (a) To determine associations among motor evoked potential (MEP) amplitude, MEP latency, lower extremity (LE) impairment, and gait velocity and (b) determine the association between the presence of a detectable MEP signal with LE impairment and with gait velocity. Method . 35 subjects with chronic, stable LE hemiparesis were undergone TMS, the LE section of the Fugl-Meyer Impairment Scale (LE FM), and 10-meter walk test. We recorded presence, amplitude, and latency of MEPs in the affected tibialis anterior (TA) and soleus (SO). Results . MEP presence was associated with higher LEFM scores in both the TA and SO. MEP latency was larger in subjects with lower LEFM and difficulty walking. Conclusion . MEP latency appears to be an indicator of LE impairment and gait. Significance . Our results support the precept of using TMS, particularly MEP latency, as an adjunctive LE outcome measurement and prognostic technique.

  1. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    Science.gov (United States)

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  2. A REVIEW OF ELECTRICAL STIMULATION AND ITS EFFECT ON LINGUAL, LABIAL AND BUCCAL MUSCLE STRENGTH.

    Science.gov (United States)

    Safi, Mohammed F; Wright-Harp, Wilhelmina; Lucker, Jay R; Payne, Joan C; Harris, Ovetta

    2014-11-01

    Lingual, labial and buccal weakness (LLBW) is a widespread consequence of several neurological insults. LLBW impact on oral motor functions such as speech production and swallowing is well documented in the literature. Therefore, it is important for the speech-language pathologists to have access to evidence-based approaches for treatment. Thus, it is imperative that the speech-language pathology field search for effective treatment approaches and explore new treatment modalities that can improve therapy outcomes. One relatively new modality in this field is neuromuscular electrical stimulation (NMES). The purpose of this paper is fivefold: (a) to provide an overview of the general effects of NMES on skeletal muscles; (b) to review the effect of NMES on orofacial musculature evaluating the potential appropriateness of NMES for use in strengthening lingual, labial and buccal muscles; (c) to identify future directions for research with consideration of its potential role in improving speech intelligibility and the oral preparatory phase of swallowing in patients with oral motor weakness; (d) to provide a brief anatomic and physiologic bases of LLBW; (e) to provide background information for orofacial myologists who may encounter individuals with LLBW. NMES is a modality that is commonly used in physical therapy and occupational therapy fields that assists in treating several motor and sensory muscular disorders including muscular weakness. The literature reviewed demonstrate that very limited data related to the use of NMES on orofacial muscles exist despite the fact that these muscles can be easily accessed by electrical stimulation from the surface. This review of the research using electrical stimulation of muscles highlights the need for experimental treatment studies that investigate the effect of NMES on orofacial weakness.

  3. Does electrical stimulation reduce spasticity after stroke? A randomized controlled study.

    Science.gov (United States)

    Bakhtiary, Amir H; Fatemy, Elham

    2008-05-01

    To investigate the therapeutic effect of electrical stimulation on plantarflexor spasticity in stroke patients. A randomized controlled clinical trial study. Rehabilitation clinic of Semnan University of Medical Sciences. Forty stroke patients (aged from 42 to 65 years) with ankle plantarflexor spasticity. Fifteen minutes of inhibitory Bobath techniques were applied to one experimental group and a combination of 9 minutes of electrical stimulation on the dorsiflexor muscles and inhibitory Bobath techniques was applied to another group for 20 sessions daily. Passive ankle joint dorsiflexion range of motion, dorsiflexion strength test, plantarflexor muscle tone by Modified Ashworth Scale and soleus muscle H-reflex. The mean change of passive ankle joint dorsiflexion in the combination therapy group was 11.4 (SD 4.79) degrees versus 6.1 (SD 3.09) degrees, which was significantly higher (P = 0.001). The mean change of plantarflexor muscle tonicity measured by the Modified Ashworth Scale in the combination therapy group was -1.6 (SD 0.5) versus -1.1 (SD 0.31) in the Bobath group (P = 0.001). Dorsiflexor muscle strength was also increased significantly (P = 0.04) in the combination therapy group (0.7 +/- 0.37) compared with the Bobath group (0.4 +/- 0.23). However, no significant change in the amplitude of H-reflex was found between combination therapy (-0.41 +/- 0.29) and Bobath (-0.3 +/- 0.28) groups. Therapy combining Bobath inhibitory technique and electrical stimulation may help to reduce spasticity effectively in stroke patients.

  4. Comparing conventional physical therapy rehabilitation with neuromuscular electrical stimulation after TKA.

    Science.gov (United States)

    Levine, Michael; McElroy, Karen; Stakich, Valerie; Cicco, Jodie

    2013-03-01

    Rehabilitation following total knee arthroplasty (TKA) is a costly, cumbersome, and often painful process. Physical therapy contributes to the successful outcome of TKA but can be expensive. Alternative methods of obtaining good functional results that help minimize costs are desirable. Neuromuscular electrical stimulation (NMES) is a potential option. Neuromuscular electrical stimulation has been shown to increase quadriceps muscle strength and activation following TKA. Functional scores also improve following TKA when NMES is added to conventional therapy protocols vs therapy alone. The authors hypothesized that rehabilitation managed by a physical therapist would not result in a functional advantage for patients undergoing TKA when compared with NMES and an unsupervised at-home range of motion exercise program and that patient satisfaction would not differ between the 2 groups. Seventy patients were randomized into a postoperative protocol of conventional physical therapy with a licensed therapist, including range of motion exercises and strengthening exercises, or into a program of NMES and range of motion exercises performed at home without therapist supervision. Noninferiority of the NMES program was obtained 6 weeks postoperatively (Knee Society pain/function scores, Western Ontario and McMaster Universities Osteoarthritis Index, flexion). Noninferiority was shown 6 months postoperatively for all parameters. The results suggest that rehabilitation managed by a physical therapist results in no functional advantage or difference in patient satisfaction when compared with NMES and an unsupervised at-home range of motion program. Neuromuscular electrical stimulation and unsupervised at-home range of motion exercises may provide an option for reducing the cost of the postoperative TKA recovery process without compromising quadriceps strength or patient satisfaction. Copyright 2013, SLACK Incorporated.

  5. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  6. [Selective training of the vastus medialis muscle using electrical stimulator for chondromalacia patella].

    Science.gov (United States)

    Guo, K; Ye, Q; Lin, J; Shen, J; Yang, X

    1996-04-01

    Chondromalacia patella is closely related with subluxation and tilt of patella, as well as with muscular atrophy of quadriceps, especially in vastus medialis muscle. 364 cases of chondromalacia patella were treated with selective training of the vastus medialis muscle using electrical stimulator in our hospital. 211 cases were followed up after treatment from 6 months to 3 years. Among them excellent and good results were seen in 130 cases (62%), fair results were seen in 69 cases (33%) and no change was seen in 12 cases (5%). Significant reduction of CA (P chondromalacia patella.

  7. Role of electrical stimulation added to conventional therapy in patients with idiopathic facial (Bell) palsy.

    Science.gov (United States)

    Tuncay, Figen; Borman, Pinar; Taşer, Burcu; Ünlü, İlhan; Samim, Erdal

    2015-03-01

    The aim of this study was to determine the efficacy of electrical stimulation when added to conventional physical therapy with regard to clinical and neurophysiologic changes in patients with Bell palsy. This was a randomized controlled trial. Sixty patients diagnosed with Bell palsy (39 right sided, 21 left sided) were included in the study. Patients were randomly divided into two therapy groups. Group 1 received physical therapy applying hot pack, facial expression exercises, and massage to the facial muscles, whereas group 2 received electrical stimulation treatment in addition to the physical therapy, 5 days per week for a period of 3 wks. Patients were evaluated clinically and electrophysiologically before treatment (at the fourth week of the palsy) and again 3 mos later. Outcome measures included the House-Brackmann scale and Facial Disability Index scores, as well as facial nerve latencies and amplitudes of compound muscle action potentials derived from the frontalis and orbicularis oris muscles. Twenty-nine men (48.3%) and 31 women (51.7%) with Bell palsy were included in the study. In group 1, 16 (57.1%) patients had no axonal degeneration and 12 (42.9%) had axonal degeneration, compared with 17 (53.1%) and 15 (46.9%) patients in group 2, respectively. The baseline House-Brackmann and Facial Disability Index scores were similar between the groups. At 3 mos after onset, the Facial Disability Index scores were improved similarly in both groups. The classification of patients according to House-Brackmann scale revealed greater improvement in group 2 than in group 1. The mean motor nerve latencies and compound muscle action potential amplitudes of both facial muscles were statistically shorter in group 2, whereas only the mean motor latency of the frontalis muscle decreased in group 1. The addition of 3 wks of daily electrical stimulation shortly after facial palsy onset (4 wks), improved functional facial movements and electrophysiologic outcome measures at

  8. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    potentially meeting  selection   criteria , met with potential subjects, provided information to  allow them to give informed consent, and carried out...Organization. Investigational Device Exemption has been obtained from the Food and Drug Administration. Participant recruitment and screening has...defining new electrical stimulation parameters and protocols for  management of the neurogenic bladder.  The approval by the  Food  and Drug Administration of

  9. Effects of electrical stimulation on meat quality of lamb and goat meat.

    Science.gov (United States)

    Cetin, Omer; Bingol, Enver Baris; Colak, Hilal; Hampikyan, Hamparsun

    2012-01-01

    Effect of various voltage of electrical stimulation (ES) on meat quality of lamb and goat was investigated by using a total of 36 animals at 3-5 years old. Constant 50 Hz frequency and 50, 100, and 250 V, 90 sec of ES were administered to 1/2 carcasses and were examined according their textural, physicochemical, and sensorial characteristics. ES decreased the pH values of lamb and goat meat, and accelerated the rigor mortis (P goat meat, and tenderness was improved depending on voltage range used (P goat meat compared with the control groups (P meat quality of lamb and goat, in contrast to undesirable consumer preferences.

  10. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    International Nuclear Information System (INIS)

    Salinas, F S; Lancaster, J L; Fox, P T

    2007-01-01

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)

  11. Neuralgia associated with transcutaneous electrical nerve stimulation therapy in a patient initially diagnosed with temporomandibular disorder.

    Science.gov (United States)

    Omolehinwa, Temitope T; Musbah, Thamer; Desai, Bhavik; O'Malley, Bert W; Stoopler, Eric T

    2015-03-01

    Head and neck neoplasms may be difficult to detect because of wide-ranging symptoms and the presence of overlapping anatomic structures in the region. This case report describes a patient with chronic otalgia and temporomandibular disorder, who developed sudden-onset neuralgia while receiving transcutaneous electrical nerve stimulation (TENS) therapy. Further diagnostic evaluation revealed a skull base tumor consistent with adenoid cystic carcinoma. To our knowledge, this is the first report of TENS-associated neuralgia leading to a diagnosis of primary intracranial adenoid cystic carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation.

    Science.gov (United States)

    Kurth, R; Villringer, K; Mackert, B M; Schwiemann, J; Braun, J; Curio, G; Villringer, A; Wolf, K J

    1998-01-26

    Functional magnetic resonance imaging (fMRI) is capable of detecting focal brain activation induced by electrical stimulation of single fingers in human subjects. In eight subjects somatotopic arrangement of the second and fifth finger was found in Brodmann area 3b of the primary somatosensory cortex. In four subjects the representation area of the second finger was located lateral and inferior to the fifth finger; in one subject the somatotopy was reversed. In three subjects representation areas of the two fingers in Brodmann area 3b were found overlapping. Additional activated areas were found on the crown of ipsilateral and contralateral postcentral gyrus (Brodmann areas 1 and 2) and posterior parietal cortex.

  13. Preventing Ischial Pressure Ulcers: III. Clinical Pilot Study of Chronic Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hilton M. Kaplan

    2011-01-01

    Full Text Available Objective: BIONs™ (BIOnic Neurons are injectable, wireless microstimulators that make chronic BION Active Seating (BAS possible for pressure ulcer prevention (PUP. Neuromuscular electrical stimulation (NMES produces skeletal motion and activates trophic factors, counteracting three major etiological mechanisms leading to pressure ulcers (PUs: immobility, soft-tissue atrophy, and ischemia. Companion papers I and II reviewed prior experience with NMES for PUP, and analyzed the biomechanical considerations, respectively. This paper presents a treatment strategy derived from this analysis, and the clinical results of the first three cases.

  14. Effects of cervical low-frequency electrical stimulation with various waveforms and densities on body mass, liver and kidney function, and death rate in ischemic stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yonghong Yang; Chengqi He; Lin Yang; Qiang Gao; Shasha Li; Jing He

    2011-01-01

    Low-frequency electrical stimulation has resulted in favorable effects in the treatment of post-stroke dysphagia. However, the safety of cervical low-frequency electrical stimulation remains unclear because of numerous nerves and blood vessels in the neck. In the present study, rats with ischemic stroke underwent low-frequency electrical stimulation, and systemic and local effects of electrical stimulation at different densities and waveforms were investigated. Electrical stimulation resulted in no significant effects on body mass, liver or kidney function, or mortality rate. In addition, no significant adverse reaction was observed, despite overly high intensity of low-frequency electrical stimulation, which induced laryngismus, results from the present study suggested that it is safe to stimulate the neck with a low-frequency electricity under certain intensities.

  15. Electroconvulsive stimulation reverses anhedonia and cognitive impairments in rats exposed to chronic mild stress

    DEFF Research Database (Denmark)

    K, Henningsen,; Woldbye, David Paul Drucker; Wiborg, Ove

    2013-01-01

    Electroconvulsive therapy remains the most effective treatment for depression including a fast onset of action. However, this therapeutic approach suffers from some potential drawbacks. In the acute phase this includes amnesia. Electroconvulsive stimulation (ECS) has previously been shown...

  16. Magnetic and electric stimulation to elicit the masseteric exteroceptive suppression period

    DEFF Research Database (Denmark)

    Komiyama, Osamu; Wang, Kelun; Svensson, Peter

    2010-01-01

    : In contrast to electrical stimulation, both ES1 and ES2 appeared and saturated with painless magnetic stimuli. SIGNIFICANCE: The present results indicate that both ES1 and ES2 have a non-nociceptive origin. Painless magnetic stimuli will be an advantage in ES reflex examinations for various orofacial pain......OBJECTIVES: The present study compared the perception of electric and magnetic stimuli for reflex appearance threshold (RT) and reflex saturation threshold (RS) of the exteroceptive suppression reflex (ES) in the masseter muscle. METHODS: Twelve healthy males and 12 females (age: 24.2+/-3.2 years......) participated. The surface EMG was recorded from the left masseter muscle. The stimulus intensities were set as multiple values of the sensory threshold (ST), and were applied to the skin above the left mental nerve. Subjects reported the perceived intensity of the stimulus on a numeric rating scale (NRS) at RT...

  17. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    Science.gov (United States)

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  18. Use of electroacupuncture and transcutaneous electrical acupoint stimulation in reproductive medicine: a group consensus.

    Science.gov (United States)

    Qu, Fan; Li, Rong; Sun, Wei; Lin, Ge; Zhang, Rong; Yang, Jing; Tian, Li; Xing, Guo-Gang; Jiang, Hui; Gong, Fei; Liang, Xiao-Yan; Meng, Yan; Liu, Jia-Yin; Zhou, Li-Ying; Wang, Shu-Yu; Wu, Yan; He, Yi-Jing; Ye, Jia-Yu; Han, Song-Ping; Han, Ji-Sheng

    With the rapid development of assisted reproductive technology, various reproductive disorders have been effectively addressed. Acupuncture-like therapies, including electroacupuncture (EA) and transcutaneous electrical acupoint stimulation (TEAS), become more popular world-wide. Increasing evidence has demonstrated that EA and TEAS are effective in treating gynecological disorders, especially infertility. This present paper describes how to select acupoints for the treatment of infertility from the view of theories of traditional Chinese medicine and how to determine critical parameters of electric pulses of EA/TEAS based on results from animal and clinical studies. It summarizes the principles of clinical application of EA/TEAS in treating various kinds of reproductive disorders, such as polycystic ovary syndrome (PCOS), pain induced by oocyte retrieval, diminished ovarian reserve, embryo transfer, and oligospermia/ asthenospermia. The possible underlying mechanisms mediating the therapeutic effects of EA/TEAS in reproductive medicine are also examined.

  19. [Clinical research of post-stroke insomnia treated with low-frequency electric stimulation at acupoints in the patients].

    Science.gov (United States)

    Tang, Lei; You, Fei; Ma, Chao-Yang

    2014-08-01

    To compare the difference in the clinical efficacy on post-stroke insomnia between the low-frequency electric stimulation at the acupoints and the conventional western medication. One hundred and twenty patients of post-stroke insomnia were randomized into a low-frequency electric stimulation group, a medication group and a placebo group, 40 cases in each one. In the low-frequency electric stimulation group, the low-frequency electric-pulsing apparatus was used at Dazhui (GV 14) and Shenshu (BL 23), once a day; the treatment of 15 days made one session and 2 sessions were required. In the medication group, estazolam was taken orally, 1 mg each time. In the placebo group, starch capsules were taken orally, 1 capsule each time. All the drugs were taken before sleep every night, continuously for 15 days as one session, and 2 sessions were required. PSQI changes and clinical efficacy were observed before and after treatment in each group. Pitlsburgh sleep quality index (PSQI) score was reduced in every group after treatment (all P low-frequency electric stimulation group and medication group, the score was reduced much more significantly as compared with the placebo group (both P low-frequency electric stimulation group, medication group and placebo group separately. The efficacy in the low-frequency electric stimulation group and medication group was better apparently than that in the placebo group (both P low-frequency electric stimulation at the acupoints effectively and safely treats post-stroke insomnia and the efficacy of it is similar to that of estazolam.

  20. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    Science.gov (United States)

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present

  1. Does stimulant use impair housing outcomes in low-demand supportive housing for chronically homeless adults?

    Science.gov (United States)

    Edens, Ellen L; Tsai, Jack; Rosenheck, Robert A

    2014-01-01

    Recent research suggests low-demand housing (i.e., not contingent upon abstinence) is effective in helping people exit homelessness, even among recent active substance users. Whether active users of illicit drugs and stimulants have worse housing outcomes than primary alcohol users, however, is unknown. A total of 149 participants in a multisite supportive housing program who reported high levels of active substance use at program entry were classified as either (1) predominantly "Alcohol Use" (>10 of 30 days alcohol, but not >10 days of drug use) or (2) "Illicit Drug Use" (>10 of 30 days any single illicit drug use with or without alcohol use). Sub-analysis of the "Illicit Drug Use" group compared participants reporting high levels of "Stimulant Use" (>10 days cocaine, crack, or methamphetamine use) to those with high levels of "Non-stimulant Use" (>10 days marijuana or other non-stimulant drug use). Group differences in housing outcomes were examined with mixed model multivariate regression. During 24-month follow-up, days housed increased dramatically for both the "Alcohol Use" and the "Illicit Drug Use" groups without significant differences. Sub-analysis of illicit drug users showed stimulant use was associated with fewer days housed (p = .01) and more days homeless (p = .02) over time. Among illicit drug users, stimulant users have somewhat less successful housing outcomes than other active drug and alcohol users, though both groups maintained substantial housing improvements in low-demand housing. © American Academy of Addiction Psychiatry.

  2. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  3. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  4. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    Science.gov (United States)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  5. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NARCIS (Netherlands)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,