WorldWideScience

Sample records for electrical safety features

  1. DOE handbook electrical safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  2. Electrical safety guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  3. Principles of electrical safety

    CERN Document Server

    Sutherland, Peter E

    2015-01-01

    Principles of Electrical Safety discusses current issues in electrical safety, which are accompanied by series' of practical applications that can be used by practicing professionals, graduate students, and researchers. .  Provides extensive introductions to important topics in electrical safety Comprehensive overview of inductance, resistance, and capacitance as applied to the human body Serves as a preparatory guide for today's practicing engineers

  4. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  5. FEATURES ROAD SAFETY AUDIT

    Directory of Open Access Journals (Sweden)

    L. Abramova

    2015-07-01

    Full Text Available Development of the road network, increasing motorization of the population significantly increase the risk of accidents. Experts in the field of traffic are developing methods to reduce the probability of accidents. The ways of solving the problems of road safety audit at various stages of the «life» of roads are considered.

  6. Casebook on electric safety accidents

    International Nuclear Information System (INIS)

    1987-09-01

    This book gives concentration on electric safety accidents in domestic and abroad, which introduces general electrical safety with property of electricity, safe equipment and maintenance and protection of electric shock. It lists the cases of accident caused of electricity in domestic like accident in power substation, utilization equipment, load system and another accident by electricity like death in electric shock another by electricity like death in electric shock in new building construction, the cases caused of electricity in abroad like damage in electric shock by high voltage electric transformer, electric shock in summer and earth fault accident by fault cooling tower.

  7. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  8. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  9. Technical evaluation of the electrical, instrumentation, and control design aspects of the override of containment purge valve isolation and other engineered safety feature signals for the Fort Calhoun Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hackett, D.B.

    1980-01-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects of the override of containment purge valve isolation and other engineered safety feature signals for the Fort Calhoun nuclear power plant. The review criteria are based on IEEE Std-279-1971 requirements for the safety signals to all purge and ventilation isolation valves. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  10. Home Electrical Safety Checklist

    Science.gov (United States)

    ... Interrupter Protection for Pools, Spas and Hot Tubs Metal Ladders and Electricity Don’t Mix Electrocution Hazard with Do-It-Yourself Repairs of Microwave Ovens Preventing Home Fires: Arc Fault Circuit Interrupters (AFCIs) Power up with ...

  11. Innovative safety features of the modular HTGR

    International Nuclear Information System (INIS)

    Silady, F.A.; Simon, W.A.

    1992-01-01

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors

  12. Systematic evaluation program review of NRC Safety Topic VI-10.A associated with the electrical, instrumentation and control portions of the testing of reactor trip system and engineered safety features, including response time for the Dresden station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-10.A, associated with the electrical, instrumentation, and control portions of the testing of reactor trip systems and engineered safety features including response time for the Dresden II nuclear power plant, using current licensing criteria

  13. Innovative safety features of the modular HTGR

    International Nuclear Information System (INIS)

    Silady, F.A.; Simon, W.A.

    1992-04-01

    In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure and a simultaneous loss of forced cool of the core

  14. Passive Safety Features for Small Modular Reactors

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2010-01-01

    The rapid growth in the size and complexity of commercial nuclear power plants in the 1970s spawned an interest in smaller, simpler designs that are inherently or intrinsically safe through the use of passive design features. Several designs were developed, but none were ever built, although some of their passive safety features were incorporated into large commercial plant designs that are being planned or built today. In recent years, several reactor vendors are actively redeveloping small modular reactor (SMR) designs with even greater use of passive features. Several designs incorporate the ultimate in passive safety they completely eliminate specific accident initiators from the design. Other design features help to reduce the likelihood of an accident or help to mitigate the accidents consequences, should one occur. While some passive safety features are common to most SMR designs, irrespective of the coolant technology, other features are specific to water, gas, or liquid-metal cooled SMR designs. The extensive use of passive safety features in SMRs promise to make these plants highly robust, protecting both the general public and the owner/investor. Once demonstrated, these plants should allow nuclear power to be used confidently for a broader range of customers and applications than will be possible with large plants alone.

  15. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  16. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  17. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1995-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  18. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1994-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved in very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  19. Safety features of subcritical fluid fueled systems

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C.R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  20. Technical specification optimization program - engineered safety features

    International Nuclear Information System (INIS)

    Andre, G.R.; Jansen, R.L.

    1986-01-01

    The Westinghouse Technical Specification Program (TOP) was designed to evaluate on a quantitative basis revisions to Nuclear Power Plant Technical Specifications. The revisions are directed at simplifying plant operation, and reducing unnecessary transients, shutdowns, and manpower requirements. In conjunction with the Westinghouse Owners Group, Westinghouse initiated a program to develop a methodology to justify Technical Specification revisions; particularly revisions related to testing and maintenance requirements on plant operation for instrumentation systems. The methodology was originally developed and applied to the reactor trip features of the reactor protection system (RPS). The current study further refined the methodology and applied it to the engineered safety features of the RPS

  1. The Safety Feature Test of QNX RTOS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Yeol; Lee, Young Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Benchmarking is a point of reference by which something can be measured. The QNX is a kind of Real Time Operating System(RTOS) developed by QSSL(QNX Software Systems Ltd.) in Canada. The ELMSYS is the brand name of commercially available PC to be applied such as Cabinet Operator Module(COM) of Digital Plant Protection System(DPPS) and COM of Digital Engineered Safety Features Actuation System(DESFAS-AC). The ELMSYS PC Hardware will be qualified by KTL(Korea Testing Lab.) in order to use as a Cabinet Operator Module(COM). QNX RTOS is dedicating by KAERI now. This paper describes the outline and some safety features among benchmarking test for QNX RTOS under the ELMSYS PC platform

  2. The Safety Feature Test of QNX RTOS

    International Nuclear Information System (INIS)

    Kim, Jang Yeol; Lee, Young Jun

    2010-01-01

    Benchmarking is a point of reference by which something can be measured. The QNX is a kind of Real Time Operating System(RTOS) developed by QSSL(QNX Software Systems Ltd.) in Canada. The ELMSYS is the brand name of commercially available PC to be applied such as Cabinet Operator Module(COM) of Digital Plant Protection System(DPPS) and COM of Digital Engineered Safety Features Actuation System(DESFAS-AC). The ELMSYS PC Hardware will be qualified by KTL(Korea Testing Lab.) in order to use as a Cabinet Operator Module(COM). QNX RTOS is dedicating by KAERI now. This paper describes the outline and some safety features among benchmarking test for QNX RTOS under the ELMSYS PC platform

  3. Adequacy features of Nucleoelectrica Argentina Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, H [Nucleoelectrica Argentina S.A., Buenso Aires (Argentina)

    1997-12-01

    The Argentine Nuclear Power Plants (NPP) ATUCHA I (357 Mw, SIEMENS) and EMBALSE (648 Mw, CANDU), both of PHWR type, were owned and operated until August 94 by the Comision Nacional de Energia Atomica (CNEA). Until that date, CNEA, the national agency for nuclear R and D, concentrated three activities or roles: Research, Nuclear Regulations and NPP Operation. Since August 1994 NPP`s are owned and operated by a state electrical company (Nucleoelectrica Argentina S.A.) the nuclear utility supplying 15% of the national electrical generation demand. NASA is going to be privatized according to a recent national law regulating nuclear activities. The transition from a research agency to a commercial company requires the introduction of changes in the management of activities. Mention of these changes is limited to those relating to Safety.

  4. Adequacy features of Nucleoelectrica Argentina Safety Management

    International Nuclear Information System (INIS)

    Rapoport, H.

    1997-01-01

    The Argentine Nuclear Power Plants (NPP) ATUCHA I (357 Mw, SIEMENS) and EMBALSE (648 Mw, CANDU), both of PHWR type, were owned and operated until August 94 by the Comision Nacional de Energia Atomica (CNEA). Until that date, CNEA, the national agency for nuclear R and D, concentrated three activities or roles: Research, Nuclear Regulations and NPP Operation. Since August 1994 NPP's are owned and operated by a state electrical company (Nucleoelectrica Argentina S.A.) the nuclear utility supplying 15% of the national electrical generation demand. NASA is going to be privatized according to a recent national law regulating nuclear activities. The transition from a research agency to a commercial company requires the introduction of changes in the management of activities. Mention of these changes is limited to those relating to Safety

  5. Safety design features of the IRIS

    International Nuclear Information System (INIS)

    2009-01-01

    The International Reactor Innovative and Secure (IRIS) is an advanced, integral, light water cooled reactor of medium generating capacity (335 MW(e)), that features an integral reactor vessel containing all the reactor primary system components, including steam generators, coolant pumps, pressurizer and heaters, and control rod drive mechanisms; in addition to the typical core, internals, control rods and neutron reflector. This integral configuration allows for the use of a small, high design pressure, spherical steel containment which results in a significant reduction in the size of the nuclear island. Other IRIS innovations include a simplified passive safety system concept and equipment features that derive from the 'safety-by-design' philosophy. This design approach allows for elimination of certain accident initiators at the design stage, or when outright elimination is not possible, decreases accident consequences and/or their probability of occurrence. Major design characteristics of the IRIS are given. As part of the IRIS pre-application licensing review by the U.S. Nuclear Regulatory Commission (NRC), the IRIS design team has developed a test plan that will provide the necessary data for safety analysis computer model verification, as well as for verifying the manufacturing feasibility, operability, and durability of new component designs

  6. Home electrical system safety in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Auditor,

    1990-06-01

    Italy, amongst the industrialized countries, has the highest mortality rate due to accidents associated with the improper use or maintenance of home electrical systems. The increasing use of domestic electrical appliances has raised the risk of accidents, especially in homes equipped with out-dated, low-capacity electrical plants and worn wiring. Within this context, this paper reports on the results of survey to establish the worthiness and type of electrical systems in use in a sample of 1,000 residential buildings. The paper then assesses the efficacy of recent normatives designed to increase the safety and efficiency of home electrical installations.

  7. Safety policy in the production of electricity

    International Nuclear Information System (INIS)

    Siddall, E.

    1982-01-01

    When safety is properly understood, defined and quantified, it can be seen that the development of our present industrial civilization has resulted in a progressive improvement in human safety. Increased safety has come with increased wealth in such close association that a high degree of cause-and-effect relationship must be considered. The quantitative relationship between wealth production and safety improvement is derived from different sources of evidence. When this is applied to the wealth production from electricity generation in a standard module of population in an advanced society, a safety benefit is indicated which exceeds the assessed direct risk associated with the electricity generation by orders of magnitude. It appears that a goal or policy intended to confer the greatest safety benefit to the population would result in attitudes and actions diametrically opposite to those which are conventional at the moment

  8. Safety policy in the production of electricity

    International Nuclear Information System (INIS)

    Siddall, E.

    1983-01-01

    When safety is properly understood, defined and quantified, it can be seen that the development of our present industrial civilization has resulted in a progressive and great improvement in human safety which is still continuing. Increased safety has come with increased wealth in such close association that a high degree of cause-and-effect relationship must be considered. The quantitative relationship between wealth production and safety improvement is derived from different sources of evidence. When this is applied to the wealth production from electricity generation in a standard module of population in an advanced society, a safety benefit is indicated which exceeds the assessed direct risk associated with the electricity generation by orders of magnitude. It appears that a goal or policy intended to confer the greatest safety benefit to the population would result in attitudes and actions diametrically opposite to those which are conventional at the moment

  9. New conducted electrical weapons: Electrical safety relative to relevant standards.

    Science.gov (United States)

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  10. Electrical Safety and Arc Flash Protections

    Energy Technology Data Exchange (ETDEWEB)

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  11. Electrical Safety and Arc Flash Protections

    International Nuclear Information System (INIS)

    Camp, R.

    2008-01-01

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  12. Electrical Safety During a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    Power outages and flooding can cause electrical hazards. Never touch a downed power line or anything in contact with one.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/22/2007.

  13. Safety culture development in nuclear electric plc

    International Nuclear Information System (INIS)

    Gibson, G.P.; Low, M.B.J.

    1995-01-01

    Nuclear Electric plc (NE) has always given the highest priority to safety. However, past emphasis has been directed towards ensuring safety thorough engineering design and hazard control procedures. Whilst the company did achieve high safety standards, particularly with respect to accidents, it was recognized that further improvements could be obtained. Analysis of the safety performance across a wide range of industries showed that the key to improving safety performance lay in developing a strong safety culture within the company. Over the last five years, NE has made great strides to improve its safety culture. This has resulted in a considerable improvement in its measured safety performance indicators, such as the number of incidents at international nuclear event scale (INES) rating 1, the number of lost time accidents and the collective radiation dose. However, despite this success, the company is committed to further improvement and a means by which this process becomes self-sustaining. In this way the company will achieve its prime goal, to ''ensure the safety of people, plant and the environment''. The paper provides an overview of the development of safety culture in NE since its formation in November 1989. It describes the research and international developments that have influenced the company's understanding of safety culture, the key initiatives that the company has undertaken to enhance its safety culture and the future initiatives being considered to ensure continual improvement. (author). 5 refs, 2 figs, 2 tabs

  14. Definitions of engineered safety features and related features for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    In light water moderated, light water cooled nuclear power plants, definitions are given of engineered safety features which are designed to suppress or prevent dispersion of radioactive materials due to damage etc. of fuel at the times of power plant failures, and of related features which are designed to actuate or operate the engineered safety features. Contents are the following: scope of engineered safety features and of related features; classification of engineered safety features (direct systems and indirect systems) and of related features (auxiliaries, emergency power supply, and protective means). (Mori, K.)

  15. Consequences of electricity deregulation on nuclear safety

    International Nuclear Information System (INIS)

    Podjavorsek, M.

    2007-01-01

    The evolution of deregulation of electricity market started a couple of years ago and has not been finished yet. Deregulation causes increased pressure to reduce the costs of electricity generation. This presents a new challenge to regulatory bodies. They have to assess the impact of these changes on the safety of nuclear power plants. Accordingly, it is important to identify the risks to the nuclear power industry resulting from the deregulation. Today's trend is that the number of electricity generating power companies will be reduced in Europe and also in Slovenia due to tough competition in the electricity market. The electricity price has decreased after the introduction of the deregulated market in most countries. This has been also the main reason for less investment to new generating capacities since the price has been lower than the generation costs. Investment problems are also present for the existing units, because of danger of inappropriate maintenance and reduction of the number of staff and their qualifications below the desired level that leads to loss of institutional memory. It is expected that only the biggest companies can stand the consequences of competition in electricity prices and consequential pressure to reduce the cost. In order to review the impact of deregulation of the electricity market some relevant points are discussed in this paper such as the need to cut costs of companies by reducing the number of their activities and increasing the efficiency in the remaining activities and /or outsourcing of activities, power station operating regime, safety culture, grid reliability, reliability and safety of operation, increased number of transients, ageing of components, outage duration, extended cycle and response of nuclear regulators. From a regulatory point of view the impact of deregulation on nuclear safety is an important issue. This paper also discusses analyses and evaluations of this impact and proposes some measures how to

  16. Inherent safety features in balance-of-plant layout

    International Nuclear Information System (INIS)

    Wattelet, P.L.; Green, K.J.

    1992-01-01

    Future nuclear units must be more economical to construct and operate, and, at the same time, clearly incorporate advances in safety over the current generation of light water reactors. To achieve these goals, the root causes of safety issues must be addressed. In this way, global, cost-effective solutions can be implemented. With simple, direct design approaches, the licensing risk is minimized and configuration control is enhanced. With proper planning in the early stages of plant design, postulated accidents and events can often be mitigated by passive features inherent in the basic structure and layout, eliminating expensive added protective structures and components often found in current designs. Korea Electric Power Corporation's Yonggwang (YGN) Units 3 and 4, shown in an artist's rendering in Figure 1, are now under construction in Korea. Engineering is more than 85% complete, and Unit 3 construction is more than 50% complete. Significant steps toward design simplification and safety enhancement have been made by addressing safety concerns very early in the design effort. The tools used to achieve this were improved symmetry and separation, isolation of potential hazards, and an improved design process

  17. Data feature: 1991 World electricity production and consumption

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Nuclear's share of the electricity being generated in the world appears to have reached its peak in 1991 and is likely to undergo a gradual decline in the coming years. Conservative estimates on electricity demand growth rates suggest that nuclear's share could decline to as low as 15.2% by the year 2005 from the current 16.6% level. Only four nuclear power stations with a combined capacity of 3,673 MWe were connected to the electrical grid system in the Western World last year, and new construction was started on a total of two units with an aggregate capacity of 1,944 MWe. Not all projects currently under construction will necessarily be completed to the point of generating electricity. This is particularly true in the Commonwealth of Independent States. Add onto this the potential shutdown of still operating but unsafe Soviet-designed reactors, as well as extended outages in the Western World for periodic safety assessments and steam generator replacement in aging plants. NUKEM believes this global trend will not be counterbalanced even by the ever-improving performance of US nuclear power stations whose load factors have now reached Western European standards. Accordingly, nuclear's share in world power generation is expected to decline gradually from 1992 onwards. This month's data feature focuses on electrical production in Western Europe, North America, and the Far East. The ex-Soviet republics and the neighboring Eastern European countries will be examined in greater detail in upcoming issues of the NUKEM Market Report as more complete data becomes available

  18. SAFETY ALERT: Electrical insulation defect on safety helmets

    CERN Multimedia

    HSE Unit

    2013-01-01

    Contrarily to the information provided until 31 May 2013, some “Euro Protection” safety helmets do not respect any of the requirements for electrical insulation.   This alert concerns the safety helmets identified under the following SCEM numbers: 50.43.30.050.4 white 50.43.30.060.2 yellow 50.43.30.070.0 blue This amounts up to several hundreds of helmets on the CERN site. People who need to wear an electrically insulated safety helmet for their activities, must from now on acquire a duly insulated item to be found on the CERN store under the following SCEM numbers: 50.43.30.210.6: Petzl Vertex ST Helmet (without vent) 50.43.30.300.1: IDRA Helmet with a visor for electrical work As for the people who do not need to wear an electrically insulated helmet for their activities, they can continue working with the aforementioned helmets. For your information, please take note of the maximum use limit of each helmet: “Euro Protection” Safety Helme...

  19. Fire safety requirements for electrical cables towards nuclear reactor safety

    International Nuclear Information System (INIS)

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  20. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  1. Electrical safety in health care area

    International Nuclear Information System (INIS)

    Amer, G.M.

    2011-01-01

    An electrical safety in health care area is necessary to protect patients and staff from potential electrical hazards.Functional, accurate and safe clinical equipment is an essential requirement in the provision of health services. Well-maintained equipment will give clinicians greater confidence in the reliability of its performance and contribute to a high standard of client care. Clinical equipment, like all health services, requires annual or periodic servicing of medical equipment. In addition to planned servicing and preventative maintenance, there may be the unexpected failure of medical (and other) equipment, necessitating repair. In general, clinical equipment that has an electrical power source and has direct contact with the client must be serviced as a first priority. In this presentation, a review of the main concepts related to the electrical safety in health area,theinternational standard, the distribution of electric power in hospital and protection against shockwill be introduced. Protection system in hospital will be presented in its two ways: inpower distribution in hospitaland inbiomedical equipment design,finally the optimum maintenance technology and safety tests in health care areawill presented also.

  2. Technical features of ABWR safety systems

    International Nuclear Information System (INIS)

    Sugisaki, Toshihiko; Tominaga, Kenji; Horiuchi, Tetsuo

    1986-01-01

    The engineering safety facilities of ABWRs have been disigned so as to have many excellent characteristics such as safety, reliability and economy, reflecting the merit of adopting new technology such as internal pumps and new control rod driving mechanism, and coupled with the safety peculiar to BWRs. In this paper, about ECCS, containment vessels and others which compose the engineering safety facilities of ABWRs, the characteristics related to the safety owing to the adoption of internal pumps and others, and the evaluation of the performance at the time of various accidents are discussed. As the results of safety evaluation, it was clarified that due to the safety peculiar to ABWRs and the characteristics of the safety facilities, the large increases of safety, reliability and economy have been planned in the ABWRs, and for example, core flooding can be maintained even at the time of a hypothetical loss of coolant accident. BWRs have the simple system constitution, good self controllability, large natural circulation ability, simple operation control method and excellent ability of confining heat and radioactivity. BWRs have three safety functions to stop reactors, to remove heat from reactors, and to confine radioactive substances. These functions of ABWRs were evaluated, and very high safety was confirmed. (Kako, I.)

  3. Relay protection features of frequency-adjustable electric drive

    Science.gov (United States)

    Kuprienko, V. V.

    2018-03-01

    The features of relay protection of high-voltage electric motors in composition of the frequency-adjustable electric drive are considered in the article. The influence of frequency converters on the stability of the operation of various types of relay protection used on electric motors is noted. Variants of circuits for connecting relay protection devices are suggested. The need to develop special relay protection devices for a frequency-adjustable electric drive is substantiated.

  4. Safety features and licensing of CNNC-ACP100

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, F., E-mail: Zhongfj2000@163.com [Nuclear Power Inst. of China, National Key Lab. of Science and Technology on Reactor System Design Technology (China)

    2014-07-01

    ACP100 is an innovatory modular pressurized water reactor, the engineering safety systems fully adopt passive safety design technology. Its inherent safety and passive features/systems are verified via testing facilities and are highlighted at certain levels of defence in depth. The licensing of ACP 100 is within current LWR framework and meets up-to-date codes and requirements in nuclear safety. (author)

  5. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  6. Structural safety features for superconducting magnets

    International Nuclear Information System (INIS)

    Lehner, J.; Reich, M.; Powell, J.; Bezler, P.; Gardner, D.; Yu, W.; Chang, T.Y.

    1975-01-01

    A survey has been carried out for various potential structural safety problems of superconducting fusion magnets. These areas include: (1) Stresses due to inhomogeneous temperature distributions in magnets where normal regions have been initiated. (2) Stress distributions and yield forces due to cracks and failed regions. (3) Superconducting magnet response due to seismic excitation. These analyses have been carried out using a variety of large capacity finite element computer codes that allow for the evaluation of stresses in elastic or elastic-plastic zones and around singularities in the magnet structure. Thus far, these analyses have been carried out on UWMAK-I type magnet systems

  7. Passive safety features in current and future water cooled reactors

    International Nuclear Information System (INIS)

    1990-11-01

    Better understanding of the passive safety systems and components in current and future water-cooled reactors may enhance the safety of present reactors, to the extend passive features are backfitted. This better understanding should also improve the safety of future reactors, which can incorporate more of these features. Passive safety systems and components may help to prevent accidents, core damage, or release radionuclides to the environment. The Technical Committee Meeting which was hosted by the USSR State Committee for Utilization of Nuclear Energy was attended by about 80 experts from 16 IAEA Member States and the NEA-OECD. A total of 21 papers were presented during the meeting. The objective of the meeting was to review and discuss passive safety systems and features of current and future water cooled reactor designs and to exchange information in this area of activity. A separate abstract was prepared for each of the 21 papers published in this proceedings. Refs, figs and tabs

  8. The safety features of an integrated maritime reactor

    International Nuclear Information System (INIS)

    Miyakoshi, Junichi; Yamada, Nobuyuki; Kuwahara, Shin-ichi

    1975-01-01

    The EFDR-80, a typical integrated maritime reactor, which is being developed in West Germany is outlined. The safety features of the integrated maritime reactor are presented with the analysis of reactor accidents and hazards, and are compared with those of the separated maritime reactor. Furthermore, the safety criteria of maritime reactors in Japan and West Germany are compared, and some of the differences are presented from the viewpoint of reactor design and safety analysis. In this report the authors express an earnest desire that the definite and reasonable safety criteria of the integrated maritime reactor should be established and that the safety criteria of the nuclear ship should be standardized internationally. (auth.)

  9. Integrated system of safety features for spent fuel interim storage

    International Nuclear Information System (INIS)

    Pantazi, Doina; Stanciu, Marcela; Mateescu, Silvia; Marin, Ion

    1999-01-01

    The design of the spent fuel interim storage facility (SFISF) must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility. To elaborate the safety documentation necessary for licensing, we were trying to chose the most appropriate approach related to safety features for SFISF, based on national and international regulations, standards and recommendations, as well as on the experience of other countries with similar facilities and finally, on our own experience in designing other nuclear objectives in Romania. The paper presents the issues that we consider important for the safety evaluation and are developed as a detailed diagram. The diagram contains in a logical succession the following issues: - fundamental principles of radioprotection; - fundamental safety principles of radioactive waste management; - safety objectives of SFISF; - safety criteria for SFISF; - safety requirements for SFISF; - siting criteria for SFISF; - siting requirements for SFISF. (authors)

  10. Radiation and electrical safety systems for PEP

    International Nuclear Information System (INIS)

    Smith, H.; Constant, T.; Crook, K.; Fitch, J.; Taylor, T.

    1981-02-01

    At SLAC, the Personnel Protection System (PPS) protects people from radiation hazards. For PEP, the system has been expanded to include protection against electrical and RF hazards. This paper describes the overall system design, giving particular attention to the novel features not found in similar systems in other areas of SLAC. These include the Restricted Access Mode to allow limited occupancy in the ring while high voltage or RF may be present, the automatic badge reader system for improving the efficiency of entry logging and control, and the solid state lighting control system for switching large lighting loads with minimum electro-magetic interference

  11. LFR safety features through intrinsic negative reactivity feedbacks

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2012-01-01

    The safety of Lead-cooled Fast Reactors can rely on intrinsic features such as: • the impossibility of Lead boiling, hence the unreliability of core (only) voiding; • the buoyancy of Control Rods in Lead, allowing their safe positioning also below the active region. For heightening the safety features of LFRs in safety analyses it could be required to approach the evaluation of the reactivity coefficients from a more physical point of view, including more elementary mechanisms, each one related to the proper driving temperature

  12. Safety systems and features of boiling and pressurized water reactors

    International Nuclear Information System (INIS)

    Khair, H. O. M.

    2012-06-01

    The safe operation of nuclear power plants (NPP) requires a deep understanding of the functioning of physical processes and systems involved. This study was carried out to present an overview of the features of safety systems of boiling and pressurized water reactors that are available commercially. Brief description of purposes and functions of the various safety systems that are employed in these reactors was discussed and a brief comparison between the safety systems of BWRs and PWRs was made in an effort to emphasize of safety in NPPs.(Author)

  13. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  14. Electrical imaging of deep crustal features of Kutch, India

    Science.gov (United States)

    Sastry, R. S.; Nagarajan, Nandini; Sarma, S. V. S.

    2008-03-01

    A regional Magnetotelluric (MT) study, was carried out with 55 MT soundings, distributed along five traverses, across the Kutch Mainland Unit (KMU), on the west coast of India, a region characterized by a series of successive uplifts and intervening depressions in the form of half graben, bounded by master faults. We obtain the deeper electrical structure of the crust beneath Kutch, from 2-D modelling of MT data along the 5 traverses, in order to evaluate the geo-electrical signatures, if any, of the known primary tectonic structures in this region. The results show that the deeper electrical structure in the Kutch region presents a mosaic of high resistive crustal blocks separated by deep-rooted conductive features. Two such crustal conductive features spatially correlate with the known tectonic features, viz., the Kutch Mainland Fault (KMF), and the Katrol Hill Fault (KHF). An impressive feature of the geo-electrical sections is an additional, well-defined conductive feature, running between Jakhau and Mundra, located at the southern end of each of the five MT traverses and interpreted to be the electrical signature of yet another hidden fault at the southern margin of the KMU. This new feature is named as Jakhau-Mundra Fault (JMF). It is inferred that the presence of JMF together with the Kathiawar Fault (NKF), further south, located at the northern boundary of the Saurashtra Horst, would enhance the possibility of occurrence of a thick sedimentary column in the Gulf of Kutch. The region between the newly delineated fault (JMF) and the Kathiawar fault (NKF) could thus be significant for Hydrocarbon Exploration.

  15. Engineering and safety features of modular vault dry storage

    International Nuclear Information System (INIS)

    Deacon, D.; Wheeler, D.J.

    1984-01-01

    This paper discusses the need for interim dry storage and reviews detailed features of the Modular Vault Dry storage concept. The concept meets three basic utility requirements. Firstly, the technology and safety features have been demonstrated on existing plant; secondly, it can be built and licensed in an acceptably short timescale; and thirdly, economic analysis shows that a modular vault dry store is often the cheapest option for interim storage

  16. 77 FR 24560 - National Highway Traffic Safety Administration Electric Vehicle Safety Technical Symposium

    Science.gov (United States)

    2012-04-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Electric Vehicle... discuss safety considerations for electric vehicles powered by lithium-ion (Li-ion) batteries. The... vehicles. Electric vehicles show great promise as an innovative and fuel- efficient option for American...

  17. The history of 20 years of electrical safety

    International Nuclear Information System (INIS)

    1994-10-01

    This book describes the establishment of Korea electrical safety corporation including the background and procession of the safety corporation, based on the building to make infrastructure and solve the difficulty, the time of growth in stability and development. Also it deals with personnel management and financial of the company. Next, it describes the operation of the each department, that is, regulant check, management agency of electrical safety, speciation task, and check for the request. Last, it deals with the voluntary service and safe management and technical development of the electrical safety check and study.

  18. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  19. Design data and safety features of commerical nuclear power plant

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1976-06-01

    Design data, safety features, and site characteristics are summarized for 34 nuclear power units in 17 power stations in the United States. Six pages of data are presented for each plant, consisting of thermal-hydraulic and nuclear factors, containment features, emergency-core-cooling systems, site features, circulating water system data, and miscellaneous factors. An aerial perspective is also presented for each plant. This volume covers Light Water Reactors (LWRs) with dockets 50-508 through 50-549, four HTGRs--50-171, 50-267, 50-450/451, 50-463/464, the Atlantic Floating Station 50-477/478, and the Clinch River Breeder 50-537

  20. Engineering safety features for high power experimental reactors

    International Nuclear Information System (INIS)

    Doval, A.; Villarino, E.; Vertullo, A.

    2000-01-01

    In the present analysis we will focus our attention in the way engineering safety features are designed in order to prevent fuel damage in case of abnormal or accidental situations. To prevent fuel damage two main facts must be considered, the shutdown of the reactor and the adequate core cooling capacity, it means that both, neutronic and thermohydraulic aspects must be analysed. Some neutronic safety features are common to all power ranges like negative feedback reactivity coefficients and the required number of control rods containing the proper absorber material to shutdown the reactor. From the thermohydraulic point of view common features are siphon-breaker devices and flap valves for those powers requiring cooling in the forced convection regime. For the high power reactor group, the engineering safety features specially designed for a generic reactor of 20 MW, will be presented here. From the neutronic point of view besides the common features, and to comply with our National Regulatory Authority, a Second Shutdown System was designed as a redundant shutdown system in case the control plates fail. Concerning thermohydraulic aspects besides the pump flywheels and the flap valves providing the natural convection loop, a metallic Chimney and a Chimney Water Injection System were supplied. (author)

  1. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  2. Basic recognition on safety of nuclear electric power generation

    International Nuclear Information System (INIS)

    Miyazaki, Keiji

    1995-01-01

    The safety of nuclear electric power generation is not to inflict radiation damage on public. Natural radiation is about 1 mSv every year. As far as the core melting on large scale does not occur, there is not the possibility of exerting serious radiation effect to public. The way of thinking on ensuring the safety is defense in depth. The first protection is the prevention of abnormality, the second protection is the prevention of accidents, and the third protection is the relaxation of effect. As design base accidents, the loss of coolant accident due to the breakdown of inlet pipings of reactors and the breaking of fine tubes in steam generators are included. The suitability of location is evaluated. As the large scale accidents of nuclear power stations in the past, Chernobyl accident and Three Mile Island accident are explained. The features of the countermeasures to the accident in Mihama No. 2 plant are described. The countermeasures to severe accidents, namely accident management and general preventive maintenance are explained. The background of the nonconfidence feeling to nuclear electric power generation and the importance of opening information to public are shown. (K.I.)

  3. Changing An Electrical Safety Culture - The Importance of Understanding Why.

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Richard Thomas [Idaho National Laboratory

    2015-12-01

    Abstract – Electrical workers, regardless of experience, are faced with a major barrier when first introduced to NFPA 70E, “The Standard for Electrical Safety in the Workplace,” and an erroneous electrical safety culture pre-exists. This paper describes, from the author’s point of view, the barrier that he and other electrical workers have experienced and his insight into overcoming the barrier. The author in conclusion will present a series of techniques that can be used to assist other electrical workers in overcoming the barrier.

  4. Safety Features of Material and Personnel Movement Devices. Module SH-25. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety features of material and personnel movement devices is one of 50 modules concerned with job safety and health. This module covers safe conditions and operating practices for conveyors, elevators, escalators, moving walks, manlifts, forklifts, and motorized hand trucks. Following the introduction, 10 objectives (each…

  5. Driver perceptions of the safety implications of quiet electric vehicles.

    Science.gov (United States)

    Cocron, Peter; Krems, Josef F

    2013-09-01

    Previous research on the safety implications of quiet electric vehicles (EVs) has mostly focused on pedestrians' acoustic perception of EVs, and suggests that EVs are more difficult for pedestrians to hear and, therefore, compromise traffic safety. The two German field studies presented here examine the experiences of 70 drivers with low noise emissions of EVs and the drivers' long-term evaluation of the issue. Participants were surveyed via interviews and questionnaires before driving an EV for the first time, after 3 months of driving, and in the first study, again after 6 months. Based on participants' reports, a catalogue of safety-relevant incidents was composed in Study 1. The catalogue revealed that low noise-related critical incidents only rarely occur, and mostly take place in low-speed environments. The degree of hazard related to these incidents was rated as low to medium. In Study 1, driver concern for vulnerable road users as a result of low noise diminished with increasing driving experience, while perceived comfort due to this feature increased. These results were replicated in Study 2. In the second study, it was additionally examined, if drivers adjust their perceived risk of harming other road users over time. Results show that the affective assessment of risk also decreased with increased driving experience. Based on individual experience, drivers adjust their evaluation of noise-related hazards, suggesting that dangers associated with low noise emissions might be less significant than previously expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Electrical Safety for Non-Electricians

    Science.gov (United States)

    ... handled cement finishing floats • Metal ladders • Raised dump truck beds • Scaffolding But electrical hazards are also at ... must be grounded. Your employer must check all electric systems, including wiring and switches, to be sure ...

  7. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  8. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  9. DIAGNOSTIC FEATURES RESEARCH OF AC ELECTRIC POINT MOTORS

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-05-01

    Full Text Available Purpose.Considerable responsibility for safety of operation rests on signal telephone and telegraph department of railway. One of the most attackable nodes (both automation systems, and railway in whole is track switches. The aim of this investigation is developing such system for monitoring and diagnostics of track switches, which would fully meet the requirements of modern conditions of high-speed motion and heavy trains and producing diagnostics, collection and systematization of data in an automated way. Methodology. In order to achieve the desired objectives research of a structure and the operating principle description of the switch electric drive, sequence of triggering its main units were carried out. The operating characteristics and settings, operating conditions, the causes of failures in the work, andrequirements for electric drives technology and their service were considered and analyzed. Basic analysis principles of dependence of nature of the changes the current waveform, which flows in the working circuit of AC electric point motor were determined. Technical implementation of the monitoring and diagnosing system the state of AC electric point motors was carried out. Findings. Signals taken from serviceable and defective electric turnouts were researched. Originality. Identified a strong interconnectionbetween the technical condition of the track switchand curve shape that describes the current in the circuit of AC electric point motor during operation which is based on the research processes that have influence on it during operation. Practical value. Shown the principles of the technical approach to the transition from scheduled preventive maintenance to maintenance of real condition for a more objective assessment and thus more rapid response to emerging or failures when they occur gradually, damages and any other shortcomings in the work track switch AC drives.

  10. Beyond sustainable transport. Electric car features and services

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, P.; Pirhonen, V.; Giesecke, R. [Aalto Univ. School of Science, Espoo (Finland). BIT Research Centre

    2011-07-01

    The overall aim of the Finnish SIMBe project (www.SIMBe.fi) is to significantly accelerate the introduction of sustainable electric mobility in Finland. SIMBe stands for Smart Infrastructures for Electric Mobility in Built Environments. The fundamental assumption of the project is that electric (e-) mobility is inherently more sustainable than mobility based on fossil fuels. However, as has been widely recognized in the e-mobility field, the currently used batteries are expensive, often more expensive than the rest of the particular electric vehicle (EV) that they propel. There are two opposite schools of thought how to address this problem, which can be summarized as follows: a) Leave the battery in peace, as it is precious. Use it only to propel the EV of which it is an integral part. Use it instead of fuel, and do not use it for any other applications. The EV's sole purpose is that of a transportation device. b) Make as much use of the battery as possible, as it is precious. Involve vehicle to grid (V2G) or vehicle to house charging. Additionally, invent new features, meanings and services for the battery driven EV, which go distinctively beyond transport. The SIMBe project decided to opt for school (b), based on the smart energy production and distribution scenario, in which electric and hybrid vehicles' batteries will deliver energy on demand to the grid. SIMBe aims to prepare key Finnish industrial players and consumers for the transition to this new energy-transportation paradigm. But how can we replace the conservative understanding of the 'transport only' school by a holistic view of what features, meanings and services are actually possible by using a large scale fleet of 'batteries on wheels'? The Nordic Climate Festival (at) Aalto provided the unique opportunity to tap into the knowledge and creativity of students within the Nordic countries. Being properly prepared and facilitated, a workshop may provide some insights and

  11. Beyond sustainable transport. Electric car features and services

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, P; Pirhonen, V; Giesecke, R [Aalto Univ. School of Science, Espoo (Finland). BIT Research Centre

    2011-07-01

    The overall aim of the Finnish SIMBe project (www.SIMBe.fi) is to significantly accelerate the introduction of sustainable electric mobility in Finland. SIMBe stands for Smart Infrastructures for Electric Mobility in Built Environments. The fundamental assumption of the project is that electric (e-) mobility is inherently more sustainable than mobility based on fossil fuels. However, as has been widely recognized in the e-mobility field, the currently used batteries are expensive, often more expensive than the rest of the particular electric vehicle (EV) that they propel. There are two opposite schools of thought how to address this problem, which can be summarized as follows: a) Leave the battery in peace, as it is precious. Use it only to propel the EV of which it is an integral part. Use it instead of fuel, and do not use it for any other applications. The EV's sole purpose is that of a transportation device. b) Make as much use of the battery as possible, as it is precious. Involve vehicle to grid (V2G) or vehicle to house charging. Additionally, invent new features, meanings and services for the battery driven EV, which go distinctively beyond transport. The SIMBe project decided to opt for school (b), based on the smart energy production and distribution scenario, in which electric and hybrid vehicles' batteries will deliver energy on demand to the grid. SIMBe aims to prepare key Finnish industrial players and consumers for the transition to this new energy-transportation paradigm. But how can we replace the conservative understanding of the 'transport only' school by a holistic view of what features, meanings and services are actually possible by using a large scale fleet of 'batteries on wheels'? The Nordic Climate Festival (at) Aalto provided the unique opportunity to tap into the knowledge and creativity of students within the Nordic countries. Being properly prepared and facilitated, a workshop may provide some insights and ideas. In scope of the

  12. Electrical Safety Program: Nonelectrical Crafts at LANL, Live #12175

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-22

    Los Alamos National Laboratory (LANL) and the federal government require those working with or near electrical equipment to be trained on electrical hazards and how to avoid them. Although you might not be trained to work on electrical systems, your understanding of electricity, how it can hurt you, and what precautions to take when working near electricity could save you or others from injury or death. This course, Electrical Safety Program: Nonelectrical Crafts at LANL (12175), provides knowledge of basic electrical concepts, such as current, voltage, and resistance, and their relationship to each other. You will learn how to apply these concepts to safe work practices while learning about the dangers of electricity—and associated hazards—that you may encounter on the job. The course also discusses what you can do to prevent electrical accidents and what you should do in the event of an electrical emergency. The LANL Electrical Safety Program is defined by LANL Procedure (P) 101-13. An electrical safety officer (ESO) is well versed in this document and should be consulted regarding electrical questions. Appointed by the responsible line manager (RLM), ESOs can tell you if a piece of equipment or an operation is safe or how to make it safe.

  13. Modeling crash injury severity by road feature to improve safety.

    Science.gov (United States)

    Penmetsa, Praveena; Pulugurtha, Srinivas S

    2018-01-02

    The objective of this research is 2-fold: to (a) model and identify critical road features (or locations) based on crash injury severity and compare it with crash frequency and (b) model and identify drivers who are more likely to contribute to crashes by road feature. Crash data from 2011 to 2013 were obtained from the Highway Safety Information System (HSIS) for the state of North Carolina. Twenty-three different road features were considered, analyzed, and compared with each other as well as no road feature. A multinomial logit (MNL) model was developed and odds ratios were estimated to investigate the effect of road features on crash injury severity. Among the many road features, underpass, end or beginning of a divided highway, and on-ramp terminal on crossroad are the top 3 critical road features. Intersection crashes are frequent but are not highly likely to result in severe injuries compared to critical road features. Roundabouts are least likely to result in both severe and moderate injuries. Female drivers are more likely to be involved in crashes at intersections (4-way and T) compared to male drivers. Adult drivers are more likely to be involved in crashes at underpasses. Older drivers are 1.6 times more likely to be involved in a crash at the end or beginning of a divided highway. The findings from this research help to identify critical road features that need to be given priority. As an example, additional advanced warning signs and providing enlarged or highly retroreflective signs that grab the attention of older drivers may help in making locations such as end or beginning of a divided highway much safer. Educating drivers about the necessary skill sets required at critical road features in addition to engineering solutions may further help them adopt safe driving behaviors on the road.

  14. ELECTRICAL SAFETY IMPROVEMENT PROJECT A COMPLEX WIDE TEAMING INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    GRAY BJ

    2007-11-26

    This paper describes the results of a year-long project, sponsored by the Energy Facility Contractors Group (EFCOG) and designed to improve overall electrical safety performance throughout Department of Energy (DOE)-owned sites and laboratories. As evidenced by focused metrics, the Project was successful primarily due to the joint commitment of contractor and DOE electrical safety experts, as well as significant support from DOE and contractor senior management. The effort was managed by an assigned project manager, using classical project-management principles that included execution of key deliverables and regular status reports to the Project sponsor. At the conclusion of the Project, the DOE not only realized measurable improvement in the safety of their workers, but also had access to valuable resources that will enable them to do the following: evaluate and improve electrical safety programs; analyze and trend electrical safety events; increase electrical safety awareness for both electrical and non-electrical workers; and participate in ongoing processes dedicated to continued improvement.

  15. Investigations of safety risks in converted electric vehicles

    NARCIS (Netherlands)

    Bolech, M.; Foster, D.L.; Lange, R. de; Rodarius, C.

    2010-01-01

    Within the departments Environmentally Sustainable Transport and Automotive of TNO (Netherlands organisation for applied scientific research) several projects investigating safety aspects of electric vehicles have been conducted, including one in cooperation with KEMA and RDW of the Netherlands.

  16. Demonstration of inherent safety features of HTGRs using the HTTR

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Nakagawa, Shigeaki; Nakazawa, Toshio; Iyoku, Tatsuo

    2004-01-01

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are conducted for the purpose of demonstrating inherent safety features of High Temperature Gas-cooled Reactors (HTGRs) quantitatively as well as providing the core and plant transient data for validation of HTGR analysis codes for safety evaluation. The safety demonstration test are divided to the first phase and second phase tests. In the first phase tests, simulation tests of anticipated operational occurrences and anticipated transients without scram (ATWS) are conducted. The second phase tests will simulate accidents such as a depressurization accident (loss of coolant accident). The first phase test simulating reactivity insertion events and coolant flow reduction events stared in FY 2002. Post-test analyses have been conducted to reproduced the test results by using the core and plant dynamics analysis code, ACCORD and Monte Carlo code, MVP. The analysis results agreed fairly well with the test results of a control rod withdrawal test simulating reactivity insertion, and gas circulators trip test simulating coolant flow reduction, at power levels of 50% and 30% of the rated power, respectively. It is shown that improvement of the ACCORD code by taking into consideration vertical and horizontal temperature distribution gives better analysis results in the control rod withdrawal test. The fist phase safety demonstration tests will continue until FY 2005, and the second phase tests are planned to be started in FY 2006. (author)

  17. Assessment of Electrical Safety Beliefs and Practices: A Case Study

    Directory of Open Access Journals (Sweden)

    S. Boubaker

    2017-12-01

    Full Text Available In this paper, the electrical safety beliefs and practices in Hail region, Saudi Arabia, have been assessed. Based on legislative recommendations and rules applied in Saudi Arabia, on official statistics regarding the electricity-caused accidents and on the analysis of more than 200 photos captured in Hail (related to electrical safety, a questionnaire composed of 36 questions (10 for the respondents information, 16 for the home safety culture and 10 for the electrical devices purchasing culture has been devised and distributed to residents. 228 responses have been collected and analyzed. Using a scale similar to the one adopted for a university student GPA calculation, the electrical safety level (ESL in Hail region has been found to be 0.76 (in a scale of 4 points which is a very low score and indicates a poor electrical safety culture. Several recommendations involving different competent authorities have been proposed. Future work will concern the assessment of safety in industrial companies in Hail region.

  18. Investigation of road network features and safety performance.

    Science.gov (United States)

    Wang, Xuesong; Wu, Xingwei; Abdel-Aty, Mohamed; Tremont, Paul J

    2013-07-01

    The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models' results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Legal bases of safety regulations in electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jeiter, W

    1981-12-01

    Apart from the governmental regulations the rule for the prevention of accidents 'Electric plants and equipment' must be observed in order to protect the insurants. Actually, all these regulations do not contain any independent instructions. They rather utilize the VDE regulations and refer to them. The laws of electrical safety engineering are strongly influenced by harmonization efforts particularly within the European Communitties.

  20. The design and safety features of the IRIS reactor

    International Nuclear Information System (INIS)

    Carelli, Mario D.; Conway, L.E.; Oriani, L.; Petrovic, B.; Lombardi, C.V.; Ricotti, M.E.; Barroso, A.C.O.; Collado, J.M.; Cinotti, L.; Todreas, N.E.; Grgic, D.; Moraes, M.M.; Boroughs, R.D.; Ninokata, H.; Ingersoll, D.T.; Oriolo, F.

    2004-01-01

    Salient features of the International Reactor Innovative and Secure (IRIS) are presented here. IRIS, an integral, modular, medium size (335 MWe) PWR, has been under development since the turn of the century by an international consortium led by Westinghouse and including over 20 organizations from nine countries. Described here are the features of the integral design which includes steam generators, pumps and pressurizer inside the vessel, together with the core, control rods, and neutron reflector/shield. A brief summary is provided of the IRIS approach to extended maintenance over a 48-month schedule. The unique IRIS safety-by-design approach is discussed, which, by eliminating accidents, at the design stage, or decreasing their consequences/probabilities when outright elimination is not possible, provides a very powerful first level of defense in depth. The safety-by-design allows a significant reduction and simplification of the passive safety systems, which are presented here, together with an assessment of the IRIS response to transients and postulated accidents

  1. Electrical safety in flammable gas/vapor laden atmospheres

    CERN Document Server

    Korver, WOE

    1992-01-01

    This book provides comprehensive coverage of electrical system installation within areas where flammable gases and liquids are handled and processed. The accurate hazard evaluation of flammability risks associated with chemical and petrochemical locations is critical in determining the point at which the costs of electrical equipment and installation are balanced with explosion safety requirements. The book offers the most current code requirements along with tables and illustrations as analytic tools. Environmental characteristics are covered in Section 1 along with recommended electrical ins

  2. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  3. What price safety. A probabilistic cost-benefit evaluaton of existing engineered safety features

    International Nuclear Information System (INIS)

    O'Donnell, E.P.

    1978-01-01

    The paper provides a method for performing quantitative cost-benefit evaluations for nuclear safety concerns involving accidents of low probability and potentially large consequences. It presents an application of the method to ECCS, containment, emergency power system and hydrogen recombiner system. This evaluation provides a valuable assessment of the relative cost effectiveness of these features in reducing accident risk. It also provides insight into the sensitivity of cost-benefit calculations to the manner in which safety features are sequantially added in design. (author)

  4. Cost reduction and safety design features of ABWR-II. Annex 5

    International Nuclear Information System (INIS)

    Koh, F.; Moriya, K.; Anegawa, T.

    2002-01-01

    The ABWR-II, which is aimed to be the next generation reactor following the latest BWR: Advanced Boiling Reactor (ABWR), is now under development jointly by the Japanese BWR utilities, General Electric Company, Hitachi Limited, and Toshiba Corporation. The key objectives of ABWR-II development include improvement in economics and further sophistication in safety for commercialization in the late 2010's and after. This paper summarizes the current status of ABWR-II development focusing on economics and safety. Plant power rating, fuel size, CRD rationalization and outage period are discussed from a cost reduction perspective. In terms of safety, the features such as diversification in emergency power sources and passive system application against severe accidents are being introduced. (author)

  5. Specific features of medicines safety and pharmacovigilance in Africa

    Science.gov (United States)

    Pal, Shanthi N.; Olsson, Sten; Dodoo, Alexander; Bencheikh, Rachida Soulayami

    2012-01-01

    The thalidomide tragedy in the late 1950s and early 1960s served as a wakeup call and raised questions about the safety of medicinal products. The developed countries rose to the challenge putting in place systems to ensure the safety of medicines. However, this was not the case for low-resource settings because of prevailing factors inherent in them. This paper reviews some of these features and the current status of pharmacovigilance in Africa. The health systems in most of the 54 countries of Africa are essentially weak, lacking in basic infrastructure, personnel, equipment and facilities. The recent mass deployment of medicines to address diseases of public health significance in Africa poses additional challenges to the health system with notable safety concerns. Other safety issues of note include substandard and counterfeit medicines, medication errors and quality of medicinal products. The first national pharmacovigilance centres established in Africa with membership of the World Health Organization (WHO) international drug monitoring programme were in Morocco and South Africa in 1992. Of the 104 full member countries in the programme, there are now 24 African countries with a further nine countries as associate members. The pharmacovigilance systems operational in African countries are based essentially on spontaneous reporting facilitated by the introduction of the new tool Vigiflow. The individual case safety reports committed to the WHO global database (Vigibase) attest to the growth of pharmacovigilance in Africa with the number of reports rising from 2695 in 2000 to over 25,000 in 2010. There is need to engage the various identified challenges of the weak pharmacovigilance systems in the African setting and to focus efforts on how to provide resources, infrastructure and expertise. Raising the level of awareness among healthcare providers, developing training curricula for healthcare professionals, provisions for paediatric and geriatric

  6. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  7. Safety features and research needs of westinghouse advanced reactors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Winters, J.W.; Cummins, W.E.; Bruschi, H.J.

    2002-01-01

    The three Westinghouse advanced reactors - AP600, AP1000 and IRIS - are at different levels of readiness. AP600 has received a Design Certification, its larger size version AP1000 is currently in the design certification process and IRIS has just completed its conceptual design and will initiate soon a licensing pre-application. The safety features of the passive designs AP600/AP1000 are presented, followed by the features of the more revolutionary IRIS, a small size modular integral reactor. A discussion of the IRIS safety by design approach is given. The AP600/AP1000 design certification is backed by completed testing and development which is summarized, together with a research program currently in progress which will extend AP600 severe accident test data to AP1000 conditions. While IRIS will of course rely on applicable AP600/1000 data, a very extensive testing campaign is being planned to address all the unique aspects of its design. Finally, IRIS plans to use a risk-informed approach in its licensing process. (authors)

  8. Improved safety features in the design of Alto Lazio NPP

    International Nuclear Information System (INIS)

    Bava, G.; Cianciolo, T.; Del Nero, G.

    1988-01-01

    The ALTO LAZIO Nuclear Power Plant, two 1000Mwe units, is a BWR 6/MARK III located about 100 km north of Rome, on the Tyrrhenian Sea Coasts. The construction of the plant started in 1978, but it has recently been stopped by a Government decision following a national referendum, when the units were about 70% completed. This paper is mainly intended to illustrate the major safety features which have been implemented as result of specific requirements issued by the safety authority (ENEA DISP) during the construction permit stage or the subsequent licensing process. One of the tools used to identify the need for design modifications has been a comprehensive reliability analysis of safety system: in the paper the methods used and the major results obtained by this study are briefly presented. Also, the approach used in the investigation of severe accidents and major applications in the area of plant design and emergency procedures are briefly discussed; furthermore the trend toward a simpler mitigation concept is described

  9. Monitoring and analyzing features of electrical power quality system performance

    OpenAIRE

    Genci Sharko; Nike Shanku

    2010-01-01

    Power quality is a set of boundaries that allows electrical systems to function in their intended manner without significant loss of performance or life. The term is used to describe electric power that drives an electrical load and the load's ability to function properly with that electric power. Without the proper quality of the power, an electrical device may malfunction, fail prematurely or not operate at all. There are many reasons why the electric power can be of poor quality and many m...

  10. Probabilist methods applied to electric source problems in nuclear safety

    International Nuclear Information System (INIS)

    Carnino, A.; Llory, M.

    1979-01-01

    Nuclear Safety has frequently been asked to quantify safety margins and evaluate the hazard. In order to do so, the probabilist methods have proved to be the most promising. Without completely replacing determinist safety, they are now commonly used at the reliability or availability stages of systems as well as for determining the likely accidental sequences. In this paper an application linked to the problem of electric sources is described, whilst at the same time indicating the methods used. This is the calculation of the probable loss of all the electric sources of a pressurized water nuclear power station, the evaluation of the reliability of diesels by event trees of failures and the determination of accidental sequences which could be brought about by the 'total electric source loss' initiator and affect the installation or the environment [fr

  11. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  12. Potential safety features and safety analysis aspects for high performance light water reactor (HPLWR)

    International Nuclear Information System (INIS)

    Aksan, N.; Schulenberg, T.; Squarer, D.

    2003-01-01

    Research Activities are ongoing worldwide to develop advanced nuclear power plants with high thermal efficiency for the purpose to improve their economical competitiveness. Within the 5th Framework Programme of the European Commission, a project has been launched with the main objective to assess the technical and economical feasibility of a high efficiency LWR operating at super critical pressure conditions. Several European research institutions, industrial partners and the University of Tokyo participated and worked in this common research project. Within the aims of the development of the HPLWR is to use both passive and active safety systems for performing safety related functions in the event of transients or accidents. Consequently substantial effort has been invested in order to define the safety features of the plant in a European environment, as well as to incorporate passive safety features into the design. Throughout this process, the European Utility Requirements (EUR) and requirements known from Generation IV initiative were considered as a guideline in general terms in order to include further advanced ideas. The HPLWR general features were compared to both requirements, indicating a potential to meet these. Since, the supercritical HPLWR represents a challenge for best-estimate safety codes like RELAP5, CATHARE and TRAB due to the fact that these codes were developed for two-phase or single-phase coolant at pressures far below critical point, work on the preliminary assessment of the appropriateness of these codes have been performed for selected relevant phenomena, and application of the codes to the selected transients on the basis of defined 'reference design'. An overview on their successful upgrade to supercritical pressures and application to some plant safety analysis are provided in the paper. Further elaborations in relation to future needs are also discussed. (author)

  13. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  14. Specific features of goal setting in road traffic safety

    Science.gov (United States)

    Kolesov, V. I.; Danilov, O. F.; Petrov, A. I.

    2017-10-01

    Road traffic safety (RTS) management is inherently a branch of cybernetics and therefore requires clear formalization of the task. The paper aims at identification of the specific features of goal setting in RTS management under the system approach. The paper presents the results of cybernetic modeling of the cause-to-effect mechanism of a road traffic accident (RTA); in here, the mechanism itself is viewed as a complex system. A designed management goal function is focused on minimizing the difficulty in achieving the target goal. Optimization of the target goal has been performed using the Lagrange principle. The created working algorithms have passed the soft testing. The key role of the obtained solution in the tactical and strategic RTS management is considered. The dynamics of the management effectiveness indicator has been analyzed based on the ten-year statistics for Russia.

  15. USNRC regulatory guidance for engineered safety feature air cleaning systems

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1991-01-01

    The need for clear, technically appropriate, and easily implementable guidance for the design, testing, and maintenance of nuclear air cleaning systems has long been recognized. Numerous industry consensus standards have been issued and revised over the last 30 years. Guidance has also been published by the US Nuclear Regulatory Commission in the form of regulations, regulatory guides, standard review plans, NUREG documents, and information notices. This paper will summarize the latest revisions to these documents and emphasize Regulatory Guide 1.52, Design, Testing, and Maintenance Criteria for Post-Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants, which was last revised in 1978. The USNRC has undertaken a project to revise this regulatory guide, and the status of that revision is highlighted

  16. Passive safety features for next generation CANDU power plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Hart, R.S.; Lipsett, J.J.; Soedijono, P.; Dick, J.E.

    1989-01-01

    CANDU offers an evolutionary approach to simpler and safer reactors. The CANDU 3, an advanced CANDU, currently in the detailed design stage, offers significant improvements in the areas of safety, design simplicity, constructibility, operability, maintainability, schedule and cost. These are being accomplished by retaining all of the well known CANDU benefits, and by relying on the use of proven components and technologies. A major safety benefit of CANDU is the moderator system which is separate from the coolant. The presence of a cold moderator reduces the consequences arising from a LOCA or loss of heat sink event. In existing CANDU plants even the severe accident - LOCA with failure of the emergency core cooling system - is a design basis event. Further advances toward a simpler and more passively safe reactor will be made using the same evolutionary approach. Building on the strength of the moderator system to mitigate against severe accidents, a passive moderator cooling system, depending only on the law of gravity to perform its function, will be the next step of development. AECL is currently investigating a number of other features that could be incorporated in future evolutionary CANDU designs to enhance protection against accidents, and to limit off-site consequences to an acceptable level, for even the worst event. The additional features being investigated include passive decay heat removal from the heat transport system, a simpler emergency core cooling system and a containment pressure suppression/venting capability for beyond design basis events. Central to these passive decay heat removal schemes is the availability of a short-term heat sink to provide a decay heat removal capability of at least three days, without any station services. Preliminary results from these investigations confirm the feasibility of these schemes. (author)

  17. Research on Nonlinear Feature of Electrical Resistance of Acupuncture Points

    Directory of Open Access Journals (Sweden)

    Jianzi Wei

    2012-01-01

    Full Text Available A highly sensitive volt-ampere characteristics detecting system was applied to measure the volt-ampere curves of nine acupuncture points, LU9, HT7, LI4, PC6, ST36, SP6, KI3, LR3, and SP3, and corresponding nonacupuncture points bilaterally from 42 healthy volunteers. Electric currents intensity was increased from 0 μA to 20 μA and then returned to 0 μA again. The results showed that the volt-ampere curves of acupuncture points had nonlinear property and magnetic hysteresis-like feature. On all acupuncture point spots, the volt-ampere areas of the increasing phase were significantly larger than that of the decreasing phase (P<0.01. The volt-ampere areas of ten acupuncture point spots were significantly smaller than those of the corresponding nonacupuncture point spots when intensity was increase (P<0.05~P<0.001. And when intensity was decrease, eleven acupuncture point spots showed the same property as above (P<0.05~P<0.001, while two acupuncture point spots showed opposite phenomenon in which the areas of two acupuncture point spots were larger than those of the corresponding nonacupuncture point spots (P<0.05~P<0.01. These results show that the phenomenon of low skin resistance does not exist to all acupuncture points.

  18. Twenty sixth DAE safety and occupational health professionals meet: cryogenic safety, electrical safety and ergonomics at work place

    International Nuclear Information System (INIS)

    2009-01-01

    This conference gathered knowledge in safety and occupational health hazards in various fields of nuclear science and technology like radiations, high voltages, ultra-low temperature, ultra-high magnetic fields, electrical breakdown, fire, ergonomics and cryogenic safety at work place. Papers relevant to INIS database are indexed separately

  19. Development of a safety case editor with assessment features

    NARCIS (Netherlands)

    Luo, Y.; Li, Z.; van den Brand, M.G.J.

    2016-01-01

    A safety case is an argumentation for showing confidence in the claimed safety assurance of a system, which should be comprehensible and well-structured. Typically, safety cases are represented in plain text, but the structure of safety cases might become ambiguous and unclear. To address this, the

  20. Hybrid Electric Energy Storages: Their Specific Features and Application (Review)

    Science.gov (United States)

    Popel', O. S.; Tarasenko, A. B.

    2018-05-01

    The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.

  1. Nuclear Electric flask design and safety case development during the last ten years

    International Nuclear Information System (INIS)

    Dougall, I.; Jones, D.K.

    1994-01-01

    The scope of Nuclear Electric's (NE) requirements for irradiated fuel transport and the relevant safety and regulatory compliance standards are outlined. To illustrate NE's approach to demonstrating package design compliance the basis of the safety case for unbottled Magnox fuel transport in the Mk M2 Magnox flask is described. The considerations which lay behind the development of the Mk A2 AGR Flask are indicated and a description is given of the main design features of this flask. Finally there is a summary of progress in obtaining Type B(M) approvals, based on the 1985 IAEA Regulations, for the requisite range of flask contents. (author)

  2. Specialists' meeting on passive and active safety features of LMFRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The objective of the meeting was to discuss and exchange information on passive and active safety concepts and to find some reasonable coupling of these concept, aiming at firmer establishment of plant safety and at the same time of plant cost reduction. The following main topical areas were discussed by delegates: (1) Overview - review of national status on the safety design approaches of LMFRs (2) Safety characteristics of decay heat removal system (DHRS) (3) Safety characteristics of reactor protection system (RPS) and reactor shutdown system (RSS) (4) Core safety characteristics.

  3. Specialists' meeting on passive and active safety features of LMFRs

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of the meeting was to discuss and exchange information on passive and active safety concepts and to find some reasonable coupling of these concept, aiming at firmer establishment of plant safety and at the same time of plant cost reduction. The following main topical areas were discussed by delegates: (1) Overview - review of national status on the safety design approaches of LMFRs (2) Safety characteristics of decay heat removal system (DHRS) (3) Safety characteristics of reactor protection system (RPS) and reactor shutdown system (RSS) (4) Core safety characteristics

  4. SWR 1000: an advanced boiling water reactor with passive safety features

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    The SWR 1000, an advanced BWR, is being developed by Siemens under contract from Germany's electric utilities and with the support of European partners. The project is currently in the basic design phase to be concluded in mid-1999 with the release of a site-independent safety report and costing analysis. The development goals for the project encompass competitive costs, use of passive safety systems to further reduce probabilities of occurrence of severe accidents, assured control of accidents so no emergency response actions for evacuation of the local population are needed, simplification of plant systems based on operator experience, and planning and design based on German codes, standards and specifications put forward by the Franco-German Reactor Safety Commission for future nuclear power plants equipped with PWRs, as well as IAEA specifications and the European Utility Requirements. These goals led to a plant concept with a low power density core, with large water inventories stored above the core inside the reactor pressure vessel, in the pressure suppression pool, and in other locations. All accident situations arising from power operation can be controlled by passive safety features without rise in core temperature and with a grace period of more than three days. In addition, postulated core melt is controlled by passive equipment. All new passive systems have been successfully tested for function and performance using large-scale components in experimental testing facilities at PSI in Switzerland and at the Juelich Research Centre in Germany. In addition to improvements of the safety systems, the plant's operating systems have been simplified based on operating experience. The design's safety concept, simplified operating systems and 48 months construction time yield favourable plant construction costs. The level of concept maturity required to begin offering the SWR 1000 on the power generation market is anticipated to be reached, as planned in the year

  5. Safety Evaluation Report related to the operation of Wm. H. Zimmer Nuclear Power Station, Unit No. 1. Docket No. 50-358. Cincinnati Gas and Electric Company

    International Nuclear Information System (INIS)

    1982-08-01

    Information is presented concerning site characteristics; design criteria for structures, systems, and components; reactor; reactor coolant system and connected systems; engineered safety features; instrumentation and controls; electric power; auxiliary systems; conduct of operations; and TMI-2 requirements

  6. The history of 10 years of electrical safety

    International Nuclear Information System (INIS)

    1984-12-01

    This book describes the foundation course of Korea electrical power corporation, including the process of the establishment with difficulty in the early period, growth through the rough passage, maintain of stability with voluntary service for public benefit. Next it deals with the management of the organization, and personnel management, financial affairs the management of business, examination for safety. The last part is an appendix for the administration law of each deportment.

  7. Features of electric drive sucker rod pumps for oil production

    Science.gov (United States)

    Gizatullin, F. A.; Khakimyanov, M. I.; Khusainov, F. F.

    2018-01-01

    This article is about modes of operation of electric drives of downhole sucker rod pumps. Downhole oil production processes are very energy intensive. Oil fields contain many oil wells; many of them operate in inefficient modes with significant additional losses. Authors propose technical solutions to improve energy performance of a pump unit drives: counterweight balancing, reducing of electric motor power, replacing induction motors with permanent magnet motors, replacing balancer drives with chain drives, using of variable frequency drives.

  8. Safety analyses of the electrical systems on VVER NPP

    International Nuclear Information System (INIS)

    Andel, J.

    2004-01-01

    Energoprojekt Praha has been the main entity responsible for the section on 'Electrical Systems' in the safety reports of the Temelin, Dukovany and Mochovce nuclear power plants. The section comprises 2 main chapters, viz. Offsite Power System (issues of electrical energy production in main generators and the link to the offsite transmission grid) and Onsite Power Systems (AC and DC auxiliary system, both normal and safety related). In the chapter on the off-site system, attention is paid to the analysis of transmission capacity of the 400 kV lines, analysis of transient stability, multiple fault analyses, and probabilistic analyses of the grid and NPP power system reliability. In the chapter on the on-site system, attention is paid to the power balances of the electrical sources and switchboards set for various operational and accident modes, checks of loading and function of service and backup sources, short circuit current calculations, analyses of electrical protections, and analyses of the function and sizing of emergency sources (DG sets and UPS systems). (P.A.)

  9. The qualification of electrical components and instrumentations relevant to safety

    CERN Document Server

    Zambardi, F

    1989-01-01

    Systems and components relevant to safety of nuclear power plants must maintain their functional integrity in order to assure accident prevention and mitigation. Redundancy is utilized against random failures, nevertheless care must be taken to avoid common failures in redundant components. Main sources of degradation and common cause failures consist in the aging effects and in the changes of environmental conditions which occur during the plant life and the postulated accidents. These causes of degradation are expected to be especially significant for instrumentation and electrical equipment, which can have a primary role in safety systems. The qualification is the methodology by which component safety requirements can be met against the above mentioned causes of degradation. In this report the connection between the possible, plant conditions and the resulting degradation effects on components is preliminarily addressed. A general characterization of the qualification is then presented. Basis, methods and ...

  10. New source terms: what do they tell us about engineered safety feature performance

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1985-01-01

    The accident behavior models which are the basis of engineered safety feature design are generally simple, non-mechanistic and concentrated on volatile radioiodine. Now data from source term studies show that models should be more mechanistic and look at other species than volatile iodine. A complete reevaluation of engineered safety features is needed

  11. ALWR safety approaches and trends. Implementation of passive safety features in the design

    International Nuclear Information System (INIS)

    Ignatiev, V.

    1995-11-01

    Reactor vendors world-wide are examining various advanced light water reactors (ALWR) options to reach utility goals. The amount of information available about each design varies essentially depending on its maturity. Some advanced reactor designs are the evolutionary results of combining old structures, systems and components in new ways, others use innovative solutions. A summary review is given for better understanding of new ALWR design trends and approaches in different countries and subsequent R and D activities. An attempt was made to describe and assess specific innovative and passive features implemented in the leading ALWR designs for further plant design safety improvements. The advantages and disadvantages of these innovations in obtaining reliable systems have been considered. Also, this report indicates the importance of uncertainties remaining and identifies the additional work needed. 51 refs, 27 figs, 7 tabs

  12. ALWR safety approaches and trends. Implementation of passive safety features in the design

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V

    1995-11-01

    Reactor vendors world-wide are examining various advanced light water reactors (ALWR) options to reach utility goals. The amount of information available about each design varies essentially depending on its maturity. Some advanced reactor designs are the evolutionary results of combining old structures, systems and components in new ways, others use innovative solutions. A summary review is given for better understanding of new ALWR design trends and approaches in different countries and subsequent R and D activities. An attempt was made to describe and assess specific innovative and passive features implemented in the leading ALWR designs for further plant design safety improvements. The advantages and disadvantages of these innovations in obtaining reliable systems have been considered. Also, this report indicates the importance of uncertainties remaining and identifies the additional work needed. 51 refs, 27 figs, 7 tabs.

  13. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  14. The safety feature of hydraulic driving system of control rod for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Chi Zongbo; Wu Yuanqiang

    1997-01-01

    The hydraulic driving system of control rod is used as control rod drive mechanism in 200 MW nuclear heating reactor. Design of this system is based on passive system, integrating drive and guide of control rod. The author analyzes the inherent safety and the design safety of this system, with mechanism of control rod not ejecting when the pressure of pressure vessel is lost, and calculating result of core not exposing when the amount of coolant is drained by broken pipe. The results indicate that this system has good safety feature, and assures reactor safety under any accident conditions, providing important technology support for 200 MW nuclear heating reactor with inherent safety feature

  15. Research and development on reduced-moderation light water reactor with passive safety features (Contract research)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Akie, Hiroshi; Kugo, Teruhiko; Yonomoto, Taisuke; Kureta, Masatoshi; Ishikawa, Nobuyuki; Nagaya, Yasunobu; Araya, Fumimasa; Okajima, Shigeaki; Okumura, Keisuke; Suzuki, Motoe; Mineo, Hideaki; Nakatsuka, Toru

    2004-06-01

    The present report contains the achievement of 'Research and Development on Reduced-moderation Light Water Reactor with Passive Safety Features', which was performed by Japan Atomic Energy Research Institute (JAERI), Hitachi Ltd., Japan Atomic Power Company and Tokyo Institute of Technology in FY2000-2002 as the innovative and viable nuclear energy technology (IVNET) development project operated by the Institute of Applied Energy (IAE). In the present project, the reduced-moderation water reactor (RMWR) has been developed to ensure sustainable energy supply and to solve the recent problems of nuclear power and nuclear fuel cycle, such as economical competitiveness, effective use of plutonium and reduction of spent fuel storage. The RMWR can attain the favorable characteristics such as high burnup, long operation cycle, multiple recycling of plutonium (Pu) and effective utilization of uranium resources based on accumulated LWR technologies. Our development target is 'Reduced-moderation Light Water Reactor with Passive Safety Features' with innovative technologies to achieve above mentioned requirement. Electric power is selected as 300 MWe considering anticipated size required for future deployment. The reactor core consists of MOX fuel assemblies with tight lattice arrangement to increase the conversion ratio. Design targets of the core specification are conversion ratio more than unity, negative void reactivity feedback coefficient to assure safety, discharged burnup more than 60 GWd/t and operation cycle more than 2 years. As for the reactor system, a small size natural circulation BWR with passive safety systems is adopted to increase safety and reduce construction cost. The results obtained are as follows: As regards core design study, core design was performed to meet the goal. Sequence of startup operation was constructed for the RMWR. As the plant design, plant system was designed to achieve enhanced economy using passive safety system effectively. In

  16. Aggregation of Electric Current Consumption Features to Extract Maintenance KPIs

    Science.gov (United States)

    Simon, Victor; Johansson, Carl-Anders; Galar, Diego

    2017-09-01

    All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine's future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.

  17. AGGREGATION OF ELECTRIC CURRENT CONSUMPTION FEATURES TO EXTRACT MAINTENANCE KPIs

    Directory of Open Access Journals (Sweden)

    Victor SIMON

    2017-07-01

    Full Text Available All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs from the electric current signal. Depending on the time window, sampling frequency and type of analysis, differ-ent indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or con-sumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine’s future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.

  18. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    Science.gov (United States)

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  19. Risk limitation, safety and environmental compatibility in electricity generation

    International Nuclear Information System (INIS)

    Angelini, A.M.

    1981-01-01

    The purpose of this paper is to present the problem of meeting future electricity needs while at the same time reducing to a minimum the risks, the pollution of air and water and the environmental effects of power stations. The first resource to exploit is the ''virtual source'' represented by energy saving pursued to the limit of the possible. The second, in order of priority, is that of renewable resources as yet unused and under development. Unfortunately, in most countries these latter resources are far from sufficient: it is then necessary to choose between the use of conventional fossil fuels and nuclear fuels. In this paper it is shown that, of all the possible fossil fuels, only coal can be considered for electricity production. As a result, in meeting new electricity needs, the choice will have to be made between coal and nuclear power. Attention is directed to factors having a significant influence on this choice, particularly the risks and safety problems in the widest sense, with a view to making a global evaluation comprising not just generating stations but the entire production cycle, from the search for the primary source to the supplying of electricity to the user. The most important problems that arise in this connection are briefly analysed in the paper, which concludes with an appeal for more objectivity in providing information on energy, such information being at present very ''polluted'' and exerting a major influence on the views of experts. (author)

  20. Electrical safety code manual a plan language guide to national electrical code, OSHA and NFPA 70E

    CERN Document Server

    Keller, Kimberley

    2010-01-01

    Safety in any workplace is extremely important. In the case of the electrical industry, safety is critical and the codes and regulations which determine safe practices are both diverse and complicated. Employers, electricians, electrical system designers, inspectors, engineers and architects must comply with safety standards listed in the National Electrical Code, OSHA and NFPA 70E. Unfortunately, the publications which list these safety requirements are written in very technically advanced terms and the average person has an extremely difficult time understanding exactly what they need to

  1. Internal Arc: People safety in the electrical wiring

    International Nuclear Information System (INIS)

    Inchausti, J. M.

    2009-01-01

    The aim of this article is to describe the internal arc phenomenon, an extremely fast, almost explosive and unattended process of transformation form an initial electric power to the generation of a pressure and heat wave inside the medium its produced its consequences for safety, current methods of limiting them and current regulations in general for equipment used in medium-voltage electrical distribution networks. Taking into account that this type of equipment is found thought the distribution network in both public buildings and unrestricted access areas, safety (of operators and the general public) must be taken into account in the design of equipment and installations to minimize the risk of internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which the manufacturer has to takes steps to minimize the risks of an internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which an internal arc occurring, it is understood to be vitally important that users, installers and designers of Medium Voltage installations are familiar with the installation conditions stated by the manufacturer and thus avoid risks. (Author) 14 refs

  2. Fission product source terms and engineered safety features

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1984-01-01

    The author states that new, technically defensible, methodologies to establish realistic source term values for nuclear reactor accidents will soon be available. Although these methodologies will undoubtedly find widespread use in the development of accident response procedures, the author states that it is less clear that the industry is preparing to employ the newer results to develop a more rational approach to strategies for the mitigation of fission product releases. Questions concerning the performance of existing engineered safety systems are reviewed

  3. Britain's Nuclear Electric pursues a major programme to enhance safety

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The UK state-owned nuclear utility, Nuclear Electric, is actively pursuing a major initiative inherited from its predecessor the Central Electricity Generating Board, known as the Station Enhancement Programme. The Enhancement Programme is a multi-million pound project and covers all Nuclear Electric's stations (including relevant aspects of the de-commissioning site at Berkeley). Its fundamental objective is to enhance the arrangements, practices and attitudes on the power stations to create an overall environment likely to promote ever safer and more reliable operation, and to take full account of the best international practices. The four year programme started in the spring of 1989, and is expected to be completed in 1993. Key elements of the programme include quality assurance based management systems; improvements to site and plant material conditions; a more formal approach to training; additional resources and controls to aid the management of maintenance defects; higher profile for the feedback of operational experience; management targets; a station evaluation programme; and formal feedback of lessons learned from the IAEA operational and safety review team visit to the Oldbury-on-Severn station in 1989. (author)

  4. The qualification of electrical components and instrumentations relevant to safety

    International Nuclear Information System (INIS)

    Zambardi, F.

    1989-03-01

    Systems and components relevant to safety of nuclear power plants must maintain their functional integrity in order to assure accident prevention and mitigation. Redundancy is utilized against random failures, nevertheless care must be taken to avoid common failures in redundant components. Main sources of degradation and common cause failures consist in the aging effects and in the changes of environmental conditions which occur during the plant life and the postulated accidents. These causes of degradation are expected to be especially significant for instrumentation and electrical equipment, which can have a primary role in safety systems. The qualification is the methodology by which component safety requirements can be met against the above mentioned causes of degradation. In this report the connection between the possible, plant conditions and the resulting degradation effects on components is preliminarily addressed. A general characterization of the qualification is then presented. Basis, methods and peculiar aspects are discussed and the qualification by testing is taken into special account. Technical and organizational aspects related to a plant qualification program are also focused. The report ends with a look to the most significant research and development activities. (author)

  5. Comparative analysis of features of Polish and Lithuanian Day-ahead electricity market prices

    International Nuclear Information System (INIS)

    Bobinaite, Viktorija; Juozapaviciene, Aldona; Staniewski, Marcin; Szczepankowski, Piotr

    2013-01-01

    The goal of this article is to better understand the processes of electricity market price formation in Poland and Lithuania through an analysis of the features (volatility and spikes) of Lithuanian and Polish day-ahead electricity market prices and to assess how acquired electricity price features could affect the achievement of the main goals of the national energy policy. The following indicators have been calculated to determine electricity market price volatility: the oscillation coefficient, the coefficient of variation, an adjusted coefficient of variation, the standard deviation indicator, the daily velocity indicator (based on the overall average price) and the daily velocity indicator (based on the daily average price). Critical values for electricity market price have been calculated to evaluate price spikes. This analysis reveals that electricity market-price volatility is moderate in Poland and high in Lithuania. Electricity price spikes have been an observable phenomenon both in Lithuanian and in Polish day-ahead electricity markets, but they are more common in Lithuania, encompassing 3.15% of the time period analysed in Poland and 4.68% of the time period analysed in Lithuania. Volatile, spiking and increasing electricity prices in day-ahead electricity markets in Lithuania and Poland create preconditions and substantiate the relevance of implementation of the national energy policies and measures. - Highlights: • Moderate and seasonal volatility. • spiking market price and. • stable average price

  6. Risk assessment of safety data link and network communication in digital safety feature control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Son, Kwang Seop; Jung, Wondea; Kang, Hyun Gook

    2017-01-01

    Highlights: • Safety data communication risk assessment framework and quantitative scheme were proposed. • Fault-tree model of ESFAS unavailability due to safety data communication failure was developed. • Safety data link and network risk were assessed based on various ESF-CCS design specifications. • The effect of fault-tolerant algorithm reliability of safety data network on ESFAS unavailability was assessed. - Abstract: As one of the safety-critical systems in nuclear power plants (NPPs), the Engineered Safety Feature-Component Control System (ESF-CCS) employs safety data link and network communication for the transmission of safety component actuation signals from the group controllers to loop controllers to effectively accommodate various safety-critical field controllers. Since data communication failure risk in the ESF-CCS has yet to be fully quantified, the ESF-CCS employing data communication systems have not been applied in NPPs. This study therefore developed a fault tree model to assess the data link and data network failure-induced unavailability of a system function used to generate an automated control signal for accident mitigation equipment. The current aim is to provide risk information regarding data communication failure in a digital safety feature control system in consideration of interconnection between controllers and the fault-tolerant algorithm implemented in the target system. Based on the developed fault tree model, case studies were performed to quantitatively assess the unavailability of ESF-CCS signal generation due to data link and network failure and its risk effect on safety signal generation failure. This study is expected to provide insight into the risk assessment of safety-critical data communication in a digitalized NPP instrumentation and control system.

  7. The design features and safety concepts of the nuclear heating reactor developed in China

    International Nuclear Information System (INIS)

    Zheng Wenxiang; Wang Dazhong

    1995-01-01

    Based on the specific conditions of the nuclear heat applications and the development objectives of the advanced reactors, the nuclear heating reactor (NHR) exploited in China has adhered to the new safety concepts and been designed with a number of advanced features, including the integrated arrangement, full power natural circulation capacity, self-pressurized performance, dynamically-hydraulic control rod drive and passive safety systems, so that higher standard of safety as well as simplification in the plant systems and improvement in economic viability has been achieved. This paper describes the special consideration in the design as well as the main design features and safety concepts of the NHR. Some experimental and analytical results are also presented to demonstrate the NHR safety features

  8. Passive and engineered safety features of the prototype fast reactor (PFR), Dounreay

    International Nuclear Information System (INIS)

    Gregory, C.V.

    1991-01-01

    Prototype fast reactor (PFR) combines passive and engineered safety features. Natural convection, a strong negative power coefficient, the decay heat removal system, and a fuel design able to operate beyond failure are all inherent and passive safety features of the PFR. The reliable shutdown system and the protection provided against SGU leaks are example of engineered protection. Experience at PFR demonstrates the worth and potential of a range of passive and engineered safeguards

  9. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' [Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety] is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document

  10. Critical safety features of the vanadium redox flow battery

    Science.gov (United States)

    Whitehead, A. H.; Rabbow, T. J.; Trampert, M.; Pokorny, P.

    2017-05-01

    In this work the behaviour of the vanadium redox flow battery is examined under a variety of short-circuit conditions (e.g. with and without the pumps stopping as a result of the short). In contrast to other battery types, only a small proportion of the electroactive material, in a flow battery, is held between the electrodes at any given time. Therefore, together with the relatively low energy density of the vanadium electrolyte, the immediate release of energy, which occurs as a result of electrical shorting, is somewhat limited. The high heat capacity of the aqueous electrolyte is also beneficial in limiting the temperature rise. It will be seen that the flow battery is therefore considerably safer than other battery types, in this respect.

  11. Demonstration of passive safety features in EBR-II

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Golden, G.H.; Sackett, J.I.

    1987-01-01

    Two tests of great importance to the design of future commercial nuclear power plants were carried out in the Experimental Breeder Reactor-II on April 3, 1986. These tests, (viewed by about 60 visitors, including 13 foreign LMR specialists) were a loss of flow without scram and a loss of heat sink without scram, both from 100% initial power. In these tests, inherent feedback shut the reactor down without damage to the fuel or other reactor components. This resulted primarily from advantageous characteristics of the metal driver fuel used in EBR-II. Work is currently underway at EBR-II to develop a control strategy that promotes inherent safety characteristics, including survivability of transient overpower accidents. In parallel, work is underway at EBR-II on the development of state-of-the-art plant diagnostic techniques

  12. The Alternative Design Features for Safety Enhancement in Shutdown Operation

    International Nuclear Information System (INIS)

    Oh, Hae Cheol; Kim, Myung Ki; Chung, Bag Soon; Seo, Mi Ro

    2009-01-01

    PSA can be used to confirm that the new plant design is complied with the applicable safety goals, and to select among the alternate design options. A shutdown PSA provides insight for outage planning schedule, outage management practices, and design modifications. Considering the results of both LPSD PSA studies and operating experiences for low power and shutdown, the improvements can be proposed to reduce the high risk contribution. The improvements/enhancements during shutdown operation may be divided into categories such as hardware, administrative management, and operational procedure. This paper presents on an example how the risk related to an accidental situation can be reduced, focusing the hardware design changes for the newly designed NPPs

  13. Nuclear electric propulsion operational reliability and crew safety study

    International Nuclear Information System (INIS)

    Karns, J.J.; Fragola, J.R.; Kahan, L.; Pelaccio, D.

    1993-01-01

    The central purpose of this analysis is to assess the ''achievability'' of a nuclear electric propulsion (NEP) system in a given mission. ''Achievability'' is a concept introduced to indicate the extent to which a system that meets or achieves its design goals might be implemented using the existing technology base. In the context of this analysis, the objective is to assess the achievability of an NEP system for a manned Mars mission as it pertains to operational reliability and crew safety goals. By varying design parameters, then examining the resulting system achievability, the design and mission risk drivers can be identified. Additionally, conceptual changes in design approach or mission strategy which are likely to improve overall achievability of the NEP system can be examined

  14. Technical and institutional safety features of nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.)

  15. Status of electrical safety in Indira Gandhi Centre for Atomic Research

    International Nuclear Information System (INIS)

    Kandasamy, S.; Karthikeyan, S.V.; Senthilkumar, B.; Shunmugam, U.; Kannan, S.E.

    1999-01-01

    Electrical Systems in Indira Gandhi Centre for Atomic Research (IGCAR), comprising of facilities such as Fast Breeder Test Reactor (FBTR) and various Research and Development laboratories form a complex network providing practically uninterrupted power supply to all the facilities meeting their energy demands. The safety record of the Centre for the past 25 years has been very good and the number of electrical accidents in the Centre has been less. This paper brings out the status of the electrical safety in IGCAR and indicates the steps to be taken to improve the safety culture. It also utilizes the measure to be provided for improving the electrical safety in the works executed by contractors

  16. Exploring variance in residential electricity consumption: Household features and building properties

    International Nuclear Information System (INIS)

    Bartusch, Cajsa; Odlare, Monica; Wallin, Fredrik; Wester, Lars

    2012-01-01

    Highlights: ► Statistical analysis of variance are of considerable value in identifying key indicators for policy update. ► Variance in residential electricity use is partly explained by household features. ► Variance in residential electricity use is partly explained by building properties. ► Household behavior has a profound impact on individual electricity use. -- Abstract: Improved means of controlling electricity consumption plays an important part in boosting energy efficiency in the Swedish power market. Developing policy instruments to that end requires more in-depth statistics on electricity use in the residential sector, among other things. The aim of the study has accordingly been to assess the extent of variance in annual electricity consumption in single-family homes as well as to estimate the impact of household features and building properties in this respect using independent samples t-tests and one-way as well as univariate independent samples analyses of variance. Statistically significant variances associated with geographic area, heating system, number of family members, family composition, year of construction, electric water heater and electric underfloor heating have been established. The overall result of the analyses is nevertheless that variance in residential electricity consumption cannot be fully explained by independent variables related to household and building characteristics alone. As for the methodological approach, the results further suggest that methods for statistical analysis of variance are of considerable value in indentifying key indicators for policy update and development.

  17. Electric capacitance tomography and two-phase flow for the nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Lee, Jae Young

    2008-01-01

    Recently electric capacitance tomography has been developed to be used in the analysis of two-phase flow. Although its electric field is not focused as the hard ray tomography such as the X-ray or gamma ray, its convenience of easy access to the system and easy maintenance due to no requirement of radiation shielding benefits us in its application in the two-phase flow study, one of important area in the nuclear safety analysis. In the present paper, the practical technologies in the electric capacitance tomography are represented in both parts of hardware and software. In the software part, both forward problem and inverse problem are discussed and the method of regularization. In the hardware part, the brief discussion of the electronics circuits is made which provides femto farad resolution with a reasonable speed (150 frame/sec for 16 electrodes). Some representative ideal cases are studied to demonstrate its potential capability for the two-phase flow analysis. Also, some variations of the tomography such as axial tomography, and three dimensional tomography are discussed. It was found that the present ECT is expected to become a useful tool to understand the complicated three dimensional two-phase flow which may be an important feature to be equipped by the safety analysis codes. (author)

  18. Electric Power quality Analysis in research reactor: Impacts on nuclear safety assessment and electrical distribution reliability

    International Nuclear Information System (INIS)

    Touati, Said; Chennai, Salim; Souli, Aissa

    2015-01-01

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)

  19. Electric Power quality Analysis in research reactor: Impacts on nuclear safety assessment and electrical distribution reliability

    Energy Technology Data Exchange (ETDEWEB)

    Touati, Said; Chennai, Salim; Souli, Aissa [Nuclear Research Centre of Birine, Ain Oussera, Djelfa Province (Algeria)

    2015-07-01

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how well a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)

  20. Section 60 revisited (The Ontario Electrical Safety Code)

    Energy Technology Data Exchange (ETDEWEB)

    Olechna, T.

    2003-06-01

    Recent changes to the Ontario Electrical Safety Code (OESC), specifically the deletion of Section 60, Electrical Communication Systems, are discussed in an effort to explain the history behind the decision and the time frame of the changes. Communication systems include telephone, telegraph, data communications, intercommunications, wired music and paging systems. In brief, the deletion of Section 60 occurred in 1983, and resulted from the fact that communication-type wiring was historically the property of the communications utility and under federal jurisdiction. Since such equipment was under federal jurisdiction, they were not inspected in Ontario, hence the deletion of Section 60 from the Ontario Code. It should be noted that although Section 60 is deleted, a number of rules applicable to communications circuits are spread throughout various sections of the Code, notably in Rule 1-032 dealing with damage and interference, Rule 4-022 involving harmonics issues, Rule 12-904(2) regulates the use of conductors that are of different sources of voltage, and Rule 10-708 which specifies the spacing and bonding requirements for communications systems. The end result is that even though Section 60 was deleted, there are these and other rules in the OESC that have direct impact on communications circuits and in effect help to protect the integrity of the system.

  1. GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting

    Directory of Open Access Journals (Sweden)

    Lintao Yang

    2018-01-01

    Full Text Available With the development of smart power grids, communication network technology and sensor technology, there has been an exponential growth in complex electricity load data. Irregular electricity load fluctuations caused by the weather and holiday factors disrupt the daily operation of the power companies. To deal with these challenges, this paper investigates a day-ahead electricity peak load interval forecasting problem. It transforms the conventional continuous forecasting problem into a novel interval forecasting problem, and then further converts the interval forecasting problem into the classification forecasting problem. In addition, an indicator system influencing the electricity load is established from three dimensions, namely the load series, calendar data, and weather data. A semi-supervised feature selection algorithm is proposed to address an electricity load classification forecasting issue based on the group method of data handling (GMDH technology. The proposed algorithm consists of three main stages: (1 training the basic classifier; (2 selectively marking the most suitable samples from the unclassified label data, and adding them to an initial training set; and (3 training the classification models on the final training set and classifying the test samples. An empirical analysis of electricity load dataset from four Chinese cities is conducted. Results show that the proposed model can address the electricity load classification forecasting problem more efficiently and effectively than the FW-Semi FS (forward semi-supervised feature selection and GMDH-U (GMDH-based semi-supervised feature selection for customer classification models.

  2. Improvement of Safety Features in Standard Operation Procedure of Tc-99m Generator

    International Nuclear Information System (INIS)

    Manisah Saedon; Mohd Khairul Hakimi; Shyen, A.K.S.

    2011-01-01

    This paper describes the improvements proposed to the original production procedures for Tc-99m generators. Improvements are intended to add safety and health features for workers into the existing procedures. The difference between the new safe work procedures from the original work procedures; is the concern about the safety and health of employees other than the product safety. One of the suggested safety characteristics is by using the visual aid so that the workers can easily see and read the procedures when they perform their duties, whereas the previous procedures are kept in the manual and difficult to access. The purpose of this paper is to share information about the importance of safety and health features for the workers in the procedures established in addition to provide awareness to all parties involved. (author)

  3. On the status of the EFR Euro-Breeder and its passive safety features

    International Nuclear Information System (INIS)

    Marth, W.

    1992-01-01

    The Project of the EFR, the European Fast Reactor, is characterized by close European cooperation among power utilities, plant vendors, and research centers. In the present phase up until 1993 a consistent design of the nuclear part of the plant is being elaborated with the inclusion of a site-independent safety report. The most important design features, especially those in the field of passive safety, must be backed up by reliable R and D findings. These findings will enable the ad hoc Safety Club, a body of European safety experts, to pass its vote on the general licensability of the plant concept. (orig.) [de

  4. Key Features of Electric Vehicle Diffusion and Its Impact on the Korean Power Market

    Directory of Open Access Journals (Sweden)

    Dongnyok Shim

    2018-06-01

    Full Text Available The market share of electric vehicles is growing and the interest in these vehicles is rapidly increasing in industrialized countries. In the light of these circumstances, this study provides an integrated policy-making package, which includes key features for electric vehicle diffusion and its impact on the Korean power market. This research is based on a quantitative analysis with the following steps: (1 it analyzes drivers’ preferences for electric or traditional internal combustion engine (ICE vehicles with respect to key automobile attributes and these key attributes indicate what policy makers should focus on; (2 it forecasts the achievable level of market share of electric vehicles in relation to improvements in their key attributes; and (3 it evaluates the impact of electric vehicle diffusion on the Korean power market based on an achievable level of market share with different charging demand profiles. Our results reveal the market share of electric vehicles can increase to around 40% of the total market share if the key features of electric vehicles reach a similar level to those of traditional vehicles. In this estimation, an increase in the power market’s system generation costs will reach around 10% of the cost in the baseline scenario, which differs slightly depending on charging demand profiles.

  5. Engineered safeguards and passive safety features (safety analysis detailed report no. 6)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The Safety-Analysis Summary lists the reactor's safety aspects for passive and active prevention of severe accidents and mitigation of accident consequences, i.e., intrinsic and passive protections of the plant; intrinsic and passive protections of the core; inherent decay-heat removal systems; rapid-shutdown systems; four physical containment barriers. This report goes into further details regarding some of this aspects.

  6. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  7. Technical considerations for the development of an engineering safety features control system with PLC

    International Nuclear Information System (INIS)

    Lee, C. K.; Kim, C. H.; Han, J. B.; Kim, H.; Lee, S. S.

    2002-01-01

    Technical considerations are summarized for the development of an ESFCS(Engineered Safety Features Control System) with PLC (Programmable Logic Controller). The ESFCS is required for the mitigation of plant accident conditions and therefore developed in conformance with the design requirements applied to the safety critical system. The design of ESFCS primarily considered its safety, and the system has an architecture that will be able to minimize spurious actuation. The PLC based functional distribution and redundant design features are adopted, and the fieldbus is applied in the communication of information and control signals between PLC processors. It is expected that the ESFCS will have several advanced design features compared with the conventional systems supplied by foreign vendors

  8. Electricity market price spike analysis by a hybrid data model and feature selection technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2010-01-01

    In a competitive electricity market, energy price forecasting is an important activity for both suppliers and consumers. For this reason, many techniques have been proposed to predict electricity market prices in the recent years. However, electricity price is a complex volatile signal owning many spikes. Most of electricity price forecast techniques focus on the normal price prediction, while price spike forecast is a different and more complex prediction process. Price spike forecasting has two main aspects: prediction of price spike occurrence and value. In this paper, a novel technique for price spike occurrence prediction is presented composed of a new hybrid data model, a novel feature selection technique and an efficient forecast engine. The hybrid data model includes both wavelet and time domain variables as well as calendar indicators, comprising a large candidate input set. The set is refined by the proposed feature selection technique evaluating both relevancy and redundancy of the candidate inputs. The forecast engine is a probabilistic neural network, which are fed by the selected candidate inputs of the feature selection technique and predict price spike occurrence. The efficiency of the whole proposed method for price spike occurrence forecasting is evaluated by means of real data from the Queensland and PJM electricity markets. (author)

  9. Arrows as anchors: An analysis of the material features of electric field vector arrows

    Science.gov (United States)

    Gire, Elizabeth; Price, Edward

    2014-12-01

    Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  10. Arrows as anchors: An analysis of the material features of electric field vector arrows

    Directory of Open Access Journals (Sweden)

    Elizabeth Gire

    2014-08-01

    Full Text Available Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students’ use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn. In this representation, spatial extent (e.g., distance on paper is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  11. Study of Cost Effective Large Advanced Pressurized Water Reactors that Employ Passive Safety Features

    International Nuclear Information System (INIS)

    Winters, J.W.; Corletti, M.M.; Hayashi, Y.

    2003-01-01

    A report of DOE sponsored portions of AP1000 Design Certification effort. On December 16, 1999, The United States Nuclear Regulatory Commission issued Design Certification of the AP600 standard nuclear reactor design. This culminated an 8-year review of the AP600 design, safety analysis and probabilistic risk assessment. The AP600 is a 600 MWe reactor that utilizes passive safety features that, once actuated, depend only on natural forces such as gravity and natural circulation to perform all required safety functions. These passive safety systems result in increased plant safety and have also significantly simplified plant systems and equipment, resulting in simplified plant operation and maintenance. The AP600 meets NRC deterministic safety criteria and probabilistic risk criteria with large margins. A summary comparison of key passive safety system design features is provided in Table 1. These key features are discussed due to their importance in affecting the key thermal-hydraulic phenomenon exhibited by the passive safety systems in critical areas. The scope of some of the design changes to the AP600 is described. These changes are the ones that are important in evaluating the passive plant design features embodied in the certified AP600 standard plant design. These design changes are incorporated into the AP1000 standard plant design that Westinghouse is certifying under 10 CFR Part 52. In conclusion, this report describes the results of the representative design certification activities that were partially supported by the Nuclear Energy Research Initiative. These activities are unique to AP1000, but are representative of research activities that must be driven to conclusion to realize successful licensing of the next generation of nuclear power plants in the United States

  12. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  13. Perspective on Secure Development Activities and Features of Safety I and C Systems

    International Nuclear Information System (INIS)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui

    2015-01-01

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle

  14. Perspective on Secure Development Activities and Features of Safety I and C Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle.

  15. Segmentation Scheme for Safety Enhancement of Engineered Safety Features Component Control System

    International Nuclear Information System (INIS)

    Lee, Sangseok; Sohn, Kwangyoung; Lee, Junku; Park, Geunok

    2013-01-01

    Common Caused Failure (CCF) or undetectable failure would adversely impact safety functions of ESF-CCS in the existing nuclear power plants. We propose the segmentation scheme to solve these problems. Main function assignment to segments in the proposed segmentation scheme is based on functional dependency and critical function success path by using the dependency depth matrix. The segment has functional independence and physical isolation. The segmentation structure is that prohibit failure propagation to others from undetectable failures. Therefore, the segmentation system structure has robustness to undetectable failures. The segmentation system structure has functional diversity. The specific function in the segment defected by CCF, the specific function could be maintained by diverse control function that assigned to other segments. Device level control signals and system level control signals are separated and also control signal and status signals are separated due to signal transmission paths are allocated independently based on signal type. In this kind of design, single device failure or failures on signal path in the channel couldn't result in the loss of all segmented functions simultaneously. Thus the proposed segmentation function is the design scheme that improves availability of safety functions. In conventional ESF-CCS, the single controller generates the signal to control the multiple safety functions, and the reliability is achieved by multiplication within the channel. This design has a drawback causing the loss of multiple functions due to the CCF (Common Cause Failure) and single failure Heterogeneous controller guarantees the diversity ensuring the execution of safety functions against the CCF and single failure, but requiring a lot of resources like manpower and cost. The segmentation technology based on the compartmentalization and functional diversification decreases the CCF and single failure nonetheless the identical types of controllers

  16. Segmentation Scheme for Safety Enhancement of Engineered Safety Features Component Control System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangseok; Sohn, Kwangyoung [Korea Reliability Technology and System, Daejeon (Korea, Republic of); Lee, Junku; Park, Geunok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Common Caused Failure (CCF) or undetectable failure would adversely impact safety functions of ESF-CCS in the existing nuclear power plants. We propose the segmentation scheme to solve these problems. Main function assignment to segments in the proposed segmentation scheme is based on functional dependency and critical function success path by using the dependency depth matrix. The segment has functional independence and physical isolation. The segmentation structure is that prohibit failure propagation to others from undetectable failures. Therefore, the segmentation system structure has robustness to undetectable failures. The segmentation system structure has functional diversity. The specific function in the segment defected by CCF, the specific function could be maintained by diverse control function that assigned to other segments. Device level control signals and system level control signals are separated and also control signal and status signals are separated due to signal transmission paths are allocated independently based on signal type. In this kind of design, single device failure or failures on signal path in the channel couldn't result in the loss of all segmented functions simultaneously. Thus the proposed segmentation function is the design scheme that improves availability of safety functions. In conventional ESF-CCS, the single controller generates the signal to control the multiple safety functions, and the reliability is achieved by multiplication within the channel. This design has a drawback causing the loss of multiple functions due to the CCF (Common Cause Failure) and single failure Heterogeneous controller guarantees the diversity ensuring the execution of safety functions against the CCF and single failure, but requiring a lot of resources like manpower and cost. The segmentation technology based on the compartmentalization and functional diversification decreases the CCF and single failure nonetheless the identical types of

  17. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  18. IE Information Notice No. 85-93: Westinghouse Type DS circuit breakers, potential failure of electric closing feature because of broken spring release latch lever

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On April 14, 1985, the Westinghouse Nuclear Services Integration Division (NSID) issued Technical Bulletin No. NSID-TB-85-17 advising their customers of a potential malfunction in Westinghouse Type DS Class 1E circuit breakers because of broken spring release latch levers. These electrically operated type DS breakers will not close electrically when the spring release latch lever has been broken off. Twenty-five broken levers have been reported and evaluated. This evaluation shows concentrations of incidents traceable to manufacturing in the following periods of time: early 1975, April 1976, and early 1978. This circuit breaker failure, as discussed, adversely affects the safety function (closing on demand) when the circuit breaker is used in the Engineered Safety Features Systems. However, this failure mode will not affect the safety trip function when it is used in the reactor protection system

  19. A Quantitative Feasibility Study on Potential Safety Improvement Effects of Advanced Safety Features in APR-1400 when Applied to OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Ualikhan Zhiyenbayev [KAIST, Daejeon (Korea, Republic of); Chung, Dae Wook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    This study aims to test the feasibility of the applications using Probabilistic Safety Assessment (PSA). Particularly, three of those advanced safety features are selected as follows: 1. Providing an additional Emergency Diesel Generator (EDG); 2. Increasing the capacity of Class 1E batteries; 3. Placing a Refueling Water Storage Tank (RWST) inside containment, i.e., change from RWST to IRWST. The Advanced Power Reactor 1400 (APR-1400) adopts several advanced safety features compared to its predecessor, the Optimized Power Reactor 1000 (OPR-1000), which includes an additional Emergency Diesel Generator, increase in battery capacity, in-containment refueling water storage tank (IRWST), and so on. Considering the remarkable advantages of these safety features in safety improvement and the design similarities between APR-1400 and OPR-1000, it is feasible to apply key advanced safety features of APR-1400 to OPR-1000 to enhance the safety. The selected safety features are incorporated into OPR-1000 PSA model using the Advanced Information Management System (AIMS) for PSA and CDFs are re-evaluated for each application and combination of three applications. Based on current results, it is concluded that three of key advanced safety features of APR-1400 can be effectively applied to OPR-1000, resulting in considerable safety improvement. In aggregate, three advanced safety features, which are an additional EDG, increased battery capacity and IRWST, can reduce the CDF of OPR-1000 by more than 15% when applied altogether.

  20. A Quantitative Feasibility Study on Potential Safety Improvement Effects of Advanced Safety Features in APR-1400 when Applied to OPR-1000

    International Nuclear Information System (INIS)

    Ualikhan Zhiyenbayev; Chung, Dae Wook

    2015-01-01

    This study aims to test the feasibility of the applications using Probabilistic Safety Assessment (PSA). Particularly, three of those advanced safety features are selected as follows: 1. Providing an additional Emergency Diesel Generator (EDG); 2. Increasing the capacity of Class 1E batteries; 3. Placing a Refueling Water Storage Tank (RWST) inside containment, i.e., change from RWST to IRWST. The Advanced Power Reactor 1400 (APR-1400) adopts several advanced safety features compared to its predecessor, the Optimized Power Reactor 1000 (OPR-1000), which includes an additional Emergency Diesel Generator, increase in battery capacity, in-containment refueling water storage tank (IRWST), and so on. Considering the remarkable advantages of these safety features in safety improvement and the design similarities between APR-1400 and OPR-1000, it is feasible to apply key advanced safety features of APR-1400 to OPR-1000 to enhance the safety. The selected safety features are incorporated into OPR-1000 PSA model using the Advanced Information Management System (AIMS) for PSA and CDFs are re-evaluated for each application and combination of three applications. Based on current results, it is concluded that three of key advanced safety features of APR-1400 can be effectively applied to OPR-1000, resulting in considerable safety improvement. In aggregate, three advanced safety features, which are an additional EDG, increased battery capacity and IRWST, can reduce the CDF of OPR-1000 by more than 15% when applied altogether

  1. Conceptual Design of Hybrid Safety Features for NPP by Utilizing Solar Updraft Tower

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sub Lee [Handong Global University, Pohang (Korea, Republic of); Choi, Young Jae; Kim, Yong Jin [KAIST, Daejeon (Korea, Republic of); Park, Hyo Chan; Park, Youn Won [BEES, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, hybrid safety features for NPP with solar updraft tower (SUT) is conceptually suggested to cope with loss of ultimate heat sink accident. The hybrid safety features utilizing SUT target NPPs in seashore of Arabian Gulf. Usually NPPs are constructed near seashore to utilize sea water as an ultimate heat sink. Residual heat or decay heat of nuclear reactor will diffuse into the ocean through the condenser. NPPs in Middle East are expected to be placed in seashore of Arabian Gulf. The NPP site of Barakah is an actual example. For NPPs in seashore of Arabian Gulf, an additional safety concern should be considered. Arabian Gulf is the largest oil transporting route in the world. The oil spill risk in Arabian Gulf will be the largest simultaneously. Unfortunately, not like other oceans, Arabian Gulf is a kind of closed ocean which does not have strong ocean currents connected to out of the gulf. If once oil spill is occurred, its influence can be propagated more than our expectation. The spilled oil also can affect to NPPs in seashore by covering surfaces of condenser. It will directly cause loss of ultimate heat sink. The hybrid safety features of SUT system are expected to aid normal operation of safety system and mitigate consequence of severe accident. Detail analysis and technology development is ongoing now.

  2. Conceptual Design of Hybrid Safety Features for NPP by Utilizing Solar Updraft Tower

    International Nuclear Information System (INIS)

    Song, Sub Lee; Choi, Young Jae; Kim, Yong Jin; Park, Hyo Chan; Park, Youn Won

    2016-01-01

    In this study, hybrid safety features for NPP with solar updraft tower (SUT) is conceptually suggested to cope with loss of ultimate heat sink accident. The hybrid safety features utilizing SUT target NPPs in seashore of Arabian Gulf. Usually NPPs are constructed near seashore to utilize sea water as an ultimate heat sink. Residual heat or decay heat of nuclear reactor will diffuse into the ocean through the condenser. NPPs in Middle East are expected to be placed in seashore of Arabian Gulf. The NPP site of Barakah is an actual example. For NPPs in seashore of Arabian Gulf, an additional safety concern should be considered. Arabian Gulf is the largest oil transporting route in the world. The oil spill risk in Arabian Gulf will be the largest simultaneously. Unfortunately, not like other oceans, Arabian Gulf is a kind of closed ocean which does not have strong ocean currents connected to out of the gulf. If once oil spill is occurred, its influence can be propagated more than our expectation. The spilled oil also can affect to NPPs in seashore by covering surfaces of condenser. It will directly cause loss of ultimate heat sink. The hybrid safety features of SUT system are expected to aid normal operation of safety system and mitigate consequence of severe accident. Detail analysis and technology development is ongoing now

  3. Staff report on the environmental qualification of safety-related electrical equipment

    International Nuclear Information System (INIS)

    1977-12-01

    The current NRC safety review process for nuclear power plants includes criteria related to the qualification of certain electrical equipment. These criteria require that electrical equipment important to safety must be qualified to function in the environment that might result from various accident conditions. Although such criteria have been applied since the early days of commercial nuclear power, the details of these criteria have been changed over the years. The evolution of environmental qualification of safety-related electrical equipment is described in Appendix A

  4. Completion of the VVER 440/213 NPP Mochovce incorporation enhanced safety features

    International Nuclear Information System (INIS)

    Charbonneau, S.; Eckert, G.

    1996-01-01

    The cooperation between the western countries and the countries of ex-eastern block in the field of nuclear safety is recent and still limited. The main reasons for this situation are limited or non existent capabilities of these countries for financing as well as non acceptable legal conditions concerning the third party nuclear liability in this part of Europe. Nevertheless, Framatome and Siemens associated in the consortium named EUCOM, have signed in April 1996 the contract of about 100 million US dollars with Slovak electricity company (SLOVENSKE ELEKTRARNE-SE) for upgrading the Units 1 and 2 of Mochovce Nuclear Power Plant according to the western safety standards. This is the first important project involving west-european companies in the modernisation of Russian type of pressurized water reactor (VVER 440/213). The consortium will cooperate with other partners involved in the project: Slovak, Czech and Russian. The financing of the project will be provided mainly form Slovak and Czech sources. The safety upgrading will be financed through French and German buyer credits. French company Electricite de France (EDF) will be the consultant for SE. The safety upgrading measures have been elaborated taking into account the recommendation of Vienna International Atomic Energy Agency (IAEA) and the evaluation of the safety realised by RISKAUDIT, the common organization of German and French safety authorities (GSR and IPSN). Hence all guaranties have been taken to fulfil the western safety criteria for Nuclear Power Plant Mochovce. (author)

  5. Development of quantitative goals for inherent safety feature design and licensing

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.

    1987-01-01

    There is now considerable interest in the development of advanced fast reactors whose major focus is inherent safety. The achievement of inherent safety can be viewed from several aspects. In the Integral Fast Reactor Concept the approach is to utilize the intrinsic characteristics of pool-type liquid metal fast breeder reactors (LMFBRs) and the properties of metal fuels to integrate a high degree of inherent safety into the design. The PRISM and SAFR concepts focus on other inherent safety features. The reactors discussed above represent a radical departure from existing LWR designs as well as previous LMFBR designs (e.g., CRBRP) which are based, for the most part, on the General Design Criteria found in 10CFR50 Appendix. In view of these parallel developments (advanced reactors exploiting inherent safety and the use of quantitative goals to augment licensing), there appears to be a need to perform research on the development of methods for designing, assessing, and licensing inherent safety features in advanced reactors. The objectives of such research are outlined

  6. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company, Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    1982-07-01

    Information is presented concerning site characteristics; design criteria for systems and components; reactor thermal and hydraulic characteristics; reactor coolant pressure boundary; engineered safety features; instrumentation and control; electrical power systems; auxiliary systems; conduct of operations; quality assurance; and TMI-2 requirements

  7. Design criteria for the electrical system in advanced passive reactors. Special features of the AP-600 Reactor

    International Nuclear Information System (INIS)

    Moraleda Lopez, A.

    1997-01-01

    The design of the electrical system of an Passive Advanced Reactor is determined by the concept of passive actuation of safety systems, simplification of process systems and optimisation of equipment performance. The system that results from these criteria is very different to those designed for present plants. The main differences are: No class 1E alternating current systems No emergency diesel generators Fewer safety and non-safety class electricity consumers System for continuous monitoring of battery status Use of electronic speed regulators for reactor feedwater pump motors Outsite battery backup safety power supply Motor-operated valves are the only safety electrical actuators Portable power supply for post 72 hour equipment This paper develops these concepts and applies them to the AP-600 project and describes the electrical system of this type of plant. (Author)

  8. Evaluation of features to support safety and quality in general practice clinical software

    Science.gov (United States)

    2011-01-01

    Background Electronic prescribing is now the norm in many countries. We wished to find out if clinical software systems used by general practitioners in Australia include features (functional capabilities and other characteristics) that facilitate improved patient safety and care, with a focus on quality use of medicines. Methods Seven clinical software systems used in general practice were evaluated. Fifty software features that were previously rated as likely to have a high impact on safety and/or quality of care in general practice were tested and are reported here. Results The range of results for the implementation of 50 features across the 7 clinical software systems was as follows: 17-31 features (34-62%) were fully implemented, 9-13 (18-26%) partially implemented, and 9-20 (18-40%) not implemented. Key findings included: Access to evidence based drug and therapeutic information was limited. Decision support for prescribing was available but varied markedly between systems. During prescribing there was potential for medicine mis-selection in some systems, and linking a medicine with its indication was optional. The definition of 'current medicines' versus 'past medicines' was not always clear. There were limited resources for patients, and some medicines lists for patients were suboptimal. Results were provided to the software vendors, who were keen to improve their systems. Conclusions The clinical systems tested lack some of the features expected to support patient safety and quality of care. Standards and certification for clinical software would ensure that safety features are present and that there is a minimum level of clinical functionality that clinicians could expect to find in any system.

  9. Ageing study of the engineered safety features actuation system of the Loviisa NPP

    International Nuclear Information System (INIS)

    Simola, K.; Maskuniitty, M.

    1995-06-01

    An ageing study of the engineered safety features actuation system of the Loviisa nuclear power plant has been performed. The operating experience, including failure and maintenance histories of analog measuring devices, logics for safety signal formation and individual control electronics of pumps and valves, has been collected and analysed. The safety importance of system components has been studied with a fault tree analysis of a selected safety function. Based on the results of the analysis of operating experiences and the fault tree analysis, some components were selected for deeper analyses. According to the operating experience, the amount of failures in the Loviisa plant safety system has been low and no increasing trend in the failure history can yet be observed. Only a few failures had prohibited the propagation of the safety signal, mostly the failures have caused a false alarm. The failures reported have concerned mainly limit signal units, transmitters, and priority units. According to the fault tree analysis of one safety function, the most important components of this subsystem are individual control units and pulse/DC converters. Failure modes and effect analyses were performed for priority and individual control unit, limit signal unit and comparator and pulse/DC converter in order to identify the critical failure modes of these devices. (orig.) (15 refs., 26 figs., 9 tabs.)

  10. Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT

    International Nuclear Information System (INIS)

    Anbazhagan, S.; Kumarappan, N.

    2014-01-01

    Highlights: • We presented DCT input featured FFNN model for forecasting in Spain market. • The key factors impacting electricity price forecasting are historical prices. • Past 42 days were trained and the next 7 days were forecasted. • The proposed approach has a simple and better NN structure. • The DCT-FFNN mode is effective and less computation time than the recent models. - Abstract: In a deregulated market, a number of factors determined the outcome of electricity price and displays a perplexed and maverick fluctuation. Both power producers and consumers needs single compact and robust price forecasting tool in order to maximize their profits and utilities. In order to achieve the helter–skelter kind of electricity price, one dimensional discrete cosine transforms (DCT) input featured feed-forward neural network (FFNN) is modeled (DCT-FFNN). The proposed FFNN is a single compact and robust architecture (without hybridizing the various hard and soft computing models). It has been predicted that the DCT-FFNN model is close to the state of the art can be achieved with less computation time. The proposed DCT-FFNN approach is compared with 17 other recent approaches to estimate the market clearing prices of mainland Spain. Finally, the accuracy of the price forecasting is also applied to the electricity market of New York in year 2010 that shows the effectiveness of the proposed DCT-FFNN approach

  11. Dynamics and inherent safety features of small modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1986-01-01

    Investigations were made at Oak Ridge National Laboratory to characterize the dynamics and inherent safety features of various modular high temperature gas-cooled reactor (HTGR) designs. This work was sponsored by the US Nuclear Regulatory Commission's HTGR Safety Research program. The US Department of Energy (DOE) and the Gas Cooled Reactor Associates (GCRA) have sponsored studies of several modular HTGR concepts, each having it own unique advantageous economic and inherent safety features. The DOE design team has recently choses a 350-MW(t) annular core with prismatic, graphite matrix fuel for its reference plant. The various safety features of this plant and of the pebble-bed core designs similar to those currently being developed and operated in the Federal Republic of Germany (FRG) are described. A varity of postulated accident sequences involving combinations of loss of forced circulation of the helium primary coolant, loss of primary coolant pressurization, and loss of normal and backup heat sinks were studied and are discussed. Results demonstrate that each concept can withstand an uncontrolled heatup accident without reaching excessive peak fuel temperatures. Comparisons of calculated and measured response for a loss of forced circulation test on the FRG reactor, AVR, are also presented. 10 refs

  12. Design of the Control System for Engineered Safety Features of KIJANG Research Reactor

    International Nuclear Information System (INIS)

    Kim, Hagtae; Kim, Jun-Yeon; Chae, Hee-Taek

    2015-01-01

    The purpose of this paper is to design an effective control system for the Engineered Safety Features (ESF) of KJRR such as the Safety Residual Heat Removal System (SRHRS) pumps and Siphon Break Valve (SBV) without an Engineered Safety Features-Component Control System (ESF-CCS). This control system is called a 'local motor starter', because this system controls motors in the SRHRS pumps and SBVs by receiving the signal from Reactor Protection System (RPS) and Alternate Protection System (APS) when the differential pressure or pool level reach the set points. In this paper, the design concepts and requirements of the local motor starter based on the design features of KJRR is proposed. An ESF is a safety system that mitigates consequences of the Anticipated Operational Occurrence (AOO) and Design Basis Accident (DBA). The results of this paper are able to be used for the development of control systems for research reactors similar to KJRR. The precondition for such application is to have a few ESFs and conduct simple logic. The proposed control system called a local motor starter is being designed, and a manufacture of the actual systems is expected in the foreseeable future

  13. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  14. A new design concept for offshore nuclear power plants with enhanced safety features

    International Nuclear Information System (INIS)

    Lee, Kihwan; Lee, Kang-Heon; Lee, Jeong Ik; Jeong, Yong Hoon; Lee, Phill-Seung

    2013-01-01

    Highlights: ► A new design concept for offshore nuclear power plants is proposed. ► The total general arrangement for the concept is suggested. ► A new emergency passive containment cooling system (EPCCS) is proposed. ► A new emergency passive reactor-vessel cooling system (EPRVCS) is proposed. ► Safety features against earthquakes, tsunamis, and storms are discussed. - Abstract: In this paper, we present a new concept for offshore nuclear power plants (ONPP) with enhanced safety features. The design concept of a nuclear power plant (NPP) mounted on gravity-based structures (GBSs), which are widely used offshore structures, is proposed first. To demonstrate the feasibility of the concept, a large-scale land-based nuclear power plant model APR1400, which is the most recent NPP model in the Republic of Korea, is mounted on a GBS while minimizing modification to the original features of APR1400. A new total general arrangement (GA) and basic design principles are proposed and can be directly applied to any existing land based large scale NPPs. The proposed concept will enhance the safety of a NPP due to several aspects. A new emergency passive containment cooling system (EPCCS) and emergency passive reactor-vessel cooling system (EPRVCS) are proposed; their features of using seawater as coolant and safety features against earthquakes, Tsunamis, storms, and marine collisions are also described. We believe that the proposed offshore nuclear power plant is more robust than conventional land-based nuclear power plants and it has strong potential to provide great opportunities in nuclear power industries by decoupling the site of construction and that of installation.

  15. LOFT integral test system final safety analysis report

    International Nuclear Information System (INIS)

    1974-03-01

    Safety analyses are presented for the following LOFT Reactor systems: engineering safety features; support buildings and facilities; instrumentation and controls; electrical systems; and auxiliary systems. (JWR)

  16. Lessons learned while implementing a safety parameter display system at the Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Hagar, B.

    1987-01-01

    With the completion of site Verification and Validation tests, the Safety Parameter Display System (SPDS) will be fully operational at the Comanche Peak Steam Electric Station. Implementation of the SPDS, which began in 1982, included: modifying generic Safety Assessment System Software; developing site-specific displays and features; installing and integrating system equipment into the plant; modifying station heating, ventilation, and air conditioning systems to provide necessary cooling; installing an additional uninterruptible power supply system to provide necessary power; and training station personnel in the operation and use of the system. Lessons learned during this project can be discussed in terms of an ideal SPDS implementation project. Such a project would design and implement an SPDS for a plant that is already under construction or operating, and would progress through a sequence of activities that includes: (1) developing and documenting the system design bases, and including all major design influences; (2) developing a database description and system functional specifications to clarify specific system requirements; (3) developing detailed system hardware and software design specifications to fully describe the system, and to enable identification of necessary site design changes early in the project; (4) implementing the system design; (5) configuring and extensively testing the system prior to routine system operation; and (6) tuning the system after the completion of system installation. The ideal project would include future system users in design development and system testing, and would use Verification and Validation techniques throughout the project to ensure that each sequential step is appropriate and correct

  17. Safety analysis for key design features of KALIMER-600 design concept

    International Nuclear Information System (INIS)

    Lee, Yong-Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Joeng, H. Y.; Ha, K. S.; Heo, S.

    2005-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents, containment design basis accidents, and flow blockages in the KALIMER design are presented. First, the basic approach to achieve the safety goal and main design features of KALIMER-600 are introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2, In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. The objectives of Chapter 4, are to assess the response of KALIMER-600 containment to the design basis accidents and to evaluate whether the consequences are acceptable or not in the aspect of structural integrity and the exposure dose rate. In Chapter 5, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly, are described. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed

  18. Acoustic characteristics of hybrid electric vehicles and the safety of pedestrians who are blind

    Science.gov (United States)

    2010-08-01

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  19. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ... Sound Requirements for Hybrid and Electric Vehicles; Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid and Electric Vehicles; Proposed Rules #0;#0;Federal Register...-0148] RIN 2127-AK93 Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and...

  20. Design and safety features of commercial nuclear power plants in Japan, 1976 edition

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo

    1976-10-01

    The December 1975 edition (JAERI-M 5959) contained design particulars and safety features of 20 commercial nuclear power plants in Japan as of December 1974. Subsequently new plants have been put into operation and some plants under construction have undergone design modifications. The present edition presents similar data of the commercial nuclear power plants in Japan up to June 1976, compiled by computer processing. (auth.)

  1. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    Science.gov (United States)

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  2. Main design and safety features of a 200MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Zheng, Wenxiang; Gao, Zuying; Wang, Dazhong

    1992-01-01

    Inept has been in charge of the development of a nuclear heating reactor since 1980s, which is one of the national key R and D Programs in China. A 5MWt experimental NCR was completed at Inept in 1989 and has operated successfully for space heating since then. In order to realize the commercialization of the NCR, it has been decided to construct a 200MW demonstration NCR in 1993. A number of advanced features, including natural circulation, integrated arrangement, self-pressurized performance, dual vessel structure, hydraulic control rod drive and passive safety systems, have been incorporated into the NCR-200 to achieve its safety goal and economic viability. This makes the NCR safe, simple, reliable, easy-constructed and maintained. At present, the design work of the NCR-200 have shown that its safety characteristics are excellent. The NCR could play an important role in resolving future energy and environmental problems in China. The paper will mainly cover the key design considerations, main technical features and safety analysis results of the NCR-200

  3. Safety and operational aspects in in-situ electrical baking of large vacuum systems of Indus accelerators

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Bhange, Nilesh; Joshi, Sujata; Sridhar, R.

    2016-01-01

    In order to achieve pressures in UHV (Ultra High Vacuum) range, the vacuum chambers and associated vacuum components, necessarily made of UHV compatible materials, should be baked sufficiently long enough so as to reduce outgassing rates. The baking period usually ranges from 48 hours to 72 hours for an electrical load of more than 30 kW per sector, in which baking temperatures, a characteristic parameter and specific to material, range from 150°C-180°C for Aluminium alloy and 250°C-300°C for SS (stainless steel). Indus accelerators vacuum installations include more than 300 m long vacuum chamber which are subjected to rigorous, standardized and labour intensive electrical baking procedure involving an intelligent ON-OFF distributed temperature control system with in-built defence of electrical safety and expandability as per the needs. The paper discusses various in built electrical safely features, operational aspects, work practices and challenges involved in accomplishing an interrupt free continuous electrical baking for distributed electrical load of more than 30 kW for a typical vacuum segment of Indus accelerator. (author)

  4. New design of engineered safety features-component control system to improve performance and reliability

    International Nuclear Information System (INIS)

    Kim, S.T.; Jung, H.W.; Lee, S.J.; Cho, C.H.; Kim, D.H.; Kim, H.

    2006-01-01

    Full text: Full text: The Engineered Safety Features-Component Control System (ESF-CCS) controls the engineered safety features of a Nuclear Power Plant such as Solenoid Operated Valves (SOV), Motor Operated Valves (MOV), pumps, dampers, etc. to mitigate the effects of a Design Basis Accident (DBA) or an abnormal operation. ESF-CCS serves as an interface system between the Plant Protection System (PPS) and remote actuation devices. ESF-CCS is composed of fault tolerant Group Controllers GC, Loop Controllers (LC), ESF-CCS Test and Interface Processor (ETIP) and Cabinet Operator Module (COM) and Control Channel Gateway (CCG) etc. GCs in each division are designed to be fully independent triple configuration, which perform system level NSSS and BOP ESFAS logic (2-out-of-4 logic and l-out-of-2 logic, respectively) making it possible to test each GC individually during normal operation. In the existing configuration, the safety-related plant component control is part of the Plant Control System (PCS) non-safety system. For increased safety and reliability, this design change incorporates this part into the LCs, and is therefore designed according to the safety-critical system procedures. The test and diagnosis capabilities of ETIP and COM are reinforced. By means of an automatic periodic test for all main functions of the system, it is possible to quickly determine an abnormal status of the system, and to decrease the elapsed time for tests, thus effectively increasing availability. ESF-CCS consists of four independent divisions (A, B, C, and D) in the Advanced Power Reactor 1400 (APR1400). One prototype division is being manufactured and will be tested

  5. Cost-benefit evaluation of containment related engineered safety features of Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Bajaj, S.S.; Bhawal, R.N.; Rustagi, R.S.

    1984-01-01

    The typical containment system for a commercial nuclear reactor uses several engineered safety features to achieve its objective of limiting the release of radioactive fission products to the environment in the event of postulated accident conditions. The design of containment systems and associated features for Indian Pressurized Heavy Water Reactors (PHWRs) has undergone progressive improvement in successive projects. In particular, the current design adopted for the Narora Atomic Power Project (NAPP) has seen several notable improvements. The paper reports on a cost-benefit study in respect of three containment related engineered safety features and subsystems of NAPP, viz. (i) secondary containment envelope, (ii) primary containment filtration and pump-back system, and (iii) secondary containment filtration, recirculation and purge system. The effect of each of these systems in reducing the environmental releases of radioactivity following a design basis accident is presented. The corresponding reduction in population exposure and the associated monetary value of this reduction in exposure are also given. The costs of the features and subsystem under consideration are then compared with the monetary value of the exposures saved, as well as other non-quantified benefits, to arrive at conclusions regarding the usefulness of each subsystem. This study clearly establishes for the secondary containment envelope the benefit in terms of reduction in public exposure giving a quantitative justification for the costs involved. In the case of the other two subsystems, which involve relatively low costs, while all benefits have not been quantified, their desirability is justified on qualitative considerations. It is concluded that the engineered safety features adopted in the current containment system design of Indian PHWRs contribute to reducing radiation exposures during accident conditions in accordance with the ALARA ('as low as reasonably achievable') principle

  6. Utility regulation-The scope and structure of electrical safety regulation

    International Nuclear Information System (INIS)

    Abbott, Malcolm; Cohen, Bruce

    2011-01-01

    As a consequence of policies in Australia and New Zealand to increase competition in the utilities sector, regulatory agencies have been created in each state to provide independent and authorative advice on matters such as electricity pricing, access to infrastructure, service quality and security of supply. In addition arrangements have been established to maintain safety standards in the industry. The purpose of this paper is to discuss the major issues that have arisen in the creation of regulatory agencies responsible for electrical safety standards in Australia and New Zealand, and how they have impacted on liberalised electricity markets. - Highlights: → Policies in Australia and New Zealand to increase competition have led to the creation of electrical safety agencies. → These agencies have been created in response to perceived market failures. → There is a variance in agencies in terms of their independence and industry coverage. → These agencies have been created at a time of falling fatalities.

  7. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  8. Electrical drives of the safety system in nuclear power plants

    International Nuclear Information System (INIS)

    1990-09-01

    Actuating drives, control magnets for ventilators, machine drives and control member drives are part of this rule. The rule deals with the security and technical requirements for design, construction, calculation, fabrication, assembling, testing and operation. Furthermore, it places significant demands, with regard to planning and arrangement of electrical drives, on the accompanying technical systems. Furthermore, demands are placed on the aggregate protection for electrical drives of the security systems. The signals given to these systems do not, however, have precedence over the protection signals of the reactor. The rule is identical with KTA-3504, version 9/1988. (orig./HP) [de

  9. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    Science.gov (United States)

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  10. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  11. Evaluation of special safety features of the SNR-300 in view of the Chernobyl accident

    International Nuclear Information System (INIS)

    Vossebrecker, H.

    1987-03-01

    A comparison of those characteristics, which decisively influenced the accident in the RMBK-1000 reactor, with the safety features of SNR-300 has been performed. The conclusions of this comparison are presented in the present report. The SNR-300 is characterized by a stable reactivity behaviour and good controllability, whereas RBMK-1000 has an instable behaviour and complex spatial dependencies in the core. Among other points, design deficiencies in the protection and emergency shutdown systems were responsible for the Chernobyl accident. The protection and scram systems of the SNR-300 are unquestionably superior to those of the RBMK-1000 with regard to redundancy, diversity, degree of automation, separation of operational and safety-relevant tasks, protection against inadmissible interventions, effectiveness and safety reserves. Therefore, excursion accidents can be classified as hypothetical for SNR-300. Due to elementary physical properties, possible energy releases during hypothetical excursions are substantially lower for SNR-300 and would be controlled by the design of the primary system and containment systems. No damage limiting measures are provided in the RBMK-100 for excursion accidents. Finally, exothermal processes augmented the consequences of the accident in the RBMK-1000 and the long-lasting graphite fire intensified the release of radioactivity. In the SNR-300, however, inertisation of the containment, the steel plate lining and the floor troughs ensure that activity enclosure inside the containment after leakage or hypothetical excursion accident is not endangered by exothermal reactions. Further safety aspects are presented in the report, which can be linked with the accident in Chernobyl. In summary, it is obvious that the disadvantageous physical and technical features of the RBMK-1000 do either not exist in the SNR-300 or are covered by the safety design

  12. Report of the Task Group on Electrical Safety of Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-01-01

    The Task Group on Electrical Safety at DOE Facilities (Task Group), which was formally established on October 27, 1992. The Task Group reviewed the electrical safety-related occurrence history of, and conducted field visits to, seven DOE sites chosen to represent a cross section of the Department`s electrical safety activities. The purpose of the field visits was to review, firsthand, electrical safety programs and practices and to gain greater insight to the root causes and corrective actions taken for recently reported incidents. The electrical safety environment of the DOE complex is extremely varied, ranging from common office and industrial electrical systems to large high-voltage power distribution systems (commercial transmission line systems). It includes high-voltage/high-power systems associated with research programs such as linear accelerators and experimental fusion confinement systems. Age, condition, and magnitude of the facilities also varies, with facilities dating from the Manhattan Project, during World War II, to the most modem complexes. The complex is populated by Federal (DOE and other agencies) and contractor employees engaged in a wide variety of occupations and activities in office, research and development, and industrial settings. The sites visited included all of these variations and are considered by the Task Group to offer a valid representation of the Department`s electrical safety issues. The sites visited were Oak Ridge National Laboratory (ORNL), Stanford Linear Accelerator Center (SLAC), Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Savannah River Site (SRS), Hanford Reservation (Hanford), and the Uranium Mill Tailings Remedial Action Project (UMTRA) located at Grand Junction, Colorado.

  13. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  14. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  15. Reliability study: digital engineered safety feature actuation system of Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sudarno; Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2003-04-01

    The usage of digital Instrumentation and Control (I and C) in a nuclear power plant becomes more extensive, including safety related systems. The PSA application of these new designs are very important in order to evaluate their reliability. In particular, Korean Standard Nuclear Power Plants (KSNPPs), typically Ulchin 5 and 6 (UCN 5 and 6) reactor units, adopted the digital safety-critical systems such as Digital Plant Protection System (DPPS) and Digital Engineered Safety Feature Actuation System (DESFAS). In this research, we developed fault tree models for assessing the unavailability of the DESFAS functions. We also performed an analysis of the quantification results. The unavailability results of different DESFAS functions showed that their values are comprised from 5.461E-5 to 3.14E-4. The system unavailability of DESFAS AFAS-1 is estimated as 5.461E-5, which is about 27% less than that of analog system if we consider the difference of human failure probability estimation between both analyses. The results of this study could be utilized in risk-effect analysis of KSNPP. We expect that the safety analysis result will contribute to design feedback

  16. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  17. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    International Nuclear Information System (INIS)

    2012-12-01

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  18. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  19. Safety margin improvement by adopting the feature of interleaving in 700 MWe PHWR

    International Nuclear Information System (INIS)

    Kumar, Nrependra; Yadav, S.K.; Khan, T.A.; Dixit, A.; Singhal, Mukesh; Nair, Suma R.

    2015-01-01

    Indian Pressurised Heavy Water Reactors (IPHWRs) of 700 MWe are under construction at Kakrapar Atomic Power Project -3,4 and Rajasthan Atomic Power Project-7,8. These units have enhanced safety features with respect to standard IPHWRs. One of the enhanced features is interleaving of feeders/channels. In interleaved feeder configuration, each header located at either end of reactor gets connected to one quarter of core channels, which are uniformly distributed. The core is divided into two loops with feeder connected in interleaved fashioned. In this paper a comparative study has been performed between the two cases: 1) The core splits in two vertical halves and each vertical half is a loop of PHT (TAPS-3 and 4 Type configuration). 2) The core is divided into two loops with feeders/ channels connected in interleaved fashioned (700 MWe Configuration). LOCA studies have been performed for 700 MWe PHWR considering interleaving of feeders configuration using in-house developed computer code ATMIKA and 3-D neutron kinetics code IQS-3D. The issue of interleaving is closely linked to an inherent reactivity characteristic of PHWR reactors (viz., positive void reactivity coefficient) which leads to a power increase following a Large LOCA. In 700 MWe PHWR with intent to improve the safety margin, adopted the feature of interleaving of feeders which causes in reduction in the magnitude of void coefficient and results in reduction of peak power during LBLOCA. The systematic LBLOCA study demonstrates that interleaved configuration of feeder/channels of two loops has higher safety margins (i.e. with respect to peak power, prompt-criticality margin, adiabatic heat deposition on the fuel pins, sheath temperature excursion and clad oxidation) with regard to the effectiveness of shutdown system. (author)

  20. Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.

  1. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  2. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Su, S.F.; Cahalan, J.E.; Sevy, R.H.

    1985-01-01

    This paper presents the results of a systematic study of the effectiveness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). The results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs, and safety margins are quantified in sensitivity studies. All analyses were carried out using the SASSYS LMFBR systems analysis code (1)

  3. Specific features of the electrical properties in partially graphitized porous biocarbons of beech wood

    Science.gov (United States)

    Popov, V. V.; Orlova, T. S.; Gutierrez-Pardo, A.; Ramirez-Rico, J.

    2015-09-01

    The electrical and galvanomagnetic properties of partially graphitized highly porous bioC(Ni) biocarbon matrices produced by pyrolysis (carbonization) of beech wood at temperatures T carb = 850-1600°C in the presence of a Ni-containing catalyst have been studied in comparison with their microstructural features. The temperature dependences of the resistivity, the magnetoresistance, and the Hall coefficient have been measured in the temperature range of 4.2-300 K in magnetic fields to 28 kOe. It has been shown that an additional graphite phase introduction into samples with T carb ≥ 1000°C results in an increase in the carrier mobility by a factor of 2-3, whereas the carrier (hole) concentration remains within ~1020 cm-3, as in biocarbons obtained without catalyst. An analysis of experimental data has demonstrated that the features of the conductivity and magnetoresistance of these samples are described by quantum corrections related to their structural features, i.e., the formation of a globular graphite phase of nano- and submicrometer sizes in the amorphous matrix. The quantum corrections to the conductivity decrease with increasing carbonization temperature, which indicates an increase in the degree of structure ordering and is in good agreement with microstructural data.

  4. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety.

    Science.gov (United States)

    Reilly, J Patrick; Hirata, Akimasa

    2016-06-21

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  5. A Wii-controlled safety device for electric chainsaws

    Directory of Open Access Journals (Sweden)

    R. Gubiani

    2013-09-01

    Full Text Available Forestry continues to represent one of the most hazardous economic sectors of human activity, and historically, the operation of chainsaws has mainly been restricted to professional lumberjacks. In recent years, because of low cost, chainsaws have become popular among unprofessionals, e.g. for cutting firewood and trimming trees. Serious or lethal lesions due to the use of chainsaws or electric chainsaws are often observed by traumatologists or forensic pathologists. Such serious accidents often occur during occupational activities and are essentially due to kickback or uncorrected use of the tool, or when the operator falls down losing the control of the implement. A new device in order to stop a cutting chain was developed and adapted to an electric chainsaw. The device is based on a Wiimote controller (Nintendo™, including two accelerometers and two gyroscopes for detecting rotation and inclination. A Bluetooth wireless technology is used to transfer data to a portable computer. The data collected about linear and angular acceleration are filtered by an algorithm, based on the Euclid norm, capable to distinguishing between normal movements and dangerous chainsaw movements. The result show a good answer to device and when happen a dangerous situation an alarm signal is sent back to the implement in order to stop the cutting chain. The device show a correct behavior in tested dangerous situations and is envisaged to extend to combustion engine chainsaws, as well as to other portable equipment used in agriculture and forestry operations and for this objectives were patented.

  6. The safety and reliability of the electricity transportation network, and the opening of markets

    International Nuclear Information System (INIS)

    Merlin, A.

    2003-01-01

    Following a decade in which the electricity sector was concerned by the opening of markets the world over, the year 2003 highlighted the challenges of secure supply and of the safety of electrical systems. Major incidents are nothing new throughout history, and occurred well before the trend towards opening the markets dot underway. However, it is necessary to verify that the rules for the organisation, clarification of responsibilities and regulation make it possible to control the growing complexity of interconnected systems related to opening the market up to competition. Faced with such situations, changes are necessary in Europe. Firstly, it is important to have the second European directive on the internal electricity market introduced everywhere, this directive providing common rules to be met by all key players to ensure greater safety within the electricity system, and strengthening the role of the electricity transport network manager, who is separate from the other players in the market. It is also necessary to draft a third directive, focusing on both security of supply and the operational safety of the European electricity system. (authors)

  7. Safety and injury profile of conducted electrical weapons used by law enforcement officers against criminal suspects.

    Science.gov (United States)

    Bozeman, William P; Hauda, William E; Heck, Joseph J; Graham, Derrel D; Martin, Brian P; Winslow, James E

    2009-04-01

    Conducted electrical weapons such as the Taser are commonly used by law enforcement agencies. The safety of these weapons has been the subject of scrutiny and controversy; previous controlled studies in animals and healthy humans may not accurately reflect the risks of conducted electrical weapons used in actual conditions. We seek to determine the safety and injury profile of conducted electrical weapons used against criminal suspects in a field setting. This prospective, multicenter, observational trial tracked a consecutive case series of all conducted electrical weapon uses against criminal suspects at 6 US law enforcement agencies. Mandatory review of each conducted electrical weapon use incorporated physician review of police and medical records. Injuries were classified as mild, moderate, or severe according to a priori definitions. The primary outcome was a composite of moderate and severe injuries, termed significant injuries. Conducted electrical weapons were used against 1,201 subjects during 36 months. One thousand one hundred twenty-five subjects (94%) were men; the median age was 30 years (range 13 to 80 years). Mild or no injuries were observed after conducted electrical weapon use in 1,198 subjects (99.75%; 95% confidence interval 99.3% to 99.9%). Of mild injuries, 83% were superficial puncture wounds from conducted electrical weapon probes. Significant injuries occurred in 3 subjects (0.25%; 95% confidence interval 0.07% to 0.7%), including 2 intracranial injuries from falls and 1 case of rhabdomyolysis. Two subjects died in police custody; medical examiners did not find conducted electrical weapon use to be causal or contributory in either case. To our knowledge, these findings represent the first large, independent, multicenter study of conducted electrical weapon injury epidemiology and suggest that more than 99% of subjects do not experience significant injuries after conducted electrical weapon use.

  8. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2009-01-01

    With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods.

  9. Application of probabilistic safety assessment for Macedonian electric power system

    International Nuclear Information System (INIS)

    Kancev, D.; Causevski, A.; Cepin, M.; Volkanovski, A.

    2007-01-01

    Due to the complex and integrated nature of a power system, failures in any part of the system can cause interruptions, which range from inconveniencing a small number of local residents to a major and widespread catastrophic disruption of supply known as blackout. The objective of the paper is to show that the methods and tools of probabilistic safety assessment are applicable for assessment and improvement of real power systems. The method used in this paper is developed based on the fault tree analysis and is adapted for the power system reliability analysis. A particular power system i.e. the Macedonian power system is the object of the analysis. The results show that the method is suitable for application of real systems. The reliability of Macedonian power system assumed as the static system is assessed. The components, which can significantly impact the power system are identified and analysed in more details. (author)

  10. Improvement of inherent safety features in CSR (Coupled Spectrum Reactor) for treating MA

    International Nuclear Information System (INIS)

    Aziz, F.; Kitamoto, Asashi.

    1996-01-01

    Burning and/or transmutation (B/T) of MA is proposed here using a CSR (Coupled Spectrum Reactor) concept. CSR was based on a modified conventional 1150 MWe-PWR system, and consisted of two core regions for thermal and fast neutrons, respectively. The B/T fuel used was supposed such that MA discharged from 1 GWe-LWR were mixed homogeneously in LWR fuel. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio, (V m /V f ). In order to improve its inherent safety features, several cases of CSR were studied and compared, each case used different fuel type in the inner region. The result of the calculations showed that safety features can be improved by using composite fuel of ( 235 U-Pu- 238 U) in the inner region. The equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute MA up to 808 kg/stage in a single reactor operated with a reactivity swing of 2.8 % Δk/kk'. (author)

  11. Implementation of special engineering safety features for severe accident management. New SAMG approach

    International Nuclear Information System (INIS)

    Grigorov, D.; Borisov, E.; Mancheva, K.

    2012-01-01

    Conclusions: As a result of the thermohydraulic analysis conducted the following main conclusions are formulated: The operator actions for accident management are effective and allow reaching conditions for application of the new engineering safety features for SAMG; The new engineering safety features application is effective and prevents severe core damage for Scenario 1. For the Scenario 2 they prevents degradation and relocation of the reactor core for a long period of time (in the analysis this period is 10 h, but the unit could be kept in safe condition for longer time which is not specifically analysed).The maximal fuel cladding temperature for Scenario 1 reaches 558 o C. This low fuel cladding temperature gradient is achieved by applying a complex of operator actions which prevent any core damage. If the additional discharge line with DN 100 mm from the PRZ is not opened then a severe core damage occurs; The maximal fuel cladding temperature for Scenario 2 reaches 1307 o C. One of the possibilities for keeping this temperature below 1200 o C is to mount second line (the first SFP line is between YT12S03.S04) from the SFP to the TQ22 pipeline which is connected to YT14B01 hydroaccumulator line, between the check valves YT14S03.S04

  12. Assessment of deep electrical conductivity features of Northern Victoria Land (Antarctica under other geophysical constraints

    Directory of Open Access Journals (Sweden)

    A. Caneva

    2000-06-01

    Full Text Available The lithospheric and crustal structure of the Victoria Land continental block (Antarctica has been studied by geological and geophysical surveys. Among them magnetovariational investigations (MV have been addressed to highlight the deep electrical conductivity patterns which contribute to the understanding of continental rifting and tectonic setting of the region. The hypothetical event map for H linearly polarized perpendicular to the coast indicates a possible broad coast parallel conductivity anomaly zone. Despite the coast effect, this feature could be related to the deep upper mantle thermal anomaly leading to Cenozoic uplift of the Transantarctic Mountains rift flank. However, both the hypothetic event map polarized parallel to the coast and the induction arrows suggest that the area of enhanced conductivity may be confined to the Deep Freeze Range crustal block along the western flank of the Mesozoic Rennick Graben. We also discuss the possible association between increased conductivity over the Southern Cross block and extensive Cenozoic alkaline plutonism.

  13. 1E Qualification of Electrical Equipment - Requirement for Safety Nuclear Power Plants

    International Nuclear Information System (INIS)

    Geambasu, C.; Segarceanu, D.; Albu, J.

    2002-01-01

    The paper presents the qualification methods of the safety related equipment according to the safety class 1E. There are presented the qualification principles, procedure and documents, emphasis being laid on the qualification approach by type tests. This approach assumes the equipment test under both normal and accident conditions (design basis events) simulating the operational conditions and covers the largest part of electrical equipment from a nuclear power plant.The safety related equipment is to be qualified is subjected to a sequential test that will be detailed in the paper. (author)

  14. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  15. Study of In-Pile test facility for fast reactor safety research: performance requirements and design features

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, N.; Kawatta, N.; Niwa, H.; Kondo, S.; Maeda, K

    1996-12-31

    This paper describes a program and the main design features of a new in-pile safety facility SERAPH planned for future fast reactor safety research. The current status of R and D on technical developments in relation to the research objectives and performance requirements to the facility design is given.

  16. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.M.

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

  17. Auditory localisation of conventional and electric cars : laboratory results and implications for cycling safety.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. Commandeur, J.J.F. Agterberg, M.J.H. & Wee, B. van

    2016-01-01

    When driven at low speeds, cars operating in electric mode have been found to be quieter than conventional cars. As a result, the auditory cues which pedestrians and cyclists use to assess the presence, proximity and location oncoming traffic may be reduced, posing a safety hazard. This laboratory

  18. Auditory localisation of conventional and electric cars: laboratory results and implications for cycling safety

    NARCIS (Netherlands)

    Stelling-Konczak, A.; Hagenzieker, M.P.; Commandeur, J.J.F.; Agterberg, M.J.H.; van Wee, B.

    2016-01-01

    When driven at low speeds, cars operating in electric mode have been found to be quieter than conventional cars. As a result, the auditory cues which pedestrians and cyclists use to assess the presence, proximity and location oncoming traffic may be reduced, posing a safety hazard. This laboratory

  19. On safety 1E qualification of electrical equipment for nuclear power stations

    International Nuclear Information System (INIS)

    Segarceanu, D.; Geambasu, C.; Avramescu, M.

    1995-01-01

    Electrical equipment and systems for the emergency shutdown of a nuclear reactor are qualified according to safety class 1E. Methods of qualification meeting the requirements should be used, either individually or in combination include, type-test qualification, qualification by operating experience, qualification by analysis, combined qualification. These methods qualification principles, procedures and documents are discussed. (N.T.). 1 fig

  20. Does employee safety influence customer satisfaction? Evidence from the electric utility industry.

    Science.gov (United States)

    Willis, P Geoffrey; Brown, Karen A; Prussia, Gregory E

    2012-12-01

    Research on workplace safety has not examined implications for business performance outcomes such as customer satisfaction. In a U.S. electric utility company, we surveyed 821 employees in 20 work groups, and also had access to archival safety data and the results of a customer satisfaction survey (n=341). In geographically-based work units where there were more employee injuries (based on archival records), customers were less satisfied with the service they received. Safety climate, mediated by safety citizenship behaviors (SCBs), added to the predictive power of the group-level model, but these two constructs exerted their influence independently from actual injuries. In combination, two safety-related predictor paths (injuries and climate/SCB) explained 53% of the variance in customer satisfaction. Results offer preliminary evidence that workplace safety influences customer satisfaction, suggesting that there are likely spillover effects between the safety environment and the service environment. Additional research will be needed to assess the specific mechanisms that convert employee injuries into palpable results for customers. Better safety climate and reductions in employee injuries have the potential to offer payoffs in terms of what customers experience. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  1. SWR 1000: the main design features of the advanced boiling water reactor with passive safety systems

    International Nuclear Information System (INIS)

    Carsten, Pasler

    2007-01-01

    The SWR-1000 (1000 MW) is a boiling water reactor whose economic efficiency in comparison with large-capacity designs is achieved by deploying very simple passive safety equipment, simplified systems for plant operation, and a very simple plant configuration in which systems engineering is optimized and dependence on electrical and instrumentation and control systems is reduced. In addition, systems and components that require protection against natural and external man-made hazards are accommodated in such a way that as few buildings as possible have to be designed to withstand the loads from such events. The fuel assemblies have been enlarged from a 10*10 rod array to a 12*12 array. This reduces the total number of fuel assemblies in the core and thus also the number of control rods and control rod drives, as well as in-core neutron flux monitors. The design owes its competitiveness to the fact that investment costs, maintenance costs and fuel cycle costs are all lower. In addition, refueling outages are shorter, thanks to the reduced scope of outage activities. The larger fuel assemblies have been extensively and successfully tested, as have all of the other new components and systems incorporated into the plant design. As in existing plants, the forced coolant circulation method is deployed, ensuring problem-free startup, and enabling plant operators to adjust power rapidly in the high power range (70%-100%) without moving the control rods, as well as allowing spectral-shift and stretch-out operation. The plant safety concept is based on a combination of passive safety systems and a reduced number of active safety systems. All postulated accidents can be controlled using passive systems alone. Control of a postulated core melt accident is assured with considerable safety margins thanks to passive flooding of the containment for in-vessel melt retention. The SWR-1000 is compliant with international nuclear codes and standards, and is also designed to withstand

  2. TELEPERM XS: I and C systems for safety application in NPP's - features, developments, references and feedback

    International Nuclear Information System (INIS)

    Prehler, Heinz Josef

    2007-01-01

    In the field of digital I and C AREVA NP is focused on concepts that on the one hand make allowance for development cycles getting shorter in the technology competition and on the other hand assure a long-term system support with the ability to deliver spare parts in the long run. The system platform TELEPERM XS, which was developed especially for safety I and C application of nuclear power plants, meets requirements effectively and thus provides a great benefit for the customer. The typical applications of TELEPERM XS are in the field of Reactor Protection and ESFAS functions (Engineered Safety Features Actuation System). High demands are defined for system reliability and availability, as well as for failure prevention and tolerance. The requirements of corresponding international codes and standards of nuclear installations are also implemented in the development and engineering processes of TELEPERM XS. The system platform is integrated into a sustainable program for service life management of electronic systems and equipment. Its ongoing future-oriented development ensures the long-term availability of hardware and software components for installed TELEPERM XS applications already installed in the plants. The further development of platform and components continues to be based on the robust, service-proven TELEPERM XS architecture, with the aim of minimizing the risks associated with equipment qualification and project licensing. A further development feature is the completion and extension of TELEPERM XS applications. This continuous innovation process, combined with maximized compatibility, makes TELEPERM XS unique, and provides the basis for a sustainable system with a service life guaranteed for the long term. Within the past 10 years, the majority of all comprehensive modernization projects worldwide were implemented or are contracted using TELEPERM XS. TELEPERM XS has been implemented in two new nuclear power plants and there are orders for four more

  3. Design data and safety features of commercial nuclear power plants. Vol. IV. Dockets 50-452 through 50-503

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1975-03-01

    Design data, safety features, and site characteristics are summarized for 36 nuclear power units in 18 power stations in the United States. Six pages of data are presented for each plant consisting of thermal-hydraulic and nuclear factors, containment features, emergency-core-cooling systems, site features, circulating water system data, and miscellaneous factors. An aerial perspective is also presented for each plant. The volume covers reactors with dockets 50-452 through 50-503. (U.S.)

  4. Review of light--water reactor safety studies. Volume 3 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California

    International Nuclear Information System (INIS)

    Nero, A.V.; Farnaam, M.R.K.

    1977-01-01

    This report summarizes and compares important studies of light-water nuclear reactor safety, emphasizing the Nuclear Regulatory Commission's Reactor Safety Study, work on risk assessment funded by the Electric Power Research Institute, and the Report of the American Physical Society study group on light-water reactor safety. These reports treat risk assessment for nuclear power plants and provide an introduction to the basic issues in reactor safety and the needs of the reactor safety research program. Earlier studies are treated more briefly. The report includes comments on the Reactor Safety Study. The manner in which these studies may be used and alterations which would increase their utility are discussed

  5. Inherent safety features of the HTTR revealed in the accident condition

    International Nuclear Information System (INIS)

    Kunitomi, K.; Shinozaki, M.; Baba, O.; Saito, S.

    1992-01-01

    The High Temperature Engineering Test Reactor (HTTR) being constructed by JAERI (Japan Atomic Energy Research Institute) is a graphite-moderated and helium-cooled reactor with an outlet gas temperature of 950degC. The inherent safety characteristics in the HTTR prevent temperature increase of reactor fuels and fission product release from the reactor core in postulated accident conditions. The reactor core can be cooled by a Vessel Cooling System (VCS) indirectly, even in the case that no forced cooling is expected during the accident such as primary pipe break. The VCS consists of independent water cooling loop and cooling panel around the reactor pressure vessel. The cooling panel whose temperature of 60-90degC cools the reactor pressure vessel by radiation and removes the decay heat from the core indirectly. Furthermore, even if failure of VCS is assumed during this accident as a severe accident, the reactor core is remained safe despite the temperature increase of biological concrete shield around the reactor pressure vessel. This paper describes the inherent safety features of the HTTR specially focused on the accident condition without forced cooling. The detailed analytical results of such an accident are described together with clarifying the role of the VCS. (author)

  6. Identification of features of electronic prescribing systems to support quality and safety in primary care using a modified Delphi process.

    Science.gov (United States)

    Sweidan, Michelle; Williamson, Margaret; Reeve, James F; Harvey, Ken; O'Neill, Jennifer A; Schattner, Peter; Snowdon, Teri

    2010-04-15

    Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.

  7. Reliability evaluation of the power supply of an electrical power net for safety-relevant applications

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.

    2006-01-01

    In this paper, we introduce a methodology for the dependability analysis of new automotive safety-relevant systems. With the introduction of safety-relevant electronic systems in cars, it is necessary to carry out a thorough dependability analysis of those systems to fully understand and quantify the failure mechanisms in order to improve the design. Several system level FMEAs are used to identify the different failure modes of the system and, a Markov model is constructed to quantify their probability of occurrence. A new power net architecture with application to new safety-relevant automotive systems, such as Steer-by-Wire or Brake-by-Wire, is used as a case study. For these safety-relevant loads, loss of electric power supply means loss of control of the vehicle. It is, therefore, necessary and critical to develop a highly dependable power net to ensure power to these loads under all circumstances

  8. Efforts to improve safety and reliability of nuclear power plants in Kyushu Electric Power

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi

    2014-01-01

    After the Fukushima accident, Kyushu Electric Power Co. took emergency safety measures requested by government to ensure power supply, coolant supply pumps and cooling water so as to keep cooling fuels in the reactor and spent fuel storage pool in case of losses of ordinary cooling capability caused by earthquake and tsunami. In order to improve safety and reliability of nuclear power plants, further efforts based on lessons learned from the Fukushima accident had been made to diversify corresponding equipment of safety measures in terms of prevention of core damage, prevention of containment failure, mitigation of radioactive materials release, cooling of spent fuel pit and ensurance of power supply, and to enhance emergency response capability so as to make operational management more complete. Additional safety measures applicable to new regulatory requirements against severe accidents were in progress. This article introduced details of such activities. (T. Tanaka)

  9. Regulatory inspection practices for industrial safety (electrical, mechanical, material handling and conventional aspects)

    International Nuclear Information System (INIS)

    Agarwal, K.

    2017-01-01

    Regulatory Inspection (RI) of BARC facilities and projects are carried out under the guidance of BARC Safety Council (BSC) Secretariat. Basically facilities and projects have been divided into two board categories viz. radiological facilities and non-radiological facilities. The Rls of radiological facilities should be carried out under OPSRC and of non-radiological facilities under CFSRC. Periodicity of inspection shall be at least once in a year. The RI of projects is carried out under concerned DSRC. RI practices with industrial safety which includes electrical, mechanical, material handling and conventional aspect for these facilities starts with check lists. The inspection areas are prepared in the form of checklists which includes availability of approved documents, compliance status of previous RIT and various safety committee's recommendations, radiological status of facilities, prompt reporting of safety related unusual occurrences, major incident, site visit for verification of actual status of system/plant. The practices for inspection in the area of electrical safety shall include checking of maintenance procedure for all critical class IV system equipment's such as HT panel, LT panel, transformer and motors. Load testing of Class III system such as D.G. set etc. shall be carried out as technical specification surveillance schedule. Status of aviation lights, number of qualified staff, availability of qualified staff etc. shall be form of inspection

  10. Safety Design for Smart Electric Vehicle Charging with Current and Multiplexing Control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-21

    As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the server and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.

  11. Time Domain Feature Extraction Technique for earth's electric field signal prior to the Earthquake

    International Nuclear Information System (INIS)

    Astuti, W; Sediono, W; Akmeliawati, R; Salami, M J E

    2013-01-01

    Earthquake is one of the most destructive of natural disasters that killed many people and destroyed a lot of properties. By considering these catastrophic effects, it is highly important of knowing ahead of earthquakes in order to reduce the number of victims and material losses. Earth's electric field is one of the features that can be used to predict earthquakes (EQs), since it has significant changes in the amplitude of the signal prior to the earthquake. This paper presents a detailed analysis of the earth's electric field due to earthquakes which occurred in Greece, between January 1, 2008 and June 30, 2008. In that period of time, 13 earthquakes had occurred. 6 of them were recorded with magnitudes greater than Ms=5R (5R), while 7 of them were recorded with magnitudes greater than Ms=6R (6R). Time domain feature extraction technique is applied to analyze the 1st significant changes in the earth's electric field prior to the earthquake. Two different time domain feature extraction techniques are applied in this work, namely Simple Square Integral (SSI) and Root Mean Square (RMS). The 1st significant change of the earth's electric field signal in each of monitoring sites is extracted using those two techniques. The feature extraction result can be used as input parameter for an earthquake prediction system

  12. Development of Draft Regulatory Guide on Accident Analysis for Nuclear Power Plants with New Safety Design Features

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Woo, Sweng Woong; Hwang, Tae Suk [KINS, Daejeon (Korea, Republic of); Sim, Suk K; Hwang, Min Jeong [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2016-05-15

    The present paper discusses the development process of the draft version of regulatory guide (DRG) on accident analysis of the NPP having the NSFD and its result. Based on the consideration on the lesson learned from the previous licensing review, a draft regulatory guide (DRG) on accident analysis for NPP with new safety design features (NSDF) was developed. New safety design features (NSDF) have been introduced to the new constructing nuclear power plants (NPP) since the early 2000 and the issuance of construction permit of SKN Units 3 and 4. Typical examples of the new safety features includes Fluidic Device (FD) within Safety Injection Tanks (SIT), Passive Auxiliary Feedwater System (PAFS), ECCS Core Barrel Duct (ECBD) which were adopted in APR1400 design and/or APR+ design to improve the safety margin of the plants for the postulated accidents of interest. Also several studies of new concept of the safety system such as Hybrid ECCS design have been reported. General and/or specific guideline of accident analysis considering the NSDF has been requested. Realistic evaluation of the impact of NSDF on accident with uncertainty and separated accident analysis accounting the NSDF impact were specified in the DRG. Per the developmental process, identification of key issues, demonstration of the DRG with specific accident with specific NSDF, and improvement of DGR for the key issues and their resolution will be conducted.

  13. Evaluation of Electrical Characteristics of Protective Equipment - a Prerequisite for Ensuring Safety and Health of Workers at Work

    Science.gov (United States)

    Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.

    2017-06-01

    The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.

  14. Impact Safety Control Strategy for the Battery System of an Example Electric Bus

    Directory of Open Access Journals (Sweden)

    Zhen-po Wang

    2015-01-01

    Full Text Available This paper proposes a side impact safety control strategy for the battery system, aiming at defusing the hazards of unacceptable behaviors of the battery system such as high-voltage hazards. Based on some collision identification metrics, a side impact discrimination algorithm and a side impact severity algorithm are developed for electric buses. Based on the study on the time to break for power battery, the side impact discrimination algorithm response time is about 20 ms posing a great challenge to the side impact discrimination algorithm. At the same time, the reliability of the impact safety control strategy developed in this paper is evaluated for other plausible side impact signals generated by finite element analysis. The results verify that the impact safety control strategy exhibits robust performance and is able to trigger a breaking signal for power battery system promptly and accurately.

  15. Longitudinal safety evaluation of electric vehicles with the partial wireless charging lane on freeways.

    Science.gov (United States)

    Li, Ye; Wang, Wei; Xing, Lu; Fan, Qi; Wang, Hao

    2018-02-01

    As an environment friendly transportation mode, the electric vehicle (EV) has drawn an increasing amount of attention from governments, vehicle manufactories and researchers recently. One of the biggest issue impeding EV's popularization associates with the charging process. The wireless charging lane (WCL) has been proposed as a convenient charging facility for EVs. Due to the high costs, the application of WCL on the entire freeways is impractical in the near future, while the partial WCL (PWCL) may be a feasible solution. This study aims to evaluate longitudinal safety of EVs with PWCL on freeways based on simulations. The simulation experiments are firstly designed, including deployment of PWCL on freeways and distribution of state of charge (SOC) of EVs. Then, a vehicle behavior model for EVs is proposed based on the intelligent driver model (IDM). Two surrogate safety measures, derived from time-to-collision (TTC), are utilized as indicators for safety evaluations. Sensitivity analysis is also conducted for related factors. Results show that the distribution of EVs' SOC significantly affect longitudinal safety when the PWCL is utilized. The low SOC in traffic consisting of EVs has the negative effect on longitudinal safety. The randomness and incompliance of EV drivers worsens the safety performance. The sensitivity analysis indicates that the larger maximum deceleration rate results in the higher longitudinal crash risks of EVs, while the length of PWCL has no monotonous effect. Different TTC thresholds also show no impact on results. A case study shows the consistent results. Based on the findings, several suggestions are discussed for EVs' safety improvement. Results of this study provide useful information for freeway safety when EVs are applied in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Safety aspects of electric energy production and supplies in conditions of the Slovenske elektrarne, a.s

    International Nuclear Information System (INIS)

    Sip, M.; Danilak, M. et al.

    2005-01-01

    In this presentation author deals with safety aspects of electric energy production and supplies in conditions of the Slovenske elektrarne, a.s. Some terrorist attack and accidents are presented. Four video-sequences are included

  17. Design Review Report for formal review of safety class features of exhauster system for rotary mode core sampling

    International Nuclear Information System (INIS)

    JANICEK, G.P.

    2000-01-01

    Report documenting Formal Design Review conducted on portable exhausters used to support rotary mode core sampling of Hanford underground radioactive waste tanks with focus on Safety Class design features and control requirements for flammable gas environment operation and air discharge permitting compliance

  18. Design Review Report for formal review of safety class features of exhauster system for rotary mode core sampling

    Energy Technology Data Exchange (ETDEWEB)

    JANICEK, G.P.

    2000-06-08

    Report documenting Formal Design Review conducted on portable exhausters used to support rotary mode core sampling of Hanford underground radioactive waste tanks with focus on Safety Class design features and control requirements for flammable gas environment operation and air discharge permitting compliance.

  19. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  20. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  1. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  2. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  3. Study of Machine-Learning Classifier and Feature Set Selection for Intent Classification of Korean Tweets about Food Safety

    Directory of Open Access Journals (Sweden)

    Yeom, Ha-Neul

    2014-09-01

    Full Text Available In recent years, several studies have proposed making use of the Twitter micro-blogging service to track various trends in online media and discussion. In this study, we specifically examine the use of Twitter to track discussions of food safety in the Korean language. Given the irregularity of keyword use in most tweets, we focus on optimistic machine-learning and feature set selection to classify collected tweets. We build the classifier model using Naive Bayes & Naive Bayes Multinomial, Support Vector Machine, and Decision Tree Algorithms, all of which show good performance. To select an optimum feature set, we construct a basic feature set as a standard for performance comparison, so that further test feature sets can be evaluated. Experiments show that precision and F-measure performance are best when using a Naive Bayes Multinomial classifier model with a test feature set defined by extracting Substantive, Predicate, Modifier, and Interjection parts of speech.

  4. Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization

    Science.gov (United States)

    Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei

    2017-10-01

    In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.

  5. On the electrical safety of dielectric elastomer actuators in proximity to the human body

    Science.gov (United States)

    Pourazadi, S.; Shagerdmootaab, A.; Chan, H.; Moallem, M.; Menon, C.

    2017-11-01

    Novel devices based on the use of dielectric elastomer actuators (DEA) have been proposed for a large variety of different applications. In many of these applications, DEAs are envisioned to be in direct or close proximity to the human body. Since DEAs usually require high voltage for their actuation, the safety of individuals operating or using these devices should be ensured. In this paper, safety standards based on safe limits for electrical discharge are investigated. Flat and cylindrical DEA configurations, which are generally considered as the building blocks for the design of DEA-based systems, are investigated in detail. Relevant elements and factors that affect the electrical discharge of DEA devices are analyzed and guidelines to design DEA-based devices that are not of harm for humans are provided. The performed analyses are experimentally validated using flat DEA samples. The safety requirements that should be considered when wrapping DEAs around the body (specifically the legs) are also briefly investigated to provide a practical example of interest for the biomedical community.

  6. Traffic sounds and cycling safety : the use of electronic devices by cyclists and the quietness of hybrid and electric cars.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. & Wee, B. van

    2015-01-01

    The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature

  7. Safety assessment of Novi Han radioactive waste repository - features, problems, results and perspectives

    International Nuclear Information System (INIS)

    Mateeva, M.

    2000-01-01

    This paper summarizes the work done and the achievements reached in the Novi Han radioactive waste repository safety assessment within the IAEA Model Project 'Increasing the safety of Novi Han radioactive waste repository BUL 4/005'. The overall safety assessment has a wide context, but the work reported here relates only to some details and results concerning the development and implementation of the appropriate methodology approach, model and computer code used for the calculations. Different steps and procedures are included for a better practical understanding of the obtained results during the safety assessment performance. The methodology approach is widely based on an international experience in safety analysis and implemented for evaluation computer code AMBER, which is one of the recommended from the safety assessments experts. (author)

  8. Technology development of maintenance optimization and reliability analysis for safety features in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Choi, Seong Soo; Lee, Dong Gue; Kim, Young Il

    1999-12-01

    The reliability data management system (RDMS) for safety systems of PHWR type plants has been developed and utilized in the reliability analysis of the special safety systems of Wolsong Unit 1,2 with plant overhaul period lengthened. The RDMS is developed for the periodic efficient reliability analysis of the safety systems of Wolsong Unit 1,2. In addition, this system provides the function of analyzing the effects on safety system unavailability if the test period of a test procedure changes as well as the function of optimizing the test periods of safety-related test procedures. The RDMS can be utilized in handling the requests of the regulatory institute actively with regard to the reliability validation of safety systems. (author)

  9. Anti-correlation and multifractal features of Spain electricity spot market

    NARCIS (Netherlands)

    Norouzzadeh, Payam; Dullaert, W.; Rahmani, Bahareh

    2007-01-01

    We use multifractal detrended fluctuation analysis (MF-DFA) to numerically investigate correlation, persistence, multifractal properties and scaling behavior of the hourly spot prices for the Spain electricity exchange-Compania O Peradora del Mercado de Electricidad (OMEL). Through multifractal

  10. FEATURES OF ELECTRIC MOTOR CHOICE FOR NUCLEAR POWER PLANT TECHNOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    V.V. Shevchenko

    2013-06-01

    Full Text Available Nuclear power plants remain the basic power generating enterprises for Ukraine. Execution of works on their reliability control and operating conditions optimization is therefore of current importance. Trouble-free nuclear power plant operation is a vital technical, economical, and ecological problem, a solution to which is largely specified by reliable operation of electric equipment, namely, electric motors of nuclear power plant technological process drives.

  11. Insights provided by Probabilistic Safety Assessment Relating to the Loss of Electrical Sources

    International Nuclear Information System (INIS)

    Lanore, Jeanne-Marie

    2015-01-01

    The loss of electrical sources is generally an important contributor to the risk related to nuclear plants. In particular the external hazards initiating events lead generally to a loss of electrical sources. This importance was underscored by the Fukushima accident. A strength of PSA is to provide insights not only into the causes of the event but also into the potential consequences (core damage prevention, large release prevention, and mitigation) with the corresponding risk impact. PSA could provide a measure of Defence-in-Depth in case of loss of a safety function. The task intends to illustrate the PSA capabilities with outstanding practical examples. The task will rely on a survey of existing PSAs. It will provide a complementary view for ROBELSYS task. The content and status of the task are summarized in 2 slides

  12. Definition and Means of Maintaining the Criticality Prevention Design Features Portion of the PFP Safety Envelope

    International Nuclear Information System (INIS)

    RAMBLE, A.L.

    2000-01-01

    The purpose of this document is to record the technical evaluation of the Operational Safety Requirements described in the Plutonium Finishing Plant Final (PFP) Operational Safety Requirements, WHC-SD-CP-OSR-010. Rev. 0-N , Section 3.1.1, ''Criticality Prevention System.'' This document, with its appendices, provides the following: (1) The results of a review of Criticality Safety Analysis Reports (CSAR), later called Criticality Safety Evaluation Reports (CSER), and Criticality Prevention Specifications (CPS) to determine which equipment or components analyzed in the CSER or CPS are considered as one of the two unlikely, independent, and concurrent changes before a criticality accident is possible. (2) Evaluations of equipment or components to determine the safety boundary for the system (Section 4). (3) A list of essential drawings that show the safety system or component (Appendix A). (4) A list of the safety envelope (SE) equipment (Appendix B). (5) Functional requirements for the individual safety envelope equipment (Sections 3 and 4). (6) A list of the operational and surveillance procedures necessary to maintain the system equipment within the safety envelope (Section 5)

  13. Interim staff position on environmental qualification of safety-related electrical equipment: including staff responses to public comments. Regulatory report

    International Nuclear Information System (INIS)

    Szukiewicz, A.J.

    1981-07-01

    This document provides the NRC staff positions regarding selected areas of environmental qualification of safety-related electrical equipment, in the resolution of Unresolved Safety Issue A-24, 'Qualification of Class IE Safety-Related Equipment.' The positions herein are applicable to plants that are or will be in the construction permit (CP) or operating license (OL) review process and that are required to satisfy the requirements set forth in either the 1971 or the 1974 version of IEEE-323 standard

  14. Direct and indirect health and safety impacts of electrical generation options

    International Nuclear Information System (INIS)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1982-01-01

    This report is an analysis of the health and safety risks of seven electrical generation systems, all of which have the potential for commercial availability after the year 2000. The systems are compared on the basis of expected public and occupational deaths and lost workdays associated with average unit generation of 1000 MW(e) per year. The risks and associated uncertainties are estimated for all phases of the energy production cycle, including fuel extraction and processing, on-site construction and system operation and maintenance. Also included are the risks of direct and indirect component manufacture, materials production and energy inputs, all of which are major contributors to the risks of the more capital-intensive solar technologies. The potential significance of major health and safety issues that remain largely unquantifiable are also considered. (author)

  15. Safety Assessment for Electrical Motor Drive System Based on SOM Neural Network

    Directory of Open Access Journals (Sweden)

    Linghui Meng

    2016-01-01

    Full Text Available With the development of the urban rail train, safety and reliability have become more and more important. In this paper, the fault degree and health degree of the system are put forward based on the analysis of electric motor drive system’s control principle. With the self-organizing neural network’s advantage of competitive learning and unsupervised clustering, the system’s health clustering and safety identification are worked out. With the switch devices’ faults data obtained from the dSPACE simulation platform, the health assessment algorithm is verified. And the results show that the algorithm can achieve the system’s fault diagnosis and health assessment, which has a point in the health assessment and maintenance for the train.

  16. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    Science.gov (United States)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  17. Application of the integrated safety assessment methodology to the protection of electric systems

    International Nuclear Information System (INIS)

    Hortal, Javier; Izquierdo, Jose M.

    1996-01-01

    The generalization of classical techniques for risk assessment incorporating dynamic effects is the main objective of the Integrated Safety Assessment Methodology, as practical implementation of Protection Theory. Transient stability, contingency analysis and protection setpoint verification in electric power systems are particularly appropriate domains of application, since the coupling of reliability and dynamic analysis in the protection assessment process is being increasingly demanded. Suitable techniques for dynamic simulation of sequences of switching events in power systems are derived from the use of quasi-linear equation solution algorithms. The application of the methodology, step by step, is illustrated in a simple but representative example

  18. Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin

    2013-10-01

    The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to

  19. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    Science.gov (United States)

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R

    2017-07-01

    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  20. Investigation of ability to guess safety signs based on cognitive features in one of the petrochemical industries

    Directory of Open Access Journals (Sweden)

    G. A. Shirali

    2015-07-01

    .Conclusion: According to results of this study, use of principles of ergonomic design of signs and training are necessary to promote the ability to guess the safety signs to the minimum available standards. Therefore, it is possible to balance cognitive features especially “familiarity”, with the lowest score, and “meaningfulness” and “semantic closeness”, with the highest influential relationship with the ability to guess of signs. The developed regression model for this industry can be used to predict the ability to guess of safety signs in future studies

  1. Passive safety features of low sodium void worth metal fueled cores in a bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Wade, D.C.; Wigeland, R.A.; Kumaoka, Yoshio; Suzuki, Masao; Endo, Hiroshi; Nakagawa, Hiroshi

    1991-01-01

    A study has been performed on the passive safety features of low-sodium-void-worth metallic-fueled reactors with emphasis on using a bottom-supported reactor vessel design. The reactor core designs included self-sufficient types as well as actinide burners. The analyses covered the reactor response to the unprotected, i.e. unscrammed, transient overpower accident and the loss-of-flow accident. Results are given demonstrating the safety margins that were attained. 4 refs., 4 figs., 2 tabs

  2. Electrochemical performance and safety features of high-safety lithium ion battery using novel branched additive for internal short protection

    International Nuclear Information System (INIS)

    Li Yuhan; Lee, Meng-Lun; Wang Fuming; Yang, Chang-Rung; Chu, Peter P.J.; Yau, Shueh-Lin; Pan, Jing-Pin

    2012-01-01

    Highlights: ► N-phenylmaleimide-containing branched oligomer has been employed as an additive in lithium cells. ► The branched oligomer additive enhances safety and cycling performance of Li ion battery. ► The highest temperature of branched oligomer-containing battery was only 85 °C in the nail penetration test. - Abstract: In this study, we have investigated N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) as additive in Li-ion batteries to increase the safety performance by reducing the probability of batteries suffering an internal short circuit. In the nail penetration test, a LiCoO 2 /MCMB full battery with N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) showed a significant improvement in thermal stability and was able to restrain the temperature of the battery at about 85 °C. Furthermore, we found that N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) contained battery revealed better cycling and electrochemical performance, compared with the battery with bismaleimide-containing branched oligomer (BO3) in the electrolyte. The improvement might result from the favorable ionic conductivity, Li ion mobility and lower resistance in the battery. This additive can meet the cycling performance and safety requirements for Li-ion batteries.

  3. Specific features in the behavior of electrical resistivity of the pine biocarbon preform/copper composite

    Science.gov (United States)

    Burkov, A. T.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.

    2010-11-01

    The electrical resistivity ρ( T) of the novel type of composites prepared by infiltrating melted copper in vacuum in empty sap channels of white pine high-porosity biocarbon preforms has been measured in the temperature range 5-300 K. Biocarbon preforms have been prepared by pyrolysis of tree wood in an argon flow at two carbonization temperatures, 1000 and 2400°C. The electrical resistivity of the composites has been found to vary relatively weakly with temperature and to pass through a characteristic minimum near 40-50 K, which can be ascribed to iron and manganese impurities penetrating into copper from the carbon preform when liquid copper is infiltrated into it. It has been shown that the electrical resistivity ρ( T) of the composites is governed primarily by the specific microstructure of the preform, which is made up of parallel channels with an average diameter of about 50 μm interrupted by systems of thin capillaries. The small cross section of the copper-filled capillaries accounts for these regions providing the major contribution to the electrical resistivity of the composites. An increase in the wood carbonization temperature brings about a noticeable increase in the effective capillary cross section and a decrease in the electrical resistivity ρ( T) of the composite.

  4. Electrical properties and features of the crystallization behaviour and the phase morphology of polyethylene blends

    International Nuclear Information System (INIS)

    Kolesov, I.S.; Radusch, H.-J.; Kolesov, S.N.

    1999-01-01

    It was discovered that polyethylene blends show a typical concentration dependence of the specific electrical resistance and the electrical strength measured by the surge voltage method. The concentration dependencies show two local maxima at definite blend compositions (ω LDPE = 0,2 to 0,4 and 0,7 to 0,8). The results of investigation of the melt and crystallization behavior as well as of the supermolecular structure of these blends point out that the changes caused by mixing in topology and packaging density of the inter-phases between the phases and crystallites have an influence on the electrical properties of the polyethylene blends in correspondence to the composition. The changed structure-property relationships are caused essentially by a possible co-crystallization of the components and by the interactions at separate seeds formation. (orig.)

  5. Comparative health and safety assessment of the satellite power system and other electrical generation alternatives

    International Nuclear Information System (INIS)

    1980-12-01

    The work reported here is an analysis of existing data on the health and safety risks of a satellite power system and six electrical generation systems: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a light water fission power system without fuel reprocessing; a liquid-metal, fast-breeder fission reactor; a centralized and decentralized, terrestrial, solar-photovoltaic power system; and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation. Risks are estimated and uncertainties indicated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system

  6. Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Johan

    2003-03-01

    This thesis is devoted to the investigation of passive safety and inherent features of subcritical nuclear transmutation systems - accelerator-driven systems. The general objective of this research has been to improve the safety performance and avoid elevated coolant temperatures in worst-case scenarios like unprotected loss-of-flow accidents, loss-of-heat-sink accidents, and a combination of both these accident initiators. The specific topics covered are emergency decay heat removal by reactor vessel auxiliary cooling systems, beam shut-off by a melt-rupture disc, safety aspects from locating heat-exchangers in the riser of a pool-type reactor system, and reduction of pressure resistance in the primary circuit by employing bypass routes. The initial part of the research was focused on reactor vessel auxiliary cooling systems. It was shown that an 80 MW{sub th} Pb/Bi-cooled accelerator-driven system of 8 m height and 6 m diameter vessel can be well cooled in the case of loss-of-flow accidents in which the accelerator proton beam is not switched off. After a loss-of-heat-sink accident the proton beam has to be interrupted within 40 minutes in order to avoid fast creep of the vessel. If a melt-rupture disc is included in the wall of the beam pipe, which breaks at 150 K above the normal core outlet temperature, the grace period until the beam has to be shut off is increased to 6 hours. For the same vessel geometry, but an operating power of 250 MW{sub th} the structural materials can still avoid fast creep in case the proton beam is shut off immediately. If beam shut-off is delayed, additional cooling methods are needed to increase the heat removal. Investigations were made on the filling of the gap between the guard and the reactor vessel with liquid metal coolant and using water spray cooling on the guard vessel surface. The second part of the thesis presents examinations regarding an accelerator-driven system also cooled with Pb/Bi but with heat-exchangers located

  7. Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Carlsson, Johan

    2003-03-01

    This thesis is devoted to the investigation of passive safety and inherent features of subcritical nuclear transmutation systems - accelerator-driven systems. The general objective of this research has been to improve the safety performance and avoid elevated coolant temperatures in worst-case scenarios like unprotected loss-of-flow accidents, loss-of-heat-sink accidents, and a combination of both these accident initiators. The specific topics covered are emergency decay heat removal by reactor vessel auxiliary cooling systems, beam shut-off by a melt-rupture disc, safety aspects from locating heat-exchangers in the riser of a pool-type reactor system, and reduction of pressure resistance in the primary circuit by employing bypass routes. The initial part of the research was focused on reactor vessel auxiliary cooling systems. It was shown that an 80 MW th Pb/Bi-cooled accelerator-driven system of 8 m height and 6 m diameter vessel can be well cooled in the case of loss-of-flow accidents in which the accelerator proton beam is not switched off. After a loss-of-heat-sink accident the proton beam has to be interrupted within 40 minutes in order to avoid fast creep of the vessel. If a melt-rupture disc is included in the wall of the beam pipe, which breaks at 150 K above the normal core outlet temperature, the grace period until the beam has to be shut off is increased to 6 hours. For the same vessel geometry, but an operating power of 250 MW th the structural materials can still avoid fast creep in case the proton beam is shut off immediately. If beam shut-off is delayed, additional cooling methods are needed to increase the heat removal. Investigations were made on the filling of the gap between the guard and the reactor vessel with liquid metal coolant and using water spray cooling on the guard vessel surface. The second part of the thesis presents examinations regarding an accelerator-driven system also cooled with Pb/Bi but with heat-exchangers located in the

  8. The Role of Interaction Patterns with Hybrid Electric Vehicle Eco-Features for Drivers' Eco-Driving Performance.

    Science.gov (United States)

    Arend, Matthias G; Franke, Thomas

    2017-03-01

    The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO 2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.

  9. The verification methodologies for a software modeling of Engineered Safety Features- Component Control System (ESF-CCS)

    International Nuclear Information System (INIS)

    Lee, Young-Jun; Cheon, Se-Woo; Cha, Kyung-Ho; Park, Gee-Yong; Kwon, Kee-Choon

    2007-01-01

    The safety of a software is not guaranteed through a simple testing of the software. The testing reviews only the static functions of a software. The behavior, dynamic state of a software is not reviewed by a software testing. The Ariane5 rocket accident and the failure of the Virtual Case File Project are determined by a software fault. Although this software was tested thoroughly, the potential errors existed internally. There are a lot of methods to solve these problems. One of the methods is a formal methodology. It describes the software requirements as a formal specification during a software life cycle and verifies a specified design. This paper suggests the methods which verify the design to be described as a formal specification. We adapt these methods to the software of a ESF-CCS (Engineered Safety Features-Component Control System) and use the SCADE (Safety Critical Application Development Environment) tool for adopting the suggested verification methods

  10. Optimized maintenance concept of safety relevant valves related to ageing management features in nuclear power plants

    International Nuclear Information System (INIS)

    Koring, R.

    2007-01-01

    This paper presents the existing concept in E.ON Kernkraft and its sound application to ageing management issues by focussing on group 2 components such as safety relevant valves. It is demonstrated how the maintenance concept of safety relevant valves is supported by a valve diagnostic system accompanied by an applied procedure to assess the measured results with respect to the required functionality and ageing phenomena. Furthermore this concept has been developed to optimize the existing preventive maintenance of the safety relevant valves by implementing condition oriented aspects derived from the diagnostic results. The main issue of this maintenance concept is to demonstrate the high level of the secured function, reliability and performance of the safety relevant valves within an integrated ageing management. Additionally it offers improvements of all preventive maintenance issues as maintenance periods and the component related volume, spare parts management and costs. (author)

  11. Safety features in nuclear power plants to eliminate the need of ...

    Indian Academy of Sciences (India)

    on land-use were implemented and controls of radioactive contamination in foodstuffs and ... Acute Radiation Syndrome (ARS) and two died from industrial injuries. ... cerning the safety of crops, milk, food, and water; the effects of radiation ...

  12. Overview of Indian position: Passive and active safety features of LMFBRs

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1991-01-01

    Since PWR and BWR type reactors are considered to have acceptable level of safety, there is a general statement that LMFBR type reactors should be designed to be 'at least as safe' as PWRs and BWRs. Nuclear safety issues considered include the following: flexibility of operation over the entire power range, effectiveness of steps ensuring the safety as well as plant availability under foreseeable incident conditions; guaranteed safe shut-down of the reactor; ability to remove safely and reliably the decay heat under shut-down conditions; containment capability including protection of the reactor from external events. It is concluded that liquid metal fast breeder reactors (LMFBRs) can be designed very easily to eliminate anxieties about their safety and no difficulties are expected in the licensing procedure of this type of reactors

  13. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.

    Directory of Open Access Journals (Sweden)

    David A X Nayagam

    Full Text Available To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis.Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG, optical coherence tomography (OCT and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue.All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses.Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained

  14. Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology

    OpenAIRE

    Brand, Martin; Gläser, Simon; Geder, Jan; Menacher, Stefan; Obpacher, Sebastian; Jossen, Andreas; Quinger, Daniel

    2013-01-01

    Since a laptop caught fire in 2006 at the latest, Li-ion cells were considered as more dangerous than other accumulators [1]. Recent incidents, such as the one involving a BYD e6 electric taxi [2] or the Boeing Dreamliner [3], give rise to questions concerning the safety of L#i-ion cells. This is a crucial point, since Li-ion cells are increasingly integrated in all kinds of (electric) vehicles. Therefore the economic success of hybrid electric vehicles (HEV) and battery electric vehicles (BE...

  15. Safety assessment for a disposal option of TENORM wastes coming from the electric generation in Cuba

    International Nuclear Information System (INIS)

    Leyva, Dennys; Gil, Reinaldo; Peralta, Jose L.; Odalys Ramos

    2008-01-01

    The aim of the present paper was the safety assessment for a disposal option of ashes wastes coming from the electric generation in Cuba. The ashes are planned to be disposed as subsurface layer, covered with soil under controlled conditions. The composition of theses wastes are TENORM ( 226 Ra and 224 Ra) and heavy metals (vanadium, chromium, zinc), therefore, their disposal should accomplish the national and international defined regulations. The adopted safety assessment methodology, allowed the identification and selection of the main scenarios to evaluate, the mathematical models to apply and the comparison against the assessment criteria. According to the assessment context and the site characteristics, the atmospheric and groundwater scenarios were evaluated. During the modelling stage were included the identification of the main exposure pathways and the most relevant assessment processes were modelled (transport of contaminants, radioactive decay, etc.). For atmospheric dispersion, the SCREEN3 model was adopted, including the radioactive decay and other radiological properties. The DRAF model was used for the groundwater scenario. The doses for inhalation, external irradiation and foodstuff ingestion were obtained using several dosimetric models. The results showed that the 226 Ra concentration values were higher than the 228 Ra in the evaluation points, for atmospheric and groundwater scenarios. This behaviour is influenced by the small radioactive inventory, the shorter half life of the 228 Ra and the distance between the disposal site and the evaluation points. The obtained external doses were always below the dose limits for the members of the public and for all scenarios, including the more conservatives. The lower dose (by ingestion) values were associated to the scenarios of radionuclides transport through the geosphere. According the safety assessment and the established scenarios, the evaluated disposal practice does not represent a relevant

  16. Status of non-electric nuclear heat applications: Technology and safety

    International Nuclear Information System (INIS)

    2000-11-01

    Nuclear energy plays an important role in electricity generation, producing 16% of the world's electricity at the beginning of 1999. It has proven to be safe, reliable, economical and has only a minimal impact on the environment. Most of the world's energy consumption, however, is in the form of heat. The market potential for nuclear heat was recognized early. Some of the first reactors were used for heat supply, e.g. Calder Hall (United Kingdom), Obninsk (Russian Federation), and Agesta (Sweden). Now, over 60 reactors are supplying heat for district heating, industrial processes and seawater desalination. But the nuclear option could be better deployed if it would provide a larger share of the heat market. In particular, seawater desalination using nuclear heat is of increasing interest to some IAEA Member States. In consideration of the growing experience being accumulated, the IAEA periodically reviews the progress and new developments in the field of nuclear heat applications. This publication summarizes the recent activities among Member States presented at a Technical Committee meeting in April 1999. The purpose of the meeting was to provide a forum for the exchange of up to date information on the prospect, design, safety and licensing aspects, and development of non-electrical applications of nuclear heat for industrial use. This mainly included seawater desalination and hydrogen production

  17. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J; Mark, J

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

  18. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    International Nuclear Information System (INIS)

    Corbus, D.; Hammel, C.J.; Mark, J.

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ''FH ampersand S'' issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste

  19. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J M

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

  20. Specific features of well logging of boreholes drilled on electrical nonconducting solutions

    International Nuclear Information System (INIS)

    Ruchkin, A.F.; Fomenko, V.G.

    1978-01-01

    Methods for identification of permeable strata and determination of their porosity and oil-gas saturation using standard combination of geophysical investigations in the boreholes drilled with nonaqueous and inert drilling fluids are considered. Geophysical combination consists of the methods indications of which are independent on electrical conductivity of drilling fluids. They are all modifications of radioactivity logging (gamma logging, neutron logging, neutron-gamma logging, gamma-gamma logging, pulsed neutron logging, nuclear-magnetic logging), acoustic logging and thermal logging

  1. Specific features of electrical properties of porous biocarbons prepared from beech wood and wood artificial fiberboards

    Science.gov (United States)

    Popov, V. V.; Orlova, T. S.; Magarino, E. Enrique; Bautista, M. A.; Martínez-Fernández, J.

    2011-02-01

    This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650-1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11-14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8-300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ( T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ≳ 1000°C.

  2. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  3. Design data and safety features of commercial nuclear power plants including cumulative index for Volumes I--VI

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1977-01-01

    Design data, safety features, and site characteristics are summarized for 12 nuclear power units in 6 power stations in the United States. Six pages of data are presented for each station, consisting of thermal-hydraulic and nuclear factors, containment features, emergency-core-cooling systems, site features, circulating water system data, and miscellaneous factors. In addition, an aerial perspective is presented for each plant. This volume covers plants with docket numbers 50-553 through 50-569 (Phipps Bend, Black Fox, Yellow Creek, and NEP) and two earlier plants not previously reported--Hope Creek (50-354, 50-355) and WPPSS 1 and 4 (50-460, 50-513). Indexes for this volume and the five earlier volumes are presented in three forms--by docket number, by plant name, and by participating utility

  4. Arrows as Anchors: An Analysis of the Material Features of Electric Field Vector Arrows

    Science.gov (United States)

    Gire, Elizabeth; Price, Edward

    2014-01-01

    Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in…

  5. TECHNOLOGICAL FEATURES OF THE CREATION AND USE OF THE SECTORAL ELECTRIC COMMERCE

    Directory of Open Access Journals (Sweden)

    V. O. Perov

    2008-07-01

    Full Text Available This article is devoted to a question of introduction and use of electronic system of carrying out of competitions. The stages of conducting a competition are considered, the drawbacks of conducting competitions by hand are defined and the main features of creating a system for automation of process of carrying out competitions are outlined in this article.

  6. Application of disturbance analysis methodology to safety related transients in the electrical systems of a nuclear power plant. Report UCLA-ENG-8056

    International Nuclear Information System (INIS)

    Guarro, S.; Okrent, D.

    1981-08-01

    The present study tries to address the question of whether or not the computerized on-line procedures known under the name of DAS (Disturbance Analysis System) can be usefully and successfully applied to provide timely diagnostics and operational suggestions during the occurrence of a major electrical transient in the auxiliary systems of a nuclear power plant. The perspective of the study is from the plant-safety point of view. A short definition of DAS methodology features and capabilities is presented. A discussion of some of the problems of a general nature that are encountered in DAS safety-oriented applications are also included. The event insufficient power on both emergency buses, with reference to a particular plant dsign (San Onofre 1), is presented. Some transients that have recently occurred in the power supply systems of operating plants are examined. Whether or not a DAS could have successfully dealt with such occurrences is considered

  7. Application of disturbance analysis methodology to safety related transients in the electrical systems of a nuclear power plant. Report UCLA-ENG-8056

    Energy Technology Data Exchange (ETDEWEB)

    Guarro, S.; Okrent, D.

    1981-08-01

    The present study tries to address the question of whether or not the computerized on-line procedures known under the name of DAS (Disturbance Analysis System) can be usefully and successfully applied to provide timely diagnostics and operational suggestions during the occurrence of a major electrical transient in the auxiliary systems of a nuclear power plant. The perspective of the study is from the plant-safety point of view. A short definition of DAS methodology features and capabilities is presented. A discussion of some of the problems of a general nature that are encountered in DAS safety-oriented applications are also included. The event insufficient power on both emergency buses, with reference to a particular plant dsign (San Onofre 1), is presented. Some transients that have recently occurred in the power supply systems of operating plants are examined. Whether or not a DAS could have successfully dealt with such occurrences is considered.

  8. Special features of the safety concept and design requirements applied for Angra-2 and 3

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The special features and requirements which have been applied by NUCLEN (Nuclebras Engenharia S/A) for Angra 2 and Angra 3 and which depart somewhat from the KWU (Kraftwerk Union) standard plant, are presented. (E.G.) [pt

  9. Stimulus encoding and feature extraction by multiple pyramidal cells in the hindbrain of weakly electric fish

    OpenAIRE

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-01-01

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly el...

  10. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Sevy, R.H.; Su, S.F.

    1985-01-01

    This paper presents the results of a study of the effectivness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). Results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs

  11. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  12. On the complex analysis of the reliability, safety, and economic efficiency of atomic electric power stations

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Klemin, A.I.; Polyakov, E.F.

    1977-01-01

    The problem is posed of effectively increasing the engineering performance of nuclear electric power stations (APS). The principal components of the engineering performance of modern large APS are considered: economic efficiency, radiation safety, reliability, and their interrelationship. A nomenclature is proposed for the quantitative indices which most completely characterize the enumerated properties and are convenient for the analysis of the engineering performance. The urgent problem of developing a methodology for the complex analysis and optimization of the principal performance components is considered; this methodology is designed to increase the efficiency of the work on high-performance competitive APS. The principle of complex optimization of the reliability, safety, and economic-efficiency indices is formulated; specific recommendations are made for the practical realization of this principle. The structure of the complex quantiative analysis of the enumerated performance components is given. The urgency and promise of the complex approach to solving the problem of APS optimization is demonstrated, i.e., the solution of the problem of creating optimally reliable, fairly safe, and maximally economically efficient stations

  13. Comparative health and safety assessment of alternative future electrical-generation systems

    International Nuclear Information System (INIS)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated

  14. Safety design features for current UK advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yellowlees, J. M.; Cobb, E. C. [Nuclear Power Co. (Risley) Ltd. (UK)

    1981-01-15

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed.

  15. Safety design features for current UK advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.; Cobb, E.C.

    1981-01-01

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed

  16. FEATURES OF SELECTION OF CAPACITOR BANKS IN ELECTRIC NETWORKS WITH INTERHARMONIC SOURCES

    Directory of Open Access Journals (Sweden)

    Yu. L. Sayenko

    2017-10-01

    Full Text Available Purpose. Development of a methodology for selecting capacitor bank parameters designed to compensate for reactive power, if there are sources of interharmonics in the electrical network. Development of a methodology for selecting the parameters of capacitor banks that are part of resonant filters of higher harmonics and interharmonics. Methodology. For the research, we used the decomposition of the non-sinusoidal voltage (current curve into the sum of the harmonic components with frequencies as multiple of the fundamental frequency - higher harmonics, and not multiple fundamental frequencies - interharmonics. Results. Expressions are obtained for checking the absence of inadmissible overloads of capacitor banks by voltage and current in the presence of voltage (current in the curve, along with higher harmonics, of the discrete spectrum of interharmonics. When selecting capacitor banks, both for reactive power compensation and for filter-compensating devices, the necessity of constructing the frequency characteristics of the input and mutual resistances of the electrical network for analyzing possible resonant phenomena is confirmed. Originality. The expediency of simplified calculation of the voltage variation at the terminals of the banks of the capacitors of the higher harmonics filters and interharmonics due to the presence of the reactor in the filters is substantiated. Practical value. The use of the proposed approaches will make it possible to resolve a number of issues related to the choice of parameters of capacitor banks in networks with nonlinear loads, including: ensuring reliable operation of capacitor banks when their parameters deviate from their nominal values, as well as deviations in the parameters of the supply network and sources of harmonic distortion; ensuring the absence of resonant phenomena at frequencies of both higher harmonics and interharmonics.

  17. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  18. Cost reduction and safety design features of new nuclear power plants in India. Annex 13

    International Nuclear Information System (INIS)

    Sharma, V.K.

    2002-01-01

    Indian Nuclear Power Programme is designed to exploit limited reserves of uranium and extensive resource of thorium. Pressurised heavy water reactors are found most suitable and form the main stay of the first stage of the programme. Thorium utilisation is achieved in the second and third stages. Today India has total installed capacity of 2720 MWe of PHWRs which are operating with high plant load factors of over 80%. Rich experience of construction and operation of over 150 reactor years is being utilised in effecting cost reduction and safety improvements. Standardisation and reduction in gestation period by preproject activities, advance procurement and work packages of engineer, procure, construct and commission are some of the techniques being adopted for cost reduction in the new projects. But the cost of safety is rising. Design basis event of double ended guillotine rupture of primary pressure boundary needs a relook based on current knowledge of material behaviour. This event appears improbable. Similarly some of the safety related systems like closed loop cooling water operating at low temperature and pressure, and low usage factors may be designed as per standard codes without invoking special nuclear requirements. The paper will address these issues and highlight the possible areas for cost reduction both in operating and safety systems. Modern construction and project management techniques are being employed. Gestation period of 5 years and cost of less than US $1400 per KWe are the present targets. In Indian environment nuclear power is found to be competitive with thermal power plants at distances of about 800 Kms from the coal mines. (author)

  19. Innovative safety features of VVER for ensuring high degree of autonomy during beyond design basis accidents

    International Nuclear Information System (INIS)

    Kumar, Abhay; Mohan, Joe; Kumar, Devesh; Chaudhry, S.M.; Rao, Srinivasa; Gupta, S.K.

    2010-01-01

    The effectiveness of Passive Heat Removal System (PHRS) in during a station black-out (SBO) accident was assessed by using SCDAP/Relap5. The analysis gave evidence that (i) the Passive Heat Removal System (PHRS) is capable of limiting the consequences of station black out (SBO) and acts as an effective engineered safety system, and (ii) the PHRS intervention prevents core degradation and excessive core heat-up. (P.A.)

  20. Safety issues for LMFBR: important features drawn from the assessments of Superphenix

    International Nuclear Information System (INIS)

    Natta, M.

    2002-01-01

    Superphenix, which is built on the site of Creys-Malville, is still the biggest LMFBR plant that has been in operation. It is a pool type reactor, as Phenix and the RNR 1 500 and EFR projects. After the analysis of the preliminary safety (1974-1975), the construction was authorised by decree of the Prime Minister in 1977, the authorization for fuel loading and star-up to 3% was given by the minister of industry in July 1985 and full power was achieved in December 1986. The plant was operated until the end of December 1996, producing the equivalent of 320 EFPD, corresponding to half of the maximum barn-up of the first core. The plant was definitively stopped on the 20. of April 1998 by a decision of the French government. During this period of 25 years of licensing, construction and operation of Superphenix, others discussions and preliminary licensing procedures were started for new projects, mainly the RNR 1500 French project and the EFR European project. The operation of Superphenix was also marked by several incidents, which led to additional licensing procedures and important modifications. This period was also marked by an important work of research and development in the safety field, mostly related to the issues concerning hypothetical core disruptive accidents (HCDA) and sodium fires; further, this period was marked by the Three Mile Island accident in 1979 and the Chernobyl accident in 1986. The purpose of this paper is to present some items which were discussed during this period of 25 years and which should be of interest for future LMFBRs. In this presentation, we shall discuss the key issues concerning the safety criteria and options taken with respect to severe accidents, i.e. core melt accidents, giving details on some specific which are less known since they were assessed only lately for Superphenix, sometimes in connection with the on-going safety researches. (author)

  1. Experimental and design experience with passive safety features of liquid metal reactors

    International Nuclear Information System (INIS)

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-11 with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions

  2. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  3. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 4, In-vehicle safety

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.

    1992-11-01

    This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

  4. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    Science.gov (United States)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  5. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382)

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement 10 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the licensee since the Safety Evaluation Report and its nine previous supplements were issued

  6. SPECIFIC FEATURES OF POWER CONSUMPTION OF LED DEVICES AND ACCOUNTING THEM IN CALCULATION OF ELECTRICAL NETWORKS

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2016-01-01

    Full Text Available The indicators of power consumption of lighting devices based on LEDs are studied depending on the supplied voltage. For the lamp and floodlight with LEDs active and reactive power, current and power factor as a function of voltage (which value changed in the range 200–245 V were experimentally determined. The analysis of experimental data demonstrated that due to the drivers in the specified voltage range the active power consumed by light devices remains practically unchanged. The reactive power of LED devices depends on the supplied voltage and is capacitive in its nature. In contrast with gas-discharge light sources the LED devices under study do not consume reactive power, but generate it. With the change of the supplied voltage from 200 to 245 V the value of the generated reactive power increases to 60 % for the floodlight and 50 % for the lamp. The LED floodlight has a low coefficient of active power. The current consumed by the floodlight has increased by 22 %, and by the lamp – by 13 %. The formulas for determining the maximum value of the length of the calculated section of single-phase group lines were developed, taking into account specific source data. LED light sources tend to feed by electric power by single-phase group lines. The number of lamps connected to single-phase lines is regulated by normative documents. Bearing this in mind as well as the small power of LED sources single-phase group lines are usually performed with conductors of the smallest possible cross section. The limit values of the length of the calculated section that correspond to a predetermined loss of voltage in line with ambient temperature from 15 to 60 °С were determined for them. The calculations demonstrated that for group lines that feed the LEDs, the choice of conductor cross-sections in accordance with permissible voltage loss is not critical. The determinant factor for the choice of the cross-section of the conductors of group electrical

  7. Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors

    Science.gov (United States)

    Soeda, Kazunari; Yamagata, Masaki; Ishikawa, Masashi

    2015-04-01

    An alginate-based gel electrolyte with an ionic liquid (Alg/IL) is investigated for electric double-layer capacitors (EDLCs) by using physicochemical and electrochemical measurements. The Alg/EMImBF4 (EMImBF4 = 1-ethyl-3-methylimidazolium tetrafluoroborate) gel electrolyte is thermally stable up to 280 °C, where EMImBF4 decomposes. Furthermore, the EDLC with the gel electrolyte can be operated even at high temperature. The cell containing Alg/EMImBF4 is also electrochemically stable even under high voltage (∼3.5 V) operation. Thus, the alginate is a suitable host polymer for the gel electrolyte for EDLCs. According to the result of charge-discharge characteristics, the voltage drop in the charge-discharge curve for the cell with Alg/EMImBF4 gel electrolyte is considerably smaller than that with liquid-phase EMImBF4 electrolyte. To clarify the effect of Alg in contact with the activated carbon electrode, we also prepared an Alg-containing ACFC electrode (Alg + ACFC), and evaluated its EDLC characteristics in liquid EMImBF4. The results prove that the presence of Alg close to the active materials significantly reduces the internal resistance of the EDLC cell, which may be attributed to the high affinity of Alg to activated carbon.

  8. Structural properties, electric response and electronic feature of BaSnO3 perovskite

    International Nuclear Information System (INIS)

    Cuervo Farfan, J.; Arbey Rodriguez, J.; Fajardo, F.; Vera Lopez, E.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2009-01-01

    It has been observed that the semiconducting compound SnO 2 presents very good results as gas sensor. One important development has been performed to study perovskite oxides for this relevant application. One oxide material which constitutes an excellent candidate for this technological application is BaSnO 3 . Polycrystalline samples with single phase of BaSnO 3 were synthesized by using the solid state reaction method. Samples were characterized structurally by means of X-ray diffraction (XRD) technique. Rietveld refinement, by using the GSAS code, reveals that this material synthesizes in a cubic perovskite, space group Pm3m (no. 221), with lattice parameter 4.1190(3)A. Electric response was examined through the impedance spectroscopy technique. Results of Bode diagram, from an equivalent circuit, evidence the semiconductor character of material. We carried out a theoretical study by means of the calculation of the bands diagram and the density of states of the BaSnO 3 . Calculation was performed by employing the density functional theory (DFT), with the generalized gradient approach (GGA). DFT theory permitted to establish that BaSnO 3 material has an indirect semiconducting behavior. The calculated gap for this perovskite-like stagnate is at least 0.4 eV. Bulk modulus for material was also determined to be 132 GPa.

  9. Vaccine adverse event text mining system for extracting features from vaccine safety reports.

    Science.gov (United States)

    Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert

    2012-01-01

    To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.

  10. A review of the safety features of 6M packagings for DOE programs

    International Nuclear Information System (INIS)

    1988-12-01

    This report, prepared by a US Department of Energy (DOE) Task Force and organized for clarity into two-page modules, argues that the US Department of Transportation (DOT) Specification-6M packagings (hereafter referred to as 6M packaging, or simply 6M) merit continued DOE use and, if necessary, DOE certification. This report is designed to address the specific requirements of a Safety Analysis Report for Packaging (SARP). While not a SARP, this report constitutes a compilation of all available documentation on 6M packagings. The authors individually, and the Task Force collectively, believe their investigation provides justification for the continued use of 6M packagings because they meet criteria for quality assurance and for safety under normal and accident conditions as defined by the US Nuclear Regulatory Commission (NRC) regulations. This report may be used by DOE managers to assist in deliberations on future requirements for 6M packagings as they are required to support DOE programs. For the purpose of ready evaluation, this report includes categorical topics found in Nuclear Regulatory Guide 7.9, the topical guideline for SARPs. The format, however, will (it is hoped) pleasantly surprise customary reader expectations. For, while maintaining categorical headings and subheadings found in SARPs as a skeleton, the Task Force chose to adopt the document design principles developed by Hughes Aircraft in the 1960s, ''Sequential Thematic Organization of Publications'' (STOP). 37 figs

  11. Test study on safety features of station blackout accident for nuclear main pump

    International Nuclear Information System (INIS)

    Liu Xiajie; Wang Dezhong; Zhang Jige; Liu Junsheng; Yang Zhe

    2009-01-01

    The theoretical and experimental studies of reactor coolant pump accidents encountered nation-wide and world-wide were described. To investigate the transient hydrodynamic performance of reactor coolant pump (RCP) during the period of rotational inertia in the station blackout accident, some theoretical and experimental studies were carried out, and the analysis of the test results was presented. The experiment parameters, conditions and test methods were introduced. The flow-rate, rotate speed and vibrations were analyzed emphatically. The quadruplicate polynomial curve equation was used to simulate the flow-rate,rotate speed along with time. The test results indicate that the flow-rate and rotator speed decrease rapidly at the very beginning of cut power and the test results accord with the regulation of safety standard. The vibrant displacement of bearing seat is intensified at the moment of lose power, but after a certain period rotor shaft libration changes. The test and analysis results help to understand the hydrodynamic performance of nuclear primary pump under lost of power accident, and provide the basic reference for safety evaluation. (authors)

  12. SOME ASPECTS OF FEATURES CONCEPT AND NATURE OF ENVIRONMENTAL SAFETY LIFE URBAN POPULATION

    Directory of Open Access Journals (Sweden)

    Kirova M.

    2017-05-01

    Full Text Available Proved the concept and nature of the environmental safety of life of the urban population. A structural levels in the list of objects to enter the security levels of urban or rural communities of local communities, which changes the nature of the institutional environment environmental security. In assessing the quality of life of urban society used many parameters of socio-economic and environmental. General rules on the prevention of environmental degradation and risks to human health set forth in the applicable law "On Environmental Protection", on the basis of which developed a number of legal documents. As for the capital of Ukraine - Kyiv, it is a great cultural, historical and commercial and industrial center. So we can safely say that Kyiv is characterized by all the environmental problems that are inherent in all large cities. This, above all, traffic pollution, changes in the air quality, noise pollution, emissions of chemicals into the atmosphere, pollution, toxic waste, the problem of waste. But a special place in this region occupies a radioactive problem due to the Chernobyl nuclear power plant. Also, nearby, in the Kyiv region Kiev reservoir are with not the best environmental conditions. The most important components of ecosystems: the air of the city, urban and suburban water sources, soil city. International experts conducted a study in 215 cities around the world. Kyiv international ranking is 29 in place pollution. Thus, the problem of environmental security for the population of the city. Kyiv, as many large cities in Ukraine is quite relevant. In this regard, the article studies that the environmental safety of life of the urban population in the context of national security - a state of effective security systems (environment interconnected structural levels of the individual, the local community, society, state and international (global community of aggregate factors that endanger or threaten the very existence of which

  13. FISSION 2120: a program for assessing the need for engineered safety feature grade air cleaning systems in post accident environments

    International Nuclear Information System (INIS)

    Martin, G. Jr.; Michlewicz, D.; Thomas, J.

    1979-01-01

    A computer program FISSION 2120, has been developed to evaluate the need for various engineered Safety Feature grade air cleaning systems to mitigate radiation exposures resulting from accidential releases of radioactivity. Those systems which are generally investigated include containment sprays with chemical additives, containment fan coolers with charcoal filters, and negative pressure maintenance systems for double barrier containments with either one-pass filtration or recirculation with filtration. The program can also be used to calculate the radiation doses to control room personnel. This type of analysis is directed towards the various protection aspects of the emergency ventilation system and involves the modeling of the radiological source terms and the atmospheric transport of the radioactive releases. The modeling is enhanced by the inherent capability of the program to accommodate simultaneous release of activity from several sources and to perform a dose evaluation for a wide range of the design characteristics of control room emergency air filtration systems. Use of the program has resulted in considerable savings in the time required to perform such analyses and in the selection of the most cost-effective Engineered Safety Features

  14. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  15. Fundamental features and main problems of nuclear power and radiological safety law

    International Nuclear Information System (INIS)

    Moser, B.

    1981-01-01

    This report deals on a general basis with the legal spheres affected by the utilisation of nuclear energy and protection from ionising radiation. Following a historical survey of the development both in the field of national legisation in Austria and internationally, the five principal legal spheres are discussed in detail. These are administrative law, liability and insurance law, criminal law, constitutional law and international law. In the foreground of discussion is administrative law, which is mainly of a preventive nature. This also comprises radiological safety law. Next in importance is liability and insurance law, which, in contrast to the former, aims at compensation for damage. Criminal law is also intended to have a preventive effect. Finally, the author discusses the peaceful use of nuclear energy in relation to the constitutional law and the international law in force. (Auth.)

  16. Gaseous core nuclear-driven engines featuring a self-shutoff mechanism to provide nuclear safety

    International Nuclear Information System (INIS)

    Heidrich, J.; Pettibone, J.; Chow, Tze-Show; Condit, R.; Zimmerman, G.

    1991-11-01

    Nuclear driven engines are described that could be run in either pulsed or steady state modes. In the pulsed mode nuclear energy is released by fissioning of uranium or plutonium in a supercritical assembly of fuel and working gas. In a steady state mode a fuel-gas mixture is injected into a magnetic nozzle where it is compressed into a critical state and produces energy. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff or control of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled up from about 100 MW e

  17. Shielding repair of N.S. Mutsu and related safety features

    International Nuclear Information System (INIS)

    Kishimoto, K.; Miyakoshi, J.

    1978-01-01

    The abnormal radiation level observed on the upper deck of N.S. Mutsu was caused by neutrons streaming through an annular air gap between the reactor pressure vessel and the primary shield. In order to lower this level, a modification of shielding has been planned, for which a shielding mock-up experiment was carried. The foregoing modifications brought some change to the expected behavior of the reactor plant under ship accident situations, and studies were performed to verify plant safety, such as calculations to determine containment vessel integrity and decay heat removal after sinking, and calculations supported by experiment to ascertain the structural strength of the double bottom upon stranding of the ship

  18. Requirements to be taken into account in the design, qualification startup and operation of electrical equipment for safety-related electrical systems

    International Nuclear Information System (INIS)

    1985-07-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to provide the rules to be respected in order that safety-related electrical systems can perform its function under plausible operating conditions

  19. Autonomous safety and reliability features of the K-1 avionics system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.E.; Kohrs, D.; Bailey, R.; Lai, G. [Kistler Aerospace Corp., Kirkland, WA (United States)

    2004-03-01

    Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K- 1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least three consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1. (author)

  20. Application of condition-based HRA method for a manual actuation of the safety features in a nuclear power Plant

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung-Cheol

    2006-01-01

    A practical approach to develop a more realistic fault-tree model with a consideration of various conditions endured by a human operator is proposed. In safety-critical systems, the generation failure of an actuation signal is caused by the concurrent failures of the automated systems and an operator action. These two sources of safety signals are complicatedly correlated. The failures of sensors or automated systems will cause a lack of necessary information for a human operator and result in error-forcing contexts such as the loss of corresponding alarms and indications. It is well known that the error-forcing contexts largely affect the operator's performance. An automated system which consists of multiple processing channels and complex components is also affected by the availability of the sensors. This paper proposes a condition-based human reliability assessment (CBHRA) method in order to address these complicated conditions in a practical way. We apply the CBHRA method to the manual actuation of the safety features such as a reactor trip and auxiliary feedwater actuation in Korean Standard Nuclear Power Plants. Even the human error probability of each given condition is simply assumed, the application results prove that the CBHRA effectively accommodates the complicated error-forcing contexts into the fault trees

  1. Overlapping Nuclear Safety Control Provisions of the Atomic Energy Act and Electric Utility Act

    International Nuclear Information System (INIS)

    Chang, Gun-Hyun; Kim, Sang-Won; Koh, Jae-Dong; Ahn, Hyung-Joon; Kim, Chang-Bum

    2007-01-01

    Before May 17, 2005, Korea's nuclear power plant (hereinafter referred to as 'NNP') regulation system was two-pronged. Every NPP system consists of primary or secondary system, and each type was respectively regulated by the Atomic Energy Act(hereinafter referred to as 'AEA') and the Electric Utility Act(hereinafter referred to as 'EUA'). This unusual regulatory regime gave rise to a number of problems with respect to operation and safety. For this reason, the Enforcement Regulation of AEA and applicable Notice were revised on May 17, 2005 to the effect that all regulation on NPPs subject to EUA was brought under the purview of AEA, except regulation on business license for nuclear power generation under Article 7 of EUA and approval of plan of works for setting up electric installations (hereinafter referred to as 'construction plan') (including approval of any changes; the same shall apply hereinafter) under Article 61 thereof. From the point of view of the Ministry of Science and Technology, the regulation of NPPs by a single law has enhanced their safety. However, the Ministry of Commerce, Industry and Energy retains regulatory authority regarding NPPs. It reviews and approves construction plans for secondary system pursuant to Article 61 of EUA and Article 28 of the Enforcement Regulation thereof. This situation arose because Article 28 of the Enforcement Regulation of EUA continues to provide for matters related with nuclear power. Therefore, continued control of NPPs under EUA ignores the relationship and respective nature of AEA and EUA. There is also possibility of violation of a superseding law. Even if said provision is not in violation of a superseding law, Article 28 of the Enforcement Regulation of EUA poses the possibility of overlapping regulation, which may violate the principle of prohibiting excessive regulation, one of the principles of the Korean Constitution. Assessment of the dual regulatory system for review of secondary system requires (i

  2. Technical and institutional safety features of nuclear power plants in Brazil. Aspectos tecnicos e institucionais da seguranca dos reatores nucleares no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L P [Sociedade Brasileira de Fisica, Rio de Janeiro, RJ (Brazil)

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.).

  3. CNE (Embalse nuclear power plant): probabilistic safety study. Electric power supply. Events sequence

    International Nuclear Information System (INIS)

    Figueroa, N.

    1987-01-01

    The plant response to the occurrence of the starting event 'total loss of electric power supply to class IV and class III' is analyzed. This involves the study of automatical actions of safety and process systems as well as the operator actions. The probabilistic evaluation of starting event frequency is performed through fault-tree techniques. The frequency of occurrence 'loss of electric power supply to class IV (λIV = 0.56/year) and the probability of failure to demand of 'reserve' generating groups (Pd III 6.79 x 10 -3 ) contribute to the mentioned frequency. As soon as the starting event occurs, the reactor power must be reduced to 0%, the fuel must be cooled through the thermo siphon and decay heat has to be removed. The events sequence analysis leads to the conclusion that the non shutting down of the reactor with any of the shutdown systems is 'incredible' (10 -6 /year). In all cases the fuel is cooled by building the thermo siphon except when a substantial inventory loss exist due to a closure failure of some valve of pressure and inventory control system. The order of magnitude of the failure of decay heat removal through the steam generators is 4 x 10 -4 . This removal would be assured by the emergency water system. Therefore, the frequency of the sequence of possible core meltdown, when the reactor does not shut down is: λ = 5 x 10 -9 /year and for the failure of heat removal: λ = 2 x 10 -6 /year. (Author)

  4. Developing a strong safety culture - a safety management challenge

    International Nuclear Information System (INIS)

    Low, M.; Gipson, G. P.; Williams, M.

    1995-01-01

    The approach is presented adapted by Nuclear Electric to build a strong safety culture through the development of its safety management system. Two features regarded as critical to a strong safety culture are: provision of effective communications to promote an awareness and ownership of safety among craft, and commitment to continuous improvement with a genuine willingness to learn from own experiences and those from others. (N.T.) 5 refs., 4 figs., 1 tab

  5. Preliminary Safety Analysis of the Gorleben Site: Safety Concept and Application to Scenario Development Based on a Site-Specific Features, Events and Processes (FEP) Database - 13304

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Joerg; Beuth, Thomas; Wolf, Jens [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, D-38122 Braunschweig (Germany); Lommerzheim, Andre [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany); Mrugalla, Sabine [Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover (Germany)

    2013-07-01

    Based upon the German safety criteria, released in 2010 by the Federal Ministry of the Environment (BMU), a safety concept and a safety assessment concept for the disposal of heat-generating high-level waste have both been developed in the framework of the preliminary safety case for the Gorleben site (Project VSG). The main objective of the disposal is to contain the radioactive waste inside a defined rock zone, which is called containment-providing rock zone. The radionuclides shall remain essentially at the emplacement site, and at the most, a small defined quantity of material shall be able to leave this rock zone. This shall be accomplished by the geological barrier and a technical barrier system, which is required to seal the inevitable penetration of the geological barrier by the construction of the mine. The safe containment has to be demonstrated for probable and less probable evolutions of the site, while evolutions with very low probability (less than 1 % over the demonstration period of 1 million years) need not to be considered. Owing to the uncertainty in predicting the real evolution of the site, plausible scenarios have been derived in a systematic manner. Therefore, a comprehensive site-specific features, events and processes (FEP) data base for the Gorleben site has been developed. The safety concept was directly taken into account, e.g. by identification of FEP with direct influence on the barriers that provide the containment. No effort was spared to identify the interactions of the FEP, their probabilities of occurrence, and their characteristics (values). The information stored in the data base provided the basis for the development of scenarios. The scenario development methodology is based on FEP related to an impairment of the functionality of a subset of barriers, called initial barriers. By taking these FEP into account in their probable characteristics the reference scenario is derived. Thus, the reference scenario describes a

  6. Proven power reactor systems - novel features and developments in operation performance, safety and reliability

    International Nuclear Information System (INIS)

    Bugl, J.

    1975-01-01

    As the development of nuclear reactors for the generation of electric power started after the end of the Second World War, the prospective use of diverse materials as fuel, moderator and coolant resulted in a wide diversity of design possibilities. Of the 10 nuclear reactor types which were being considered most seriously in those days, only a few have achieved acceptance. This development is best illustrated by listing the nuclear power plants in service, under construction and on order at present, separately by reactor types (table). In the lead at present and for some years to come are the thermal reactors and especially the light water reactors (LWR). In the LWR group the lead is held by the pressurised water reactor (PWR) which accounts for 44% of the installed capacity of all the nuclear power plants in service at present. In the early 1980s this share will increase to 58%, whereas the share of the boiling water reactor (BWR) will increase to only 28% from 23% at present. (orig./TK) [de

  7. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-12-01

    Full Text Available This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be made from a piezoelectrically actuated inlet valve, a storage chamber with an elastic cover membrane and a piezoelectrically actuated outlet valve, which are connected in series. During a dosing cycle the metering unit is used to adjust the drug volume to be dispensed before delivery and to control the actually dispensed volume. To simulate the new drug delivery concept, a lumped parameter model has been developed to find the decisive design parameters. With the knowledge taken from the model a drug delivery system is designed that includes a silicon micro pump and, in a first step, a silicon chip with the storage chamber and two commercial microvalves as a metering unit. The lumped parameter model is capable to simulate the maximum flow, the frequency response created by the micropump, and also the delivered volume of the drug delivery system.

  8. Effect of engineered safety features on the risk of hypothetical LMFBR accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1978-01-01

    The risks of hypothetical core-disruptive accidents in liquid-metal-cooled fast breeder reactors which involve meltthrough of the reactor vessel are compared for two plant designs: one design without specific provisions to accommodate such an accident and the other design with an ex-vessel core catcher and a cvity hot liner. The approach to risk analysis used is that developed in the Reactor Safety Study (WASH-1400). Since the probability of occurrence of such an event has not been evaluated, however, insight into the potential risk is gained only on a relative basis. The principal conclusions of this study are: (1) adding a core catcher--hot liner reduces the probabilty of accidents having major consequences; (2) the degree to which hot liner--core catcher systems can reduce the risk of melt-through accidents is limited by the failure probability of these systems; (3) fractional radioactive releases to the environment in the liquid-metal-cooled fast breeder reactor accidents considered are comparable to those from the light-water reactors evaluated in WASH-1400; (4) since sodium--concrete reactions are a dominant driving force during the accident, the integrity of the cavity liner is as important as the function of the core catcher; (5) there may be other accidents or paths to radioactive releases that are not affected by the addition of a hot liner--core catcher

  9. Generic Safety Issue (GSI) 171 -- Engineered Safety Feature (ESF) failure from a loop subsequent to LOCA: Assessment of plant vulnerability and CDF contributions

    International Nuclear Information System (INIS)

    Martinez-Guridi, G.; Samanta, P.; Chu, L.; Yang, J.

    1998-01-01

    Generic Safety Issue 171 (GSI-171), Engineered Safety Feature (ESF) from a Loss Of Offsite Power (LOOP) subsequent to a Loss Of Coolant Accident (LOCA), deals with an accident sequence in which a LOCA is followed by a LOOP. This issue was later broadened to include a LOOP followed by a LOCA. Plants are designed to handle a simultaneous LOCA and LOOP. In this paper, the authors address the unique issues that are involved i LOCA with delayed LOOP (LOCA/LOOP) and LOOP with delayed LOCA (LOOP/LOCA) accident sequences. LOCA/LOOP accidents are analyzed further by developing event-tree/fault-tree models to quantify their contributions to core-damage frequency (CDF) in a pressurized water reactor and a boiling water reactor (PWR and a BWR). Engineering evaluation and judgments are used during quantification to estimate the unique conditions that arise in a LOCA/LOOP accident. The results show that the CDF contribution of such an accident can be a dominant contributor to plant risk, although BWRs are less vulnerable than PWRs

  10. The nuclear safety regulation in Japan and the response to changes of circumstances surrounding the nuclear electricity generation

    International Nuclear Information System (INIS)

    Hombu, K.; Hirota, M.; Taniguchi, T.; Tanaka, N.; Akimoto, S.

    2001-01-01

    The influences of external factors on nuclear safety are discussed in this paper, based on the views on the circumstances of nuclear electricity generation. The following external factors, which might have some potential impacts on nuclear safety, are selected for discussion: (1) The deregulation in the electricity generation industry; (2) The modification of approval/certification system in the regulation of electricity generation; (3) The influences on social atmosphere due to the occurrence of a series of troubles; (4) The government reform and the structural adjustment of industry and (5) Others. Our further discussion seems to focus on the following 2 issues: (a) Whether nuclear power and the other electrical sources should compete with each other for short term economical cost, or whether factors of cost stability and competitiveness as well as longer term energy supply security and global environmental issues ranging over several decades should be considered; (b) How to realize the appropriate regulation from the perspective of public acceptance and confidence (when a series of troubles occur) without imposing unnecessary burdens on industry and without jeopardizing safety. These issues may be common among many countries and can be widely discussed. (author)

  11. Suitability review of FMEA and reliability analysis for digital plant protection system and digital engineered safety features actuation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)

    2000-11-15

    Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the

  12. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  13. Safety

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection

  14. Role of Passive Safety Features in Prevention And Mitigation of Severe Plant Conditions in Indian Advanced Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vikas; Nayak, A.; Dhiman, M.; Kulkarni, P. P.; Vijayan, P. K.; Vaze, K. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2013-10-15

    Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

  15. ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

    Directory of Open Access Journals (Sweden)

    VIKAS JAIN

    2013-10-01

    Full Text Available Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor ‘AHWR’ is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI, Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

  16. Electric shock and electrical fire specialty

    International Nuclear Information System (INIS)

    2011-02-01

    This book deals with electric shock and electrical fire, which is made up seven chapters. It describes of special measurement for electric shock and electrical fire. It mentions concretely about electrical fire analysis and precautionary measurement, electrical shock analysis cases, occurrence of static electricity and measurement, gas accident, analysis of equipment accident and precautionary measurement. The book is published to educate the measurement on electric shock and electrical fire by electrical safety technology education center in Korea Electrical Safety Corporation.

  17. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  18. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1977-01-01

    This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities

  19. Analysis of Electrical Safety Conditions Taking into Account Soil Conductivity Determined on the Basis of Fuzzy Logic

    OpenAIRE

    Manusov, V.Z.; Zaytseva, N.M.

    2017-01-01

    The goal of this work is to prove a possibility of determining soil parameters that influence its conductivity being the basis of grounding, step voltage and touch voltage calculation. This in its turn increases the safety level of electric equipment operation. The article is devoted to development of new, no conventional models of soil conductivity using the theory of fuzzy sets and fuzzy logic. The description of the solution includes the following sections: fuzzy models of specific electri...

  20. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets

    International Nuclear Information System (INIS)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    2014-01-01

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance and diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand

  1. 77 FR 43167 - Safety Zone; Electric Zoo Fireworks, East River, Randall's Island, NY

    Science.gov (United States)

    2012-07-24

    ... establishes a temporary safety zone on the waters of the East River in the vicinity of Randall's Island, NY.... This temporary safety zone will restrict vessels from a portion of the East River around the location... area is a temporary safety zone: all navigable waters of the East River within a 164-yard radius of the...

  2. Dungeness 'A' Nuclear Power Station. The findings of NII's assessment of Nuclear Electric's long term safety review

    International Nuclear Information System (INIS)

    1994-01-01

    The assessment is reported of Nuclear Electrics' Long Term Safety Reviews (LTSR) of the Dungeness A magnox reactors. The assessment was undertaken by the Health and Safety Executive's Nuclear Installations Inspectorate (NII) which is responsible for regulating the safety of nuclear installations in the United Kingdom. This was one of a programme of LTSRs for all the UK magnox reactors. The LTSR for each plant was proceeded by a Generic Issues programme. The results of both the LTSR and the Generic Issues programme have been used by NII in forming the conclusions of this assessment. Overall the safety case for Dungeness A is satisfactory for continued operation. A programme of additional modifications and inspections has been put in place which further enhances the safety justification. Reactor operations will continue to be monitored and regulated in accordance with the inspections required under the licensing arrangements. Provided these requirements and the agreed further analysis, improvements and inspections give satisfactory results it is expected that the station will be able to operate safely till each reactor is at least 30 years old. Beyond this point a further Periodic Safety Review will be required. (UK)

  3. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  4. Results of evaluation of periodic safety review for No. 1 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1994-01-01

    No. 1 plant in Mihama Power Station started the commercial power generation in November, 1970, and has continued the operation for more than 23 years. During this period, the counter measures to troubles, periodic inspections and the maintenance by the electric power company have been carried out. These states of No. 1 plant in Mihama Power Station for more than 23 years are to be recollected from the view-points of the comprehensive evaluation of operation experiences and the reflection of latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Mihama Power Station made by Kansai Electric Power Co., and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor is 43.3% on the average of about 23 years, but in the last 10 years, it was improved to 69.4%. In the last five years, the rate of occurrence of unexpected shutoff was 0.6 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, and radioactive waste management have been carried out properly. The work plan for preventing disasters was established, and the experience of troubles and the latest technological knowledge were well reflected to improve the safety. (K.I.)

  5. Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1981-07-01

    This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected

  6. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    Science.gov (United States)

    Deng, Zhi-De

    neural stimulation strength and focality of ECT and MST. Across and within ECT studies, there is marked unexplained variability in seizure threshold and clinical outcomes. It is not known to what extent the age and sex effects on seizure threshold are mediated by interindividual variation in neural excitability and/or anatomy of the head. Addressing this question, we examine the effect on ECT and MST induced field characteristics of the variability in head diameter, scalp and skull thicknesses and conductivities, as well as brain volume, in a range of values that are representative of the patient population. Variations in the local tissue properties such as scalp and skull thickness and conductivity affect the existing ECT configurations more than MST. On the other hand, the existing MST coil configurations show greater sensitivity to head diameter variation compared to ECT. Due to the high focality of MST compared to ECT, the stimulated brain volume in MST is more sensitive to variation in tissue layer thicknesses. We further demonstrate how individualization of the stimulus pulse current amplitude, which is not presently done in ECT or MST, can be used as a means of compensating for interindividual anatomical variability, which could lead to better and more consistent clinical outcomes. Part III of the dissertation aims to systemically investigate, both computationally and experimentally, the safety of TMS and ECT in patients with a deep-brain stimulation system, and propose safety guidelines for the dual-device therapy. We showed that the induction of significant voltages in the subcutaneous leads in the scalp during TMS could result in unintended and potentially dangerous levels of electrical currents in the DBS electrode contacts. When applying ECT in patients with intracranial implants, we showed that there is an increase in the electric field strength in the brain due to conduction through the burr holes, especially when the burr holes are not fitted with

  7. 75 FR 33515 - Federal Motor Vehicle Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and...

    Science.gov (United States)

    2010-06-14

    ... instrument used for measuring electrical resistance which consists of two main elements: (1) A DC generator... physiological impacts of direct current (DC) are less than those of alternating current (AC), this rule specifies lower electrical isolation requirements for certain DC components than for AC components. The...

  8. Cyclic features of the consequences from a postulated nuclear accident: a case study of the third level probabilistic safety assessment

    International Nuclear Information System (INIS)

    Xinhe, LIU; Homma, Toshimitsu

    2002-01-01

    In the third level probabilistic safety assessment, one of the three popular meteorological sequence sampling methods is cyclic sampling. The rationale of cyclic sampling is obviously that cyclic variation is the significant characteristics of the meteorological sequences and the health consequences resulting from a postulated nuclear accident are also remarkably of cyclic features. In this work, a set of time series was established for different health consequences using S3 source term and a whole year meteorological data. OSCAAR software system was utilized in the calculation of the health consequences. It is shown by the analysis that diurnal variation is remarked for all the kinds of health consequences, implying that cyclic sampling would be more effective than random sampling. The results also showed that there are not any dominating frequencies in the spectra of the consequences so that cyclic sampling might be incompetent to reduce the third level PSA to a satisfied level. Therefore, new schemes of meteorological sampling should be developed in the light of consideration of complex coupling of meteorological condition and population distribution rather than the consideration of meteorological condition alone

  9. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  10. Literature review of environmental qualification of safety-related electric cables: Summary of past work. Volume 1

    International Nuclear Information System (INIS)

    Subudhi, M.

    1996-04-01

    This report summarizes the findings from a review of published documents dealing with research on the environmental qualification of safety-related electric cables used in nuclear power plants. Simulations of accelerated aging and accident conditions are important considerations in qualifying the cables. Significant research in these two areas has been performed in the US and abroad. The results from studies in France, Germany, and Japan are described in this report. In recent years, the development of methods to monitor the condition of cables has received special attention. Tests involving chemical and physical examination of cable's insulation and jacket materials, and electrical measurements of the insulation properties of cables are discussed. Although there have been significant advances in many areas, there is no single method which can provide the necessary information about the condition of a cable currently in service. However, it is possible that further research may identify a combination of several methods that can adequately characterize the cable's condition

  11. The Development of the Safety Related Valve Class 1E Electrical Motor, the Target and the Results

    International Nuclear Information System (INIS)

    Saban, I.; Grgic, D.; Fancev, T.; Flegar, Lj.; Novosel, N.

    1996-01-01

    The development of the safety related valves class 1E electric motor is described. The design implemented in order to satisfy the 1E requirements, and a way in which related 1E standards are addressed, are shown. The development was realized in three stages. In the first stage eight motorettes were made and the insulation system was tested. In the second stage the motor was produced in accordance with producer's prototype QA program. In the third stage part of the testing of the produced motor was made. The results of the testing, finished until now, show that produced motor, as well as similarly produced motors, is able to perform its safety function in the design bases accident conditions as requested by class 1E requirements. The rest of the testing (LOCA test) can be made on the same or similar motor in the future. (author)

  12. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  13. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  14. Safety verification for the ECCS driven by the electrically 4 trains during LBLOCA reflood phase using ATLAS

    International Nuclear Information System (INIS)

    Park, Yusun; Park, Hyun-sik; Kang, Kyoung-ho; Choi, Nam-hyun; Min, Kyoung-ho; Choi, Ki-yong

    2014-01-01

    Highlights: • Safety improvement by adopting 4 train emergency core cooling system was validated experimentally. • General thermal hydraulic behaviors of the system during LBLOCA reflood phase were successfully demonstrated. • Key parameters such as the liquid levels, the PCTs, the quenching time, and the ECC bypass ratios were investigated. • Asymmetric effects of the different combination of safety injection were negligible during the reflood period. - Abstract: The APR1400 is equipped with four safety injection pumps driven by two emergency diesel generators. However, the design has been changed so that the four safety injection pumps are driven by 4 emergency diesel generators during the design certification process from the U.S. NRC. Thus, 4 safety injection pumps (SIPs) are completely independent electrically and mechanically and three safety injection pumps are available in a single failure condition. This design change could have a certain effects on the thermal-hydraulic phenomenon occurring in the downcomer region during the late reflood phase of a large break loss of coolant accident (LBLOCA). Thus, in this study, a verification experiment for the reflood phase of a LBLOCA was performed to evaluate the core cooling performance of the 4 train emergency core cooling system (ECCS) with an assumption of a single failure. And the different combinations of three SIPs positions were tested to investigate the asymmetric effects on the reactor core cooling performance. The overall experimental results revealed the typical thermal–hydraulic trends expected to occur during the reflood phase of a large-break LOCA scenario for the APR1400. Experiment with the injection of three SIPs showed a faster core quenching time and lower bypass ratio than that of the case in which two SIPs were injected. The RPV wall temperature distributions showed the similar trend in spite of the different SIP combinations

  15. Safety

    International Nuclear Information System (INIS)

    2001-01-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  16. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). This sixth supplement of NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. These areas are performance testing, reactor cooling hydraulics, loose parts monitoring, and electric power systems

  17. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  18. A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest

    Directory of Open Access Journals (Sweden)

    Nantian Huang

    2016-09-01

    Full Text Available The prediction accuracy of short-term load forecast (STLF depends on prediction model choice and feature selection result. In this paper, a novel random forest (RF-based feature selection method for STLF is proposed. First, 243 related features were extracted from historical load data and the time information of prediction points to form the original feature set. Subsequently, the original feature set was used to train an RF as the original model. After the training process, the prediction error of the original model on the test set was recorded and the permutation importance (PI value of each feature was obtained. Then, an improved sequential backward search method was used to select the optimal forecasting feature subset based on the PI value of each feature. Finally, the optimal forecasting feature subset was used to train a new RF model as the final prediction model. Experiments showed that the prediction accuracy of RF trained by the optimal forecasting feature subset was higher than that of the original model and comparative models based on support vector regression and artificial neural network.

  19. Internal Arc: People safety in the electrical wiring; Arco interno: Seguridad de las personas ante instalaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Inchausti, J. M.

    2009-07-01

    The aim of this article is to describe the internal arc phenomenon, an extremely fast, almost explosive and unattended process of transformation form an initial electric power to the generation of a pressure and heat wave inside the medium its produced its consequences for safety, current methods of limiting them and current regulations in general for equipment used in medium-voltage electrical distribution networks. Taking into account that this type of equipment is found thought the distribution network in both public buildings and unrestricted access areas, safety (of operators and the general public) must be taken into account in the design of equipment and installations to minimize the risk of internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which the manufacturer has to takes steps to minimize the risks of an internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which an internal arc occurring, it is understood to be vitally important that users, installers and designers of Medium Voltage installations are familiar with the installation conditions stated by the manufacturer and thus avoid risks. (Author) 14 refs.

  20. Safety techniques of lightning rod and static electricity in oil tanks and oil trucks

    International Nuclear Information System (INIS)

    Ilievska, Tatjana

    1999-01-01

    In this article the ways and examples of lightning rod installation of small tanks for storage of both oil and oil derivates used by petrol stations are presented (an example of some petrol stations in the wider region in Bitola is given ). Also, a lightning rod protection of big tanks and terminals as well as protection of static electricity of tank trucks during transportation of fuel is represented. Special review is given to the protection of static electricity during transforming (decanting) of the fuel. (Author)

  1. Safety Evaluation Report related to the operation of Wolf Creek Generating Station, Unit No. 1. Docket No. STN 50-482. Kansas Gas and Electric Company, et al

    International Nuclear Information System (INIS)

    1982-08-01

    Information is presented concerning site characteristics; design criteria for structures, systems, and components; engineered safety features; instrumentation and controls; conduct of operations; accident analysis; report of the Advisory Committee on Reactor Safeguards; and TMI-2 requirements

  2. Research and Application of Hybrid Forecasting Model Based on an Optimal Feature Selection System—A Case Study on Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yunxuan Dong

    2017-04-01

    Full Text Available The process of modernizing smart grid prominently increases the complexity and uncertainty in scheduling and operation of power systems, and, in order to develop a more reliable, flexible, efficient and resilient grid, electrical load forecasting is not only an important key but is still a difficult and challenging task as well. In this paper, a short-term electrical load forecasting model, with a unit for feature learning named Pyramid System and recurrent neural networks, has been developed and it can effectively promote the stability and security of the power grid. Nine types of methods for feature learning are compared in this work to select the best one for learning target, and two criteria have been employed to evaluate the accuracy of the prediction intervals. Furthermore, an electrical load forecasting method based on recurrent neural networks has been formed to achieve the relational diagram of historical data, and, to be specific, the proposed techniques are applied to electrical load forecasting using the data collected from New South Wales, Australia. The simulation results show that the proposed hybrid models can not only satisfactorily approximate the actual value but they are also able to be effective tools in the planning of smart grids.

  3. Electric and mechanical basic parameters to elaborate a process for a technical verification of safety related design modifications

    International Nuclear Information System (INIS)

    Lamuno Fernandez, Mercedes; La Roca Mallofre, GISEL; Bano Azcon, Alberto

    2010-01-01

    This paper presents a systematic process to check a design in order to achieve all the requirements that regulations demand. Nuclear engineers must verify that a design is done according to the safety requirements, and this paper presents how we have elaborated a process to improve the technical project verification. For a faster, better and easier verification process, here we summarize how to select the electric and mechanical basic parameters, which ensure the correct project verification of safety related design modifications. This process considers different aspects, which guarantee that the design preserves the availability, reliability and functional capability of the Structures, Systems and Components needed to operate the Nuclear Power Station with security. Electric and mechanical reference parameters are identified and discussed as well as others related ones, which are critical to safety. The implementation procedure to develop tasks performed in any company that has a quality plan is a requirement. On the engineering business, it is important not to use the personal criteria to do a technical analysis of a project; although, many times it is the checker's criteria and knowledge responsibility to ensure the correct development of a design modification. Then, the checker capabilities are the basis of the modification verification. This kind of procedure's development is not easy, because in an engineering project with important technical contents, there are multiple scenarios, but lots of them have a common basis. If we can identify the technical common basis of these projects, we will make good project verification but there are many difficulties we can encounter along this process. (authors)

  4. Challenges for the nuclear safety of the deregulation of electricity markets

    International Nuclear Information System (INIS)

    2001-01-01

    Eurosafe 2000 was organised around two round tables on the first day and four seminars on the second day. The first round table dealt with general aspects of deregulation including the economic constraints and the special challenges arising during transition from regulated to deregulated structures. The second round table focussed on technical and organisational safety issues which are directly or indirectly related to the changes introduced by deregulation. The four seminars hold in order to provide opportunities for comparing experiences and learning about recent activities of IPSN, GRS and their partners in the European Union and Eastern Europe: Seminar 1 (Nuclear installation safety, assessment and analysis): assessment of the flooding incident at the Blayais nuclear power plant; PSA data base, comparison of the French and German approach; assessment of the Balakovo fire probabilistic study and elaboration of a guide for reviewing fire PSA; comprehensive technical assessment of an advanced German PWR by PSA - objectives and main results; PSA approach for the safety assessment of low-power and shutdown states; correlation of initiating events with the PSA level-2 results; safety assessment for fission products tests in the Phebus reactor; use of NPP simulators for applied human factor studies; assessment of the 'deterministic realistic method' applied to large LOCA analysis; assessment of the feasibility of an improvement programme enabling operation of units 3 and 4 of Kozloduy nuclear power plant. Seminar 2 (nuclear installation safety, research): PHEBUS 2K project on severe accidents; current status of the COCOSYS development; fission product modeling in ASTEC; Euratom Framework Programme (FP) research in reactor safety: main achievements of FP- 4 (1994-1998), some preliminary results of FP-5 (1998-2002) and prospects for beyond 2002; development of coupled systems of 3D neutronics and fluid-dynamic system codes and their application for safety analyses

  5. European type NPP electric power and vent systems. For safety improvement and proposal of international center

    International Nuclear Information System (INIS)

    Sugiyama, Kenichiro

    2011-01-01

    For prevention of reactor accidents of nuclear power plants, multiplicity and redundancy of emergency power would be most important. At station blackout accident, European type manually operated vent operation could minimize release amount of radioactive materials and keep safety of neighboring residents. After Fukushima Daiichi accident, nuclear power plants could not restart operation even after completion of periodical inspection. This article introduced European type emergency power and vent systems in Swiss, Sweden and Germany with state of nuclear power phaseout for reference at considering to upgrade safety and accident mitigation measures for better understanding of the public. In addition, it would be important to recover trust of nuclear technology to continue to disseminate latest information on new knowledge of accident site and decontamination technologies to domestic and overseas people. As its implementation, establishment of Fukushima international center was proposed. (T. Tanaka)

  6. Technical specifications, Vogtle Electric Generating Plant, Unit No. 1 (Docket No. 50-424): Appendix ''A'' to license No. NPF-61

    International Nuclear Information System (INIS)

    1987-01-01

    This technical specifications report presents information concerning the Vogtle Electric Generating Plant in the following areas: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  7. Metallurgical features of the formation of a solid-phase metal joint upon electric-circuit heating

    Science.gov (United States)

    Latypov, R. A.; Bulychev, V. V.; Zybin, I. N.

    2017-06-01

    The thermodynamic conditions of formation of a joint between metals using the solid-phase methods of powder metallurgy, welding, and deposition of functional coatings upon electric-current heating of the surfaces to be joined are studied. Relations are obtained to quantitatively estimate the critical sizes of the circular and linear active centers that result in the formation of stable bonding zones.

  8. High temperature conductance mapping for correlation of electrical properties with micron-sized chemical and microstructural features

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Jacobsen, Torben

    2016-01-01

    High temperature AC conductance mapping is a scanning probe technique for resolving local electrical properties in microscopic areas. It is especially suited for detecting poorly conducting phases and for ionically conducting materials such as those used in solid oxide electrochemical cells...

  9. Safety evaluation report related to steam generator repair at H.B. Robinson Steam Electric Plant, Unit No. 2. Docket No. 50-261

    International Nuclear Information System (INIS)

    1983-11-01

    A Safety Evaluation Report was prepared for the H.B. Robinson Steam Electric Plant Unit No. 2 by the Office of Nuclear Reactor Regulation. This report considers the safety aspects of the proposed steam generator repair at H.B. Robinson Steam Electric Plant Unit No. 2. The report focuses on the occupational radiation exposure associated with the proposed repair program. It concludes that there is reasonable assurance that the health and safety on the public will not be endangered by the conduct of the proposed action, such activities will be conducted in compliance with the Commission's regulations, and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public

  10. Assessing safety risk in electricity distribution processes using ET & BA improved technique and its ranking by VIKOR and TOPSIS models in fuzzy environment

    OpenAIRE

    S. Rahmani; M. Omidvari

    2016-01-01

    Introduction: Electrical industries are among high risk industries. The present study aimed to assess safety risk in electricity distribution processes using  ET&BA technique and also to compare with both VIKOR & TOPSIS methods in fuzzy environments.   Material and Methods: The present research is a descriptive study and ET&BA worksheet is the main data collection tool. Both Fuzzy TOPSIS and Fuzzy VIKOR methods were used for the worksheet analysis.   Result: Findi...

  11. Safety Evaluation Report related to the renewal of the operating license for the General Electric-Nuclear Test Reactor (GE-NTR) (Docket No. 50-73)

    International Nuclear Information System (INIS)

    1984-09-01

    This Safety Evaluation Report for the application filed by the General Electric Company (GE) for a renewal license number R-33 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by GE and is located in Pleasanton, California. The staff concludes that the reactor can continue to be operated by GE without endangering the health and safety of the public

  12. Test to prove the resistance to incidents of components of electric and control systems in the safety containment of nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The marginal program for proving the suitability of safety-relevant components of electric and control systems in the safety containment during a loss-of-coolant incident is described. Variant test conditions are established in the component-specific test program. Special attention has been paid to the representation of the course of pressure and temperature for the performance test of the valve room of the Nuclear Power Plant Philippsburg 2. (DG) [de

  13. High temperature conductance mapping for correlation of electrical properties with micron-sized chemical and microstructural features

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Karin Vels, E-mail: karv@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Norrman, Kion [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jacobsen, Torben [Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Lyngby (Denmark)

    2016-11-15

    High temperature AC conductance mapping is a scanning probe technique for resolving local electrical properties in microscopic areas. It is especially suited for detecting poorly conducting phases and for ionically conducting materials such as those used in solid oxide electrochemical cells. Secondary silicate phases formed at the edge of lanthanum strontium manganite microelectrodes are used as an example for correlation of chemical, microstructural and electrical properties with a spatial resolution of 1–2 µm to demonstrate the technique. The measurements are performed in situ in a controlled atmosphere high temperature scanning probe microscope at 650 °C in air. - Highlights: • A high temperature SPM technique for conductance measurements was developed. • Two examples from microelectrodes were used for demonstration. • Conductance mapping at 650 °C revealed poorly conducting secondary phases. • The secondary phases could be correlated with microstructure and chemistry.

  14. Market role, profitability and competitive features of thermal power plants in the Swedish future electricity market with high renewable integration

    OpenAIRE

    Llovera Bonmatí, Albert

    2017-01-01

    The Swedish energy market is currently undergoing a transition from fossil fuels to renewable energy sources, including a potential phase-out of nuclear power. The combination of a phase-out with expansion of intermittent renewable energy leads to the issue of increased fluctuations in electricity production. Energy-related organizations and institutions are projecting future Swedish energy scenarios with different possible transition pathways. In this study the market role of thermal power p...

  15. A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles

    International Nuclear Information System (INIS)

    Wang, Limei; Cheng, Yong; Zhao, Xiuliang

    2015-01-01

    Highlights: • Find the influence of in-parallel battery cell variations on battery pack capacity. • Redefine the battery module capacity with considering ANY battery cell safety. • Discuss the safety end-of-charge voltage for an aged in-parallel battery module. • Build an algorithm for battery pack capacity estimation with the charge curve. • Bench tests are used to verify the validity of the proposed algorithm. - Abstract: In electric vehicles (EVs), several battery cells are connected in parallel to establish a battery module. The safety of the battery module is influenced by inconsistent battery cell performance which causes uneven currents flowing through internal in-parallel battery cells. A battery cell model is developed based on the Matlab–Simscape platform and validated by tests. The battery cell model is used to construct simulation models for analyzing the effect of battery cell inconsistency on the performance of an in-parallel battery module. Simulation results indicate that the state-of-charge (SOC) of a battery module cannot characterize the SOC of ALL the internal battery cells in the battery module. When the battery management system (BMS) controls the end-of-charge (EOC) time according to the SOC of a battery module, some internal battery cells are over-charged. To guarantee the safety of ALL battery cells through the whole battery life, a safety EOC voltage of the battery module should be set according to the number of battery cells in the battery module and the applied charge current. Simulations reveal that the SOC of the “normal battery module” is related to its charge voltage when aged battery module is charged to the EOC voltage. Then, a function describing their relationship is established. Both the capacity and the charge voltage shift are estimated by comparing the measured voltage-to-capacity curve with the standard one provided by the manufactory. A battery pack capacity estimation method is proposed according to the SOC

  16. Literature review of environmental qualification of safety-related electric cables: Summary of past work. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

    1996-04-01

    This report summarizes the findings from a review of published documents dealing with research on the environmental qualification of safety-related electric cables used in nuclear power plants. Simulations of accelerated aging and accident conditions are important considerations in qualifying the cables. Significant research in these two areas has been performed in the US and abroad. The results from studies in France, Germany, and Japan are described in this report. In recent years, the development of methods to monitor the condition of cables has received special attention. Tests involving chemical and physical examination of cable`s insulation and jacket materials, and electrical measurements of the insulation properties of cables are discussed. Although there have been significant advances in many areas, there is no single method which can provide the necessary information about the condition of a cable currently in service. However, it is possible that further research may identify a combination of several methods that can adequately characterize the cable`s condition.

  17. The role of specific features of the electronic structure in electrical resistivity of band ferromagnets Co2Fe Z ( Z = Al, Si, Ga, Ge, In, Sn, Sb)

    Science.gov (United States)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-05-01

    The electrical resistivity ρ( T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev's Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ( T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ( T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ≪ T C).

  18. A study on the condition monitoring for safety-related electric cables

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Hwan; Ahn, S. P.; Yeo, S. M.; Kang, Y. S.; Ahn, S. M.; Kim, I. S.; Kim, D. S.; Kang, J. S. [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2002-03-15

    In this report, we have studied compositions and characteristics of various types of insulation material for cables in Nuclear Power Plant. We arrange relationship with condition monitoring methods. Also, we propose new condition monitoring method using third harmonic frequency. We test the proposed method with CV cables. We also describe about feature of condition monitoring such as application, theory, characteristic, thereby other engineer can confirm to advantage and disadvantage for each method, and possibly choice adequate condition monitoring method for various types of cables.

  19. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  20. Fire safety requirements for electric cables and lines in deep coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1982-01-07

    In the case of a mine fire, an additional hazard from combustible cable material is likely to arise only in those few areas of the mine where special circumstances might help the fire to spread along the cables. It is more important to preserve the functional integrity of cables in the outbye roads which are affected by fire gases then at the actual seat of the fire. Mine cables with better fire-resistant properties should be made from materials which do not propagate fires, do not release burning drops, develop the lowest possible fume density and/or will permanently resist gas temperatures of 200 to 300/sup 0/C. Fire test specifications should be defined for such special cables, based on corresponding draft VDE directives. In proposing these measures the proviso is made then improvement in safety can be clearly demonstrated.

  1. DESIGN SAFETY PROBLEMS OF NUCLEAR REACTORS IN SPACE FOR ELECTRICAL POWER

    Energy Technology Data Exchange (ETDEWEB)

    Pickler, D A

    1963-06-15

    A general treatment is presented of some of the problems in the design safety of reactors which are to be operated in space. The basic requirements of these reachigh temperatures. The usual concept of a space reactor is described briefly, and the hazards of an assumed unmanned vehicle with an enriched-U-fueled reactor are examined during its launching, orbit, and reentry. Graphs are given for the dose vs distance downwind for an excursion of 100 Mw-sec, for the activity vs time after shutdown of a reactor which has been operated for 5 yr at 100 kw(t), and for the altitude vs orbital lifetime. Apparent conflicts between the basic requirements are discussed. (D.L.C.)

  2. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its seven previous supplements were issued

  3. Safety-evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3. Docket No. 50-382

    International Nuclear Information System (INIS)

    1983-06-01

    Supplement 5 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its four previous Supplements were issued

  4. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Suppl.6

    International Nuclear Information System (INIS)

    1984-06-01

    Supplement 6 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its five previous supplements were issued

  5. Risk and safety perception on urban and rural roads: Effects of environmental features, driver age and risk sensitivity.

    Science.gov (United States)

    Cox, Jolene A; Beanland, Vanessa; Filtness, Ashleigh J

    2017-10-03

    The ability to detect changing visual information is a vital component of safe driving. In addition to detecting changing visual information, drivers must also interpret its relevance to safety. Environmental changes considered to have high safety relevance will likely demand greater attention and more timely responses than those considered to have lower safety relevance. The aim of this study was to explore factors that are likely to influence perceptions of risk and safety regarding changing visual information in the driving environment. Factors explored were the environment in which the change occurs (i.e., urban vs. rural), the type of object that changes, and the driver's age, experience, and risk sensitivity. Sixty-three licensed drivers aged 18-70 years completed a hazard rating task, which required them to rate the perceived hazardousness of changing specific elements within urban and rural driving environments. Three attributes of potential hazards were systematically manipulated: the environment (urban, rural); the type of object changed (road sign, car, motorcycle, pedestrian, traffic light, animal, tree); and its inherent safety risk (low risk, high risk). Inherent safety risk was manipulated by either varying the object's placement, on/near or away from the road, or altering an infrastructure element that would require a change to driver behavior. Participants also completed two driving-related risk perception tasks, rating their relative crash risk and perceived risk of aberrant driving behaviors. Driver age was not significantly associated with hazard ratings, but individual differences in perceived risk of aberrant driving behaviors predicted hazard ratings, suggesting that general driving-related risk sensitivity plays a strong role in safety perception. In both urban and rural scenes, there were significant associations between hazard ratings and inherent safety risk, with low-risk changes perceived as consistently less hazardous than high

  6. Human factors research in Central Research Institute of Electric Power Industry creation of safety culture

    International Nuclear Information System (INIS)

    Horie, Yasuo

    2002-01-01

    To prevent accident of nuclear power plant, Human Factors Center was built in the Central Research Institute of Electric Power Industry in July 1987. It developed an evaluation method of human error cases and an application method of human factors information. Now it continues analysis and application of human factors information, development of training/work support tools and research/experiment of human behavior. Japan-Human Performance Evaluation System (J-HPES) was developed as an analytical system for analysis and evaluation of human factors related to the trouble and for using the result as the common property by storage the analytical results. J-HPES has a standard procedure consisted of collecting and analyzing data and proposing the countermeasures. The analytical results are arranged by 4 kinds of charts by putting into the form of a diagram. Moreover, it tries to find the causes with indirect and potential causes. Two kinds of materials, Caution Report and Human Factors Precept by means of Illustrations, are published. People can gain access to HFC database by URL http://criepi.denken.or.jp/CRIEPI/HFC/DB. To prevent these accidents, creation of human factors culture has been required. Five kinds of teaching materials and the training method are developed. (S.Y.)

  7. The discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety

    International Nuclear Information System (INIS)

    Recoskie, Bryan J; Chronik, Blaine A; Scholl, Timothy J

    2009-01-01

    Peripheral nerve stimulation (PNS) resulting from electric fields induced from the rapidly changing magnetic fields of gradient coils is a concern in MRI. Nerves exposed to either electric fields or changing magnetic fields would be expected to display consistent threshold characteristics, motivating the direct application of electric field exposure criteria from the literature to guide the development of gradient magnetic field exposure criteria for MRI. The consistency of electric and magnetic field exposures was tested by comparing chronaxie times for electric and magnetic PNS curves for 22 healthy human subjects. Electric and magnetic stimulation thresholds were measured for exposure of the forearm using both surface electrodes and a figure-eight magnetic coil, respectively. The average chronaxie times for the electric and magnetic field conditions were 109 ± 11 μs and 651 ± 53 μs (±SE), respectively. We do not propose that these results call into question the basic mechanism, namely that rapidly switched gradient magnetic fields induce electric fields in human tissues, resulting in PNS. However, this result does motivate us to suggest that special care must be taken when using electric field exposure data from the literature to set gradient coil PNS safety standards in MRI.

  8. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  9. Using an Animated Case Scenario Based on Constructivist 5E Model to Enhance Pre-Service Teachers' Awareness of Electrical Safety

    Science.gov (United States)

    Hirca, Necati

    2013-01-01

    The objective of this study is to get pre-service teachers to develop an awareness of first aid knowledge and skills related to electrical shocking and safety within a scenario based animation based on a Constructivist 5E model. The sample of the study was composed of 78 (46 girls and 32 boys) pre-service classroom teachers from two faculties of…

  10. The current CEA/DRN safety approach for the design and the assessment of non-electrical applications of nuclear heat

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Costa, M.

    2000-01-01

    This paper presents the basis of the safety approach currently implemented by the Commissariat a l'Energie Atomique - Nuclear Reactor Directorate (CEA/DRN), both for the design and the assessment of innovative systems and future nuclear installations. It is considered that the described approach is applicable to the plants built for non-electrical applications of nuclear heat. This is typically the case of Nuclear Desalination Installations. This approach is the result of the experience maturated, within the context of the CEA/DRN Innovative Programme, through practical applications over several future concepts (both fission and fusion plants). The background of this experience is structured coherently with the European Safety Authorities recommendations, the European Utilities Requirements (EUR) and the ''fundamental safety objectives'' defined by the IAEA. The Defence In Depth principle and its application, by means, among others, of the barrier concept, remains the basis of the safety design process of future nuclear installations. Its adequacy is checked through the safety assessment. The methodology for Lines of Defence (LOD) implementation as well as the one for the LOD architecture assessment is shown and motivated. The document shows that the clear and unambiguous definition of the safety approach provides an essential base for the organisation of the design tasks, being sure that the safety aspects are correctly taken into account and implemented, and for an adequate safety assessment of the final design, both from qualitative point of view as well as for the quantitative safety analysis. (author)

  11. SAFETY

    CERN Multimedia

    C. Schaefer and N. Dupont

    2013-01-01

      “Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...

  12. Electric Substations

    Data.gov (United States)

    Department of Homeland Security — Substations. Substations are facilities and equipment that switch, transform, or regulate electric voltage. The Substations feature class includes taps, a location...

  13. The main features of electrical stimulation of biological tissues by implant electrodes: study from engineering perspective and equipment development to produce

    International Nuclear Information System (INIS)

    Suarez Bagnasco, D.; Alvarez Alonso, J.; Suarez Antola, R.

    2004-08-01

    The main features of electrical stimulation of biological tissues by implant electrodes are studied.These electrodes are applied in neural prostheses and cardiac pacing.Threshold phenomena are stressed and some aspects related with implant electrode design are discussed. A fairly through theoretical research about the optimal pulse shape for electrical stimulation of biological tissues is done.The excitation functional is introduced as a criterium to identify threshold pulses of electric current. We obtain the optimal pulse shapes that minimize the energy dissipated in tissues, or the energy taken by the load seen by the pulse generator, amongst other criteria.We show how these pulse shapes can be determined from experimentally measured strength-duration (S-D) curves using rectangular pulses of current. The development of a prototype of a new equipment is described.The equipment may be used to measure S-D curves and with this information it is able to syntetize the abovementioned optimal pulse shapes. The top-down design process is presented, involving both hardware and software.The construction and assembling of the prototype, as well as the implementation of software are described.Some testing and measures with the prototype, including test with biological tissues are described and assessed

  14. Safety

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    Aspects of fission reactors are considered - control, heat removal and containment. Brief descriptions of the reactor accidents at the SL-1 reactor (1961), Windscale (1957), Browns Ferry (1975), Three Mile Island (1979) and Chernobyl (1986) are given. The idea of inherently safe reactor designs is discussed. Safety assessment is considered under the headings of preliminary hazard analysis, failure mode analysis, event trees, fault trees, common mode failure and probabalistic risk assessments. These latter can result in a series of risk distributions linked to specific groups of fault sequences and specific consequences. A frequency-consequence diagram is shown. Fatal accident incidence rates in different countries including the United Kingdom for various industries are quoted. The incidence of fatal cancers from occupational exposure to chemicals is tabulated. Human factors and the acceptability of risk are considered. (U.K.)

  15. Memory effects on mechanically stimulated electric signal; diversification of stimuli impact on material memory and comments on the observed features

    Science.gov (United States)

    Kyriazis, Panagiotis; Stavrakas, Ilias; Anastasiadis, Cimon; Triantis, Dimos; Stonham, John

    2010-05-01

    Memory is defined as the ability of marble and generally of brittle geomaterials to retain 'imprints' from previous treatments and to reproduce information about these treatments under certain conditions, by analogy to the memory of human beings. Memory effects have been observed in the evolution of a variety of physical properties like the acoustic emissions of brittle materials during fracture. The existence of memory effects for the mechanically stimulated electric signal, either by Pressure (PSC) or by Bending (BSC), is examined in this work, alongside with an attempt to distinguish between the two different manifestations of 'memory' based on the electrification mechanism that is triggered at different levels of externally applied load on samples. Having identified two main mechanisms (i.e. the dynamic and the cracking) and following the human memory model, we suggest the separation of memory of a material specimen into two levels i.e. the short or temporary and long or permanent memory. For the observation and analysis of the short memory of brittle materials we have conducted experiments using the PSC technique in marble specimens. The materials are imposed to cyclic stepwise loading of the same level, scheme and direction (axial stress - unchanged position of material) in order to comply with the conditions that are proposed as suitable for memory effects study by other researchers. We have also conducted experimental tests of cyclic high level stepwise loading on amphibolite rock specimens in order to verify and study the existence of permanent memory effects. Modelling the signal recordings and studying the effects of memory on the signals, we have identified certain trends manifestation for the two types of memory that are summarised to the following points. (a) Both types of memory influence the PSC peaks evolution (exponential decrease) in cyclic loadings of the same level. (b) Permanent memory cannot be erased and affects PSC signal permanently and

  16. Main features of the unit 1-4 building complex, Kozloduy NPP in respect to seismic safety

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, M; Boncheva, H; Stafanov, D [Central Laboratory for Seismic Mechanics and Earthquake Engineering, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    1993-07-01

    The Units 1 and 2 of Kozloduy NPP were originally designed to resist a IV-V degree MSK earthquake. They have been subsequently upgraded for a VII degree earthquake. Since that structure basically do not meet the safety requirements to resist the new earthquake with a maximum acceleration of 0.2 g and very broad spectrum. The performed analyses are clearly pointing out that an upgrading for the new earthquake level is possible. The problems common for all the structures of Kozloduy NPP are summarized in this presentation.

  17. Main features of the unit 1-4 building complex, Kozloduy NPP in respect to seismic safety

    International Nuclear Information System (INIS)

    Kostov, M.; Boncheva, H.; Stafanov, D.

    1993-01-01

    The Units 1 and 2 of Kozloduy NPP were originally designed to resist a IV-V degree MSK earthquake. They have been subsequently upgraded for a VII degree earthquake. Since that structure basically do not meet the safety requirements to resist the new earthquake with a maximum acceleration of 0.2 g and very broad spectrum. The performed analyses are clearly pointing out that an upgrading for the new earthquake level is possible. The problems common for all the structures of Kozloduy NPP are summarized in this presentation

  18. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    Science.gov (United States)

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  19. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Samuel Mucio-Ramírez

    2017-01-01

    Full Text Available Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n=36 due to the single dose or five doses (given every 24 hours of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71. Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71 nor due to the delay after the last stimulation dose (p = 0.96. Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  20. Study of long-term loss of all AC power supply sources for VVER-1000/V320 in connection with application of new engineering safety features for SAMG

    International Nuclear Information System (INIS)

    Borisov, Evgeni; Grigorov, Dobrin; Mancheva, Kaliopa

    2013-01-01

    Highlights: • In this study we presented analysis for a new SAMG approach. • The approach is applicable for all PWR reactors from 2nd generation. • We investigated two scenarios with total black out. • The RELAP/MOD 3.2 computer code is used in performing the analyses. - Abstract: This paper presents the results of analysis for application of a new Severe Accident Management Guideline (SAMG) approach which is specifically applied for VVER-1000/B320 reactor installations. In general, this innovative approach is fully applicable for all the pressurized water reactors from second generation. The purposes of the analysis for the new SAMG approach application are as follows: • To represent suggestions for new engineering safety features application for SAMG strategies. • To assess the applicability of the new engineering safety features and means for SAMG strategies in case of loss of all off-site power supply sources for VVER-1000/B320 reactor installations. • To represent important operator actions and to analyse the effectiveness of these actions for accidents management in compliance with the new approach. • The RELAP5/MOD3.3 computer code has been used in performing the analyses in a VVER-1000 Nuclear Power Plant (NPP) model. The input data deck for the analysis is optimized, verified and validated

  1. U.S. ALMR safety approach and licensing status

    International Nuclear Information System (INIS)

    Herczeg, J.W.; Hardy, R.W.; Gyorey, G.L.

    1992-01-01

    The Advanced Liquid Metal Cooled Reactor (ALMR) in the United States is based on the Power Reactor Innovative Small Module (PRISM) concept originated by the General Electric Company (GE). This concept features a compact modular system suitable for factory fabrication, and a high degree of passive and natural safety characteristics. The safety approach emphasizes accident prevention, backed up by accident mitigation. First-round safety evaluations by U.S. regulators have found that the design provides passive, natural, and other desirable features enhancing the safety of the power plant. A Preapplication Safety Evaluation Report (PSER) from the U.S. Nuclear Regulatory Commission (NRC) is anticipated in early 1993. (author)

  2. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  3. Numerical Study of Thermo-Fluid Features of Electrically Conducting Fluids in Tube Bank Heat Exchangers Exposed to Uniform Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Ho; Kang, Namcheol [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-10-15

    When an electrically conducting fluid flows through a staggered tube bank, the heat transfer and fluid flow features are changed by the externally introduced magnetic field. This study provides a numerical investigation of this phenomenon. Heat and fluid flows are investigated for unsteady laminar flows at Reynolds numbers of 50 and 100 with the Hartmann number gradually increasing from zero to 100. As the Hartmann number increases, and owing to the effects of the introduced magnetic field, the velocity boundary layer near the tube wall is thinned, the flow separation is delayed downstream, and the shrinkage of a recirculation zone formed near the rear side is observed. Based on these thermo-fluid deformations, the resulting changes in the local and average Nusselt number are investigated.

  4. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2 (Docket Nos. 50-387 and 50-388). Suppl.6

    International Nuclear Information System (INIS)

    1984-03-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the applicant and/or licensee) and the Allegheny Electric Cooperative, Inc. (co-applicant) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. This supplement to NUREG-0776 addresses the remaining issues that required resolution before licensing operation of Unit 2 and closes them out

  5. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  6. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-10-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This first supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued and provides the Advisory Committee on Reactor Safeguards letter dated August 13, 1985

  7. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1985-06-01

    The Safety Evaluation Report for the application filed by Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, as applicants and owners, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Burke County, Georgia, approximately 41.5 km (26 mi) south-southeast of Augusta, and on the Savannah River. Subject to favorable resolution of the items discussed in this report, the staff concludes that the applicant can operate the facility without endangering the health and safety of the public

  8. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-05-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This second supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open and confirmatory items

  9. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement No. 3

    International Nuclear Information System (INIS)

    1986-08-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for a license to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, and Supplement 2 was issued in May 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This third supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new open items

  10. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1986-12-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-0737 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, and Supplement 3 was issued in August 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fourth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. This supplement also discusses some new items

  11. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, and Supplement 4 was issued in December 1986. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This fifth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued

  12. Safety evaluation report. Fast Flux Test Facility. Project No. 448

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information on the safety of the FFTF Reactor is presented under the following chapter headings: site characteristics; design of structures, components, equipment, and systems; reactor; reactor coolant system and connected systems; engineered safety features; electric power; auxiliary systems; radioactive waste management systems; radiation protection; conduct of operations; initial test programs; accident analysis; and quality assurance.

  13. Safety evaluation report. Fast Flux Test Facility. Project No. 448

    International Nuclear Information System (INIS)

    1978-01-01

    Information on the safety of the FFTF Reactor is presented under the following chapter headings: site characteristics; design of structures, components, equipment, and systems; reactor; reactor coolant system and connected systems; engineered safety features; electric power; auxiliary systems; radioactive waste management systems; radiation protection; conduct of operations; initial test programs; accident analysis; and quality assurance

  14. Underwater Electrical Safety Practices

    Science.gov (United States)

    1976-01-01

    Raferty, E.B., et al.,"Disturbances of Heart Rhythm Pro- duced by 50 Hz Leakage Current in Human Subjects," Cardio - vascular Research, Vol. 9, 1975...L 0 hii ccc 0%0 ha U.,- 1CCILJ I0 0. L N I- I 2o Cz fu*co Tc w .9000 uU ULVx C 0 L Xl 00 -Z 4 LU W UlCC cn 10. tit 0 000 coo Z CN 4- N’N hiit ww o~c

  15. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results to date of the staff's evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  16. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    Science.gov (United States)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  17. Controlling Electrical Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    ...). In general, OSHA's electrical standards are based on the National Fire Protection Associations Standard NFPA 70E, Electrical Safety Requirements for Employee Workplaces, and in turn, from the National Electrical Code (NEC...

  18. Advances in global development and deployment of small modular reactors and incorporating lessons learned from the Fukushima Daiichi accident into the designs of engineered safety features of advanced reactors

    International Nuclear Information System (INIS)

    Hadid Subki, M.; )

    2014-01-01

    The IAEA has been facilitating the Member States in incorporating the lessons-learned from the Fukushima Dai-ichi Accident into the designs of engineered safety features of advanced reactors, including small modular reactors. An extended assessment is required to address challenges for advancing reactor safety in the new evolving generation of SMR plants to preserve the historic lessons in safety, through: assuring the diversity in emergency core cooling systems following loss of onsite AC power; ensuring diversity in reactor depressurization following a transient or accident; confirming independence in reactor trip and safety systems for sensors, power supplies and actuation systems, and finally diversity in maintaining containment integrity following a severe accident

  19. Integrated Plant Safety Assessment: Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  20. Integrated Plant Safety Assessment, Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Draft report

    International Nuclear Information System (INIS)

    1983-02-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  1. Electric empire

    International Nuclear Information System (INIS)

    McKay, Paul

    1983-01-01

    The author discusses the economic and political aspects of Ontario Hydro, a provincial crown corporation. He also deals with nuclear safety of the CANDU reactors and the ecological effects of electric power supply. Alternate sources of energy are also mentioned

  2. The Gañuelas-Mazarrón Tertiary Basin (Murcia, Spain): Features, Analogies, implications for the Safety of a CO2-DGS and Methodology

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Clemente-Jul, C.; Pérez del Villar, L.

    2015-01-01

    This work summarizes the main features of the Gañuelas-Mazarrón Tertiary basin, emphasising on the: i) geological, hydrogeological and hydrogeochemical characteristics; ii) current carbonate precipitation related to waters from several hydrogeological and geothermal wells in the basin; and iii) dissolved and free CO2 leakages and associated gases, mainly 222Rn. Furthermore, it has been summarised the main analogies established between the natural system studied and a CO2-Deep Geological Storage (CO2-DGS) conceptual model; as well as the implications of these analogies to qualitatively analyse the behaviour and evaluate the safety, in short, medium and long term, of a CO2-DGS. Finally, a useful methodology for any sedimentary basin, similar to the Gañuelas-Mazarrón basin, capable to host a CO2-DGS is also proposed. In conclusion, the full or partial study of a natural system analogous to a CO2-DGS must not be confused with the study to characterise a site for a CO2-DGS, since natural analogues should provide information about the behaviour, evolution and safety, in long-term, of the natural system, and that this information could be applied to a CO2-DGS system.

  3. Virtual reality simulation for construction safety promotion.

    Science.gov (United States)

    Zhao, Dong; Lucas, Jason

    2015-01-01

    Safety is a critical issue for the construction industry. Literature argues that human error contributes to more than half of occupational incidents and could be directly impacted by effective training programs. This paper reviews the current safety training status in the US construction industry. Results from the review evidence the gap between the status and industry expectation on safety. To narrow this gap, this paper demonstrates the development and utilisation of a training program that is based on virtual reality (VR) simulation. The VR-based safety training program can offer a safe working environment where users can effectively rehearse tasks with electrical hazards and ultimately promote their abilities for electrical hazard cognition and intervention. Its visualisation and simulation can also remove the training barriers caused by electricity's features of invisibility and dangerousness.

  4. Food safety

    Science.gov (United States)

    ... safety URL of this page: //medlineplus.gov/ency/article/002434.htm Food safety To use the sharing features on this page, please enable JavaScript. Food safety refers to the conditions and practices that preserve the quality of food. These practices prevent contamination and foodborne ...

  5. Practical implementation of the concept of converted electric vehicle with advanced traction and dynamic performance and environmental safety indicators

    Science.gov (United States)

    Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.

    2018-02-01

    The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.

  6. U.S. ALMR safety approach and licensing status

    International Nuclear Information System (INIS)

    Hardy, R.W.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Cooled Reactor in the United States is based on the PRISM concept originated by General Electric. This concept features a compact modular system suitable for factory fabrication, and a high degree of passive and natural safety characteristics. The safety approach emphasizes accident prevention, backed up by accident mitigation as required. First-round safety evaluations by the U.S. regulators have found that the design provides passive, natural and other desirable features enhancing the safety of the power plant. Licensing review continuing. (author)

  7. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  8. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    1982-11-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the licensee) and the Allegheny Electric Cooperative, Inc. (co-licensee) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. Supplement 1, issued in June 1981, addressed outstanding issues. Supplement 2, issued in September 1981, contains the ACRS Report and responses. Supplement 3, issued in July 1982, contains the resolution to five items previously identified as open and closes them out. On July 17, 1982, License NPF-14 was issued to allow Unit 1 operation at power levels not to exceed 5% of rated power. This supplement discusses the resolution of several license conditions that have been met

  9. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    International Nuclear Information System (INIS)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of public impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability

  10. 60th Anniversary of electricity production from light water reactors: Historical review of the contribution of materials science to the safety of the pressure vessel

    International Nuclear Information System (INIS)

    Duysen, J.C. van; Meric de Bellefon, G.

    2017-01-01

    The first light water nuclear reactor dedicated to electricity production was commissioned in Shippingport, Pennsylvania in the United States in 1957. Sixty years after the event, it is clear that this type of reactor will be a major source of electricity and one of the key solutions to limit climate change in the 21st century. This article pays homage to the teams that contributed to this achievement by their involvement in research and development and their determination to push back the frontiers of knowledge. Via a few examples of scientific or technological milestones, it describes the evolution of ideas, models, and techniques during the last 60 years, and gives the current state-of-the-art in areas related to the safety of the reactor pressure vessel. Among other topics, it focuses on vessel manufacturing, steel fracture mechanics analysis, and understanding of irradiation-induced damage.

  11. 60th Anniversary of electricity production from light water reactors: Historical review of the contribution of materials science to the safety of the pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Duysen, J.C. van, E-mail: jean-claude.van-duysen@ensc-lille.fr [Department of Nuclear Engineering University of Tennessee Knoxville (United States); Unité Matériaux et Transformation (UMET) CNRS, Université de Lille 1 (France); Meric de Bellefon, G., E-mail: mericdebelle@wisc.edu [Department of Nuclear Engineering, University of Wisconsin, Madison (United States)

    2017-02-15

    The first light water nuclear reactor dedicated to electricity production was commissioned in Shippingport, Pennsylvania in the United States in 1957. Sixty years after the event, it is clear that this type of reactor will be a major source of electricity and one of the key solutions to limit climate change in the 21st century. This article pays homage to the teams that contributed to this achievement by their involvement in research and development and their determination to push back the frontiers of knowledge. Via a few examples of scientific or technological milestones, it describes the evolution of ideas, models, and techniques during the last 60 years, and gives the current state-of-the-art in areas related to the safety of the reactor pressure vessel. Among other topics, it focuses on vessel manufacturing, steel fracture mechanics analysis, and understanding of irradiation-induced damage.

  12. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1988-01-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This seventh supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 6, and documents completion of several Unit 1 license conditions

  13. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2. Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 3 to the Safety Evaluation Report (SER) related to the operation of the Comanche Peak Steam electric Station, Units 1 and 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. the facility is located in Somervell County, Texas. Subject to favorable resolution of the items identified in this supplement, the staff concludes that the facility can be operated by the applicatn without endangering the health and safety of the public. This document provides the NRC staff's evaluation of the outstanding and confirmatory issues that have been resolved since Supplement No. 2 was issued in January 1982, and addresses changes to the SER and its earlier supplements which have resulted from the receipt of additonal information from the applicant during the period of January throught October 1982

  14. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement 9

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 9 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results of the staff's completion of its evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  15. Results of evaluation of periodic safety review for No. 1 plant in Fukushima No. 1 Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1994-01-01

    No. 1 plant in Fukushima No. 1 Nuclear Power Station started the commercial power generation in March, 1971, and has continued the operation for more than 23 years. During this period, the countermeasures to troubles, periodic inspections, and the maintenance by the electric power company have been carried out. These states are to be recollected from the viewpoints of the comprehensive evaluation of the operation experiences and the reflection of the latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Fukushima No. 1 Nuclear Power Station, and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor was 50.1% on the average of about 23 years, but in the last 10 years, it was improved to 59.7%. In the last five years, the rate of occurrence of unexpected shutdown was 0.4 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, radioactive waste management and the reflection of the experience of troubles and the latest technological knowledge to the improvement of safety have been carried out properly. The work plan for disaster prevention was established. (K.I.)

  16. Nuclear electricity - a progress report

    International Nuclear Information System (INIS)

    England, G.

    1980-01-01

    A survey of the progress of nuclear power over the past three years reveals three major features: (i) the continued operation of the first generation of commercial nuclear power stations, based on the Magnox gas-cooled reactor; (ii) the introduction and operation of the first of the second-generation stations, based on the advanced gas-cooled reactor (AGR); and (iii) the commitment of two successive Governments to a flexible thermal reactor strategy. Each of these features is considered and a number of related issues, including the safety record and cost savings to the electricity consumer, are discussed. (author)

  17. Safety design

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  18. [Comparison of the efficacy and safety between TVT-O and TVT-O with biofeedback pelvic floor electrical stimulation on female stress urinary incontinence].

    Science.gov (United States)

    Min, Ling; Zhao, Xia

    2015-01-01

    To compare the efficacy and safety between tension-free vaginal tape obturator technique (TVT-O) and TVT-O with biofeedback pelvic floor electrical stimulation on the therapy of female stress urinary incontinence. In this prospective study, 120 female patients of female stress urinary incontinence were enrolled from January 2012 to December 2013. The patients were randomly assigned to two groups, 60 in group A received TVT-O alone, while 60 in group B not only received TVT-O but also received biofeedback pelvic floor electrical stimulation. All the patients were followed up for 12 months to assess the efficacy and safety of the two procedures. Subjective indices [total volume of urine (TV), the total frequency of urination (TOV), the total leakage of urine events (TL), urinary incontinence related quality of life questionnaire (I-QOL), International Advisory Committee on urinary incontinence urinary incontinence questionnaire short form scale (ICI-Q-SF)] and objective indices [Valsalva leak point pressure (VLPP), maximum flow rate (MFR), residual urine volume (RUV),pad test] were analyzed. Overall, the cure rate was 75% at 1 year follow-up for group A and 88.33% for group B (PTVT-O on the treatment of female stress urinary incontinence.

  19. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket No. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 20 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of CPRT implementation of the Comanche Peak Response Team (CPRT) Program Plan and the issue-specific action plans (ISAPs), as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES. The results and conclusions of the CPRT activities are documented in a results report for each ISAP, a Collective Evaluation Report (CER), and a Collective Significance Report (CSR). This supplement also presents the staff's safety evaluation of TU Electric's root cause assessment of past CPSES design deficiencies and weaknesses. The NRC staff concludes that the CPRT has adequately implemented its investigative activities related to the design, construction, construction quality assurance/quality control, and testing at CPSES. The NRC staff further concludes that the CPRT evaluation of the results of its investigation is thorough and complete and its recommendations for corrective actions are sufficient to resolve identified deficiencies

  20. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-02-01

    Supplement 23 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and supplements 1, 2, 3, 4, 6, 12, 21, and 22 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 22 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the Comanche Peak Response Team implementation of the CPRT Program

  1. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-04-01

    Supplement 24 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, and 23 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 23 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 represented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the CPRT implementation of its Program Plan and the issue-specific action plans, as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES

  2. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Science.gov (United States)

    2010-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of this...

  3. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-01-01

    Supplement 22 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station, Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, and 21 to that report. This supplement also includes the evaluations for licensing items resolved since Supplement 21 was issued. Supplement 5 has been cancelled. Supplements 7 through 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to the applicant. Supplements 14 through 20 presented the staff's evaluation of the applicant's Corrective Action Program and CPRT activities. Items identified in Supplements 7, 8, 9, 10, 11, 13, 14, and 15 through 20 are not included in this supplement, except to the extent that they affect the applicant's Final Safety Analysis Report. 154 refs., 24 figs., 8 tabs

  4. The qualification of electrical components and instrumentations relevant to safety; La qualificazione dei componenti elettrici e di strumentazione rilevanti per la sicurezza

    Energy Technology Data Exchange (ETDEWEB)

    Zambardi, F [ENEA - Direzione Sicurezza Nucleare e Protezione Sanitaria, Divisione Sistemi Elettrici e Strumentazione, Rome (Italy)

    1989-03-15

    Systems and components relevant to safety of nuclear power plants must maintain their functional integrity in order to assure accident prevention and mitigation. Redundancy is utilized against random failures, nevertheless care must be taken to avoid common failures in redundant components. Main sources of degradation and common cause failures consist in the aging effects and in the changes of environmental conditions which occur during the plant life and the postulated accidents. These causes of degradation are expected to be especially significant for instrumentation and electrical equipment, which can have a primary role in safety systems. The qualification is the methodology by which component safety requirements can be met against the above mentioned causes of degradation. In this report the connection between the possible, plant conditions and the resulting degradation effects on components is preliminarily addressed. A general characterization of the qualification is then presented. Basis, methods and peculiar aspects are discussed and the qualification by testing is taken into special account. Technical and organizational aspects related to a plant qualification program are also focused. The report ends with a look to the most significant research and development activities. (author)

  5. Health and safety manual

    International Nuclear Information System (INIS)

    1980-02-01

    The manual consists of the following chapters: general policies and administration; the Environmental Health and Safety Department; the Medical Services Department: biological hazards; chemical safety; confined space entry; cryogenic safety; electrical safety; emergency plans; engineering and construction; evacuations, trenching, and shoring; fire safety; gases, flammable and compressed; guarding, mechanical; ladders and scaffolds, work surfaces; laser safety; materials handling and storage; noise; personal protective equipment; pressure safety; radiation safety, ionizing and non-ionizing; sanitation; seismic safety; training, environmental health and safety; tools, power and hand-operated; traffic and transportation; and warning signs and devices

  6. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 7 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review of the US Nuclera Regulatory Commission. This supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations in the areas of Electric/Instrumentation and Test Programs regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  7. Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification

    Energy Technology Data Exchange (ETDEWEB)

    D. Blanchard; R. Youngblood

    2012-04-01

    In general, the margins-based safety case helps the decision-maker manage plant margins most effectively. It tells the plant decision-maker such things as what margin is present (at the plant level, at the functional level, at the barrier level, at the component level), and where margin is thin or perhaps just degrading. If the plant is safe, it tells the decision-maker why the plant is safe and where margin needs to be maintained, and perhaps where the plant can afford to relax.

  8. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425): Supplement 8

    International Nuclear Information System (INIS)

    1989-02-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the Staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, and Supplement 7 was issued in January 1988. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This eighth supplement to NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved following issuance of Supplement 7. 5 figs., 3 tabs

  9. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 19 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Texas Utilities Electric Company's (lead applicant's) corrective action program (CAP) related to equipment qualification. The scope and methodology for the CAP workscope, as summarized in Revision 0 to the Equipment Qualification Project Status Report and as detailed in related documents, were developed to resolve various issues raised by the Comanche Peak Response Team (CPRT) and the NRC staff to ensure that plant equipment is appropriately environmentally and/or seismically and dynamically qualified and documented in accordance with the validated plant design resulting from other CAP scopes of work for Unit 1 and areas common to Units 1 and 2. The staff concludes that the CAP workscope for equipment qualification provides a comprehensive program for resolving the concerns identified by the CPRT and the NRC staff, including issues raised in the Comanche Peak Safety Evaluation Report and its supplements, and its implementation will ensure that the environmental and/or seismic and dynamic qualification of equipment at CPSES satisfies the validated plant design and the applicable requirements of 10 CFR Part 50. As is routine staff practice, the NRC staff will verify the adequacy of implementation of the environmental and seismic and dynamic equipment qualification program at CPSES during inspections that will take place before fuel loading. 97 refs

  10. Safety evaluation report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1989-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). Supplement 1 to NUREG-1137 was issued by the staff in October 1985, Supplement 2 was issued in May 1986, Supplement 3 was issued in August 1986, Supplement 4 was issued in December 1986, Supplement 5 was issued in January 1987, Supplement 6 was issued in March 1987, Supplement 7 was issued in January 1988, and Supplement 8 was issued in February 1989. The facility is located in Burke County, Georgia, approximately 26 miles south-southeast of Augusta, Georgia, and on the Savannah River. This ninth supplement to NUREG-1137 provides recent information regarding resolution of conditional items following issuance of Supplement 8

  11. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-07-01

    Supplement 15 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the design of cable trays and cable tray hangers. The scope and methodologies for the CAP workscope as summarized in Revision O to the cable tray and cable tray hanger project status report and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB) the intervenor, Citizens Association for Sound Energy (CASE); the Comanche Peak Response Team (CPRT); CYGNA Energy Services (CYGNA); and the NRC staff. The NRC staff concludes that the CAP workscope for cable trays and cable tray hangers provides a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and its implementation ensures that the design of cable trays and cable tray hangers at CPSES satisfies the applicable requirements of 10 CFR Part 50

  12. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-03-01

    Supplement 14 to the Safety Evaluation Report related to the operation of the Comanche Peak Stam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somerville County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicants' Corrective Action Program (CAP0 related to large ans small bore piping and pipe supports. The scope and methodologies for CAP workshop as summarized in revision O to the large and small bore piping project status reports and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB);the intervenor, Citizens Association for Sound Energy (CASE);the Camanche Peak Response Team (CPRT);SYGNA Energy Services (CYGNA);and the NRC staff. The NRC staff concludes that the CAP workscopes for large and small bore piping provide a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and their implementation ensures that the design of large and small bore piping and pipe supports at CPSES satisfies the applicable requirements of 10 CFR 50

  13. Modified enforcement policy relating to 10 CFR 50.49, ''Environmental qualification of electrical equipment important to safety for nuclear power plants'' (Generic Letter 88-07)

    International Nuclear Information System (INIS)

    Miraglia, F.J.

    1992-01-01

    Generic Letters, Bulletins, and Information Notices have been issued to provide guidance regarding the application and enforcement of 10 CFR 50.49, ''Environmental Qualification of Electric Equipment Important to Safety for Nuclear Power Plants.'' Generic Letter 85-15, issued August 6, 1985, and Generic Letter 86-15, issued September 22, 1986, provided information related to the deadlines for compliance with 10 CFR 50.49 and possible civil penalties applicable to licensees who were not in compliance with the rule as of the November 30, 1985 deadline. Upon review, the Commission found that the EQ Enforcement Policy promulgated in Generic Letter 86-15, could result in imposition of civil penalties that did not properly reflect the safety significance of EQ violations with respect to civil penalties imposed in the past. In the interest of continuing a tough but fair enforcement policy, the Commission determined that the EQ Enforcement Policy should be revised. The purpose of this letter is to provide a modification to the NRC's enforcement policy, as approved by the Commission, for environmental qualification (EQ) violations. This letter replaces the guidance provided in Generic Letters 85-15 and 86-15

  14. Enhanced safety features of CHASHMA NPP UNIT-2 to encounter selected severe accidents, various challenges involved to prove the adequacy of severe accidents prevention/mitigation measures and to write management guidelines with one possible solution to these challenges

    International Nuclear Information System (INIS)

    Iqbal, Z.; Minhaj, A.

    2007-01-01

    This paper describes enhanced safety features of Chashma Nuclear Power Plant Unit-2 (C-2), a 325 MWe PWR to encounter selected severe accidents and discusses various challenges involved to prove the adequacy of severe accidents encountering measures and to write severe accident management guidelines (SAMGs) in compliance with the recently introduced national regulations based on the new IAEA nuclear safety standards. C-2 is being built by China National Nuclear Corporation (CNNC) for Pakistan Atomic Energy Commission (PAEC). Its twin, Unit-1 (C-1) also a 325 MWe PWR, was commissioned in 2000. Nuclear power safety with reference to severe accidents should be treated as a global issue and therefore the developed countries should include the people of developing countries in nuclear power industry's various severe accidents based research and development programs. The implementation of this idea may also deliver few other useful and mutually beneficial byproducts. (author)

  15. TECHNOLOGICAL AND ECOLOGICAL SAFETY IN ASPECT OF CHEMICAL PROPERTIES OF RECYCLED NEODYMIUM MAGNETS - ELECTRIC MO-TORS AND HARD DISK

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapustka

    2018-01-01

    Full Text Available Neodymium magnets currently dominate the magnet market due to their superior magnetic proper-ties with maximum volume minimization. In this paper, the results of X-ray analysis for two types of magnetic powder obtained from the recovered magnets traditionally used in electric motors and hard disk have been presented. The NdFeB magnets are composed of 25-35 wt. % rare earth elements (RE and the rest being transition metals (mainly Fe.. RE, other than Nd, such Dy, Pr, Tb and Gd or exogen elements, other than Fe, such as Al, Co, Ga, Nb, Si, Cu and Zr can also be present as minor admixtures. This paper brings an opportunity to introduce the hard magnets recycling technology on an industrial scale.

  16. Electric engineering introduction

    International Nuclear Information System (INIS)

    An, Byeong Won; Eom, Sang Ho

    1999-03-01

    It is divided into nine chapters, which includes electricity theory such as structure of material and current, nature of electricity, static, magnetic force and magnetic attraction, attraction of current and a storage battery, electric circuit on a direct current circuit, single phase circuit and 3-phase current circuit electricity machine like DC generator, DC motor, alternator, electric transformer, single-phase induction motor, 3-phase induction motor, synchronous motor, synchro electric machine, semiconductor such as diode, transistor, FET, UJT, silicon symmetrical switch, electronic circuit like smoothing circuit and Bistable MV. circuit, automatic control, measurement of electricity, electric application and safety.

  17. Safety evaluation report on Westinghouse Electric Company ECCS evaluation model for plants equipped with upper head injection

    International Nuclear Information System (INIS)

    Lauben, G.N.; Wagner, N.H.; Israel, S.L.; McPherson, G.D.; Hodges, M.W.

    1978-04-01

    For plants which include an ice condenser containment concept, Westinghouse has planned an additional safety system known as the upper head injection (UHI) system to augment the emergency core cooling system. This system is comprised of additional accumulator tanks and piping arranged to supply cooling water to the top of the core during the blowdown period following a postulated large-break loss-of-coolant accident (LOCA). The objective of UHI is to add to the core cooling provided by the conventional emergency core cooling system (ECCS) and so permit operation at linear heat rates comparable to those permitted in plants utilizing the dry containment concept. In this way, plants which include the UHI system would have greater operating flexibility while still meeting the acceptance criteria as defined in paragraph 50.46 of 10 CFR Part 50. This review is concerned with those changes to the Westinghouse ECCS evaluation model that have been proposed for the UHI-LOCA model

  18. Safety assessment for electricity generation failure accident of gas cooled nuclear power plant using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2013-04-15

    The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)

  19. Features of Creation and Operation of Electric and Hybrid Vehicles in Countries with Difficult Climatic Conditions, for Example, in the Russian Federation

    Science.gov (United States)

    Karpukhin, K.; Terenchenko, A.

    2016-11-01

    The trend of increasing fleet of electric or hybrid vehicles and determines the extension of the geographical areas of operation, including the Northern areas with cold winter weather. Practically in all territory of Russia the average winter temperature is negative. With the winter temperatures can be below in Moscow -30°C, in Krasnoyarsk -50°C. Battery system can operate in a wide temperature range, but there are extremes that should be remembered all the time, especially in cold climates like Russia. In the operating instructions of the electric car Tesla Model S indicate that to save the battery don't use at temperatures below -15°C. The paper presents the dependence of the cooling time and heating of the battery cell at different ambient temperatures and provides guidance on allowable cooling time while using and not thermally insulated thermally containers Suggests using the temperature control on the basis of thermoelectric converters Peltier connection from the onboard electrical network of the electric vehicle.

  20. Principal characteristics of good safety culture

    International Nuclear Information System (INIS)

    Zhong, W.

    1997-01-01

    The presentation briefly discusses the following aspects of safety culture: what is safety culture; universal features of safety culture; the main elements of safety culture; requirements at policy level; safety culture at government level, regulatory body, operators; requirements on managers

  1. Principal characteristics of good safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, W [International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    The presentation briefly discusses the following aspects of safety culture: what is safety culture; universal features of safety culture; the main elements of safety culture; requirements at policy level; safety culture at government level, regulatory body, operators; requirements on managers.

  2. Survey and evaluation of inherent safety characteristics and passive safety systems for use in probabilistic safety analyses

    International Nuclear Information System (INIS)

    Wetzel, N.; Scharfe, A.

    1998-01-01

    The present report examines the possibilities and limits of a probabilistic safety analysis to evaluate passive safety systems and inherent safety characteristics. The inherent safety characteristics are based on physical principles, that together with the safety system lead to no damage. A probabilistic evaluation of the inherent safety characteristic is not made. An inventory of passive safety systems of accomplished nuclear power plant types in the Federal Republic of Germany was drawn up. The evaluation of the passive safety system in the analysis of the accomplished nuclear power plant types was examined. The analysis showed that the passive manner of working was always assumed to be successful. A probabilistic evaluation was not performed. The unavailability of the passive safety system was determined by the failure of active components which are necessary in order to activate the passive safety system. To evaluate the passive safety features in new concepts of nuclear power plants the AP600 from Westinghouse, the SBWR from General Electric and the SWR 600 from Siemens, were selected. Under these three reactor concepts, the SWR 600 is specially attractive because the safety features need no energy sources and instrumentation in this concept. First approaches for the assessment of the reliability of passively operating systems are summarized. Generally it can be established that the core melt frequency for the passive concepts AP600 and SBWR is advantageous in comparison to the probabilistic objectives from the European Pressurized Water Reactor (EPR). Under the passive concepts is the SWR 600 particularly interesting. In this concept the passive systems need no energy sources and instrumentation, and has active operational systems and active safety equipment. Siemens argues that with this concept the frequency of a core melt will be two orders of magnitude lower than for the conventional reactors. (orig.) [de

  3. Reliability of the electric power supply in the safety apparatus of nuclear power plants: a comparative analysis

    International Nuclear Information System (INIS)

    Cruz, L.A.

    1992-01-01

    This paper discusses the risk of total loss of electric power supply to the Class 1E system. Two alternatives are focused: a system with two off-site and two onsite power supplies emergency power supply, as recommended by the American Regulations, and a system with only one off-site and four on-site power supplies, applicable when two off-site are not available. To allow the fact that the equipment can be repaired, the method proper involves use of the Markov model, with which one can find, for each configuration of the system, the change over time of the probability of a simultaneous failure of all power sources. The sensitivity of each parameter is studied in each case and, on the basis of the results of the study, the author conclude that the system with two off-site power supplies is preferable in all alternatives analysed, although the system with one off-site power supply can be adopted with high reliability diesel-generators. (author)

  4. Literature review of environmental qualification of safety-related electric cables: Literature analysis and appendices. Volume 2

    International Nuclear Information System (INIS)

    Lofaro, R.; Bowerman, B.; Carbonaro, J.

    1996-04-01

    In support of the US NRC Environmental Qualification (EQ) Research Program, a literature review was performed to identify past relevant work that could be used to help fully or partially resolve issues of interest related to the qualification of low-voltage electric cable. A summary of the literature reviewed is documented in Volume 1 of this report. In this, Volume 2 of the report, dossiers are presented which document the issues selected for investigation in this program, along with recommendations for future work to resolve the issues, when necessary. The dossiers are based on an analysis of the literature reviewed, as well as expert opinions. This analysis includes a critical review of the information available from past and ongoing work in thirteen specific areas related to EQ. The analysis for each area focuses on one or more questions which must be answered to consider a particular issue resolved. Results of the analysis are presented, along with recommendations for future work. The analysis is documented in the form of a dossier for each of the areas analyzed

  5. Systematic evaluation program review of NRC Safety Topic VI-7.3 associated with the electrical, instrumentation and control portions of the ECCS actuation system for the Dresden II Nuclear Power Plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-7.A.3, associated with the electrical, instrumentation, and control portions of the classification of the ECCS actuation system for the Dresden II nuclear power plant, using current licensing criteria

  6. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  7. Programmable electronic safety systems

    International Nuclear Information System (INIS)

    Parry, R.R.

    1993-01-01

    Traditionally safety systems intended for protecting personnel from electrical and radiation hazards at particle accelerator laboratories have made extensive use of electromechanical relays. These systems have the advantage of high reliability and allow the designer to easily implement fail-safe circuits. Relay based systems are also typically simple to design, implement, and test. As systems, such as those presently under development at the Superconducting Super Collider Laboratory (SSCL), increase in size, and the number of monitored points escalates, relay based systems become cumbersome and inadequate. The move toward Programmable Electronic Safety Systems is becoming more widespread and accepted. In developing these systems there are numerous precautions the designer must be concerned with. Designing fail-safe electronic systems with predictable failure states is difficult at best. Redundancy and self-testing are prime examples of features that should be implemented to circumvent and/or detect failures. Programmable systems also require software which is yet another point of failure and a matter of great concern. Therefore the designer must be concerned with both hardware and software failures and build in the means to assure safe operation or shutdown during failures. This paper describes features that should be considered in developing safety systems and describes a system recently installed at the Accelerator Systems String Test (ASST) facility of the SSCL

  8. Programmable Electronic Safety Systems

    International Nuclear Information System (INIS)

    Parry, R.

    1993-05-01

    Traditionally safety systems intended for protecting personnel from electrical and radiation hazards at particle accelerator laboratories have made extensive use of electromechanical relays. These systems have the advantage of high reliability and allow the designer to easily implement failsafe circuits. Relay based systems are also typically simple to design, implement, and test. As systems, such as those presently under development at the Superconducting Super Collider Laboratory (SSCL), increase in size, and the number of monitored points escalates, relay based systems become cumbersome and inadequate. The move toward Programmable Electronic Safety Systems is becoming more widespread and accepted. In developing these systems there are numerous precautions the designer must be concerned with. Designing fail-safe electronic systems with predictable failure states is difficult at best. Redundancy and self-testing are prime examples of features that should be implemented to circumvent and/or detect failures. Programmable systems also require software which is yet another point of failure and a matter of great concern. Therefore the designer must be concerned with both hardware and software failures and build in the means to assure safe operation or shutdown during failures. This paper describes features that should be considered in developing safety systems and describes a system recently installed at the Accelerator Systems String Test (ASST) facility of the SSCL

  9. Electrical features of an amorphous indium-gallium-zinc-oxide film transistor using a double active matrix with different oxygen contents

    International Nuclear Information System (INIS)

    Koo, Ja Hyun; Kang, Tae Sung; Hong, Jin Pyo

    2012-01-01

    The electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFTs) are systematically studied using a double a-IGZO active layer that is composed of a-IGZO x (oxygen-ion-poor region) and a-IGZO y (oxygen-ion-rich-region). An active layer is designed to have a serially-stacked bi-layer matrix with different oxygen contents, providing the formation of different electron conduction channels. Two different oxygen contents in the active layer are obtained by varying the O 2 partial pressure during sputtering. The a-IGZO TFT based on a double active layer exhibits a high mobility of 9.1 cm 2 /Vsec, a threshold voltage (V T ) of 16.5 V, and ΔV T shifts of less than 1.5 V under gate voltage stress. A possible electrical sketch for the double active layer channel is also discussed.

  10. Study of essential safety features of a three-loop 1,000 MWe light water reactor (PWR) and a corresponding heavy water reactor (HWR) on the basis of the IAEA nuclear safety standards

    International Nuclear Information System (INIS)

    1989-02-01

    Based on the IAEA Standards, essential safety aspects of a three-loop pressurized water reactor (1,000 MWe) and a corresponding heavy water reactor were studied by the TUeV Baden e.V. in cooperation with the Gabinete de Proteccao e Seguranca Nuclear, a department of the Ministry which is responsible for Nuclear power plants in Portugal. As the fundamental principles of this study the design data for the light water reactor and the heavy water reactor provided in the safety analysis reports (KWU-SSAR for the 1,000 MWe PWR, KWU-PSAR Nuclear Power Plant ATUCHA II) are used. The assessment of the two different reactor types based on the IAEA Nuclear Safety Standards shows that the reactor plants designed according to the data given in the safety analysis reports of the plant manufacturer meet the design requirements laid down in the pertinent IAEA Standards. (orig.) [de

  11. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  12. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  13. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  14. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 8

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement 8 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team of the US Nuclear Regulatory Commission. This Supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations relating to civil and structural and miscellaneous issues regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during recent Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  15. Improvement of the abnormal diagnosis technology by the development of an abnormal parts assignment system for the engineered safety features actuating system of the HTTR

    International Nuclear Information System (INIS)

    Hirato, Yoji; Kozawa, Takayuki; Saito, Kenji

    2015-01-01

    The safety protection sequence panel of HTTR is a control panel to actuate an engineering safety system for protecting the reactor core, reactor coolant pressure boundary, and containment vessel boundary at the time of an accident of the nuclear reactor facilities. The safety code stipulates that the control panel should receive safety check at a frequency of once a month during reactor operation. When abnormality has been found, it is required to eliminate its causes and restore normal operation as soon as possible. However, since this control panel is composed of a complex control circuit, the cause check during abnormality requires the confirmation by a knowledgeable person spending quite a lot of time for chart checking, which leads to a delay of restoration. To achieve a rapid restoration, the abnormal part assignment system (APAS), which can specify abnormality instantaneously even by a common operator, was developed. It has been confirmed that with this system, rapid initial response and prompt restoration can be effectively made. (A.O.)

  16. MDEP Common Position No DICWG08. Common position on the impact of cyber security features on digital I and C safety systems

    International Nuclear Information System (INIS)

    2012-01-01

    Cyber security measures are generally implemented at nuclear facilities to protect against cyber-attacks that may compromise safety. The implementation of such cyber security measures may vary based on site specific requirements and each country's regulatory frameworks. Safety measures and cyber security measures for a nuclear power plant should be designed and implemented so that they do not compromise one another. This common position is intended to only apply to systems classified to the highest level of safety. The Digital Instrumentation and Controls Working Group (DICWG) has agreed that a common position on this topic is warranted given the increase of use of Digital I and C in new reactor designs, its safety implications, and the need to develop a common understanding from the perspectives of regulatory authorities. This action follows the DICWG examination of the regulatory requirements of the participating members and of relevant industry standards and IAEA documents. The DICWG proposes a common position based on its recent experience with the new reactor application reviews and operating plant issues

  17. Modulation of structural, electrical, and magnetic features with dilute Zr substitution in Bi0.8La0.2Fe1-xZrxO3 system

    Science.gov (United States)

    Usama, Hasan M.; Akter, Ayesha; Zubair, M. A.

    2017-12-01

    A significant structural modification and enhancement of the electrical and magnetic properties with dilute substitution of Zr (≤1 mol. %) in the Bi0.8La0.2Fe1-xZrxO3 system has been reported. A mixture of rhombohedral and orthorhombic phases was detected in these conventionally sintered ceramics. Transition from a leaky state to an insulating state was observed upon Zr substitution. This is the first time that a drop in the electrical conductivity as large as 6 orders of magnitude for doping as small as 0.25 mol. % in bismuth ferrite systems has been reported. An investigation on the nature of this abrupt transition revealed the dominant role of defects. A proper consideration of possible defect reactions taking place during and after sintering satisfactorily accounts for the observed modulation in the electrical properties. Both AC and DC measurements indicate that, before Zr substitution, p-type hopping conduction prevails with an activation energy as low as ˜0.57 eV, whereas the Zr substitution makes oxide ion migration the central mechanism for conduction with the activation energy of ˜0.96-1.08 eV. In contrast to that, the magnetic properties of the compounds experience a more subtle effect; a gradual modification of saturation magnetization and coercivity with Zr substitution is observed. Curve fitting of the magnetic hysteresis loops not only allowed extraction of three separate contributions from the magnetic response but also helped to explain the effects of Zr on the magnetic properties. Modifications of structural characteristics and magnetic anisotropy of the samples are believed to be the primary driving force behind the improvement in the magnetic properties.

  18. Development of ABWR-2 and its safety design

    International Nuclear Information System (INIS)

    Takafumi, Anegawa; Kenji, Tateiwa

    2002-01-01

    This paper reports the current status of development project on ABWR-II, a next generation reactor design based on ABWR, and its safety design. This project was initiated over a decade ago and has completed three phases to date. In Phase I (1991-92), basic design requirements were discussed and several plant concepts were studied. In Phase II (1993-95), key design features were selected in order to establish a reference reactor concept. In Phase III (1996-2000), based on the reference reactor concept, modifications and improvements were made to fulfill the design requirements. By adopting large electric output (1 700 MW), large fuel bundle, modified ECCS, and passive heat removal systems, among other design features, we achieved a design concept capable of increasing both economic competitiveness and safety performance. Main focus of this paper will be on the safety design, safety performance, and further research needs related to safety. (authors)

  19. Development of the irradiation facility SIBO INRA/Tangier, Morocco by upgrading cobalt-60 in a temporary pool and enhancing safety and control features

    Directory of Open Access Journals (Sweden)

    Mohammed Mouhib

    2017-12-01

    Full Text Available An automatic control system is one of the most important parts of an irradiation facility. The level of this control is always maintained to comply with safety procedures during routine work in this field. Also sometimes it is limited to the minimum level of regulation required due to economical aspects; some commercial systems are generally made by manufacturers of industrial facilities and considered affordable by irradiators. In some cases specific irradiation facilities tailor their control systems to their needs. For this kind of irradiator the control system can be developed and upgraded according to personal and industrial experiences. These upgrading procedures are also used by others to develop their systems. The objective of this paper is to share a local experience in upgrading security, safety systems and the use of cobalt-60 for the irradiator. It is a composite experiment at SIBO INRA/Tangier, Morocco and concerns the: (i upgrade of cobalt-60 in a temporary pool in the SIBO irradiator in Tangier. This operation was conducted in collaboration with the International Atomic Energy Agency (IAEA and was a success story of 2014 according to the general conference of IAEA; (ii safety and technical upgrade of the system in the SIBO irradiator made in collaboration with IAEA; (iii installation and upgrade of the security system in accordance with the Global Threat Reduction Programme (GTRP to reduce the threat of a Radiological Dispersal Device (RDD in collaboration with The United States Department of Energy’s National Nuclear Security Administration (NNSA.

  20. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 18 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the structural design of the heating, ventilation, and air conditioning (HVAC) systems. The scope and methodologies for the CAP workscope as summarized in Revision 0 to the HVAC project status report and as detailed in related documents referenced in this evaluation were developed to resolve the technical concerns identified in the HVAC area. The NRC staff concludes that the CAP workscope for the HVAC structural design provides a comprehensive program for resolving the associated technical concerns and its implementation ensures that the structural design of the HVAC systems at CPSES satisfies the applicable requirements of 10 CFR Part 50. 32 refs

  1. Closeout of IE Bulletin 84-02: Failures of General Electric Type HFA relays in use in Class 1E safety systems

    International Nuclear Information System (INIS)

    Foley, W.J.; Dean, R.S.; Hennick, A.

    1991-01-01

    Documentation is provided in this report to close IE Bulletin 84--02 regarding the failure of General Electric Type HFA relays in Class 1E safety systems. The relay failures were due to aging of coil wire insulation and nylon or Lexan spools under certain environmental conditions. The bulletin was issued to nuclear power reactor licensees and holders of construction permits to provide assurance that the manufacturer's recommendations for corrective actions would be implemented. The bulletin required four specific actions, plus a review of the general concerns of the bulletin even though some facilities had different relays from those of bulletin concern. Evaluation of utility responses, NRC/Region inspection reports, and regional telephone calls has resulted in bulletin closeout of 116 (98%) of the 118 facilities to which the bulletin was issued for action. Facilities which were shut down or had construction halted indefinitely or permanently when the report was issued are not included in this review. A follow-up item is proposed in Appendix C for the two facilities with open status. Background information is supplied in the Introduction and Appendix A

  2. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats.

    Science.gov (United States)

    Yokoo, T; Kamimura, K; Suda, T; Kanefuji, T; Oda, M; Zhang, G; Liu, D; Aoyagi, Y

    2013-08-01

    The development of a safe and reproducible gene delivery system is an essential step toward the clinical application of the hydrodynamic gene delivery (HGD) method. For this purpose, we have developed a novel electric power-driven injection system called the HydroJector-EM, which can replicate various time-pressure curves preloaded into the computer program before injection. The assessment of the reproducibility and safety of gene delivery system in vitro and in vivo demonstrated the precise replication of intravascular time-pressure curves and the reproducibility of gene delivery efficiency. The highest level of luciferase expression (272 pg luciferase per mg of proteins) was achieved safely using the time-pressure curve, which reaches 30 mm Hg in 10 s among various curves tested. Using this curve, the sustained expression of a therapeutic level of human factor IX protein (>500 ng ml(-1)) was maintained for 2 months after the HGD of the pBS-HCRHP-FIXIA plasmid. Other than a transient increase in liver enzymes that recovered in a few days, no adverse events were seen in rats. These results confirm the effectiveness of the HydroJector-EM for reproducible gene delivery and demonstrate that long-term therapeutic gene expression can be achieved by automatic computer-controlled hydrodynamic injection that can be performed by anyone.

  3. Design features of APWR in Japan

    International Nuclear Information System (INIS)

    Yamaguchi, H.; Aeba, Y.; Weiss, E.H.

    1999-01-01

    Development of the Advanced Pressurized Water Reactor (APWR) was executed in the Improvement and Standardization Program which was organized by the Ministry of International Trade and Industry, Japanese utilities (Hokkaido, Kansai, Shikoku, Kyushu Electric Power Companies and the Japan Atomic Power Company) and manufacturers (Mitsubishi Heavy Industries and Westinghouse Electric). Improvements in terms of safety, reliability, operability, maintainability and economy have been incorporated based on comprehensive evaluations of both the advanced technologies available today, and the experience associated with construction and operation of current PWR plants. The main design improvement features applied in APWR include a core design that contributes to effective use of uranium resource, safety enhancement in the engineered safeguard system, and reliability enhancement in the reactor internal structures. This paper briefly describes the main features of the APWR design focusing on the following two items: the radial reflector, which enhances reliability of the reactor internal structures as well as neutron economy in the core region; and an advanced accumulator, which enhances Emergency Core Cooling System (ECCS) reliability and contributes to system simplification due to passive low pressure injection function. (author)

  4. Safety upgrading of the PAKS Nuclear Plant

    International Nuclear Information System (INIS)

    Vamos, G.; Vigassy, J.

    1993-01-01

    In the last several years the net electricity from the Paks NPP represents almost half of the Hungarian total. The 4 units of Paks belong to the latest generation of the VVER-440 units, the small-sized Russian designed PWRs. Reviewing the main design features of them, the safety merits and safety concerns are summarized. Due to the conservative design and the extensive operating experience the safety merits appear to be more significant than generally believed. The VVER-440 type has two models, the 230 and 213, which have a large number of distinctive safety features. These are highlighted in the section comparisons. A quality assurance program was initiated in Paks very early. A long-term safety upgrading program was also initiated, originating from vendor recommendations, regulatory decisions, in-house operating experience and safety concerns, and independent reviews. The main areas and some examples of the measures are described. This program, like all other activities related to nuclear safety, has been under regulatory control. The specific features of the Hungarian regulatory system are described. For advanced, general and new evaluation of the safety of the units in Paks in accordance with the internationally recommended criteria of the 90's, the project AGNES has been launched with international participation. The scope of this project is summarized. International efforts as the IAEA Regional Project on safety assessment of VVER-440/213 and VVER-440/230 units are underway. Since safety is not only a question of design, but it can be significantly influenced by operations and maintenance practices, the Paks NPP has invited LAEA's OSART and ASSET missions, WANO's Pilot Peer Review

  5. The tendency of medical electrical equipment - IEC 60601-2-54: Particular requirements for the basic safety and essential performance of x-ray equipment for radiography and radioscopy

    International Nuclear Information System (INIS)

    Roh, Young Hoon; Kim, Jung Min

    2015-01-01

    Medical electrical equipment - Part 1: General requirement for basic safety and essential performance of MFDS was revised as 3th edition and Medical electrical equipment Part 2-54: Particular requirements for the basic safety and essential performance of X-ray equipment will be expected to be announced as notification. Therefore this technical report was written to introduce provision of the particular requirements, replacement, addition, amendment. The purpose of this particular requirements is to secure requirements for basic safety and essential performance of X-ray equipment for radiography and radioscopy. X-ray high voltage generator, mechanical protective device, protection against radiation is included in this particular requirements. Medical electrical equipment - Part 1, Part 1-2, Part 1-3 is applied to this particular requirements. If the requirements is announced as notification, It is expected to widen understanding for basic safety and essential performance of X-ray equipment for radiography and radioscopy and play a part to internationalize of medical equipment

  6. Electricity derivatives

    CERN Document Server

    Aïd, René

    2015-01-01

    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.

  7. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Java programs called Featureous that addresses this issue. Featureous allows a programmer to easily establish feature-code traceability links and to analyze their characteristics using a number of visualizations. Featureous is an extension to the NetBeans IDE, and can itself be extended by third...

  8. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  9. Reactor safety

    International Nuclear Information System (INIS)

    Meneley, D.A.

    The people of Ontario have begun to receive the benefits of a low cost, assured supply of electrical energy from CANDU nuclear stations. This indigenous energy source also has excellent safety characteristics. Safety has been one of the central themes of the CANDU development program from its very beginning. A great deal of work has been done to establish that public risks are small. However, safety design criteria are now undergoing extensive review, with a real prospect of more stringent requirements being applied in the future. Considering the newness of the technology it is not surprising that a consensus does not yet exist; this makes it imperative to discuss the issues. It is time to examine the policies and practice of reactor safety management in Canada to decide whether or not further restrictions are justified in the light of current knowledge

  10. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  11. Feature Article

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Feature Article. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 80-85 Feature Article. What's New in Computers Windows 95 · Vijnan Shastri · More Details Fulltext PDF. Volume 1 Issue 1 January 1996 pp 86-89 Feature ...

  12. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  13. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  14. A Simple Fully Passive Safety Option for SMART SBLOCA

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2012-01-01

    SMART reactor, an integral pressurized water reactor (iPWR), is developed by KAERI and now under standard design licensing review. Integral reactor design of the SMART has small diameter penetrations below 2 inches at upper parts of reactor pressure vessel (RPV) and the core is located at very lower part. Amount of reactor coolant inventory is around 0.55tons/MWth during normal operations, which is seven times more than that of conventional PWRs. Such intrinsic safety features of the SMART can provide prolonged core cooling during a small-break loss-of-coolant accident (SBLOCA). As an engineered safety feature for SBLOCA, electrically two-train and mechanically four-train active safety injection (SI) systems are provided to refill the RPV, whose safety been proven through safety analysis and experiments. In addition, four-train passive residual heat removal systems (PRHRSs) are provided to remove core decay heat by natural circulation in the secondary side of steam generators during transient and accident conditions. After Fukushima disaster, a passive safety of nuclear power plants has become more emphasized than conventional active safety, even though there are still debates whether it can really insure the realistic safety. Passive safety is defined such that the core safety is ensured for 72 hours after accidents without any active safety systems and operator actions. In light of this, a simple fully passive safety option for SBLOCA is proposed: low-pressure safety injection tanks (SITs) and heat pipes submerged in the PRHRS emergency coolant tanks (ECTs). Post-LOCA long-term cooling after 72 hours is provided by sump recirculation using shutdown cooling system. Realistic analysis method using MARS3.1 is used to derive fully passive safety option, and then to screen design and operating parameters and to demonstrate the safety performance of SITs. SI line break is selected as a reference SBLOCA scenario

  15. Innovative small and medium sized reactors: Design features, safety approaches and R and D trends. Final report of a technical meeting

    International Nuclear Information System (INIS)

    2005-05-01

    In order to beat the economy of scale small and medium sized reactors (SMRs) have to incorporate specific design features that result into simplification of the overall plant design, modularization and mass production. Several approaches are being under development and consideration, including the increased use of passive features for reactivity control and reactor shut down, decay heat removal and core cooling, and reliance on the increased margin to fuel failure achieved through the use of advanced high-temperature fuel forms and structural materials. Some SMRs also offer the possibility of very long core lifetimes with burnable absorbers or high conversion ratio in the core. These reactors incorporate increased proliferation resistance and may offer a very attractive solution for the implementation of adequate safeguards in a scenario of global deployment of nuclear power. About 50 concepts and designs of the innovative SMRs are under development in more than 15 IAEA Member States representing both industrialized and developing countries. SMRs are under development for all principle reactor lines, i.e., water cooled, liquid metal cooled, gas cooled, and molten salt cooled reactors, as well as for some non-conventional combinations thereof. Upon a diversity of the conceptual and design approaches to SMRs, it may be useful to identify the so-called enabling technologies that are common to certain reactor types or lines. An enabling technology is the technology that needs to be developed and demonstrated to make a certain reactor concept viable. When a certain technology is common to several SMR concepts or designs, it could benefit from being developed on a common or shared basis. The identification of common enabling technologies could speed up the development and deployment of many SMRs by merging the efforts of their designers through an increased international cooperation. This publication has been prepared through the collaboration of all participants of this

  16. Balance of safety versus economics

    International Nuclear Information System (INIS)

    Board, J.A.; Acero, M.

    1996-01-01

    The paper looks at the strength of the case for improving safety over and above those safety standards which are currently accepted for the majority of current nuclear power plant, and assesses the cost premium that has to be paid for advanced designs with enhanced safety features. The risks associated with current nuclear plant have already been reduced to very low levels, and further preventative measures, whose cost would be out of proportion to the remaining risks, should be challenged. In this respect two issues need to be addressed: 'What is the premium to be paid for enhanced safety?' and 'How safety is safe enough?'. For a given reactor size, the premium for introducing enhanced safety in an 'advanced' reactor could be of the order of 20 %. For early plants in a series the premium would be significantly higher, due in part to the need to recover the FOAK costs. The recommendations of INSAG-3 would seem to be a good basis for defining 'What is Safe Enough' and improvements over and above these risk levels should be unnecessary unless they can be achieved at very low cost. It is concluded that the best of the current 'basic' designs are acceptably safe and the availability of 'advanced' designs should not preclude the future licensing of 'basic' designs, provided that they have introduced cost effective modifications which reflect the lessons learned from TMI and technological advances such as the use of micro-processors in control and protection systems. 'Advanced' designs have their place where the price level for electricity is higher, or become higher as environmental pressures (carbon tax) or scarcity of fossil fuels force up the price of electricity. In addition a utility may favour an 'advanced' design because they place value on its higher security of investment and the improved operational performance that has been introduced in developing the advanced designs. (authors)

  17. Electrochemistry and safety of Li 4Ti 5O 12 and graphite anodes paired with LiMn 2O 4 for hybrid electric vehicle Li-ion battery applications

    Science.gov (United States)

    Belharouak, Ilias; Koenig, Gary M.; Amine, K.

    A promising anode material for hybrid electric vehicles (HEVs) is Li 4Ti 5O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2O 4 cathode materials.

  18. The BMW Z8. Pt. 1. Concept body, safety, electrical/electronic systems; Der BMW Z8. T. 1. Konzept, Karosserie, Sicherheit, Elektrik/Elektronik

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C. [Bayerische Motoren Werke AG (BMW), Muenchen (Germany)

    2000-06-01

    As the new kid on the block among the super sports cars, the Z8 is aimed at a small group of customers who have very high demands and wish to combine 'the ultimate driving machine and the ultimate design with exclusivity, safety, reliability and quality. The latest engineering, such as the aluminium structure and aluminium exterior skin, the high performance power train and the sophisticated sports chassis, the stability control system, the high performance braking system and the tyres with emergency features go together to make the Z8 an extraordinary sports car. A full range of equipment with a hardtop, telephone, audio and navigation system, attention to detail and lots of aluminium in the interior combined with high quality leather underline the exclusivity of the Z8. Part 2 follows in issue of the ATZ: Engine, powertrain, chassis, acoustics, quality and repair procedures. (orig.) [German] Als Neuling im Kreis der Supersportwagen ist der Z8 fuer einen kleinen Kreis von Kunden bestimmt, die hoechste Ansprueche stellen, die 'Freude am Fahren, Freude an der Form mit Exklusivitaet, Sicherheit, Zuverlaessigkeit und Qualitaet' verbinden wollen. Modernste Technik wie die Aluminiumstruktur und Aluminiumaussenhaut, das Hochleistungstriebwerk in Verbindung mit dem aufwendigen Sportfahrwerk, den Stabilitaetsregelsystemen, der Hochleistungsbremsanlage und den Reifen mit Notlaufeigenschaften machen den Z8 zu einem aussergewoehnlichen Sportwagen. Vollausstattung mit Hardtop, Telefon, Audio-, Navigationssystem, Liebe zum Detail in Verbindung mit viel Aluminium im Innenraum und hochwertigem Leder unterstreichen die Exklusivitaet des Z8. Teil 2 folgt in der naechsten ATZ mit den Themen Motor, Antrieb, Fahrwerk, Akustik, Qualitaet und Reparaturverfahren. (orig.)

  19. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  20. Tomorrow's car: fuels and electricity - Sustainable development

    International Nuclear Information System (INIS)

    Syrota, Jean; Auverlot, Dominique; Beeker, Etienne; Buba, Johanne; Le Moign, Caroline; Hossie, Gaelle; Chriqui, Vincent; Mourier, Pierre-Francois; Broca, Olivier de; Hirtzman, Philippe; Bryden, Alan; Von Pechmann, Felix

    2011-06-01

    In its synthetic introduction, this report comments the evolution of the international, political and sociological environment for the automotive industry, discusses the motivations of the consumer to buy an electric vehicle, discusses the governing influence of financial constraints with respect to financial incentives, notices that public authorities consider that the never-ending improvement of thermal vehicles will first help to reach objectives of reduction of emissions. Then, some recommendations are made regarding vehicle characteristics, information on vehicle consumption and emissions, vehicle purchase and possession, vehicle use, safety, public research, standardisation, urban transport and other mobilities. Then, the chapters of the report body addresses the historical evolution of battery technology, the issue of raw materials used for batteries, and battery recycling, discusses the present performance of electric vehicles, compares electric vehicles and thermal vehicles in terms of costs, addresses the issues of regulation and standards for the development of electric vehicles, discusses the different features of the potential market of electric vehicles