WorldWideScience

Sample records for electrical resistivity monitoring

  1. Coke fouling monitoring by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Bombardelli, Clovis; Mari, Livia Assis; Kalinowski, Hypolito Jose [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)

    2008-07-01

    An experimental method to simulate the growth of the coke fouling that occurs in the oil processing is proposed relating the thickness of the encrusted coke to its electrical resistivity. The authors suggest the use of the fouling electrical resistivity as a transducer element for determining its thickness. The sensor is basically two electrodes in an electrically isolated device where the inlay can happen in order to compose a purely resistive transducer. Such devices can be easily constructed in a simple and robust form with features capable to face the high temperatures and pressures found in relevant industrial processes. For validation, however, it is needed a relationship between the electrical resistivity and the fouling thickness, information not yet found in the literature. The present work experimentally simulates the growth of a layer of coke on an electrically insulating surface, equipped with electrodes at two extremities to measure the electrical resistivity during thermal cracking essays. The method is realized with a series of consecutive runs. The results correlate the mass of coke deposited and its electrical resistivity, and it can be used to validate the coke depositions monitoring employing the resistivity as a control parameter. (author)

  2. A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography

    OpenAIRE

    Hermans, Thomas; Vandenbohede, Alexander; Lebbe, Luc; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world for geothermal exploitation systems. To monitor such systems and to estimate their governing parameters, we rely mainly on borehole observations of the temperature field at a few locations. Bulk electrical resistivity variations can bring important information on temperature changes in aquifers. In this paper, we demonstrate the ability of surface electrical resistivity tomography to monitor spatially temperature variations in a san...

  3. Electrical resistivity monitoring of the drift scale test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.

    1997-01-01

    Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Eight boreholes, containing a total of 140 ERT electrodes, were drilled above and below the Heated Drift (HD) to form vertical planes parallel to the drift. In addition, 4 boreholes, containing 60 electrodes, drilled from the Access Observation Drift (AOD) form vertical planes at right angles to the HD. Four ERT surveys, three before and one after heating began, were conducted during the first quarter of FY 98. Tomographic images of absolute electrical resistivity have been calculated using these data and are presented in this report. The report also presents the coordinates of the electrodes used for the ERT surveys. Future reports will include images of electrical resistivity change calculated using data collected before and during the heating episode. The changes to be recovered will then be used in combination with temperature maps of the region to calculate maps of saturation change around the HD

  4. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Directory of Open Access Journals (Sweden)

    Wychowaniak Dorota

    2015-09-01

    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  5. Mapping and monitoring nuclear waste repositories with subsurface electrical resistivity arrays

    International Nuclear Information System (INIS)

    Asch, T.; Morrison, H.F.

    1987-01-01

    The siting and future integrity of nuclear waste repositories is critically dependent on the local ground water regime. Electrical methods seem particularly promising in mapping and monitoring this regime since the electrical conductivity of rocks depends almost entirely on the fluid saturation, salinity and distribution. The most important recent developments in resistivity include the use of numerical modeling and resistivity mapping using subsurface electrodes. The latter yields far greater accuracy and resolution than can be obtained with surface arrays. To illustrate the power of subsurface-surface arrays the authors studied an idealized two dimensional model of a nuclear repository. Since they are interested in emphasizing the anomaly caused by the repository, or subsequent changes over time in its vicinity, the authors discovered that it is very useful to express the apparent resistivity results as percentage differences from either the background (for surface arrays) or from the apparent resistivities observed at a particular depth of the current source (for subsurface arrays). Percent differencing with respect to data at the repository depth dramatically reduce near-surface and topographic effects that usually confound quantitative interpretation of surface surveys. Thus, dc resistivity appears to have great potential for nuclear waste repository mapping and monitoring

  6. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    International Nuclear Information System (INIS)

    Myers, D.A.; Rucker, D.F.; Fink, J.B.; Loke, M.H.

    2009-01-01

    Highly industrialized areas pose challenges for surface electrical resistivity characterization due to metallic infrastructure. The infrastructure is typically more conductive than the desired targets and will mask the deeper subsurface information. These challenges may be minimized if steel-cased wells are used as long electrodes in the area near the target. We demonstrate a method of using long electrodes to electrically monitor a simulated leak from an underground storage tank with both synthetic examples and a field demonstration. The synthetic examples place a simple target of varying electrical properties beneath a very low resistivity layer. The layer is meant to replicate the effects of infrastructure. Both surface and long electrodes are tested on the synthetic domain. The leak demonstration for the field experiment is simulated by injecting a high conductivity fluid in a perforated well within the S tank farm at Hanford, and the resistivity measurements are made before and after the leak test. All data are processed in four dimensions, where a regularization procedure is applied in both the time and space domains. The synthetic test case shows that the long electrode ERM could detect relative changes in resistivity that are commensurate with the differing target properties. The surface electrodes, on the other hand, had a more difficult time matching the original target's footprint. The field results shows a lowered resistivity feature develop south of the injection site after cessation of the injections. The time lapsed regularization parameter has a strong influence on the differences in inverted resistivity between the pre and post injection datasets, but the interpretation of the target is consistent across all values of the parameter. The long electrode ERM method may provide a tool for near real-time monitoring of leaking underground storage tanks.

  7. Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Jensen, Karsten Høgh; Binley, Andrew

    2015-01-01

    The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment...... methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly...

  8. Identification of electrical resistance of fresh state concrete for nondestructive setting process monitoring

    International Nuclear Information System (INIS)

    Shin, Sung Woo

    2015-01-01

    Concrete undergoes significant phase changes from liquid to solid states as hydration progresses. These phase changes are known as the setting process. A liquid state concrete is electrically conductive because of the presence of water and ions. However, since the conductive elements in the liquid state of concrete are consumed to produce non-conductive hydration products, the electrical conductivity of hydrating concrete decreases during the setting process. Therefore, the electrical properties of hydrating concrete can be used to monitor the setting process of concrete. In this study, a parameter identification method to estimate electrical parameters such as ohmic resistance of concrete is proposed. The effectiveness of the proposed method for monitoring the setting process of concrete is experimentally validated

  9. Monitoring of Leachate Recirculation in a Bioreactor Using Electrical Resistivity

    Science.gov (United States)

    Grellier, S.; Bureau, N.; Robain, H.; Tabbagh, A.; Camerlynck, C.; Guerin, R.

    2004-05-01

    The bioreactor is a concept of waste landfill management consisting in speeding up the biodegradation by optimizing the moisture content through leachate recirculation. Electrical resistivity tomography (ERT) is carried out with fast resistivity-meter (Syscal Pro, IRIS Instruments, developed in the framework of the research project CERBERE 01V0665-69, funded by the French Research Ministry) to monitor leachate recirculation. During a recirculation period waste moisture increases, so that electrical resistivity may decrease, but at the same time temperature and mineralization of both waste and leachate become intermixed. If waste temperature is much higher than leachate temperature electrical resistivity will not decrease as much as if the temperature difference was smaller. If leachate mineralization (i.e. leachate conductivity) is higher than that of wet waste in the landfill, electrical resistivity will tend to decrease. Otherwise for example after an addition of rain water into the leachate storage or in case of very wet waste, the resistivities of each medium (leachate and wet waste) can be almost the same, so that leachate mineralization will not have a great influence on waste resistivity. Resistivity measurements were performed during 85 minutes injection trials (with a discharge of 20 m3 h-1) where leachate was injected through a vertical borehole perforated between 1.85 and 4.15 m. Three first measurements are made during the injection (3, 30 and 60 minutes from the beginning of the injection) and the two other after the injection period (8 and 72 minutes after the end of the injection). Apparent and interpreted resistivity variations that occurred during injection trials, expressed as the relative differences (in %) between apparent, respectively interpreted, resistivity during injection and apparent, respectively interpreted, resistivity before injection (reference measurement) show the formation of a plume (a negative anomaly: resistivity decreases with

  10. Environmental Monitoring Of Leaks Using Time Lapsed Long Electrode Electrical Resistivity

    International Nuclear Information System (INIS)

    Rucker, D.F.; Fink, J.B.; Loke, M.H.; Myers, D.A.

    2009-01-01

    Highly industrialized areas pose significant challenges for surface based electrical resistivity characterization and monitoring due to the high degree of metallic infrastructure. The infrastructure is typically several orders of magnitude more conductive than the desired targets, preventing the geophysicist from obtaining a clear picture of the subsurface. These challenges may be minimized if steel-cased wells are used as long electrodes. We demonstrate a method of using long electrodes in a complex nuclear waste facility to monitor a simulated leak from an underground storage tank. The leak was simulated by injecting high conductivity fluid in a perforated well and the resistivity measurements were made before and after the leak test. The data were processed in four dimensions, where a regularization procedure was applied in both the time and space domains. The results showed a lowered resistivity feature develop south of the injection site. The time lapsed regularization parameter had a strong influence on the differences in inverted resistivity between the pre and post datasets, potentially making calibration of the results to specific hydrogeologic parameters difficult.

  11. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    Science.gov (United States)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  12. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.

    Science.gov (United States)

    Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.

  13. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.

    1997-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is headed. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  14. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.; LaBrecque, L

    1996-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is heated. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and -the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  15. An electrical resistivity monitor for the detection of composition changes in Pb-17Li

    International Nuclear Information System (INIS)

    Hubberstey, P.; Barker, M.G.; Sample, T.

    1991-01-01

    An electrical resistivity monitor for the detection of composition changes in the lithium-lead eutectic alloy, Pb-17Li, has been developed. A miniature electromagnetic pump is used to sample alloy continuously from a pool or loop system and force it through a capillary section, within which the necessary resistance measurements are made, prior to its return to the bulk source. To calibrate the monitor, detailed resistivity-temperature and resistivity-composition data have been determined for Pb-Li alloys at temperatures from 600 to 800K and compositions from 0 to 20.5 at% Li. The resistivity increases with both temperature and composition; for Pb-17li at 723 K, dρ/dT=0.054x10 -8 ΩmK -1 , and dρ/d[Li]=1.27x10 -8 Ωm(at% Li) -1 . The sensitivity of the monitor is such that changes in composition of as little as ±0.05 at% Li can be detected and its response time is limited soley by the rate of sampling. (orig.)

  16. Improvement of electrical resistivity tomography for leachate injection monitoring

    International Nuclear Information System (INIS)

    Clement, R.; Descloitres, M.; Guenther, T.; Oxarango, L.; Morra, C.; Laurent, J.-P.; Gourc, J.-P.

    2010-01-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.

  17. Electrical condition monitoring method for polymers

    Science.gov (United States)

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  18. Electrical resistivity monitoring of the single heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.

    1997-10-01

    Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response in the Single Heater Test, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Images of resistivity change were calculated using data collected before, during and after the heating episode. This report will concentrate on the results obtained after heating ceased; previous reports discuss the results obtained during the heating phase. The changes recovered show a region of increasing resistivity approximately centered around the heater as the rock mass cooled. The size of this region grows with time and the resistivity increases become stronger. The increases in resistivity are caused by both temperature and saturation changes. The Waxman Smits model has been used to calculate rock saturation after accounting for temperature effects. The saturation estimates suggest that during the heating phase, a region of drying forms around the heater. During the cooling phase, the dry region has remained relatively stable. Wetter rock regions which developed below the heater during the heating phase, are slowly becoming smaller in size during the cooling phase. The last set of images indicate that some rewetting of the dry zone may be occurring. The accuracy of the saturation estimates depends on several factors that are only partly understood

  19. Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods

    International Nuclear Information System (INIS)

    Hubberstey, P.; Sample, T.; Barker, M.G.

    1991-01-01

    The composition of liquid Pb-17Li alloys has been continously determined, using an electrical resistivity monitor, during their interaction with nitrogen, oxygen, hydrogen and water vapour. The operation of the monitor depends on the fact that the resistivity of liquid Pb-Li alloys is dependent on their composition. Accurate resistivity-composition isotherms have been derived from resistivity-temperature data for 15 Pb-Li alloys (0 Li -8 Ω m (mol% Li) -1 at 725 K) is such that a change of 0.05 mol% Li in the alloy composition can be measured. The addition of oxygen and water vapour resulted in a decrease in the resistivity of the liquid alloy. Neither nitrogen nor hydrogen had any effect. The observed changes were shown to be consistent with Li 2 O formation. (orig.)

  20. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  1. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  2. Improvement of electrical resistivity tomography for leachate injection monitoring.

    Science.gov (United States)

    Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P

    2010-03-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights

  3. Electrical Resistance Tomography to monitor vadose water movement

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; LaBrecque, D.

    1991-01-01

    We report results of one test in which Electrical Resistance Tomography (ERT) was used to map the changes in electrical resistivity in the vadose zone as a function of time while water infiltration occurred. The ERT images were used to infer shape and movement of the infiltration plume in the unsaturated soil. We supplied a continuous water source at a point about 10 feet below the surface (at the end of a shallow screened hole) for only a short time--2.5 hours. This pulsed source introduced a open-quote slug close-quote of water whose infiltration was followed to about 60 foot depth during a 23 hour period. The ERT images show resistivity decreases as the water content of the vadose zone increased while water was added to the soil; the resistivity of the soil later increased after the supply of water was cut-off and the induced soil moisture began to subside

  4. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals.

    Science.gov (United States)

    Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe

    2014-01-01

    Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.

  5. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography

    DEFF Research Database (Denmark)

    Yang, Xianjin; Lassen, Rune Nørbæk; Jensen, Karsten Høgh

    2015-01-01

    Three-dimensional (3D) crosshole electrical resistivity tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, western Denmark. The purpose was to evaluate the effectiveness of the ERT method for detection of small electrical conductivity (EC) changes during the first 2....... The combined HBB and VBB data sets were inverted using a difference inversion algorithm for cancellation of coherent noises and enhanced resolution of small changes. ERT detected the small bulk EC changes (resistive gaseous CO2. The primary factors that control...... bulk EC changes may be caused by limited and variable ERT resolution, low ERT sensitivity to resistive anomalies and uncalibrated CO2 gas saturation. ERT data show a broader CO2 plume while water sample EC had higher fine-scale variability. Our ERT electrode configuration can be optimized for more...

  6. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood.

    Science.gov (United States)

    Sapkota, Achyut; Asakura, Yuta; Maruyama, Osamu; Kosaka, Ryo; Yamane, Takashi; Takei, Masahiro

    2013-01-01

    Monitoring of thrombogenic process is very important in ventricular assistance devices (VADs) used as temporary or permanent measures in patients with advanced heart failure. Currently, there is a lack of a system which can perform a real-time monitoring of thrombogenic activity. Electrical signals vary according to the change in concentration of coagulation factors as well as the distribution of blood cells, and thus have potential to detect the thrombogenic process in an early stage. In the present work, we have made an assessment of an instrumentation system exploiting the electrical properties of blood. The experiments were conducted using bovine blood. Electrical resistance tomography with eight-electrode sensor was used to monitor the spatio-temporal change in electrical resistivity of blood in thrombogenic and non-thrombogenic condition. Under non-thrombogenic condition, the resistivity was uniform across the cross-section and average resistivity monotonically decreased with time before remaining almost flat. In contrary, under thrombogenic condition, there was non-uniform distribution across the cross-section, and average resistivity fluctuated with time.

  7. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  8. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  9. On the value of electrical resistivity tomography for monitoring leachate injection in solid state anaerobic digestion plants at farm scale.

    Science.gov (United States)

    Degueurce, Axelle; Clément, Rémi; Moreau, Sylvain; Peu, Pascal

    2016-10-01

    Agricultural waste is a valuable resource for solid state anaerobic digestion (SSAD) thanks to its high solid content (>15%). Batch mode SSAD with leachate recirculation is particularly appropriate for such substrates. However, for successful degradation, the leachate must be evenly distributed through the substrate to improve its moisture content. To study the distribution of leachate in agricultural waste, electrical resistivity tomography (ERT) was performed. First, laboratory-scale experiments were conducted to check the reliability of this method to monitor infiltration of the leachate throughout the solid. Two representative mixtures of agricultural wastes were prepared: a "winter" mixture, with cattle manure, and a "summer" mixture, with cattle manure, wheat straw and hay. The influence of density and water content on electrical resistivity variations was assessed in the two mixtures. An increase in density was found to lead to a decrease in electrical resistivity: at the initial water content, resistivity decreased from 109.7 to 19.5Ω·m in the summer mixture and from 9.8 to 2.7Ω·m in the "winter" mixture with a respective increased in density of 0.134-0.269, and 0.311-0.577. Similarly, resistivity decreased with an increase in water content: for low densities, resistivity dropped from 109.7 to 7.1Ω·m and 9.8 to 4.0Ω·m with an increase in water content from 64 to 90w% and 74 to 93w% for "summer" and "winter" mixtures respectively. Second, a time-lapse ERT was performed in a farm-scale SSAD plant to monitor leachate infiltration. Results revealed very heterogeneous distribution of the leachate in the waste, with two particularly moist areas around the leachate injection holes. However, ERT was successfully applied in the SSAD plant, and produced a reliable 3D map of leachate infiltration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  11. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring. Electrical resistivity tomography is a cross-borehole, imaging technique for mapping subsurface resistivity variations. Electrodes are placed at predetermined depths in an array of boreholes. Electrical current is introduced into one electrode pair located in one borehole while the resulting voltage change is detected between electrode pairs in other boreholes similar to a surface dipole-dipole array. These data are tomographically inverted to image temporal resistivity contrasts associated with an infiltration event. Thus a dynamic plume is spatially mapped as a function of time. As a long-term vadose zone monitoring method, different field conditions and performance requirements exist than those for short term tank leak detection. To test ERT under these conditions, two vertical electrode arrays were constructed to a depth of 160 feet with a linear surface array between boreholes

  12. 3-D time-lapse electrical resistivity monitoring of injected CO2 in a shallow aquifer

    DEFF Research Database (Denmark)

    Doetsch, Joseph A. J.A.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    and 10 m and monitored its migration using 320 surface electrodes on a 126 m × 20 m grid. A fully automated acquisition system continuously collected data and uploaded it into an online database. The large amount of data allows for time-series analysis for data quality and noise estimation. A baseline...... inversion reveals the geology at the site consisting of aeolian sands near the surface and glacial sands below 5 m depth. Time-lapse inversions clearly image the dissolved CO2 plume with decreased electrical resistivity values. We can follow the CO2 plume as it spreads and moves with the groundwater...

  13. CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure ≤4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples

  14. Electrical Methods: Resistivity Methods

    Science.gov (United States)

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  15. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  16. Wireless Damage Monitoring of Laminated CFRP Composites using Electrical Resistance Change

    National Research Council Canada - National Science Library

    Todoroki, Akira

    2007-01-01

    .... In this system, a tiny oscillation circuit is attached to the composite component. When delimitation of the component occurs, electrical resistance changes, which causes a change in the oscillating frequency of the circuit...

  17. CT-scan-monitored electrical resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Coles, M.E.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    X-ray CT scans obtained during measurement of the electrical resistivity of core samples revealed some problems in obtaining uniform saturation along the length of the sample. In this paper the electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent, which is used in electric log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone. A stationary front formed in one sample at 1 psi oil/brine capillary pressure. A moving front formed at oil/brine capillary pressures of 4 psi or less in both samples tested, in both a fresh mixed-wettability state and in a cleaned water-wet state. In these samples, the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated

  18. Image reconstruction with an adaptive threshold technique in electrical resistance tomography

    International Nuclear Information System (INIS)

    Kim, Bong Seok; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2011-01-01

    In electrical resistance tomography, electrical currents are injected through the electrodes placed on the surface of a domain and the corresponding voltages are measured. Based on these currents and voltage data, the cross-sectional resistivity distribution is reconstructed. Electrical resistance tomography shows high temporal resolution for monitoring fast transient processes, but it still remains a challenging problem to improve the spatial resolution of the reconstructed images. In this paper, a novel image reconstruction technique is proposed to improve the spatial resolution by employing an adaptive threshold method to the iterative Gauss–Newton method. Numerical simulations and phantom experiments have been performed to illustrate the superior performance of the proposed scheme in the sense of spatial resolution

  19. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  20. Electrical resistance tomography used in environmental restoration

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.; LaBrecque, D.

    1992-04-01

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes; ERT can also be used to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and clean-up processes (such as air injection in the saturated zone, steam injection, emplacement of subsurface barriers) can create changes in a soil's electrical properties that are readily measured. We use these measurements to calculate tomographs that show the spatial distribution of the subsurface resistivities. The information derived from ERT can be used by remediation projects to: monitor the effectiveness of clean-up processes, characterize hydrologic processes affecting contaminant transport, select appropriate clean-up alternatives, demonstrate regulatory compliance, and to verify the installation and performance of subsurface barriers

  1. Towards mechanisms-guided resistivity-based monitoring of damage evolution in laminated composites

    KAUST Repository

    Lubineau, Gilles; Nouri, Hedi; Selvakumaran, Lakshmi

    2013-01-01

    A convenient health monitoring technique for detecting degradation in laminated composite is to monitor the change of electrical resistance along multiple conduction paths within the structure. Yet, the relations between the global modification

  2. Monitoring snowmelt and solute transport at Oslo airport by combining time-lapse electrical resistivity, soil water sampling and tensiometer measurements

    Science.gov (United States)

    Bloem, E.; French, H. K.

    2013-12-01

    Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were

  3. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    Science.gov (United States)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  4. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose monitoring. Electrical resistivity tomography is a cross-borehole, imaging technique for mapping subsurface resistivity variations. Electrodes are placed at predetermined depths in an array of boreholes. Electrical current is introduced into one electrode pair located in one borehole while the resulting voltage change is detected between electrode pairs in other boreholes similar to a surface dipole-dipole array. These data are topographically inverted to image temporal resistivity contrasts associated with an infiltration event. Thus a dynamic plume is spatially mapped as a function of time. As a long-term vadose zone monitoring method, different field conditions and performance requirements exist than those for short term tank leak detection. To test ERT under these conditions, two vertical electrode arrays were constructed to a depth of 160 feet with a linear surface array between boreholes. The fielding was used to facilitate the technology transfer from LLNL to the Hanford RCRA program. Installation methods, commercial equipment and

  5. Direct quantification of transendothelial electrical resistance in organs-on-chips

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; Odijk, Mathieu; Frimat, Jean-Philippe; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom

  6. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer

    Science.gov (United States)

    Wilkinson, P. B.; Meldrum, P. I.; Kuras, O.; Chambers, J. E.; Holyoake, S. J.; Ogilvy, R. D.

    2010-04-01

    A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.

  7. Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering

    OpenAIRE

    Birkett, Martin; Penlington, Roger

    2016-01-01

    We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10–1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10–25 nm the ...

  8. On electrical resistivity of AISI D2 steel during various stages of cryogenic treatment

    Science.gov (United States)

    Lomte, Sachin Vijay; Gogte, Chandrashekhar Laxman; Peshwe, Dilip

    2012-06-01

    The effect of dislocation densities and residual stresses is well known in tool steels. Measurement of electrical resistivity in order to monitor dislocation densities or residual stresses has seldom been used in investigating the effect of cryogenic treatment on tool steels. Monitoring residual stresses during cryogenic treatment becomes important as it is directly related to changes due to cryogenic treatment of tool steels. For high carbon high chromium (HCHC- AISI D2) steels, not only wear resistance but dimensional stability is an important issue as the steels are extensively used in dies, precision measuring instruments. This work comprises of study of measurement of electrical resistivity of AISI D2 steel at various stages of cryogenic treatment. Use of these measurements in order to assess the dimensional stability of these steels is discussed in this paper.

  9. Electrical Resistivity Measurements: a Review

    Science.gov (United States)

    Singh, Yadunath

    World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.

  10. Development and applications of the contact electric resistance technique

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T.

    1995-12-31

    At the moment both the scientific understanding of corrosion processes and the engineering practices of corrosion control in power plants can benefit considerably from the development of in situ on-line instruments for characterisation of the surface films on construction materials. In this work a new in situ Contact Electric Resistance (CER) technique has been developed for measurement of electric resistance of surface films on metals. The CER technique was applied in this work in several different research areas. These include e.g. localized corrosion of stainless steel in paper mill wet end environment, investigation of the effect of inhibitors in steam generator crevice environments, passivation of GaAs single crystals by sulphate treatment and monitoring of the kinetics of oxide growth on zirconium metals in high temperature water. The CER technique has a measurement capacity ranging from 10-9 {omega} to 105 {omega}. The lowest range of resistance is typical for metallic layers deposited on the surface in electrodeposition processes. The highest range of resistance is found for insulator type of films e.g. on zirconium metals. (author)

  11. Electrical resistivity and rheological properties of sensing bentonite drilling muds modified with lightweight polymer

    Directory of Open Access Journals (Sweden)

    Ahmed S. Mohammed

    2018-03-01

    Full Text Available In this study, the electrical resistivity and rheological properties of a water-based bentonite clay drilling mud modified with the lightweight polymer (guar gum under various temperature were investigated. Based on the experimental and analytical study, the electrical resistivity was identified as the sensing property of the bentonite drilling mud so that the changes in the properties can be monitored in real-time during the construction. The bentonite contents in the drilling muds were varied up to 8% by the weight of water and temperature was varied from 25 °C to 85 °C. The guar gum content (GG% was varied between 0% and 1% by the weight of the drilling mud to modify the rheological properties and enhance the sensing electrical resistivity of the drilling mud. The guar gum and bentonite clay were characterized using thermal gravimetric analysis (TGA. The total weight loss at 800 °C for the bentonite decreased from 12.96% to 0.7%, about 95% reduction, when the bentonite was mixed with 1% of guar gum. The results also showed that 1% guar gum decreased the electrical resistivity of the drilling mud from 50% to 90% based on the bentonite content and the temperature of the drilling mud. The guar gum modification increased the yield point (YP and plastic viscosity (PV by 58% to 230% and 44% to 77% respectively based on the bentonite content and temperature of the drilling mud. The rheological properties of the drilling muds have been correlated to the electrical resistivity of the drilling mud using nonlinear power and hyperbolic relationships. The model predictions agreed well with the experimental results. Hence the performance of the bentonite drilling muds with and without guar gum can be characterized based on the electrical resistivity which can be monitored real-time in the field. Keywords: Bentonite, Polymer (Guar gum, Electrical resistivity, Rheological properties, Temperature, Modeling

  12. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)

    user

    Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION ... electrical resistivity survey in the geological interpretation ... resistivity and other electrical or electromagnetic based.

  13. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  14. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  15. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  16. Time-lapse electrical geophysical monitoring of amendment-based biostimulation

    Science.gov (United States)

    Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial

  17. Electrical resistivity measurements to predict abrasion resistance

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Electrical resistivity measurements to predict abrasion resistance of rock aggregates ... It was seen that correlation coefficients were increased for the rock classes. In addition ...

  18. Experimental Studies on the Changes in Resistivity and Its Anisotropy Using Electrical Resistivity Tomography

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2012-01-01

    Full Text Available Three measuring lines were arranged on one of free planes of magnetite cuboid samples. Apparent resistivity data were acquired by MIR-2007 resistivity meter when samples were under uniaxial compression of servocontrol YAW-5000F loadingmachine in laboratory. Then we constructed the residual resistivity images using electrical resistivity tomography (ERT and plotted the diagrams of apparent resistivity anisotropy coefficient (ARAC λ∗ and the included angle α between the major axis of apparent resistivity anisotropy ellipse and the axis of load with pressure and effective depth. Our results show that with increasing pressure, resistivity and the decreased (D region and increased (I region resistivity regions have complex behaviors, but when pressure is higher than a certain value, the average resistivity decrease and the area of D region expand gradually in all time with the increase of pressure, which may be significant to the monitoring and prediction of earthquake, volcanic activities, and large-scale geologic motions. The effects of pressure on λ∗ and α are not very outstanding for dry magnetite samples.

  19. Computer modeling and laboratory experiments of a specific borehole to surface electrical monitoring technique (BSEMT)

    NARCIS (Netherlands)

    Meekes, J.A.C.; Zhang, X.; Abdul Fattah, R.

    2011-01-01

    Geophysical monitoring of the dynamical behavior of subsurface reservoirs (oil, gas, CO2) remains an important issue in geophysical research. A new idea for reservoir monitoring based on electrical resistivity tomography was developed at TNO. The essential element of the so-called BSEMT (Borehole to

  20. Characterizations of Soil Profiles Through Electric Resistivity Ratio

    Directory of Open Access Journals (Sweden)

    Chik Z

    2015-04-01

    Full Text Available This paper presents how near surface soil characteristics are obtained through soil electric resistivity ratio from soil apparent resistivity profile. In recent advances of electrical sensors, soil apparent resistivity is implemented as nondestructive method for obtaining near surface soil profile. Although geo-electric techniques offer an improvement to traditional soil sampling methods, the resulting data are still often misinterpreted for obtaining soil characteristics through apparent electrical resistivity in the field. Because, soil resistivity as before rain and after rain are changeable due to the presence of more moisture contents in field investigations. In this study, the parameter of soil electric resistivity ratio is incorporated to obtain reliable near surface soil profiles from apparent resistivity of adjacent two layers in soil. The variations of potential differences are taken into account for using four probes method to get the soil apparent resistivity profile. The research is significant for simpler and faster soil characterizations using resistivity ratio of apparent resistivity in soil investigations.

  1. Hot Ta filament resistance in-situ monitoring under silane containing atmosphere

    International Nuclear Information System (INIS)

    Grunsky, D.; Schroeder, B.

    2008-01-01

    Monitoring of the electrical resistance of the Ta catalyst during the hot wire chemical vapor deposition (HWCVD) of thin silicon films gives information about filament condition. Using Ta filaments for silane decomposition not only the well known strong changes at the cold ends, but also changes of the central part of the filament were observed. Three different phenomena can be distinguished: silicide (stoichiometric Ta X Si Y alloys) growth on the filament surfaces, diffusion of Si into the Ta filament and thick silicon deposits (TSD) formation on the filament surface. The formation of different tantalum silicides on the surface as well as the in-diffusion of silicon increase the filament resistance, while the TSDs form additional electrical current channels and that result in a decrease of the filament resistance. Thus, the filament resistance behaviour during ageing is the result of the competition between these two processes

  2. Atmospheric corrosion Monitoring with Time-of-Wetness (TOW) sensor and Thin Film Electric Resistance (TFER) sensor

    International Nuclear Information System (INIS)

    Jung, Sung Won; Kim, Young Geun; Song, Hong Seok; Lee, Seung Min; Kho, Young Tai

    2002-01-01

    In this study, TOW sensor was fabricated with the same P. J. Serada's in NRC and was evaluated according to pollutant amount and wet/dry cycle. Laboratorily fabricated thin film electric resistance (TFER) probes were applied in same environment for the measurement of corrosion rate for feasibility. TOW sensor could not differentiate the wet and dry time especially at polluted environment like 3.5% NaCl solution. This implies that wet/dry time monitoring by means of TOW sensor need careful application on various environment. TFER sensor could produce instant atmospheric corrosion rate regardless of environment condition. And corrosion rate obtained by TFER sensor could be differentiated according to wet/dry cycle, wet/dry cycle time variation and solution chemistry. Corrosion behaviors of TFER sensor showed that corrosion could proceed even after wet cycle because of remained electrolyte at the surface

  3. Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method

    Science.gov (United States)

    Jia, Zhengyuan; Jiang, Guoming; Zhang, Guibin; Zhang, Gang

    2017-04-01

    Electrical Resistivity Imaging (ERI) was carried out continuously for ten days to map the subsurface resistivity distribution along a potentially hazardous hillslope at the Jieshou Junior High School in Taoyuan, Taiwan. The inversions confirm the viability of ERI in tracking the movement of groundwater flow and rainfall infiltration by recording the variation of subsurface resistivity distribution. Meanwhile, relative-water-saturation (RWS) maps can be obtained from ERI images via Archie's Law, which provide a more intuitive reflection of the variation of subsurface rainfall infiltration and a more capable means of estimating the stability of a landslide body. What is more, we then found that the averaged RWS is significantly correlated with daily precipitation. Our observations indicate that real-time ERI is effective in monitoring subterraneous rainfall infiltration, and thereby in estimating the stability of a potential landslide body. When the agglomerate rainfall in the landslide slippage surface was infiltrated quickly without sustaining hydraulic pressure along the landslide slippage surface, the probability of landslides occurring was very low. On the contrary, the probability of landslides occurring could be increased due to the overpressure of pore fluids. Keywords Electrical Resistivity Imaging; Depth-of-Investigation; Archie's Law; Landslide Monitoring; Rainfall Infiltration; Preferential Path

  4. Electrical capacity and resistance determination of emitting electric transducer

    International Nuclear Information System (INIS)

    Alba Fernandez, J.; Ramis Soriano, J.

    2000-01-01

    In this work we calculate the electrical resistance and capacity of emitting electric transducer, which is mainly formed, in direct relationship with its properties, by a ceramic capacitor. Our aim is to motivate the students with an attractive element in order to carry out traditional measurements of the charge and discharge transients of a capacitor, implementing high resistance setups. (Author) 5 refs

  5. Numerical modeling to assess the sensitivity and resolution of long-electrode electrical resistance tomography (LEERT) surveys to monitor CO2 migration, Phase 1B area

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Abelardo L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-05-18

    This document describes the results of a numerical modeling study that evaluated whether LEERT could be used successfully to monitor CO2 distribution in the Weyburn- Midale reservoir, Phase 1B area. The magnitude of electrical resistivity changes and the technique’s resolution depend on many site-specific factors including well separation distances, casing lengths, reservoir depth, thickness, and composition, and the effect of CO2 on the electrical properties of the reservoir. Phase 1B-specific numerical modeling of the electrical response to CO2 injection has been performed to assess sensitivity and resolution of the electrical surveys.

  6. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  7. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    Science.gov (United States)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.

  8. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale.

    Science.gov (United States)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    Science.gov (United States)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  10. Determination of electrical resistivity of dry coke beds

    Energy Technology Data Exchange (ETDEWEB)

    Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  11. Monitoring Freeze Thaw Transitions in Arctic Soils using Complex Resistivity Method

    Science.gov (United States)

    Wu, Y.; Hubbard, S. S.; Ulrich, C.; Dafflon, B.; Wullschleger, S. D.

    2012-12-01

    The Arctic region, which is a sensitive system that has emerged as a focal point for climate change studies, is characterized by a large amount of stored carbon and a rapidly changing landscape. Seasonal freeze-thaw transitions in the Arctic alter subsurface biogeochemical processes that control greenhouse gas fluxes from the subsurface. Our ability to monitor freeze thaw cycles and associated biogeochemical transformations is critical to the development of process rich ecosystem models, which are in turn important for gaining a predictive understanding of Arctic terrestrial system evolution and feedbacks with climate. In this study, we conducted both laboratory and field investigations to explore the use of the complex resistivity method to monitor freeze thaw transitions of arctic soil in Barrow, AK. In the lab studies, freeze thaw transitions were induced on soil samples having different average carbon content through exposing the arctic soil to temperature controlled environments at +4 oC and -20 oC. Complex resistivity and temperature measurements were collected using electrical and temperature sensors installed along the soil columns. During the laboratory experiments, resistivity gradually changed over two orders of magnitude as the temperature was increased or decreased between -20 oC and 0 oC. Electrical phase responses at 1 Hz showed a dramatic and immediate response to the onset of freeze and thaw. Unlike the resistivity response, the phase response was found to be exclusively related to unfrozen water in the soil matrix, suggesting that this geophysical attribute can be used as a proxy for the monitoring of the onset and progression of the freeze-thaw transitions. Spectral electrical responses contained additional information about the controls of soil grain size distribution on the freeze thaw dynamics. Based on the demonstrated sensitivity of complex resistivity signals to the freeze thaw transitions, field complex resistivity data were collected over

  12. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.

    Science.gov (United States)

    Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial

  13. Determining the specific electric resistance of rock

    Energy Technology Data Exchange (ETDEWEB)

    Persad' ko, V.Ia.

    1982-01-01

    Data are presented on perfecting the method of laboratory determination of the specific electric resistance of a rock formation. The average error in determining the specific electric resistance of the core at various locations is no more than two percent with low resistance values (2-5 ohms).

  14. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  15. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our

  16. Electrical resistivity probes

    Science.gov (United States)

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  17. Iron aluminide useful as electrical resistance heating elements

    Science.gov (United States)

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  18. Application of electrical resistance tomography to glass melter

    International Nuclear Information System (INIS)

    Ichijo, Noriaki; Sakai, Taiji; Fujiwara, Hiroaki; Matsuno, Shinsuke; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru

    2015-01-01

    This paper describes the application of electrical resistance tomography (ERT) to glass melter to monitor the accumulation of the noble metals. To minimize the modification of the melter, existing structures such as thermowells and heating electrodes are used as electrodes of ERT, and the number of electrodes is much fewer than the conventional method. Therefore, Expanding Combination Data Acquisition method (ECDA) is developed and applies to the glass melter. ECDA method uses adjacent method and opposite method as a data acquisition and current injection electrodes are used as voltage measurement electrodes to increase the number of the data. In addition, conductivity images are reconstructed only near the wall to improve the resolution. As a result of applying to the glass melter, the conductivity change inside the melter caused by temperature can be monitored. Furthermore, lower voltage is measured in case of containing the noble metals inside the melter. Therefore, the potential as a monitoring method be confirmed. (author)

  19. State Waste Discharge Permit Application: Electric resistance tomography testing

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  20. State Waste Discharge Permit Application: Electric resistance tomography testing

    International Nuclear Information System (INIS)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks

  1. Small-scale electrical resistivity tomography of wet fractured rocks.

    Science.gov (United States)

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  2. Electrical Resistance Tomography for Subsurface Imaging. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2000-01-01

    Electrical Resistance Tomography (ERT) noninvasively maps the 3-D resistivity field in the subsurface. It can be used on a scale from feet to kilometers. The 3-D resistivity field can be used to infer subsurface hydrogeological features and provides good resolution mapping of confining layers of various types. ERT imaging has been used for real-time monitoring and process control of remediation processes such as soil heating, pump and treat, steam injection, electrokinetics, Dynamic Underground Stripping (TechID 7), Hydrous Pyrolysis/Oxidation (TechID 1519) and more. ERT can be deployed via rapid and inexpensive installation of electrodes using a Cone Penetrometer (TechID 243). Additional applications are described under TechID 140 (Tanks) and TechID 2120 (Injected Subsurface Barriers); see also the related technology TechID 2121 (EIT)

  3. Monitoring the Excavation Damaged Zone in Opalinus clay by three dimensional reconstruction of the electrical resistivity in the Mont Terri gallery G-04

    Science.gov (United States)

    Lesparre, N.; Adler, A.; Nicollin, F.; Gibert, D.; Nussbaum, C.

    2012-04-01

    The characteristics of opalinus clay have been studied in the last years for its capacity to retain radionuclide transport as a low permeable rock. This formation presents thereby suitable properties for hosting repository sites of radioactive waste. The Mont Terri underground rock laboratory (Switzerland) has been excavated in opalinus clay layer in order to develop experiences improving the knowledge on the physico-chemical properties of the rock. The study of electrical properties furnishes information on the rock structure, its anisotropy and the changes of these properties with time (Nicollin et al., 2010 ; Thovert et al., 2011). Here the three dimensional reconstruction of the electrical resistivity aims at monitoring the temporal evolution of the excavation damaged zone. Three rings of electrodes have been set-up around the gallery and voltage is measured between two electrodes while a current is injected between two others (Gibert et al., 2006). Measurements have been achieved from July 2004 until April 2008 before, during and after the excavation of the gallery 04. In this study we develop a computational approach to reconstruct three dimensional images of the resistivity in the vicinity of the electrodes. A finite element model is used to represent the complex geometry of the gallery. The measurements inferred from a given resistivity distribution are estimated using the software EIDORS (Adler and Lionheart, 2006), this constitutes the forward problem. The reconstruction of the media resistivity is then implemented by fitting the estimated to the measured data, via the resolution of an inverse problem. The parameters of this inverse problem are defined by mapping the forward problem elements into a coarser mesh. This allows to reduce drastically the number of unknowns and so increases the robustness of the inversion. The inversion is executed with the conjugate gradient method regularised by an analysis of the Jacobian singular values. The results show an

  4. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  5. Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring

    Science.gov (United States)

    Boyle, Alistair; Wilkinson, Paul B.; Chambers, Jonathan E.; Meldrum, Philip I.; Uhlemann, Sebastian; Adler, Andy

    2018-02-01

    Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss-Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian.

  6. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  7. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Science.gov (United States)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  8. Characterization of appendage weld quality by on line monitoring of electrical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Setty, D.S.; Somani, A.K.; Ram, A.M.; Rao, A.R.; Jayaraj, R.N.; Kalidas, R. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2005-07-01

    Resistance projection welding of zirconium alloy appendages is one of the most critical processes in the PHWR fuel fabrication. Appendages like Spacers and Bearing pads having multi projections are joined to the fuel sheath using capacitor discharge power source. Variations in the projection sizes, weld parameters and cleanliness of the work pieces have significant effect on the weld quality, in addition to material properties like hardness, tensile strength and surface finish. Defects like metal expulsion and weak welds are occasionally observed in appendage welding process, which need to be identified and segregated. Though numerous off-line inspection methods are available for the weld quality evaluation, on-line monitoring of weld quality is essential for identifying defective welds. For this purpose, various monitoring techniques like acoustic emission, analyzing derived electrical parameters and weld upset/deformation measurements are employed. The derived electrical parameters like A{sup 2}-Sec and Ohm-Sec can also be monitored. The present paper highlights development of suitable acceptance criteria for the monitoring technique by employing derived electrical parameters covering a wide range of weld variables like watt-sec and squeeze force. Excellent correlation could be achieved in identifying the weak welds and weld expulsion defects in mass production. (author)

  9. Electrical resistance tomography during gas injection at the Savannah River Site

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1993-05-01

    Electrical resistance tomography (ERT) is used to monitor some of the in situ remediation processes being evaluated for removal of volatile organic compounds from subsurface water and soil at the Integrated Demonstration for VOC's in Soils and Groundwater at Non Arid Sites, the Savannah River Site, near Aiken, South Carolina. Air was injected in the saturated zone and the intrained air was tomographically imaged by its effects on the formation electrical resistivity. The authors found that the flow paths are confined to a complex three dimensional network of channels, some of which extend as far as 30 m from the injection well. They conclude, based on these results, that the shape and extent of the air plume are controlled by spatial variations in the local gas permeability. These channels are somewhat unstable over a period of months and new channels appear to form with time

  10. Iron aluminide useful as electrical resistance heating elements

    Science.gov (United States)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  11. Electrical resistivity tomography at the DOE Hanford site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.; Halter, T.D.; Sweeney, M.D.; Daily, W.; Ramirez, A.L.

    1996-01-01

    Recent work at the DOE Hanford site has established the potential of applying Electrical Resistivity Tomography (ERT) for early leak detection under hazardous waste storage facilities. Several studies have been concluded to test the capabilities and limitations of ERT for two different applications. First, field experiments have been conducted to determine the utility of ERT to detect and map leaks from underground storage tanks during waste removal processes. Second, the use of ERT for long term vadose zone monitoring has been tested under different field conditions of depth, installation design, acquisition mode/equipment and infiltration chemistry. This work involves transferring the technology from Lawrence Livermore National Laboratory (LLNL) to the Resource Conservation and Recovery Act (RCRA) program at the DOE Hanford Site. This paper covers field training studies relevant to the second application for long term vadose zone monitoring

  12. Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils

    NARCIS (Netherlands)

    Alamry, Abdulmohsen S.; van der Meijde, Mark; Noomen, Marleen; Addink, Elisabeth A.|info:eu-repo/dai/nl/224281216; van Benthem, Rik; de Jong, Steven M.|info:eu-repo/dai/nl/120221306

    2017-01-01

    ERT techniques are especially promising in (semi-arid) areas with shallow and rocky soils where other methods fail to produce soil moisture maps and to obtain soil profile information. Electrical Resistivity Tomography (ERT) was performed in the Peyne catchment in southern France at four sites

  13. An Experimental Study of the Electrical Contact Resistance in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2005-01-01

    Electrical contact resistance is of critical importance in resistance welding. In this article, the contact resistance is experimentally investigated for welding mild steel, stainless steel, and aluminum to themselves. A parametric study was carried out on a Gleeble® machine, investigating...

  14. Research on Image Reconstruction Algorithms for Tuber Electrical Resistance Tomography System

    Directory of Open Access Journals (Sweden)

    Jiang Zili

    2016-01-01

    Full Text Available The application of electrical resistance tomography (ERT technology has been expanded to the field of agriculture, and the concept of TERT (Tuber Electrical Resistance Tomography is proposed. On the basis of the research on the forward and the inverse problems of the TERT system, a hybrid algorithm based on genetic algorithm is proposed, which can be used in TERT system to monitor the growth status of the plant tubers. The image reconstruction of TERT system is different from the conventional ERT system for two phase-flow measurement. Imaging of TERT needs more precision measurement and the conventional ERT cares more about the image reconstruction speed. A variety of algorithms are analyzed and optimized for the purpose of making them suitable for TERT system. For example: linear back projection, modified Newton-Raphson and genetic algorithm. Experimental results showed that the novel hybrid algorithm is superior to other algorithm and it can effectively improve the image reconstruction quality.

  15. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy

  16. Proceedings: On-line monitoring of corrosion an water chemistry for the electric power utility industry: An EPRI workshop held during the 12th International Corrosion Congress

    International Nuclear Information System (INIS)

    Licina, G.

    1994-03-01

    A two-day EPRI workshop on On-line Monitoring of Corrosion and Water Chemistry for the Electric Power Utility Industry included discussions on a variety of methods for the online monitoring of corrosion and water chemistry in a power plant environment. The workshop was held September 22 and 23, 1993 in Houston, Texas, as a part of the 12th International Corrosion Congress sponsored by NACE International. Methods in various stages of development, from laboratory demonstrations to in-plant monitoring, were presented by authors from all over the world. Recent developments in corrosion monitoring and the detection of specific chemical species in power plant environments have utilized a variety of electrochemical methods (both AC and DC), electrical resistance techniques, and potential drop techniques to evaluate crack extension. Other approaches, such as Raman spectroscopy of corroding surfaces, Specific ion detectors, and X-ray fluorescence and ion chromatography to analyze corrosion products have been demonstrated in the laboratory. Techniques that were described in the twenty-three technical papers included: Electrochemical noise, Electrical resistance, Field signature method, Linear polarization resistance, Neutron activation, Corrosion potential monitoring, Electrochemical detection of biofilm activity, Analysis of corrosion products by X-ray fluorescence, Potential drop method for assessing environmentally assisted crack growth, Harmonic impedance spectroscopy, Contact electric resistance, Conductivity and hydrogen sensors, Solid state methods for tracking oxygen and pH, and Raman spectroscopy. Individual papers are indexed separately

  17. Towards mechanisms-guided resistivity-based monitoring of damage evolution in laminated composites

    KAUST Repository

    Lubineau, Gilles

    2013-04-05

    A convenient health monitoring technique for detecting degradation in laminated composite is to monitor the change of electrical resistance along multiple conduction paths within the structure. Yet, the relations between the global modification of resistivity and the exact underlying damage map is still unclear that makes diffcult to interpret these nondestructive-testing results. The challenge is then to be able to reconstruct from these global observation the underlying damage map. This is even more diffcult due to the numerous underlying damage mechanisms that can take place either at the inter laminar of intra laminar level. This paper intends to provide some preliminary insights about strategies to recover the damage state based only on global measurements. We focus here on transverse cracking detection. We introduce the homogenization process that defines at the meso scale an equivalent homogeneous ply that is energetically equivalent to the cracked one. This can be used as a first tool to reconstruct damage maps based on global resistivity measurements.

  18. Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation

    Science.gov (United States)

    Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.

    2018-01-01

    Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.

  19. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.

    Science.gov (United States)

    Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios

    2014-07-01

    Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Contribution of soil electric resistivity measurements to the studies on soil/grapevine water relations

    Directory of Open Access Journals (Sweden)

    Etienne Goulet

    2006-06-01

    Full Text Available The classical techniques that allow to quantify the soil water status such as the gravimetric method or the use of neutrons probes do not give access to the volume of soil explored by the plant root system. On the contrary, electric tomography can be used to have a global vision on the water exchange area between soil and plant. The measurement of soil electric resistivity, as a non destructive, spatially integrative technique, has recently been introduced into viticulture. The use of performing equipment and adapted software allows for rapid data processing and gives the possibility to spatialize the variations of soil texture or humidity in two or three dimensions. Soil electric resistivity has been tested for the last three years at the Experimental Unit on Grapevine and Vine, INRA, Angers, France, to study the water supply to the vine in different “terroir” conditions. Resistivity measurements were carried out with the resistivity meter Syscal R1+ (Iris Instruments, France equipped with 21 electrodes. Those electrodes were lined up on the soil surface in a direction perpendiculary to 5 grapevine rows with an electrode spacing of 0.5 m. and a dipole-dipole arrangement. Resistivity measurements were performed on the same place at different times in order to study soil moisture variations. This experimental set up has permitted to visualise the soil stratification and individualize some positive electric anomalies corresponding to preferential drying ; this desiccation could be attributed to grapevine root activity. The soil bulk subject to the water up-take could be defined more precisely and in some types of soil, available water may even be quantified. Terroir effect on grapevine root activity has also been shown up on two different experimental parcels through electric tomography and first results indicate that it is possible to monitor the effects of soil management (inter-row grassing or different rootstocks on the water supply to the

  1. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    Science.gov (United States)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  2. Anastomotic leak detection by electrolyte electrical resistance.

    Science.gov (United States)

    DeArmond, Daniel T; Cline, Adam M; Johnson, Scott B

    2010-08-01

    To characterize a new method of postoperative gastrointestinal leak detection based on electrical resistance changes due to extravasated electrolyte contrast. Postoperative gastrointestinal leak results in increased patient morbidity, mortality, and hospital costs that can be mitigated by early diagnosis. A sensitive and specific diagnostic test that could be performed at the bedside has the potential to shorten the time to diagnosis and thereby improve the quality of treatment. Anaesthetized rats underwent celiotomy and creation of a 5-mm gastrotomy. In experimental animals, electrical resistance changes were measured with a direct current ohmmeter after the introduction of 5 cc of 23.4% NaCl electrolyte solution via gavage and measured with a more sensitive alternating current ohmmeter after the gavage of 1-5 cc of 0.9% NaCl. Comparison was made to negative controls and statistical analysis was performed. Leakage from the gastrotomy induced by as little as 1 cc of gavage-delivered 0.9% NaCl contrast solution was detectable as a statistically significant drop in electrical resistance when compared to results from negative controls. Electrical resistance change associated with electrolyte-gated leak detection is highly sensitive and specific and has the potential to be rapidly translated into clinical settings.

  3. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement.

    Science.gov (United States)

    Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong

    2017-07-05

    Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.

  4. Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering

    Science.gov (United States)

    Birkett, Martin; Penlington, Roger

    2016-07-01

    We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.

  5. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  6. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2014-01-01

    Full Text Available The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  7. A method to improve tree water use estimates by distinguishing sapwood from heartwood using Electrical Resistivity Tomography

    Science.gov (United States)

    Guyot, A.; Ostergaard, K.; Lenkopane, M.; Fan, J.; Lockington, D. A.

    2011-12-01

    Estimating whole-plant water use in trees requires reliable and accurate methods. Measuring sap velocity and extrapolating to tree water use is seen as the most commonly used. However, deducing the tree water use from sap velocity requires an estimate of the sapwood area. This estimate is the highest cause of uncertainty, and can reach more than 50 % of the uncertainty in the estimate of water use per day. Here, we investigate the possibility of using Electrical Resistivity Tomography to evaluate the sapwood area distribution in a plantation of Pinus elliottii. Electric resistivity tomographs of Pinus elliottii show a very typical pattern of electrical resistivity, which is highly correlated to sapwood and heartwood distribution. To identify the key factors controlling the variation of electrical resistivity, cross sections at breast height for ten trees have been monitored with electrical resistivity tomography. Trees have been cut down after the experiment to identify the heartwood/sapwood boundaries and to extract wood and sap samples. pH, electrolyte concentration and wood moisture content have then been analysed for these samples. Results show that the heartwood/sapwood patterns are highly correlated with electrical resistivity, and that the wood moisture content is the most influencing factor controlling the variability of the patterns. These results show that electric resistivity tomography could be used as a powerful tool to identify the sapwood area, and thus be used in combination with sapflow sensors to map tree water use at stand scale. However, if Pinus elliottii shows typical patterns, further work is needed to identify to see if there are species - specific characterictics as shown in previous works (, electrolyte gradients from the bark to the heartwood). Also, patterns of high resistivity in between needles positions, which are not correlated with either wood moisture content or sapwood, appear to be artifacts. Thus, inversion methods have also to

  8. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography

    International Nuclear Information System (INIS)

    Zhang, Jie; Patterson, Robert

    2010-01-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 ± 13 years, 78 ± 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC—end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Ω cm to 1583 Ω cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method

  9. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography.

    Science.gov (United States)

    Zhang, Jie; Patterson, Robert

    2010-08-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.

  10. On equivalent resistance of electrical circuits

    Science.gov (United States)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  11. The application of surface electrical and shallow geothermic methods in monitoring network design.

    Science.gov (United States)

    Gilkeson, R.H.; Cartwright, K.

    1983-01-01

    There are a variety of surface geophysical methods that are routinely used in geologic investigations. The three broad applications of these methods to evaluate the impact of waste disposal on shallow groundwater flow systems are: 1) evaluation of proposed waste disposal sites; 2) monitoring of site performance; and 3) investigation of contaminant migration at existing sites. Electrical and shallow geothermic are two surface geophysical methods that have application to waste disposal investigations. Of the electrical methods, electrical resistivity has the greatest application with a variety of techniques available. The distribution of temperature in shallow geologic materials (shallow geothermics) may define characteristics of shallow groundwater flow systems including zones of recharge and discharge and lithologic variation in the shallow geologic materials.-from Authors

  12. Electrical Resistivity Measurements of Downscaled Homogenous ...

    African Journals Online (AJOL)

    Knowledge of electrical resistivity for reservoir rocks is crucial for a number of reservoir engineering tasks such as the determination of oil-in-place and the calibration of resistivity logs. Those properties can now be predicted by numerical calculations directly on micro-CT images taken from rock fragments typically having a ...

  13. Intraesophageal impedance monitoring: clinical studies

    NARCIS (Netherlands)

    Conchillo Armendáriz, J.M.

    2007-01-01

    Electrical impedance (Z) between two electrodes is the ratio between applied voltage (U) and resulting current (I). In electrical impedance monitoring the resistance to electrical flow in an alternating current circuit is measured. Multichannel esophageal monitoring can be measured by using an

  14. Toughness degradation evaluation of low alloyed steels by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Nahm, S H; Yu, K M; Kim, S C [Korea Research Inst. of Standards and Science, Taejon (Korea, Republic of); Kim, A [Department of Mechanical Engineering, Kongju Univ., Kongju, Chungnam (Korea, Republic of)

    1997-09-01

    Remaining life of turbine rotors with a crack can be assessed by the fracture toughness on the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at 630 deg. C. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity. (author). 13 refs, 7 figs.

  15. Synthesis and Electrical Resistivity of Nickel Polymethacrylate

    Science.gov (United States)

    Chohan, M. H.; Khalid, A. H.; Zulfiqar, M.; Butt, P. K.; Khan, Farah; Hussain, Rizwan

    Synthesis of nickel polymethacrylate was carried out using methanolic solutions of sodium hydroxide and polymethacrylic acid. The electrical resistivity of the pellets made from Ni-polymethacrylate was measured at different voltages and temperatures. Results showed that the electrical resistivity of Ni-polymethacrylate decreases significantly with voltage in high temperature regions but the decrease is insignificant at temperatures nearing room temperature. The activation energy at low temperatures is approximately 0.8 eV whereas at high temperature it is in the range 0.21-0.27 eV.

  16. Danish integrated antimicrobial in resistance monitoring and research program

    DEFF Research Database (Denmark)

    Hammerum, Anette Marie; Heuer, Ole Eske; Emborg, Hanne-Dorthe

    2007-01-01

    a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research......Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish...... activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries....

  17. Usage monitoring of electrical devices in a smart home.

    Science.gov (United States)

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  18. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  19. Electrical resistivity measurement to predict uniaxial compressive ...

    Indian Academy of Sciences (India)

    Electrical resistivity values of 12 different igneous rocks were measured on core samples using a resistivity meter in the ... It was seen that the UCS and tensile strength values were linearly correlated with the ..... Innovation 2 20. Archie G E ...

  20. Dynamic Inversion for Hydrological Process Monitoring with Electrical Resistance Tomography Under Model Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Lehikoinen, A.; Huttunen, J.M.J.; Finsterle, S.; Kowalsky, M.B.; Kaipio, J.P.

    2009-08-01

    We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques, that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system, which involves the construction of a stochastic evolution model and an observation model. The observation model used in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate - and therefore computationally efficient - observation and evolution models in the Bayesian filtering. We consider a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than a frame-by-frame imaging approach.

  1. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  2. A Prototype System for Time-Lapse Electrical Resistivity Tomographies

    Directory of Open Access Journals (Sweden)

    Raffaele Luongo

    2012-01-01

    Full Text Available A prototype system for time-lapse acquisition of 2D electrical resistivity tomography (ERT and time domain reflectometry (TDR measurements was installed in a test site affected by a landslide in Basilicata region (southern Italy. The aim of the system is to monitor in real-time the rainwater infiltration into the soil and obtain information about the variation of the water content in the first layers of the subsoil and the possible influence of this variation on landslide activity. A rain gauge placed in the test site gives information on the rainfall intensity and frequency and suggests the acquisition time interval. The installed system and the preliminary results are presented in this paper.

  3. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    Science.gov (United States)

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  4. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Science.gov (United States)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  5. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-07-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  6. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-05-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  7. Temperature and mixing effects on electrical resistivity of carbon fiber enhanced concrete

    International Nuclear Information System (INIS)

    Chang, Christiana; Song, Gangbing; Gao, Di; Mo, Y L

    2013-01-01

    In this paper, the effect of temperature and mixing procedure on the electrical resistivity of carbon fiber enhanced concrete is investigated. Different compositions of concrete containing varying concentrations of carbon fiber into normal and self-consolidating concrete (SCC) were tested under DC electrical loading over the temperature range −10 to 20 °C. The electrical resistivity of the bulk samples was calculated and compared against temperature. It was observed that there is an inverse exponential relationship between resistivity and temperature which follows the Arrhenius relationship. The bulk resistivity decreased with increasing fiber concentration, though data from SCC indicates a saturation limit beyond which electrical resistivity begins to drop. The activation energy of the bulk electrically conductive concrete was calculated and compared. While SCC exhibited the lowest observed electrical resistance, the activation energy was similar amongst SCC and surfactant enhanced concrete, both of which were lower than fiber dispersed in normal concrete. (paper)

  8. Sputter-Resistant Materials for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  9. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  10. electrical resistivity investigation of the groundwater potential in ...

    African Journals Online (AJOL)

    The VES data generated were processed and interpreted using partial curve matching ... electrical sounding, a technique of electrical resistivity method in identifying viable .... Geoelectric/Electromagnetic VLF Survey for. Groundwater in a ...

  11. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  12. An analysis of resistivity monitoring data on the sea dike, Teaan, South Korea

    Science.gov (United States)

    Song, S. Y.; Nam, M. J.; Cho, S. O.; Lim, S. K.

    2017-12-01

    Many coastal levees have been constructed within the peninsula of the South Korea to prevent tidal waves from overflowing. For a proper maintenance of the levees, it is important to monitor the embankments from being deteriorated. For the monitoring, this study make a feasibility study on the application of time-lapse (TL) electrical resistivity surveys. The survey can detect anomalies within the embankments, which are possibly generated by defects of facilities or seawater intrusion. Among coastal levees in Korea, we made TL surveys over the Iwon dike located on the Taean-gun, Chungcheongnam-do in the south-west of the South Korea in April 2015. Since visible seepage of the seewater was observed nearby the dike, we conducted monitoring in this area. TL resistivity surveys had been made 11 times for the duration of nine days along a survey line, which located 10 m away from the crest and parallel to the dike. For the analysis and interpretation of the TL data, we first analysed the effects of sea-level variation on the TL electrical resistivity data through numerical simulation. The simulation of TL data are made using dipole-dipole array with an electrode spacing of 3 m along a survey line longer than 100 m. Numerical test showed that it can be difficult to analyse effects of seawater on the dike in single data. So we conducted 4D DC inversion of TL data to analyse spatial distribution of seawater to detect possible seepage region. For the improvement of inversion resolution, we considered a spatial regularization properly representing the characteristics of levees whose major seepage occur across the embankment in order to improve the resolution. In making 4D inversion, we chose several TL data sets which are obtained at a similar conditions, e.g., similar sea level or similar time of a day. From this 4D inversion, we could analyse weak zone to be necessary to monitor continuously.

  13. Examination of Electrical Resistance of Carburizers Used for Cast Iron Production

    Directory of Open Access Journals (Sweden)

    Książek D.

    2016-12-01

    Full Text Available The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar, each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.

  14. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  15. Applications of electrical resistance tomography to subsurface environmental restoration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.L. [Lawrence Livermore National Lab., CA (United States); Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  16. EMMNet: Sensor Networking for Electricity Meter Monitoring

    Directory of Open Access Journals (Sweden)

    Zhi-Ting Lin

    2010-06-01

    Full Text Available Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  17. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  18. Application of Three Electrical Resistivity Arrays to Evaluate ...

    African Journals Online (AJOL)

    ADOWIE PERE

    shallow depth while Dipole-dipole is more susceptible to edge effect at deeper depth followed by the Pole-dipole array. 2D electrical resistivity field .... Data Processing: Both the apparent resistivity measurements for the synthetic and field data ...

  19. Electrical resistivity testing for as-built concrete performance assessment of chloride penetration resistance

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2014-01-01

    The electrical resistivity of concrete can provide information about its transport properties, which is relevant for durability performance. For example, resistivity is inversely proportional to chloride diffusion, at least within similar concrete compositions. A methodology is proposed for on-site

  20. Irreversibility in transformation behavior of equiatomic nickel-titanium alloy by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Matsumoto, Hitoshi

    2004-01-01

    Measurements of the electrical resistivity were precisely performed on shape memory Ni 50 Ti 50 alloy in order to reveal the irreversible behavior of the thermoelastic martensitic transformation with thermal cycling. The hump in the electrical resistivity during cooling is enhanced with increasing the number of complete thermal cycles to result in a peak, although no peak in the electrical resistivity is observed on the reverse transformation during heating. The electrical resistivity in the low-temperature phase, of which the temperature dependence is linear, increases with increasing the number of complete thermal cycles. The temperature coefficient of the electrical resistivity in the temperature region of the high-temperature phase increases with elevating the temperature. The transformation is strongly influenced by incomplete thermal cycles to result in a peak in the resistivity even on the reverse transformation after incomplete thermal cycling. It is thought that the anomalous behavior such as enhancement of a resistivity-peak, the increase in the electrical resistivity of the low-temperature phase, and the nonlinear relation between the resistivity and the temperature in the high-temperature phase are attributable to the appearance of an intermediate phase stabilized by transformation-induced defects, the accumulation of the transformation-induced defects, and the electron scattering due to the softening of a phonon mode in the high-temperature phase, respectively. It proved useful to make more accurate measurements of the electrical resistivity in order to investigate the intrinsic behavior of the transformation in NiTi

  1. Electrical Resistance Tomography imaging of concrete

    KAUST Repository

    Karhunen, Kimmo; Seppä nen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-01

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured

  2. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    Science.gov (United States)

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  3. Electrical resistivity of liquid Ag-Au alloy

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-01-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au binary alloy on composition are reported. The structure of the binary alloy is described as a hard-sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trend is observed. (author)

  4. Estimating the Condition of the Heat Resistant Lining in an Electrical Reduction Furnace

    Directory of Open Access Journals (Sweden)

    Jan G. Waalmann

    1988-01-01

    Full Text Available This paper presents a system for estimating the condition of the heat resistant lining in an electrical reduction furnace for ferrosilicon. The system uses temperature measured with thermocouples placed on the outside of the furnace-pot. These measurements are used together with a mathematical model of the temperature distribution in the lining in a recursive least squares algorithm to estimate the position of 'the transformation front'. The system is part of a monitoring system which is being developed in the AIP-project: 'Condition monitoring of strongly exposed process equipment in thc ferroalloy industry'. The estimator runs on-line, and results arc presented in colour-graphics on a display unit. The goal is to locate the transformation front with an accuracy of +- 5cm.

  5. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    International Nuclear Information System (INIS)

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  6. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  7. The development of direct core monitoring in Nuclear Electric plc

    International Nuclear Information System (INIS)

    Curtis, R.F.; Jones, S. Reed, J.; Wickham, A.J.

    1996-01-01

    Monitoring of graphite behaviour in Nuclear Electric Magnox and AGR reactors is necessary to support operating safety cases and to ensure that reactor operation is optimized to sustain the necessary core integrity for the economic life of the reactors. The monitoring programme combines studies for pre-characterized ''installed'' samples with studies on samples trepanned from within the cores and also with studies of core and channel geometry using specially designed equipment. Nuclear Electric has two trepanning machines originally designed for Magnox-reactor work which have been used for a substantial programme over many years. They have recently been upgraded to improve sampling speed, safety and versatility - the last being demonstrated by their adaptation for a recently-won contract associated with decommissioning the Windscale piles. Radiological hazards perceived when the AGR trepanning system was designed resulted in very cumbersome equipment. This has worked well but has been inconvenient in operation. The development of a smaller and improved system for deploying the equipment is now reported. Channel dimension monitoring equipment is discussed in detail with examples of data recovered from both Magnox and AGR cores. A resolution of ± 2 of arc (tilt) and ± 0.01 mm change in diameter in attainable. It is also theoretically possible to establish brick stresses by measuring geometry changes which result from trepanning. Current development work on a revolving scanning laser rangefinder which will enable the measurement of diameters to a resolution of 0.001 mm will also be discussed. This paper also discusses non-destructive techniques for crack detection employing ultrasound or resistance networks, the use of special manipulators to deliver inspection and repair equipment and recent developments to install displacement monitors in peripheral regions of the cores, to aid the understanding of the interaction of the restraint system with the core - the region

  8. Monitoring Induced Fractures with Electrical Measurements using Depth to Surface Resistivity: A Field Case Study

    Science.gov (United States)

    Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.

    2016-12-01

    Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the

  9. System for Monitoring and Analysis of Vibrations at Electric Motors

    Directory of Open Access Journals (Sweden)

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  10. In-situ electric resistance measurements and annealing effects of graphite exposed to swift heavy ions

    International Nuclear Information System (INIS)

    Fernandes, Sandrina; Pellemoine, Frederique; Tomut, Marilena; Avilov, Mikhail; Bender, Markus; Boulesteix, Marine; Krause, Markus; Mittig, Wolfgang; Schein, Mike; Severin, Daniel; Trautmann, Christina

    2013-01-01

    To study the suitability of using graphite as material for high-power targets for rare isotope production at the future Facility for Rare Isotope Beams (FRIB) in the USA and at the Facility for Antiproton and Ion Research (FAIR) in Germany, thin foils of polycrystalline graphite were exposed to 8.6-MeV/u Au ions reaching a maximum fluence of 1 × 10 15 ions/cm 2 . Foil irradiation temperatures of up to 1800 °C were obtained by ohmic heating. In-situ monitoring of the electrical resistance of the graphite foils during and after irradiation provided information on beam-induced radiation damage. The rate of electrical resistance increase as a function of fluence was found to decrease with increasing irradiation temperature, indicating a more efficient annealing of the irradiation-produced defects. This is corroborated by the observation that graphite foils irradiated at temperatures below about 800 °C showed cracks and pronounced deformations, which did not appear on the samples irradiated at higher temperatures

  11. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    Science.gov (United States)

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  12. Delineation of graves using electrical resistivity tomography

    Science.gov (United States)

    Nero, Callistus; Aning, Akwasi Acheampong; Danuor, Sylvester K.; Noye, Reginald M.

    2016-03-01

    A suspected old royal cemetery has been surveyed at the Kwame Nkrumah University of Science and Technology (KNUST) campus, Kumasi, Ghana using Electrical Resistivity Tomography (ERT) with the objective of detecting graves in order to make informed decisions with regard to the future use of the area. The survey was conducted on a 10,000 m2 area. Continuous Vertical Electrical Sounding (CVES) was combined with the roll along technique for 51 profiles with 1 m probe separation separated by 2 m. Inverted data results indicated wide resistivity variations ranging between 9.34 Ωm and 600 Ωm in the near surface. Such heterogeneity suggests a disturbance of the soil at this level. Both high (≥ 600 Ωm) and low resistivity (≤ 74.7 Ωm) anomalies, relative to background levels, were identified within the first 4 m of the subsurface. These were suspected to be burial tombs because of their rectangular geometries and resistivity contrasts. The results were validated with forward numerical modeling results. The study area is therefore an old cemetery and should be preserved as a cultural heritage site.

  13. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  14. Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John

    2016-03-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.

  15. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  16. Electrical Resistivity Imaging for environmental applications

    International Nuclear Information System (INIS)

    Leite, O.; Bernard, J.; Vermeersch, F.

    2007-01-01

    For a few years, the evolution of measuring equipment and of interpretation software have permitted to develop a new electrical resistivity technique called resistivity imaging where the equipment, which includes a large number of electrodes located along a line at the same time, carries out an automatic switching of these electrodes for acquiring profiling data. The apparent resistivity pseudo sections measured with such a technique are processed by an inversion software which gives interpreted resistivity and depth values for the anomalies detected along the profile. The multi-electrode resistivity technique consists in using a multi-core cable with as many conductors (24, 48, 72, 96) as electrodes plugged into the ground at a fixed spacing, every 5m for instance. In the resistivitymeter itself are located the relays which ensure the switching of those electrodes according to a sequence of readings predefined and stored in the internal memory of the equipment. The various combinations of transmitting (A,B) and receiving (M,N) pairs of electrodes construct the mixed sounding / profiling section, with a maximum investigation depth which mainly depends on the total length of the cable. The 2D resistivity images obtained with such a multi-electrode technique are used for studying the shallow stuctures of the underground located a few tens of metres down to about one hundred metres depth; these images supply an information which complements the one obtained with the more traditionnal Vertical Electrical Sounding (VES) technique, which mainly aims at determining the depths of horizontal 1D structures from the surface down to several hundreds metres depths. Several examples are presented for various types of applications: groundwater (intrusion of salt water in fresh water), geotechnics (detection of a fault in a granitic area), environment (delineation of a waste disposal area) and archaeology (discovery of an ancient tomb)

  17. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  18. Electrical resistivity tomography for early vadose leak detection under single shell storage tanks

    International Nuclear Information System (INIS)

    Narbutovshih, S.M.

    1996-01-01

    This document describes planned testing with Electrical Resistivity Tomography (ERT). It is prepared in support of TTP RL46WT51 Rev. 1, funded by the Tank Focus Area through the Office of Technology Integration. The primary goal of the testing for fiscal year 1996 (FY96) is to develop and demonstrate the ability to place vertical electrode arrays (VEA) with the cone penetrometer technology (CPT) to depths below existing single shell tanks (SST) at the DOE Hanford Site. It is desirable to have the capability to use CPT for this application for obvious reasons. First, current methods of emplacement, drilled boreholes, are expensive with respect to the rest of the ERT operation. Cone penetrometer VEA emplacements offer the opportunity to significantly reduce installation costs. Second, use of CPT will reduce emplacement time from weeks or months to just several days depending on the number of VEAs and the depth of placement. ERT is preferable to other monitoring methods since operation costs and turn around time are less than the current baselines of either groundwater sampling networks or borehole logging techniques. ERT cost savings can be substantial and will continue into the future. ERT can also provide complete coverage under a tank or other facility which is an important supplement to existing monitoring methods. Groundwater sampling provides one data point per well and borehole logging provides data along a line in the ground. Neither provide information from beneath a facility and thus, are not able to locate release points. These electrode arrays are used to acquire subsurface electrical resistance data in a manner appropriate for tomographic inversion. The resulting tomograms can then be used to detect, monitor and track contaminated moisture plumes leaking from underground storage tanks during waste retrieval operations

  19. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement.

    Science.gov (United States)

    Luan, Congcong; Yao, Xinhua; Shen, Hongyao; Fu, Jianzhong

    2018-03-27

    Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers' longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  20. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement

    Directory of Open Access Journals (Sweden)

    Congcong Luan

    2018-03-01

    Full Text Available Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  1. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  2. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    International Nuclear Information System (INIS)

    Chiodarelli, Nicolo'; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M; Masahito, Sugiura; Kashiwagi, Yusaku

    2011-01-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  3. Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.

    Science.gov (United States)

    Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J

    2017-05-01

    Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.

  4. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  5. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  6. Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.

    Science.gov (United States)

    Pidlisecky, A; Moran, T; Hansen, B; Knight, R

    2016-03-01

    We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south. © 2015, National Ground Water Association.

  7. System for Monitoring and Analysis of Vibrations at Electric Motors

    OpenAIRE

    Gabriela Rață; Mihai Rață

    2014-01-01

    The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11) and a data acquisition board from National Instruments (NI 6009). Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual...

  8. The effect of oxygen-doping on the electrical resistivity of vanadium

    International Nuclear Information System (INIS)

    Lang, E.; Bressers, J.

    1975-01-01

    High-purity vanadium single crystals characterized by resistance ratios in the range of 1,100 were doped to different oxygen levels and their electrical resistivity increase was measured as a function of the oxygen concentration. In the temperature range investigated, 77 to 293 K, the Matthiessen rule is obeyed. The increase in electrical resistivity per atomic percent oxygen is shown to be 5.16 μΩcm. For the ideal resistivity ratio rhosub(i) (77 K)/rhosub(i) (293 K) a value of 0.116 could be determined. (orig.) [de

  9. Electrical resistivity of liquid noble metal alloys

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-08-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au, Cu-Ag, Cu-Au binary alloys on composition are reported. The structure of the binary alloy is described as a hard sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trends is observed in cases where experimental information is available. (author)

  10. Electrical resistivity response due to elastic-plastic deformations

    International Nuclear Information System (INIS)

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs

  11. Observations on the electrical resistivity of steel fibre reinforced concrete

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Geiker, Mette Rica; Edvardsen, Carola

    2014-01-01

    concrete the model underestimated the influence of the addition of fibres. The results indicate that the addition of steel fibres reduce the electrical resistivity of concrete if the fibres are conductive. This represents a hypothetical case where all fibres are depassivated (corroding) which was created......Steel fibre reinforced concrete (SFRC) is in many ways a well-known construction material, and its use has gradually increased over the last decades. The mechanical properties of SFRC are well described based on the theories of fracture mechanics. However, knowledge on other material properties......, including the electrical resistivity, is sparse. Among others, the electrical resistivity of concrete has an effect on the corrosion process of possible embedded bar reinforcement and transfer of stray current. The present paper provides experimental results concerning the influence of the fibre volume...

  12. Harmonizing electricity markets with physics : real time performance monitoring using grid-3PTM

    International Nuclear Information System (INIS)

    Budhraja, V.S.

    2003-01-01

    The Electric Power Group, LLC provides management and strategic consulting services for the electric power industry, with special emphasis on industry restructuring, competitive electricity markets, grid operations and reliability, power technologies, venture investments and start-ups. The Consortium for Electric Reliability Technology Solutions involves national laboratories, universities, and industry partners in researching, developing, and commercializing electric reliability technology solutions to protect and enhance the reliability of the American electric power system under the emerging competitive electricity market structure. Physics differentiate electric markets from other markets: there is real-time balancing, no storage, interconnected network, and power flows governed by physics. Some issues affecting both grid reliability and market issues are difficult to separate, such as security and congestion management, voltage management, reserves, frequency volatility, and others. The author examined the following investment challenges facing the electricity market: grid solutions, market solutions, and technology solutions. The real time performance monitoring and prediction platform, grid-3P was described and applications discussed, such as ACE-frequency monitoring, performance monitoring for automatic generation control (AGC) and frequency response, voltage/VAR monitoring, stability monitoring using phasor technology, and market monitoring. figs

  13. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  14. Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.

    Science.gov (United States)

    Hussain, S A; Perrier, M; Tartakovsky, B

    2018-04-01

    Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.

  15. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  16. Recent developments in the use of temperature, resistivity and self-potential methods for monitoring embankment dam performance

    Energy Technology Data Exchange (ETDEWEB)

    Sheffer, M.R. [BC Hydro, Vancouver, BC (Canada); Johansson, S.; Sjodahl, P. [HydroResearch AB, Taby (Sweden)

    2009-07-01

    Significant research is being undertaken in the application and development of non-intrusive geophysical techniques as a result of the need for more comprehensive surveillance to detect internal erosion in embankment dams. Seepage and piezometric measurements are the most common methods utilized for dam surveillance. However, the spatial resolution of these measurements is generally not refined enough to detect small, local seepage changes. This paper summarized the current state of the art in the application of temperature, electrical resistivity and self-potential methods to seepage monitoring at embankment dam sites. The paper presented recent developments in using the technique and interpreting seepage parameters for each method. The methods were discussed in the context of both investigation and monitoring applications. It was concluded that the resistivity method is a non-destructive method that is well suited to long-term monitoring and has the ability to cover the entire dam. 25 refs., 11 figs.

  17. Temperature dependency of electrical resistivity of soils; Tsuchi no hiteiko no ondo izonsei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Matsui, T [Osaka University, Osaka (Japan). Faculty of Engineering; Park, M; Fujiwara, H [Osaka University, Osaka (Japan)

    1997-10-22

    Kinds of ground materials, porosity, electrical resistivity of pores, degree of saturation, and content of clays are the factors affecting the electrical resistivity of soils. In addition to these factors, the electrical resistivity of soils around hot spring water and geothermal areas depends on the temperature due to fluctuation of cation mobility in the pore water with the temperature. In this paper, the temperature dependency of electrical resistivity of groundwater and soils is investigated by recognizing that of groundwater as that of pore water. As a result, it was found that the electrical resistivity of groundwater becomes lower as increasing the amount of dissolved cation, and that the temperature dependency of electrical resistivity is not significant because of the small mobility of cation. The electrical resistivity of soils was significantly affected by that of pore water, in which the mobility of cation was changed with temperature changes. Accordingly, the temperature dependency of electrical resistivity of soils has a similar tendency as that of groundwater. 5 refs., 9 figs., 2 tabs.

  18. Effects of resistive bodies on DC electrical soundings

    Directory of Open Access Journals (Sweden)

    L. Alfano

    1996-06-01

    Full Text Available Some deep DC electrical soundings, performed in alpine and apenninic areas with the continuous polar dipole-dipole spread, show apparent resistivity curves with positive slopes. Measured values of apparent resistivity reach 30000 Wm. Applying the "surface charges" method we developed three dimensional mathematical models, by means of which we can state simple rules for determining the minimum extensions of the deep resistive bodies, fundamental information for a more precise interpretation of the field results.

  19. Real-time pricing when some consumers resist in saving electricity

    International Nuclear Information System (INIS)

    Salies, Evens

    2013-01-01

    Successful real-time electricity pricing depends firstly upon consumers' willingness to subscribe to such terms and, secondly, on their ability to curb consumption levels. The present paper addresses both issues by considering consumers differentiated by their electricity saving costs, half of whom resist saving electricity. We demonstrate that when consumers are free to adopt real-time prices, producers prefer charging inefficient prices and, in so doing, discriminate against that portion of the consumer population which faces no saving costs. We also find that efficient marginal cost pricing is feasible, but is incompatible with mass adoption of real-time prices. - Highlights: • We model consumers switching from uniform to real-time electricity pricing (RTP). • Half the consumer population is pro-RTP and half resists saving electricity. • Efficient RTP is feasible but is incompatible with mass adoption

  20. Electric machines modeling, condition monitoring, and fault diagnosis

    CERN Document Server

    Toliyat, Hamid A; Choi, Seungdeog; Meshgin-Kelk, Homayoun

    2012-01-01

    With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condi

  1. Electrical resistance behavior with gamma radiation dose in bulk carbon nanostrutured samples

    International Nuclear Information System (INIS)

    Lage, J.; Leyva, A.; Pinnera, I.; Desdin, L. F.; Abreu, Y.; Cruz, C. M.; Leyva, D.; Toledo, C.

    2013-01-01

    The aim of this paper is to study the effects of 60 Co gamma radiation on the electrical resistance and V-I characteristic of bulk carbon nano structured samples obtained by electric arc discharge in water method. Images of pristine samples obtained with scanning electron, and the results in graphical form of the electrical characterization of irradiated samples are presented in the text. It was observed that the electrical resistance vs. dose behavior shows an initial increment reaching the maximum at approximately 135 kGy, followed by a drop of the resistance values. These behaviors are associated with the progressive generation of radiation induced defects in the sample, whose number increases to reach saturation at 135 kGy. From this dose, defects could lead to cross-links between different nano structures present in the sample conducting to a gradually drop in electrical resistance. The measured V-I curves show that, increasing exposure to the 60 Co gamma radiation, the electrical properties of the studied samples transit from a semiconductor towards a predominantly metallic behavior. These results were compared with those obtained for a sample of graphite powder irradiated under the same conditions. (Author)

  2. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  3. Electrical Resistivity Survey For Conductive Soils At Gas Turbine ...

    African Journals Online (AJOL)

    Ten (10) vertical electrical soundings (VES) using Schlumberger configuration were carried out to delineate subsurface conductive soils for the design of earthling grid for electrical materials installation at the Gas Turbine Station, Ajaokuta, SW Nigeria. Interpretation of the resistivity data revealed three major geoelectric ...

  4. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  5. Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites

    NARCIS (Netherlands)

    Shen, J. T.; Buschhorn, S. T.; De Hosson, J. Th. M.; Schulte, K.; Fiedler, B.

    2015-01-01

    In this study, we investigate the changes of electrical resistance of the carbon black (CB) and carbon nanotube (CNT) filled epoxy composites upon compression, swelling and temperature variation. For all samples we observe a decrease of electrical resistance under compression, while an increase of

  6. In-situ electric resistance measurements and annealing effects of graphite exposed to swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Sandrina [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Pellemoine, Frederique, E-mail: pellemoi@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Tomut, Marilena [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); National Institute for Materials Physics (NIMP), Bucharest (Romania); Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Bender, Markus [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Boulesteix, Marine [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Krause, Markus [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Technische Universität, Darmstadt (Germany); Mittig, Wolfgang [National Superconducting Cyclotron Lab (NSCL), Michigan State University, East Lansing, MI (United States); Schein, Mike [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI (United States); Severin, Daniel [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Trautmann, Christina [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Technische Universität, Darmstadt (Germany)

    2013-11-01

    To study the suitability of using graphite as material for high-power targets for rare isotope production at the future Facility for Rare Isotope Beams (FRIB) in the USA and at the Facility for Antiproton and Ion Research (FAIR) in Germany, thin foils of polycrystalline graphite were exposed to 8.6-MeV/u Au ions reaching a maximum fluence of 1 × 10{sup 15} ions/cm{sup 2}. Foil irradiation temperatures of up to 1800 °C were obtained by ohmic heating. In-situ monitoring of the electrical resistance of the graphite foils during and after irradiation provided information on beam-induced radiation damage. The rate of electrical resistance increase as a function of fluence was found to decrease with increasing irradiation temperature, indicating a more efficient annealing of the irradiation-produced defects. This is corroborated by the observation that graphite foils irradiated at temperatures below about 800 °C showed cracks and pronounced deformations, which did not appear on the samples irradiated at higher temperatures.

  7. The role of electric resistivity in estimation of the properties of carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Slobodskoy, S.A. [Kharkov Polytechnical University, Kharkov (Ukraine)

    1999-07-01

    The electrical resistivity of thermoanthracite and coal and pitch cokes were measured. Results showed that the Russian standard (GOST 4668-75) for measuring electrical resistivity needs amending. 21 refs., 2 figs., 1 tab.

  8. TECHNICAL EVALUATION OF ELECTRICAL RESISTIVITY METHODS AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    PETERSEN SW

    2008-01-01

    There is a continuing need for cost-effective subsurface characterization within the vadose zone and groundwater at the U.S. Department of Energy (DOE) Hanford Site, Richland, Washington. With more than 1600 liquid and solid waste sites and 200 burial sites, contaminants have migrated to and through the vadose zone. In addition, future groundwater plumes may be generated from contaminants presently in the vadose zone. Relatively low-cost geophysical techniques can provide spatially extensive data that may provide information about the presence and extent of some contaminants. Recent electrical resistivity surveys at Hanford have provided encouraging results for mapping of some contaminants, such as nitrate, in the vadose zone. Because mobile radionuclides and trace elements may have been transported with nitrate through the vadose zone, the method may be used to map some mobile contaminants of concern, such as technetium-99 (99Tc). Validation of these recent electrical resistivity survey results remains to be completed. Electrical resistivity surveys have been conducted at various waste sites in the 200 Area of the Hanford Site: BC Cribs and Trenches (BCCT), T, S, U, C, B Tank Farms and the Purex Plant. Surveys have been completed using surface and well-to-well (WTW) array configurations. The goals of the surveys, as described by Fluor Hanford and CH2MHill Hanford staff, were to test the applicability of resistivity methods in identifying the presence of and mapping approximate extent of contaminant plumes within the vadose zone. The overall goal of the project was to evaluate the utility of electrical resistivity methods for characterizing contaminants of potential concern in the vadose zone in the 200 Area of the Hanford Site. The panel was asked to perform the following activities: (1) Evaluate recently completed and ongoing electrical resistivity projects at Hanford in terms of methodology used, results obtained, and lessons learned, with specific focus on (a

  9. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  10. Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy

    Science.gov (United States)

    Ageev, O. A.; Il'in, O. I.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A.; Tsukanova, O. G.

    2015-07-01

    Techniques are developed to determine the resistance per unit length and the electrical resistivity of vertically aligned carbon nanotubes (VA CNTs) using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). These techniques are used to study the resistance of VA CNTs. The resistance of an individual VA CNT calculated with the AFM-based technique is shown to be higher than the resistance of VA CNTs determined by the STM-based technique by a factor of 200, which is related to the influence of the resistance of the contact of an AFM probe to VA CNTs. The resistance per unit length and the electrical resistivity of an individual VA CNT 118 ± 39 nm in diameter and 2.23 ± 0.37 μm in height that are determined by the STM-based technique are 19.28 ± 3.08 kΩ/μm and 8.32 ± 3.18 × 10-4 Ω m, respectively. The STM-based technique developed to determine the resistance per unit length and the electrical resistivity of VA CNTs can be used to diagnose the electrical parameters of VA CNTs and to create VA CNT-based nanoelectronic elements.

  11. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  12. Influence of accompanying substances of hemp fibres on their electric resistance

    Directory of Open Access Journals (Sweden)

    Pejić Biljana

    2006-01-01

    Full Text Available Hemp fibres belong to the group of natural, cellulose bast fibres. These fibres have exceptional properties such as: antimicrobial effect, absence of allergy effect, extraordinary sorption properties, good electro-physical properties (small static electricity in regard to other cellulose fibres as well as high values of breaking strength (the natural fibre with the highest strength. However, hemp fibres have some defects: heterogeneous chemical composition, large quantity of accompanying substances (lignin pectins, waxes and unsatisfactory fineness and eveness. It is possible to a great extent to eliminate or reduce, the defects of hemp fibres by of appropriate modification treatments. In order to determine the appropriate modification treatment of hemp fibres, the dependences between the chemical composition, fineness and electric resistance of hemp fibres were presented in this paper. In the experimental part of the paper, by the application of a procedure for the determination of the chemical composition, the accompanying supstances of hemp fibres were gradually removed. After each phase some fibrous substrates were separated. After that the fineness and electric resistance were determined. This experiment was conducted in order to define the influence of each component of hemp fibres on the fineness and electric resistance. In this paper, hemp fibres were modified by an aqueous solution of sodium hydroxide, under different conditions of modification. The influence of modification conditions on the fineness and electric resistance were studied.

  13. Effects of iron content on electrical resistivity of oxide films on Zr-base alloys

    International Nuclear Information System (INIS)

    Kubo, Toshio; Uno, Masayoshi

    1991-01-01

    Measurements of electrical resistivity were made for oxide films formed by anodic oxidation and steam oxidation (400degC/12 h) on Zr plates with different Fe contents. When the Fe content was higher than about 1,000 ppm the electrical resistivity of the steam oxide films was almost equivalent to that of the anodic oxide films, while at lower Fe content the former exhibited lower electrical resistivity than the latter by about 1∼3 orders of magnitude. The anodic oxide film was an almost homogeneous single oxide layer. The steam oxide films, on the other hand, were composed of duplex oxide layers. The oxide layer formed in the vicinity of the oxide/metal interface had higher electrical resistivity than the near-surface oxide layer by about 1∼4 orders of magnitude. The oxide layer in the vicinity of the interface could act as a protective film against corrosion and its electrical resistivity is one important factor controlling the layer protectiveness. The electrical resistivity of the oxide/metal interfacial layer was strongly dependent on the Fe content. One possible reason for Fe to improve the corrosion resistance is that Fe ions would tend to stabilize the tetragonal (or cubic) phase and consequently suppress the formation of open pores and cracks in the interfacial layer. (author)

  14. Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor.

    Science.gov (United States)

    André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T

    2016-02-01

    The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.

    Science.gov (United States)

    Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R

    2018-03-01

    The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.

  16. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    OpenAIRE

    Liu Shuyi; Deng Xiang; Jiang Zili; Tang Yu

    2016-01-01

    The hardware design of tuber electrical resistance tomography (TERT) system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the desi...

  17. In-situ study of cascade defects in silver by simultaneous transmission electron microscopy and electrical resistivity measurements at low temperatures

    International Nuclear Information System (INIS)

    Haga, K.; King, W.E.; Merkle, K.L.; Meshii, M.

    1985-12-01

    A helium-cooled double-tilt specimen stage for transmission electron microscopy (TEM) with the capability of simultaneous electrical resistivity measurements was constructed and used to study defect-production, migration, clustering and recovery processes in ion-irradiated silver. Vacuum-evaporated thin film specimens were irradiated with 1 MeV Kr + -ions up to a dose of 4.0 x 10 10 ions/cm 2 , at T = 10 0 K in the microscope, using the HVEM-tandem accelerator ion beam interface system in the Argonne National Laboratory Electron Microscopy Center. Cascade defect formation during ion bombardment at the low temperature was directly observed both by TEM and electrical resistivity measurements. Ion bombardment created groups of defect clusters with strong strain fields which gave rise to TEM contrast. The specimen resistivity was increased by 16% during the irradiation. Subsequent microstructural changes and resistivity recovery during isochronal annealing were monitored up to room temperature. 58.3% of the irradiation induced resistivity was recovered, while significant reduction in the size of black spot defect clusters was observed by TEM. A small fraction of clusters disappeared, while no nucleation of new defect clusters was observed

  18. Required Accuracy of Structural Constraints in the Inversion of Electrical Resistivity Data for Improved Water Content Estimation

    Science.gov (United States)

    Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.

    2017-12-01

    Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable

  19. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  20. Electrical resistivity determination of subsurface layers, subsoil ...

    African Journals Online (AJOL)

    Electrical resistivity determination of subsurface layers, subsoil competence and soil corrosivity at and engineering site location in Akungba-Akoko, ... The study concluded that the characteristics of the earth materials in the site would be favourable to normal engineering structures/materials that may be located on it.

  1. New consumer load prototype for electricity theft monitoring

    International Nuclear Information System (INIS)

    Abdullateef, A I; Salami, M J E; Musse, M A; Onasanya, M A; Alebiosu, M I

    2013-01-01

    Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft

  2. New consumer load prototype for electricity theft monitoring

    Science.gov (United States)

    Abdullateef, A. I.; Salami, M. J. E.; Musse, M. A.; Onasanya, M. A.; Alebiosu, M. I.

    2013-12-01

    Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft.

  3. Electrical resistivity of liquid Ti, V, Mo and W

    International Nuclear Information System (INIS)

    Seydel, U.; Fucke, W.

    1980-01-01

    Electrical resistivity data for liquid Ti, V, Mo and W in the temperature range from melting to boiling are presented. The data were obtained by a fast resistive pulse heating technique based on heating small samples shaped as wires or foils in an RCL discharge circuit and simultaneously measuring temperature, volume, voltage and current. (author)

  4. Electrical resistivity for detecting subsurface non-aqueous phase liquids: A progress report

    International Nuclear Information System (INIS)

    Lee, K.H.; Shan, C.; Javandel, I.

    1995-06-01

    Soils and groundwater have been contaminated by hazardous substances at many places in the United States and many other countries. The contaminants are commonly either petroleum products or industrial solvents with very low solubility in water. These contaminants are usually called non-aqueous phase liquids (NAPLs). The cost of cleaning up the affected sites in the United States is estimated to be of the order of 100 billion dollars. In spite of the expenditure of several billion dollars during the last 15 years, to date, very few, if any major contaminated site has been restored. The presence of NAPL pools in the subsurface is believed to be the main cause for the failure of previous cleanup activities. Due to their relatively low water solubility, and depending on their volume, it takes tens or even hundreds of years to deplete the NAPL sources if they are not removed from the subsurface. The intrinsic electrical resistivity of most NAPLs is typically in the range of 10 7 to 10 12 Ω-m, which is several orders of magnitude higher than that of groundwater containing dissolved solids (usually in the range of a few Ω-m to a few thousand Ω-m). Although a dry soil is very resistive, the electrical resistivity of a wet soil is on the order of 100 Ω-m and is dependent on the extent of water saturation. For a given soil, the electrical resistivity increases with decrease of water saturation. Therefore, if part of the pore water is replaced by a NAPL, the electrical resistivity will increase. At many NAPL sites, both the vadose and phreatic zones can be partially occupied by NAPL pools. It is the great contrast in electrical resistivity between the NAPLs and groundwater that may render the method to be effective in detecting subsurface NAPLs at contaminated sites. The following experiments were conducted to investigate the change of the electrical resistivity of porous media when diesel fuel (NAPL) replaces part of the water

  5. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... material and 21/2 inches of conductor insulation. The type, amperage, voltage rating, and construction of...

  6. Stage IV in electrical resistivity return to alpha-iron

    International Nuclear Information System (INIS)

    Poltavtseva, V.P.

    2004-01-01

    Full text: In compliance with the model of two interstitial atoms, in returning the electrical resistivity increment, the stage IV, related to migration of mono vacancies, should exist. Unfortunately, for alpha-iron there is no any reliable proof of existence of the stage IV (450-630 K) up to now. As a rule, the annealing stages revealed within this temperature range are considered as related to impurity effects. This paper is aimed at detection of the stage IV in returning the electrical resistivity increment in alpha-iron by means of irradiation of the materials differing in purity degree (99.99 and 99.8 %) by 30 MeV protons capable to create large amount of point defects and small clusters in BCC metals. By author opinion, it will make it possible to reach the radiation defect/vacancy concentrations comparable with contents of impurities (C and N) and, thus, to obtain an information about their migration. As a result of irradiation by protons at 270 K up to the fluence comprising 2.3·10 21 m -2 (0.001 dpa), the following has been found: - an increase in the electrical resistivity at 330 K is 0.84 and 0.61 nΩ·m for the alpha-iron purity degree 99.99 and 99.8 % respectively; - in the 99.99 % purity degree alpha-iron the process of electrical resistivity restoration comes to an end completely at 563 K, whereas in alpha-iron with larger content of impurity - at nearly 600 K; - in the 99.99% purity degree alpha iron electrical resistivity return spectrum a single wide peak centered at 445 K and two smeared peaks below 400 and higher than 490 K are revealed. As the impurity content increases, the 464 K peak changes the 445 K peak, which is about twice lower. Besides, a peak at 377 K occurs, and the peak at a temperature higher than 500 K, in contrast to the 99.99 % purity degree alpha-iron, has a point of inflection at 590 K. On a base of the data obtained, one may conclude that the stage centered around 445 K is of intrinsic nature, and the 99.99 % purity degree

  7. Delamination Detection in Carbon Fibre Reinforced Composites Using Electrical Resistance Measurement

    International Nuclear Information System (INIS)

    Kovalovs, A; Rucevskis, S; Kulakov, V; Aniskevich, A

    2016-01-01

    In the present study 2-D numerical analysis of strip-type laminated composite specimens with and without damage is considered and numerical investigation is carried out by using a finite element method. The surface and oblique resistances are numerically calculated according to the two-probe and four-probe methods. The electrical conductivity of the composite laminate in the longitudinal direction is constant, while the electrical conductivity in the through-thickness direction is used as a variable in the parametric study. The resistance change due to delamination for each case is estimated by comparing the obtained resistance with the corresponding resistance of the specimen without delamination. Applicability and effectiveness of the proposed method are investigated by using various lengths of a delaminated crack in the specimen. (paper)

  8. Magnon contribution to electrical resistance of gadolinium-dysprosium alloy single crystals

    International Nuclear Information System (INIS)

    Nikitin, S.A.; Slobodchikov, S.S.; Solomkin, I.K.

    1978-01-01

    The magnon, phonon and interelectron collision contributions to the electric resistance of single crystals of gadolinium-dysprosium alloys were quantified. A relationship was found to exist between the electric resistance and the variation of the topology of the Fermi surface on melting of gadolinium with dysprosium. It was found that gadolinium-dysprosium alloys, which have no helicoidal magnetic structure in magnetically ordered state, feature a spin-spin helicoidal-type correlations in the paramagnetic field

  9. Market Monitor, development of the wholesale trade market of electricity 2006. Results

    International Nuclear Information System (INIS)

    Vermeulen, M.; Mulder, M.; Van den Reek, W.; Thomeer, G.; De Kleijn, M.

    2007-12-01

    The Office of Energy Regulation carries out its legal task by means of a monitor, a practical tool to assess and analyze the wholesale market for electricity. Monitoring of the wholesale electricity market concerns continuous, accurate and structured following of developments in the market. The aim is to identify in time signals from the market that could lead to a decrease of competition and transparency. The starting point of the monitor for the wholesale electricity market is the selection of indicators which give insight in real competition, liquidity and transparency [nl

  10. Geo electrical Resistivity Survey for Ancient Tunnel Detection at Bukit Tenggek, Setiu, Terengganu

    International Nuclear Information System (INIS)

    Siti Nazira Masrom; Mohd Hariri Arifin; Abd Rahim Harun; Abdul Rahim Samsudin

    2011-01-01

    Geo electrical resistivity survey was conducted in the Bukit Tenggek, Setiu, Terengganu to detect the possible existence of an ancient tunnel which is believed to be in the area. Geo electrical resistivity method was found very effective in searching for archaeological exploration and underground structures (tunnels and artifacts). Geo electrical resistivity survey was carried out using Terrameter ABEM SAS1000 and Wenner array electrode configuration. The survey area is located in a damp valley with a stream across the region. 2-D resistivity image showed the existence of anomalies in several areas that can be associated with the structure. Low resistivity value represents the estimated existence of the old tunnel, while isolated rounded anomalies are believed to be associated with barrels/artifacts. 3-D resistivity profiles, shows anomalies that may be caused by the existence of a horizontal and two vertical tunnels (shaft). However, the drillings work need to be done to figure out the exact cause of these anomalies. (author)

  11. Electrical resistivity of sputtered molybdenum films

    International Nuclear Information System (INIS)

    Nagano, J.

    1980-01-01

    The electrical resistivity of r.f. sputtered molybdenum films of thickness 5-150 nm deposited on oxidized silicon substrates was resolved into the three electron scattering components: isotropic background scattering, scattering at grain boundaries and scattering at surfaces. It was concluded that the isotropic background scattering is almost equal to that of bulk molybdenum and is not influenced by sputtering and annealing conditions. When the film thickness is sufficient that surface scattering can be ignored, the decrease in film resistivity after annealing is caused by the decrease in scattering at the grain boundaries for zero bias sputtered films, and is caused by an increase of the grain diameter for r.f. bias sputtered films. (Auth.)

  12. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  13. Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples

    Science.gov (United States)

    Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.

    2016-12-01

    Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.

  14. Corrosion induced strain monitoring through fibre optic sensors

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P A M; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported

  15. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently....... The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...

  16. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  17. Resistivity of flame plasma in an electric field

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML. (author)

  18. Miniaturized Integrated Platform for Electrical and Optical Monitoring of Cell Cultures

    Directory of Open Access Journals (Sweden)

    Costin Brasoveanu

    2012-08-01

    Full Text Available The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 μm width, 3 mm long and 50 μm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.. HaCaT (Immortalised Human Keratinocyte cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.

  19. Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers.

    Science.gov (United States)

    Guyot, Adrien; Ostergaard, Kasper T; Lenkopane, Mothei; Fan, Junliang; Lockington, David A

    2013-02-01

    Estimating sapwood area is one of the main sources of error when upscaling point scale sap flow measurements to whole-tree water use. In this study, the potential use of electrical resistivity tomography (ERT) to determine the sapwood-heartwood (SW-HW) boundary is investigated for Pinus elliottii Engelm var. elliottii × Pinus caribaea Morelet var. hondurensis growing in a subtropical climate. Specifically, this study investigates: (i) how electrical resistivity is correlated to either wood moisture content, or electrolyte concentration, or both, and (ii) how the SW-HW boundary is defined in terms of electrical resistivity. Tree cross-sections at breast height are analysed using ERT before being felled and the cross-section surface sampled for analysis of major electrolyte concentrations, wood moisture content and density. Electrical resistivity tomography results show patterns with high resistivities occurring in the inner part of the cross-section, with much lower values towards the outside. The high-resistivity areas were generally smaller than the low-resistivity areas. A comparison between ERT and actual SW area measured after felling shows a slope of the linear regression close to unity (=0.96) with a large spread of values (R(2) = 0.56) mostly due to uncertainties in ERT. Electrolyte concentrations along sampled radial transects (cardinal directions) generally showed no trend from the centre of the tree to the bark. Wood moisture content and density show comparable trends that could explain the resistivity patterns. While this study indicates the potential for application of ERT for estimating SW area, it shows that there remains a need for refinement in locating the SW-HW boundary (e.g., by improvement of the inversion method, or perhaps electrode density) in order to increase the robustness of the method.

  20. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    Science.gov (United States)

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R

    2017-07-01

    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  1. Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil

    Directory of Open Access Journals (Sweden)

    Eugeniusz Koda

    2017-03-01

    Full Text Available The paper presents complex analyses of geophysical site investigation results. The electrical resistivity method was used to investigate the potential pollutant migration pathways within areas of existing and former landfill sites. For the purpose of the present study, there were four municipal waste landfills and one industrial landfill chosen for further comprehensive analyses. The landfill bottom was isolated using geomembrane liner. However, ground water monitoring results revealed that the base was not leakage-free. Another two landfills were established in the past, when no containment systems were legally required. The geoelectrical investigation was the final part of an overall analytical assessment of the contaminated sites. The study was aimed at pollution spatial migration analyses and the interpretation of results, for further design of the reclamation and restoration plans. A clear correlation between pollution indicators such as salt compounds and electrical resistivity, allow aerial analyses and the precise determination of contaminated zones. The research results presented in the paper have been recently obtained and concern a period from 2010 to 2015.

  2. Modelling the influence of steel fibres on the electrical resistivity of cementitious composites

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Stang, Henrik

    2009-01-01

    One of the governing factors on the corrosion of embedded reinforcement is the electrical resistivity of the concrete. The combination of steel fibres and conventional reinforcement bars has been used in a number of structures. However, the addition of electrical con-ductive fibres might influence...... of steel fibre reinforced concrete (SFRC). The parameters investigated in the following are the fibre geometry, the fibre volume and the transitional resistance. On basis of the experimental results, a model, taking the resistivity of the fibres and the concrete matrix into account is proposed....... the overall resistivity of the material and thereby the corrosion rate of the embedded reinforcement. To the knowledge of the authors, only preliminary studies have been made on the influence of corrosion of the reinforcement bars from the addition of the electrical conductive steel fibres. Thus the present...

  3. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    Science.gov (United States)

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu

    2017-04-01

    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  4. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  5. On the computation of electrical resistance of hydrodynamic journal bearing

    Directory of Open Access Journals (Sweden)

    Eleonora Pop

    2014-12-01

    Full Text Available The paper approaches the mathematical model of electrical resistance of hydrodynamic journal bearing under different parameters of operation so as to predict bearing performance and safe load carrying capacity. The currents circulating in the journal bearing of electrical machine causes reducing of lifespan by appearance of pitting on their surface and the degradation of the lubricant. In a hydrodynamic journal bearing, the zone of minimum film thickness, load-carrying oil film varies along the circumference of a bearing through its length. This has been found to form a capacitor of varying capacitance between the journal and the bearings dependent on permittivity of the lubricant used, the bearing length, the eccentricity ratio and the clearance ratio. Besides this, load-carrying on oil film offers resistance that depends on operating parameters and resistivity of the lubricant.

  6. An experimental evaluation of joint electrical resistance on power lead thermal performance

    International Nuclear Information System (INIS)

    Datskov, V.I.; Demko, J.A.; Augustynowicz, S.D.; Hutton, R.D.

    1994-01-01

    The amount of electrical resistance in braze joints is not known for certain. In addition the annealing processes that occurs during a braze or solder operation can change the residual resistivity ratio (RRR) of the copper. The change in the electrical resistivity of samples of copper because of exposure to conditions that a high current lead would see during a brazing operation were experimentally investigated. A sample was taken from a manufacturing and brazing trial of the high current power leads for the Superconducting Super Collider (SSC), and from oxygen free high conductivity copper (OFHC) 101 rod similar to that used in the trial. The samples were heated under conditions that a current lead would undergo during the brazing process. Measurements were made of the electrical resistance of the copper specimens and across a braze joint in the manufacturing trial sample for temperatures ranging from liquid helium to room temperature. A prototype of the SSC high current lead is shown. This lead was fabricated from 5 sections that were brazed together. Some results for the measured residual resistivity ratio (RRR) along this lead are given

  7. Monitor large-scale consumers market natural gas and electricity 2010; Monitor groothandelsmarkten gas en elektriciteit 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    The Office of Energy Regulation ('Energiekamer') carries out its legal task by means of a monitor, a practical tool to assess and analyze the wholesale market for electricity. Monitoring of the wholesale electricity market concerns continuous, accurate and structured following of developments in the market. The aim is to identify in time signals from the market that could lead to a decrease of competition and transparency. The starting point of the monitor for the wholesale electricity market is the selection of indicators which give insight in real competition, liquidity and transparency. [Dutch] De Energiekamer schrijft jaarlijks haar bevindingen over de mate van marktwerking in de groothandelsmarkten gas en elektriciteit in een rapport aan de Minister van Economische Zaken. Dit rapport is de monitor. Sinds 2007 zijn de bevindingen over de groothandelsmarkten voor gas en elektriciteit samengevoegd in een publicatie. Concreet verzamelt de Energiekamer marktinformatie zoals prijzen en hoeveelheden. Daarnaast bestudeert de Energiekamer of deze uitkomsten overeenkomen met wat beoogd was in de vrije energiemarkt. De Energiekamer onderzoekt of de voorwaarden (zoals bijvoorbeeld toetredingsbarrieres en transparantie) optimaal zijn voor doeltreffende concurrentie en geeft voorstellen van maatregelen om de marktwerking te verbeteren.

  8. Evaluation of contact resistance between carbon fiber/epoxy composite laminate and printed silver electrode for damage monitoring

    International Nuclear Information System (INIS)

    Jeon, Eun Beom; Kim, Hak Sung; Takahashi, Kosuke

    2014-01-01

    An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of 0.3664Ω could be achieved when the sintering temperature of the silver nano-ink and surface roughness were 120 degree C and 0.230 a, respectively.

  9. Variations of electric resistance and H2 and Rn emissions of concrete blocks under increasing uniaxial compression

    Science.gov (United States)

    King, C.-Y.; Luo, G.

    1990-01-01

    Electric resistance and emissions of hydrogen and radon isotopes of concrete (which is somewhat similar to fault-zone materials) under increasing uniaxial compression were continuously monitored to check whether they show any pre- and post-failure changes that may correspond to similar changes reported for earthquakes. The results show that all these parameters generally begin to increase when the applied stresses reach 20% to 90% of the corresponding failure stresses, probably due to the occurrence and growth of dilatant microcracks in the specimens. The prefailure changes have different patterns for different specimens, probably because of differences in spatial and temporal distributions of the microcracks. The resistance shows large co-failure increases, and the gas emissions show large post-failure increases. The post-failure increase of radon persists longer and stays at a higher level than that of hydrogen, suggesting a difference in the emission mechanisms for these two kinds of gases. The H2 increase may be mainly due to chemical reaction at the crack surfaces while they are fresh, whereas the Rn increases may be mainly the result of the increased emanation area of such surfaces. The results suggest that monitoring of resistivity and gas emissions may be useful for predicting earthquakes and failures of concrete structures. ?? 1990 Birkha??user Verlag.

  10. Electrical resistance tomography using steel cased boreholes as electrodes

    International Nuclear Information System (INIS)

    Newmark, R L; Daily, W; Ramirez, A

    1999-01-01

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes

  11. Detection of sinkholes using 2D electrical resistivity imaging

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2002-07-01

    Full Text Available Sinkholes in dolomitic areas are notoriously difficult geophysical targets, and selecting an appropriate geophysical solution is not straightforward. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because...

  12. Spatial scan statistics to assess sampling strategy of antimicrobial resistance monitoring programme

    DEFF Research Database (Denmark)

    Vieira, Antonio; Houe, Hans; Wegener, Henrik Caspar

    2009-01-01

    Pie collection and analysis of data on antimicrobial resistance in human and animal Populations are important for establishing a baseline of the occurrence of resistance and for determining trends over time. In animals, targeted monitoring with a stratified sampling plan is normally used. However...... sampled by the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP), by identifying spatial Clusters of samples and detecting areas with significantly high or low sampling rates. These analyses were performed for each year and for the total 5-year study period for all...... by an antimicrobial monitoring program....

  13. Monitoring of electric-cardio signals based on DSP

    Science.gov (United States)

    Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang

    2008-10-01

    Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.

  14. Laser-induced change of electrical resistivity of metals and its applications

    Science.gov (United States)

    Pawlak, Ryszard; Kostrubiec, Franciszek; Tomczyk, Mariusz; Walczak, Maria

    2005-01-01

    Applying of laser alloying for modification of electrical resistivity of metals with significant importance in electrical and electronic engineering and utilization of this method for producing passive elements of electric circuit have been presented. The alloyed metals were obtained by means of laser beams with different wave length and various mode of working (cw or pulse), by different methods for the supplying of alloying elements. It was possible to form alloyed layers of metals forming different types of metallurgical systems: with full (Cu-Au, Cu-Ni) or partial solubility (Mo-Ni, W-Ni, Cu-Al, Ag-Sn), insoluble (Mo-Au and Cu-Cr) and immiscible (Ag-Ni and Ni-Au) metals, with metallic as well as non-metallic additions (oxide). It has been shown as well that it is possible to achieve resistive elements modified in whole cross section, in a single technological process. The results of systematic investigations into the resistivity of alloyed metals in the temperature range of 77-450 K have been presented. The alloyed layers, obtained, were characterised by a range of resistivity from 2.8 x 10-8 Ωm (Cu-Cr) to 128 x 10-8 Ωm (W-Ni). The microstructure and composition of alloyed layers were examined by means of SEM-microscopy and EDX analyser. In selected cases it was shown how results of investigations could be utilized for modification of surface layer of contact materials or to optimize the resistance of laser welded joints. In addition the results of investigations of new developed microtechnology -- producing micro-areas with extremely high resistivity -- have been presented.

  15. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    Science.gov (United States)

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  16. Application of Electrical Resistivity Tomography for Detecting Root Biomass in Coffee Trees

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Paglis

    2013-01-01

    Full Text Available Roots play an important role in plants and are responsible for several functions; among them are anchorage and nutrient and water absorption. Several methodologies are being tested and used to study plant root systems in order to avoid destructive root sampling. Electrical resistivity tomography is among these methodologies. The aim of this preliminary study was to use electrical resistivity for detecting root biomass in coffee trees. Measurements were performed in a soil transect with an ABM AL 48-b resistivimeter with a pole-dipole configuration. The tomograms indicated variability in soil resistivity values ranging from 120 to 1400 Ω·m−1. At the first 0.30 cm soil layer, these values were between 267 and 952 Ω·m−1. Oriented by this result, root samples were taken at 0.10, 0.20, and 0.30 m depths within 0.50 m intervals along the soil transect to compare soil resistivity with root mass density (RMD. RMD data, up to this depth, varied from 0.000019 to 0.009469 Mg·m−3, showing high spatial variability and significant relationship to the observed values of soil resistivity. These preliminary results showed that the electrical resistivity tomography can contribute to root biomass studies in coffee plants; however, more experiments are necessary to confirm the found results in Brazil coffee plantations.

  17. Studies of electrical properties of low-resistivity sandstones based on digital rock technology

    Science.gov (United States)

    Yan, Weichao; Sun, Jianmeng; Zhang, Jinyan; Yuan, Weiguo; Zhang, Li; Cui, Likai; Dong, Huaimin

    2018-02-01

    Electrical properties are important parameters to quantitatively calculate water saturation in oil and gas reservoirs by well logging interpretation. It is usual that oil layers show high resistivity responses, while water layers show low-resistivity responses. However, there are low-resistivity oil zones that exist in many oilfields around the world, leading to difficulties for reservoir evaluation. In our research, we used digital rock technology to study different internal and external factors to account for low rock resistivity responses in oil layers. We first constructed three-dimensional digital rock models with five components based on micro-computed tomography technology and x-ray diffraction experimental results, and then oil and water distributions in pores were determined by the pore morphology method. When the resistivity of each component was assigned, rock resistivities were calculated by using the finite element method. We collected 20 sandstone samples to prove the effectiveness of our numerical simulation methods. Based on the control variate method, we studied the effects of different factors on the resistivity indexes and rock resistivities. After sensitivity analyses, we found the main factors which caused low rock resistivities in oil layers. For unfractured rocks, influential factors arranged in descending order of importance were porosity, clay content, temperature, water salinity, heavy mineral, clay type and wettability. In addition, we found that the resistivity index could not provide enough information to identify a low-resistivity oil zone by using laboratory rock-electric experimental results. These results can not only expand our understandings of the electrical properties of low-resistivity rocks from oil layers, but also help identify low-resistivity oil zones better.

  18. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    Science.gov (United States)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  19. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  20. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  1. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  2. Effects of contact resistance on electrical conductivity measurements of SiC-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Thomsen, E.C.; Henager, C.H., E-mail: chuck.henager@pnnl.gov

    2013-11-15

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance (R{sub c}) and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from room temperature (RT) to ∼973 K. The R{sub c}-values behaved similarly for each type of metallic electrode: R{sub c} > ∼1000 Ω cm{sup 2} at RT, decreasing continuously to ∼1–10 Ω cm{sup 2} at 973 K. The temperature dependence of the inverse R{sub c} indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ∼0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by about 50%.

  3. Electrical resistivity due to electron-phonon scattering in thin gadolinium films

    International Nuclear Information System (INIS)

    Urbaniak-Kucharczyk, A.

    1988-01-01

    The contribution to the electrical resistivity due to the electron-phonon scattering for the special case of h.c.p. structure is derived. The numerical results obtained for the case of polycrystalline gadolinum films show the resistivity dependence on the film thickness and the surface properties. (author)

  4. Monitoring electrical properties for improving the lithological and hydrological characterization of landslides

    Science.gov (United States)

    Malet, J. P.; Gance, J.; Lajaunie, M.; Gallistl, J.; Denchik, N.; Flores Orozco, A.; Ottowitz, D.; Supper, R.; Sailhac, P.; Gautier, S.; Schmutz, M.

    2017-12-01

    Imaging water flows in landslides is of critical importance as the distribution of pore-fluid pressures controls the dynamics (acceleration, deceleration) of the material. Detecting and imaging water is a difficult task, not only because of the complex topography and the small dimensions of the geological structures, but also because the landslide material consists of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. Further, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the sub-surface hydrological properties. In order to image water in landslide bodies, we propose to combine multi-frequency electrical and electromagnetic measurements using campaigns or permanent instruments, and surface/boreole investigations, installed on several unstable slopes in France. To evaluate the information gained from electrical properties for different geological conditions, we discuss electrical and electro-magnetic imaging results for data collected at four different landslides located in France (Super-Sauze and La Valette in the South East Alps, Lodève lin the southern border of the Massif Central Massif, and Séchilienne in the North French Alps). Time-lapse electrical DC resistivity observations, complex electrical conductivity (conduction and polarization/chargeability) measured by IP imaging methods, and controlled-source electromagnetic (CS-AMT) methods are discussed. Imaging results demonstrate an improved lithological characterization of the landslide structures (delineation of the sliding planes, identification of the fractures, discrimination of clay lenses with enhanced resolution); further, water infiltration within the soil matrix and/or the fractures is discriminated allowing better modelling of the hydrological regime of the landslides at the slope scale. This research is conducted in the frame of the project HYDROSLIDE

  5. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  6. Electrical resistivity and thermopower of ErCo3 under hydrostatic pressure

    International Nuclear Information System (INIS)

    Nakama, T; Niki, H; Nakamura, D; Takaesu, Y; Hedo, M; Yagasaki, K; Uchima, K; Gratz, E; Burkov, A T

    2009-01-01

    The magnetic state of the Co 3d-electron subsystem of RCo 3 compounds (R=rare-earth elements) with the rhombohedral PuNi 3 -type structure strongly depends on external parameters. In order to clarify the effect of pressure on the magnetic state of the itinerant Co 3d-electrons, we have measured the electrical resistivity and thermopower at temperatures from 2 K to 300 K under hydrostatic pressures up to 2 GPa. Both, ρ and S show anomalies at critical temperature of metamagnetic transition T m . With increasing pressure T m , determined from the temperature-dependent resistivity and thermopower, decreases and apparently vanishes at P ∼ 0.7 GPa. The electrical resistivity and thermopower at low temperatures show abrupt changes at P ∼ 0.7 GPa, indicating a pressure-induced phase transition.

  7. Imaging voids beneath bridge bent using electrical resistivity tomography.

    Science.gov (United States)

    2014-02-01

    Five electrical resistivity tomography (ERT) profiles and borehole control were acquired beneath two bridges on the bank of the : Gasconade River in order to determine extension of the underground water-filled openings in rock encountered during a dr...

  8. The effect of z-binding yarns on the electrical properties of 3D woven composites

    KAUST Repository

    Saleh, Mohamed Nasr; Yudhanto, Arief; Lubineau, Gilles; Soutis, Constantinos

    2017-01-01

    Electrical resistance monitoring (ERM) has been used to study the effect of the z-binding yarns on the initial electrical resistance (ER) and its change of three architectures of 3D woven carbon fibre composites namely (orthogonal “ORT”, layer

  9. Improving water content estimation on landslide-prone hillslopes using structurally-constrained inversion of electrical resistivity data

    Science.gov (United States)

    Heinze, Thomas; Möhring, Simon; Budler, Jasmin; Weigand, Maximilian; Kemna, Andreas

    2017-04-01

    Rainfall-triggered landslides are a latent danger in almost any place of the world. Due to climate change heavy rainfalls might occur more often, increasing the risk of landslides. With pore pressure as mechanical trigger, knowledge of water content distribution in the ground is essential for hazard analysis during monitoring of potentially dangerous rainfall events. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. This applies in many scenarios, as for example during infiltration of water without a clear saturation front. Sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, on the other hand, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. Here the standard smoothness constraint is reduced along layer boundaries identified using seismic data or other additional sources. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in

  10. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.; SOO, P.; VILLARAN, M.; GROVE, E.

    2001-01-01

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed

  11. 76 FR 16795 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Science.gov (United States)

    2011-03-25

    ...] The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for Comments..., FDA requested comments on a document for the National Antimicrobial Resistance Monitoring System....fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistance...

  12. 76 FR 37356 - 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public...

    Science.gov (United States)

    2011-06-27

    ... animal and retail sampling methods for the National Antimicrobial Resistance Monitoring System (NARMS... Web site at http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/National...] 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public Meeting...

  13. Electric resistance of nickel and niobium in the temperature range of 300-1300 K

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roshchupkin, V.V.; Mozgovoj, A.G.; Semashko, N.A.

    1982-01-01

    The results of experimental investigation of nickel and niobium electric resistance on the wire samples by the potentiometric method in the temperature range of 300-1300 K are presented. Experimental data processing by the least square method is carried out; approximating equations of temperature dependence of the nickel and niobium electric resistance are prepared

  14. System and method to determine electric motor efficiency using an equivalent circuit

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  15. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    Science.gov (United States)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  16. Electrical resistivity of 5 f -electron systems affected by static and dynamic spin disorder

    Science.gov (United States)

    Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Drozdenko, D.; Cieslar, M.; Mašková, S.; Dopita, M.; Matěj, Z.

    2017-06-01

    Metallic 5 f materials have very strong coupling of magnetic moments and electrons mediating electrical conduction. It is caused by strong spin-orbit interaction, coming with high atomic number Z , together with involvement of the 5 f states in metallic bonding. We have used the recently discovered class of uranium (ultra)nanocrystalline hydrides, which are ferromagnets with high ordering temperature, to disentangle the origin of negative temperature coefficient of electrical resistivity. In general, the phenomenon of electrical resistivity decreasing with increasing temperature in metals can have several reasons. The magnetoresistivity study of these hydrides reveals that quantum effects related to spin-disorder scattering can explain the resistivity behavior of a broad class of actinide compounds.

  17. Application of Electrical Resistivity Imaging and Land Surveying in the Analysis of Underground Construction Impact on the Warsaw Scarp

    Directory of Open Access Journals (Sweden)

    Kaczmarek Łukasz

    2016-12-01

    Full Text Available The paper presents the analysis of the II Underground Line construction’s impact on the Warsaw Scarp with the use of the electrical resistivity imaging (ERI, also known as the electrical resistivity tomography and further total station position measurements.The underground passes under the scarp perpendicular in the area of Dynasy Street 6, in Down-town district.The electrical resistivity imaging was performed for recognition of the geological structure and a potential land slide surface or zone.The gradient system was used during the prospection. In these analyses, the longitudinal section was 40 m long, and the depth of survey amounted to 6 m. In the case of the 200 m long transverse section, the resulted depth of survey was 30 m.The geophysical image of the longitudinal section,does not contain loosening soil zones,which could indicates lip surface.Next, total station measurements, which were tied to the archival geodetic observations’ results, were carried out. The aim of the measurements was to verify the activity of the horizontal and vertical displacements. The TBM excavation process led to summary vertical displacements up to approx. 24 mm and horizontal displacements amounting to approx. 13 mm. To sum up, the current land surveys reveals minor under ground line’ s construction impact on the scarp displacement. Nevertheless, the sensitive urban environment requires further monitoring, especially that the operation loads can result in displacement rate change.

  18. Time Lapse Electrical Resistivity to Connect Evapotranspiration and Groundwater Fluxes in the Critical Zone

    Science.gov (United States)

    Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.

    2017-12-01

    The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.

  19. Specific features in the behavior of electrical resistivity of the pine biocarbon preform/copper composite

    Science.gov (United States)

    Burkov, A. T.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.

    2010-11-01

    The electrical resistivity ρ( T) of the novel type of composites prepared by infiltrating melted copper in vacuum in empty sap channels of white pine high-porosity biocarbon preforms has been measured in the temperature range 5-300 K. Biocarbon preforms have been prepared by pyrolysis of tree wood in an argon flow at two carbonization temperatures, 1000 and 2400°C. The electrical resistivity of the composites has been found to vary relatively weakly with temperature and to pass through a characteristic minimum near 40-50 K, which can be ascribed to iron and manganese impurities penetrating into copper from the carbon preform when liquid copper is infiltrated into it. It has been shown that the electrical resistivity ρ( T) of the composites is governed primarily by the specific microstructure of the preform, which is made up of parallel channels with an average diameter of about 50 μm interrupted by systems of thin capillaries. The small cross section of the copper-filled capillaries accounts for these regions providing the major contribution to the electrical resistivity of the composites. An increase in the wood carbonization temperature brings about a noticeable increase in the effective capillary cross section and a decrease in the electrical resistivity ρ( T) of the composite.

  20. Cone-based Electrical Resistivity Tomography

    Science.gov (United States)

    Pidlisecky, A.; Knight, R.; Haber, E.

    2005-05-01

    Determining the 3D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, we have developed a minimally invasive technology that provides information about the 3D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer to measure the resultant potential field while advancing the cone into the subsurface. In addition to potential field measurements, we obtain the standard suite of cone-penetration measurements, including high resolution resistivity logs; these data can then be used to constrain the inversion of the potential field data. A major challenge of working with these data is that the cone penetrometer is highly conductive, and thus presents a large local perturbation around the measurement location. As the cone is very small (approximately 30mm in diameter) with respect to the total model space, explicitly modeling the cone is computationally demanding. We developed a method for solving the forward model that reduces computational time by an order of magnitude. This solution method, iteratively determined boundary conditions, makes it possible to correct for the cone effect before inversion of the data. Results from synthetic experiments suggest that the C-bert method of data acquisition can result in high quality electrical conductivity images of the subsurface. We tested the practicality of this technique by performing a field test of the C-bert system to image

  1. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange

    Directory of Open Access Journals (Sweden)

    C. M. Steelman

    2017-06-01

    Full Text Available Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze–thaw cycle. Surface electromagnetic induction (EMI and electrical resistivity tomography (ERT methods captured conditions beneath the riverbed along a pool–riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle and dominant surficial rock properties (competent versus weathered rock rubble surface. While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river

  2. Electrical Resistance Tomography imaging of concrete

    International Nuclear Information System (INIS)

    Karhunen, Kimmo; Seppaenen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-01

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete.

  3. Application of Three Electrical Resistivity Arrays to Evaluate ...

    African Journals Online (AJOL)

    The study further revealed that the Wenner array is less susceptible to edge effect at shallow depth while Dipole-dipole is more susceptible to edge effect at deeper depth followed by the Pole-dipole array. 2D electrical resistivity field measurements were carried out to confirm the results of the numerical simulation in the ...

  4. Likelihood of Brine and CO2 Leak Detection using Magnetotellurics and Electrical Resistivity Tomography Methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    The US DOE National Risk Assessment Partnership (NRAP), funded through the Office of Fossil Energy and NETL, is developing methods to evaluate the effectiveness of monitoring techniques to detect brine and CO2 leakage from legacy wells into underground sources of drinking water (USDW) overlying a CO2 storage reservoir. As part of the NRAP Strategic Monitoring group, we have generated 140 simulations of aquifer impact data based on the Kimberlina site in California’s southern San Joaquin Basin, Kimberlina Rev. 1.1. CO2 buoyancy allows some of the stored CO2 to reach shallower permeable zones and is detectable with surface geophysical sensors. We are using this simulated data set to evaluate effectiveness of electrical resistivity tomography (ERT) and magnetotellurics (MT) for leak detection. The evaluation of additional monitoring methods such as pressure, seismic and gravity is underway through a multi-lab collaboration.

  5. Electrical resistance of flaky crystals in the longitudinal quantizing magnetic field

    International Nuclear Information System (INIS)

    Askerov, B.M.; Figarova, S.R.; Makhmudov, M.M.

    2005-01-01

    Specific resistance of the quasi-two-dimensional electrical gas in the longitudinal quantizing magnetic field is investigated in this work. Common expression for resistivity in the flaky crystals was received. In quantum limit was analyzed dependence of the resistivity from the size of magnetic field and parameters energetic spectra in case of strong degenerate gas. It was tagged that, the conduct of specific resistance is formed by the dependence of chemical potential from the size of magnetic field. At the defined value of the chemical potential and size of magnetic field obtains inflation of the specific resistance. (author)

  6. Electrical resistivities of glass melts containing simulated SRP waste sludges

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1978-08-01

    One option for the long-term management of radioactive waste at the Savannah River Plant is to solidify the waste in borosilicate glass by using a continuous, joule-heated, ceramic melter. Electrical resistivities that are needed for melter design were measured for melts of two borosilicate, glass-forming mixtures, each of which was combined with various amounts of several simulated-waste sludges. The simulated sludge spanned the composition range of actual sludges sampled from SRP waste tanks. Resistivities ranged from 6 to 10 ohm-cm at 500 0 C. Melt composition and temperature were correlated with resistivity. Resistivity was not a simple function of viscosity. 15 figures, 4 tables

  7. A Glimpse in the Third Dimension for Electrical Resistivity Profiles

    Science.gov (United States)

    Robbins, A. R.; Plattner, A.

    2017-12-01

    We present an electrode layout strategy designed to enhance the popular two-dimensional electrical resistivity profile. Offsetting electrodes from the traditional linear layout and using 3-D inversion software allows for mapping the three-dimensional electrical resistivity close to the profile plane. We established a series of synthetic tests using simulated data generated from chosen resistivity distributions with a three-dimensional target feature. All inversions and simulations were conducted using freely-available ERT software, BERT and E4D. Synthetic results demonstrate the effectiveness of the offset electrode approach, whereas the linear layout failed to resolve the three-dimensional character of our subsurface feature. A field survey using trench backfill as a known resistivity contrast confirmed our synthetic tests. As we show, 3-D inversions of linear layouts for starting models without previously known structure are futile ventures because they generate symmetric resistivity solutions with respect to the profile plane. This is a consequence of the layout's inherent symmetrical sensitivity patterns. An offset electrode layout is not subject to the same limitation, as the collective measurements do not share a common sensitivity symmetry. For practitioners, this approach presents a low-cost improvement of a traditional geophysical method which is simple to use yet may provide critical information about the three dimensional structure of the subsurface close to the profile.

  8. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    Science.gov (United States)

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  9. AN EVALUATION OF CONDITION MONITORING TECHNIQUES FOR LOW-VOLTAGE ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.J.; GROVE, E.; SOO, P.

    2000-01-01

    Aging of systems and components in nuclear power plants is a well known occurrence that must be managed to ensure the continued safe operation of these plants. Much of the degradation due to aging is controlled through periodic maintenance and/or component replacement. However, there are components that do not receive periodic maintenance or monitoring once they are installed; electric cables are such a component. To provide a means of monitoring the condition of electric cables, research is ongoing to evaluate promising condition monitoring (CM) techniques that can be used in situ to monitor cable condition and predict remaining life. While several techniques are promising, each has limitations that must be considered in its application. This paper discusses the theory behind several of the promising cable CM techniques being studied, along with their effectiveness for monitoring aging degradation in typical cable insulation materials, such as cross-linked polyethylene and ethylene propylene rubber. Successes and limitations of each technique are also presented

  10. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    International Nuclear Information System (INIS)

    Riegler, W.

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  11. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  12. Diffusivity and electrical resistivity measurements in rock matrix around fractures

    International Nuclear Information System (INIS)

    Kumpulainen, H.; Uusheimo, K.

    1989-12-01

    Microfracturing of rock matrix around permeable fractures was studied experimentally from drill core samples around major fractures. The methods used were diffusion measurements using a 36 Cl-tracer and electrical resistivity measurements. Rock samples were from the Romuvaara investigation site, the granite specimen around a partially filled carbonate fracture (KR4/333 m) and gneiss specimen around a slickenside fracture (KR1/645 m). A consistent difference of one to two orders of magnitude in the levels of the methods with regard to the effective diffusion coefficients for Cl - -ion was found, the electrical resistivity measurement giving higher values. On the basis of the diffusion measurements the diffusion porosities could be calculated but these remained one to two orders of magnitude lower than that expected for granitic rocks using the water saturation method. A possible reason for these differences could have been the low, in some cases 0.004 M NaC1-concentration in the diffusion experiments vs. the 1 M NaCl-concentration used in the electrical resistivity measurements. Due to the small number of specimens and cross sectional areas of only 2 cm 2 , rock inhomogeneity effects were significant making the interpretation of the results somewhat troublesome. Porosities on fracture surfaces seemed to be higher than in the deeper, more intact rock matrix

  13. Electrical Resistance of Nb$_{3}$Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    CERN Document Server

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R

    2011-01-01

    The electrical interconnection of Nb$_{3}$Sn/Cu strands is a key issue for the construction of Nb$_{3}$Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb$_{3}$Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of ...

  14. An Electrical Energy Consumption Monitoring and Forecasting System

    Directory of Open Access Journals (Sweden)

    J. L. Rojas-Renteria

    2016-10-01

    Full Text Available Electricity consumption is currently an issue of great interest for power companies that need an as much as accurate profile for controlling the installed systems but also for designing future expansions and alterations. Detailed monitoring has proved to be valuable for both power companies and consumers. Further, as smart grid technology is bound to result to increasingly flexible rates, an accurate forecast is bound to prove valuable in the future. In this paper, a monitoring and forecasting system is investigated. The monitoring system was installed in an actual building and the recordings were used to design and evaluate the forecasting system, based on an artificial neural network. Results show that the system can provide detailed monitoring and also an accurate forecast for a building’s consumption.

  15. Electrical Resistance Tomography imaging of concrete

    KAUST Repository

    Karhunen, Kimmo

    2010-01-01

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete. © 2009 Elsevier Ltd. All rights reserved.

  16. A Framework for Monitoring Electricity theft in Zimbabwe using Mobile Technologies

    Directory of Open Access Journals (Sweden)

    Samuel Musungwini

    2016-07-01

    Full Text Available The capabilities of mobile technology paradigm have indicated that almost every infrastructure, system or device has the potential to capture data and report it to the back-end system in real-time. Utilities need to deliver operational analytics by knowing what is happening across their entire infrastructure. The purpose of the study was to develop a framework for mobile technologies in monitoring electricity theft in Zimbabwe. Using a qualitative research in conjunction with the design science paradigm, data was collected through semi-structured interviews, participant observation, document review and qualitative questionnaire. The findings of the study revealed that the power utility in Zimbabwe uses very basic methods and techniques in detecting and countering electricity theft. This has made it difficult to deal with all the possible electricity theft strategies that are employed by the consumers. This study recommends that the power utility in Zimbabwe should use a framework for mobile technologies to monitor electricity theft in order to reduce revenue leakages caused by electricity theft.

  17. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  18. Electron–electron interactions and the electrical resistivity of lithium

    Indian Academy of Sciences (India)

    The electron–electron interactions in lithium metal have been examined keeping in view the recent developments. The contribution of the electron–electron Umklapp scattering processes in the electrical resistivity of lithium at low temperatures has been evaluated using a simplified spherical Fermi surface model with ...

  19. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  20. Electrical resistivity discontinuity of iron along the melting curve

    Science.gov (United States)

    Wagle, Fabian; Steinle-Neumann, Gerd

    2018-04-01

    Discontinuous changes of electrical resistivity ρel (increase), density ϱ and isothermal compressibility βT (decrease) occur across the melting temperature of metals and can be directly related by Ziman's theory in the long-wavelength approximation. By evaluating experimental data at ambient pressure, we show that Ziman's approximation holds for iron and other simple and transition metals. Using a thermodynamic model to determine βT for γ-, ɛ- and liquid Fe and a previously published model for ρel of liquid Fe, we apply Ziman's approximation to calculate ρel of solid Fe along the melting curve. For pure Fe, we find the discontinuity in ρel to decrease with pressure and to be negligibly small at inner core boundary conditions. However, if we account for light element enrichment in the liquid outer core, the electrical resistivity decrease across the inner core boundary is predicted to be as large as 36 per cent.

  1. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  2. Offset-electrode profile acquisition strategy for electrical resistivity tomography

    Science.gov (United States)

    Robbins, Austin R.; Plattner, Alain

    2018-04-01

    We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.

  3. Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: the example of Benin, West Africa

    Science.gov (United States)

    Alle, Iboukoun Christian; Descloitres, Marc; Vouillamoz, Jean-Michel; Yalo, Nicaise; Lawson, Fabrice Messan Amen; Adihou, Akonfa Consolas

    2018-03-01

    Hard rock aquifers are of particular importance for supplying people with drinking water in Africa and in the world. Although the common use of one-dimensional (1D) electrical resistivity techniques to locate drilling site, the failure rate of boreholes is usually high. For instance, about 40% of boreholes drilled in hard rock aquifers in Benin are unsuccessful. This study investigates why the current use of 1D techniques (e.g. electrical profiling and electrical sounding) can result in inaccurate siting of boreholes, and checks the interest and the limitations of the use of two-dimensional (2D) Electrical Resistivity Tomography (ERT). Geophysical numerical modeling and comprehensive 1D and 2D resistivity surveys were carried out in hard rock aquifers in Benin. The experiments carried out at 7 sites located in different hard rock groups confirmed the results of the numerical modeling: the current use of 1D techniques can frequently leads to inaccurate siting, and ERT better reveals hydrogeological targets such as thick weathered zone (e.g. stratiform fractured layer and preferential weathering associated with subvertical fractured zone). Moreover, a cost analysis demonstrates that the use of ERT can save money at the scale of a drilling programme if ERT improves the success rate by only 5% as compared to the success rate obtained with 1D techniques. Finally, this study demonstrates, using the example of Benin, that the use of electrical resistivity profiling and sounding for siting boreholes in weathered hard rocks of western Africa should be discarded and replaced by the use of ERT technique, more efficient.

  4. Evaluation on electrical resistivity of silicon materials after electron ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 5. Evaluation on ... This research deals with the study of electron beam melting (EBM) methodology utilized in melting silicon material and subsequently discusses on the effect of oxygen level on electrical resistivity change after EBM process. The oxygen ...

  5. Pressure effect on electrical resistivity of Y1-xGdxCo2

    International Nuclear Information System (INIS)

    Nakama, T.; Takaesu, Y.; Yagasaki, K.; Sakai, E.; Kurita, N.; Hedo, M.; Uwatoko, Y.; Burkov, A.T.

    2006-01-01

    Electrical resistivity of Y 1-x Gd x Co 2 alloy system has been measured at temperatures from 2 to 300K in magnetic field up to 15T and under pressure up to 10GPa. The compounds with the composition near to phase boundary between paramagnetic and ferromagnetic ground state (x c ∼0.12) show strong enhancement of electrical resistivity at low temperatures. Large positive magnetoresistance was observed in ferromagnetic alloys in composition range 0.15 1-x Gd x Co 2 at low temperatures is in agreement with the variation of magnetoresistance with the composition

  6. In-situ electrical analysis in view of monitoring the processing of thermoplastics

    Science.gov (United States)

    Gonnet, J. M.; Guillet, J.; Ainser, A.; Boiteux, G.; Fulchiron, R.; Seytre, Gerard

    1999-12-01

    In the last recent years, electrical techniques like microdielectrometry have presented an attracting and increasing interest for continuous monitoring, in a nondestructive way, of the advancement of the reaction of thermoset resins under cure. We think that the use of electrical analysis for in situ monitoring of chemical reactions can be extended to get information on thermoplastic and the physical phenomena such sa crystallization or study of residence time distribution in processing machines such as extruders.

  7. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    Science.gov (United States)

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    Conventional ground survey of soil root zone salinity by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity, σb, in the field. This approach is faster and cheaper, and allows a more intensive surveying. Measurements of σb can be made either in situ or with remote devices. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on the Electrical Resistivity Tomography (ERT) techniques represent an alternative in respect to those traditional for soil salinity characterization. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from ERT sensors. The latter, in turn, depends on the specific depth distribution of the σb, as well as on the electrical configuration of the sensor used. With these premises, the main aim of this study is to estimate the vertical σb distribution starting from resistivity data series measured using the ERT method under different salinity conditions and using TDR data as ground-truth data for calibration and validation of the ERT sensor. This way, limited measured TDR data may be used for translating extensive ERT apparent electrical conductivity, σa, measurements to estimate depth

  8. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  9. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    Science.gov (United States)

    Phelps, Amanda C [Malibu, CA; Kirby, Kevin K [Calabasas Hills, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  10. Baking of carbon anodes for the electrolysis of aluminium by electric resistance heating

    Energy Technology Data Exchange (ETDEWEB)

    Schultze-Rhonhof, E.

    1981-09-01

    The aim of the project was the development of a method of baking carbon anodes for the aluminium industry by direct electric resistance heating. A distinct reduction of the energy input compared with the usual methods is possible. At the same time fossil energy (oil, gas) will be substituted by electric energy. An experimental arrangement for baking carbon anodes built during the project baking experiments, in 1:1 scale was realized. The quality of the baked anodes has been investigated. Carbon anodes in a 1:1 scale can be baked uniformly by direct electric resistance heating. The characteristic chemical and physical data meets all requirements of the aluminium industry. The energy input has not yet come up to expectations.

  11. Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Issouf Fofana

    2016-08-01

    Full Text Available The condition of the internal cellulosic paper and oil insulation are of concern for the performance of power transformers. Over the years, a number of methods have been developed to diagnose and monitor the degradation/aging of the transformer internal insulation system. Some of this degradation/aging can be assessed from electrical responses. Currently there are a variety of electrical-based diagnostic techniques available for insulation condition monitoring of power transformers. In most cases, the electrical signals being monitored are due to mechanical or electric changes caused by physical changes in resistivity, inductance or capacitance, moisture, contamination or aging by-products in the insulation. This paper presents a description of commonly used and modern electrical-based diagnostic techniques along with their interpretation schemes.

  12. Increase of the electrical resistance of thin copper film due to 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Agrawal, S.K.; Kumar, U.; Nigam, A.K.; Singh, S.P.

    1981-01-01

    The variation in the electrical resistance of thin copper film (500 A 0 thick), grown on the glass slide has been measured with increasing 14 MeV neutron irradiation time. The electrical resistance vs irradiation time curve shows an interesting behaviour after an irradiation of 40 minutes. However, there is a net increase in the electrical resistance with increasing neutron dose. The maximum increase in the observed electrical resistance after an irradiation of 115 mins, is 4.45%. The microstructural studies of irradiated film were made using TEM and TED techniques. The TEM patterns up to an irradiation time of 1.00 hr do not show any appreciable change in the microstructure. The TED patterns also do not show any appreciable change in the diffraction pattern up to an irradiation time of 1.0 hr. But after an irradiation time of 1.5 hrs, two extra rings appear in the TED pattern which disappear with increasing neutron irradiation time

  13. MONITORING OF ELECTRICAL ENERGY QUALITY ON THE TRACTION SUBSTATION INPUT

    Directory of Open Access Journals (Sweden)

    O.G. Gryb

    2015-12-01

    Full Text Available For the implementation of measures to maintain the quality of the energy industrial enterprises have to spend a significant material and monetary assets. In this regard, significant is the feasibility study of the allocation of such funds and, primarily, the determination of the economic damage arising from low quality of electricity. The reliability of the electricity metering system, relay protection and automation of modern digital substations depends on the quality of electrical energy. At the present time to improve the reliability of the substation operation it is necessary to monitor indicators of quality of electric energy, allowing you to take organizational and technical solutions for their improvement. Monitoring the power quality at the input traction substation has shown that indicators such as the coefficient of the n-th harmonic component of the voltage does not meet the standards GOST 13109-97. The source of higher harmonics is a voltage Converter used on the locomotive. To eliminate higher harmonics in the supply network for traction substations will need to install power filters. Today, the USB-analyzer of power quality «Digital measurement system of power quality» type of CSICE of accuracy class 0.2. Work energy requires reliable and quality electricity supply to consumers. The new model of balancing energy market are bilateral contracts. The main task of this market, it ensure the stable and reliable operation of the unified energy system of Ukraine, that is, transmission and supply of electricity of appropriate quality.

  14. Electrical resistivity of noble-metal alloys: Roles of pseudopotential refinements

    International Nuclear Information System (INIS)

    Mujibar Rahman, S.M.

    1983-08-01

    The electrical resistivity of liquid noble-metal alloys i.e. CuAu and AgAu is calculated as a function of concentration. The calculations employ transition-metal-pseudopotentials that include nonlocal effects, hybridization and corrections due to orthogonalization hole and use the hard-sphere structure factors; the optimal values of the hard-sphere diameters are being determined by variational calculations. The calculated resistivities are comparable to the experimental values and to the available theoretical results. (author)

  15. A Novel Electric Bicycle Battery Monitoring System Based on Android Client

    Directory of Open Access Journals (Sweden)

    Chuanxue Song

    2017-01-01

    Full Text Available The battery monitoring system (BMS plays a crucial role in maintaining the safe operation of the lithium battery electric bicycle and prolonging the life of the battery pack. This paper designed a set of new battery monitoring systems based on the Android system and ARM single-chip microcomputer to enable direct management of the lithium battery pack and convenient monitoring of the state of the battery pack. The BMS realizes the goal of monitoring the voltage, current, and ambient temperature of lithium batteries, estimating the state of charge (SOC and state of health (SOH, protecting the battery from abuse during charging or discharging, and ensuring the consistency of the batteries by integrating the passive equalization circuit. The BMS was proven effective and feasible through several tests, including charging/discharging, estimation accuracy, and communication tests. The results indicated that the BMS could be used in the design and application of the electric bicycle.

  16. Resistance monitoring of human pathogenic bacteria in Germany, SWOT analysis and examples.

    Science.gov (United States)

    Witte, Wolfgang

    2006-06-01

    Determination of antibiotic resistance has two main goals in clinical-microbiological diagnosis. One aspect is preservation of antibacterial chemotherapy. Furthermore, trends in resistance development should be monitored and should serve as an early warning-system for occurrence and spread of new and clinically important antibiotic resistances. Plenty of data on antibiotic resistance is gathered on a routine basis in medical-microbiological diagnosis and often it is stored in electronic databases that could be interlinked. The main reason that the available data is not being used for resistance monitoring in Germany is the widely used methodology of the agar diffusion test. It is the cheapest and by far the most inaccurate method of determining resistance. The test results are not always comparable with tests for all substance groups from national standards (also limited international comparability). Trend analysis of the resistance situation in Germany can therefore only be determined through individual studies. These studies are discussed according to a SWOT analysis (SWOT = Strengths, Weaknesses, Opportunities, Threats).

  17. On micro-meso relations homogenizing electrical properties of transversely cracked laminated composites

    KAUST Repository

    Lubineau, Gilles; Nouri, Hedi; Roger, Frederic

    2013-01-01

    A practical way to track the development of transverse cracking in a laminated composite is to monitor the change of its electrical resistance. Yet, the relations between transverse cracking and the global modification of resistivity is still

  18. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  19. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003 and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12% were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and

  20. Influence of illumination and decay of electrical resistance of ITO nanoscale layers

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Erdelyi, K.; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Indium tin oxide (ITO) is known as a transparent oxide with n-type electrical conductivity. However, the as grown ITO layers have high resistivity and the transparency is also limited. In this work, thin ITO layers were deposited by evaporation and then underwent a post-growth annealing. Annealing leads to a low electrical resistivity and to an enhanced transparency. Annealed samples show n-type conductivity. In this work, ITO layers of typically 10 nm thicknesses were deposited onto Si{sub 1-x}Ti{sub x}O{sub 2} covered glass substrates and then annealed. First the conductivity was evaluated after the annealing. The rough, quick estimation was performed by simple two point direct resistance measurement, and then van der Pauw configuration and collinear four-point probe method were applied. The light sensitivity and storage time dependent stability were studied. It is demonstrated that the resistance decreases due to illumination, though only in a small extent. The measure and speed of the decrease depend on the wavelength of the light and the process is very slow (up to hours). The recovery of the starting resistance is also a slow process.

  1. Statistical analysis of electrical resistivity as a tool for estimating cement type of 12-year-old concrete specimens

    NARCIS (Netherlands)

    Polder, R.B.; Morales-Napoles, O.; Pacheco, J.

    2012-01-01

    Statistical tests on values of concrete resistivity can be used as a fast tool for estimating the cement type of old concrete. Electrical resistivity of concrete is a material property that describes the electrical resistance of concrete in a unit cell. Influences of binder type, water-to-binder

  2. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  3. An Electric Resistivity Study of the Chelungpu Fault in the Taichung Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Ping-Hu Cheng

    2008-01-01

    Full Text Available We conducted an electric resistivity survey consisting of six resistivity image profilings and several resistivity measurements on outcrops of strata in the Taichung area to investigate the subsurface structures of the Chelungpu fault. Three magnetotelluric sounding results are added to infer rock formations at depth. Based on the resistivity measurements on outcrops of the strata and the correlations between the interpretative resistivity structures and the rock formations recognized from drilling cores and the outcrops of the strata, the resistivity spectra of rock formations are obtained, and the geological structures are deduced.

  4. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  5. Application of electrical resistivity tomography techniques for mapping man-made sinkholes

    Science.gov (United States)

    Rey, J.; Martínez, J.; Hidalgo, C.; Dueñas, J.

    2012-04-01

    The suitability of the geophysical prospecting by electrical resistivity tomography to detect and map man-made subsurface cavities and related sinkholes has been studied in the Linares abandoned mining district (Spain). We have selected for this study four mined sectors constituted of different lithologies: granite and phyllites of Paleozoic age, and Triassic shales and sandstones. In three of these sectors, detail underground topographic surveys were carried out to chart the position and dimensions of the mining voids (galleries and chamber), in order to analyze the resolution of this methodology to characterize these cavities by using different electrode arrays. The results are variable, depending on the depth and diameter of the void, the selected electrode array, the spacing between electrodes, geological complexity and data density. These results also indicate that when the cavity is empty, an anomaly with a steep gradient and high resistivity values is registered, because the air that fills the mining void is dielectric, while when the cavities are filled with fine grain sediments, frequently saturated in water, the electrical resistance is lower. In relation with the three different multi-electrode arrays tested, the Wenner-Schlumberger array has resulted to offer the maximum resolution in all these cases, with lower and more stable values for the RMS than the other arrays. Therefore, this electrode array has been applied in the fourth studied sector, a former mine near the city centre of Linares, in an area of urban expansion in which there are problems of subsidence. Two sets of four electrical tomography profiles have been carried out, perpendicular to each other, and which have allowed reaching depths of research between 30-35 m. This net-array allowed the identification of two shallow anomalies of low resistivity values, interpreted as old mining galleries filled with fine material saturated in water. It also allows detecting two fractures, correlated

  6. An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography

    International Nuclear Information System (INIS)

    Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Fu, Feng; Liu, Ruigang; Dong, Xiuzhen

    2011-01-01

    Delayed detection of an internal hemorrhage may result in serious disabilities and possibly death for a patient. Currently, there are no portable medical imaging instruments that are suitable for long-term monitoring of patients at risk of internal hemorrhage. Electrical impedance tomography (EIT) has the potential to monitor patients continuously as a novel functional image modality and instantly detect the occurrence of an internal hemorrhage. However, the low spatial resolution and high sensitivity to noise of this technique have limited its application in clinics. In addition, due to the circular boundary display mode used in current EIT images, it is difficult for clinicians to identify precisely which organ is bleeding using this technique. The aim of this study was to propose an optimized strategy for EIT reconstruction to promote the use of EIT for clinical studies, which mainly includes the use of anatomically accurate boundary shapes, rapid selection of optimal regularization parameters and image fusion of EIT and computed tomography images. The method was evaluated on retroperitoneal and intraperitoneal bleeding piglet data. Both traditional backprojection images and optimized images among different boundary shapes were reconstructed and compared. The experimental results demonstrated that EIT images with precise anatomical information can be reconstructed in which the image resolution and resistance to noise can be improved effectively

  7. In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Eva-Maria Steyskal

    2013-06-01

    Full Text Available Controlled tuning of material properties by external stimuli represents one of the major topics of current research in the field of functional materials. Electrochemically induced property tuning has recently emerged as a promising pathway in this direction making use of nanophase materials with a high fraction of electrode-electrolyte interfaces. The present letter reports on electrochemical property tuning of porous nanocrystalline Pt. Deeper insight into the underlying processes could be gained by means of a direct comparison of the charge-induced response of two different properties, namely electrical resistance and magnetic moment. For this purpose, four-point resistance measurements and SQUID magnetometry were performed under identical in situ electrochemical control focussing on the regime of electrooxidation. Fully reversible variations of the electrical resistance and the magnetic moment of 6% and 1% were observed upon the formation or dissolution of a subatomic chemisorbed oxygen surface layer, respectively. The increase of the resistance, which is directly correlated to the amount of deposited oxygen, is considered to be primarily caused by charge-carrier scattering processes at the metal–electrolyte interfaces. In comparison, the decrease of the magnetic moment upon positive charging appears to be governed by the electric field at the nanocrystallite–electrolyte interfaces due to spin–orbit coupling.

  8. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  9. Electrical tomography monitoring of the EDZ during the excavation of the gallery Ga08 in the Mont Terri URL

    International Nuclear Information System (INIS)

    Nicollin, Florence; Gibert, Dominique; Lesparre, Nolwenn; Nussbaum, Christophe

    2010-01-01

    Document available in extended abstract form only. In the Mont Terri Underground Rock Laboratory, the excavation of the new gallery Ga08 provided a unique opportunity to monitor the excavation damaged zone (EDZ) in the Opalinus clay, at time scales ranging from hours to months. The excavation of the gallery Ga08 has started from the northern end of the URL and has progressed towards the South, ending by the junction with the end of the gallery Ga04. Several geophysical and geochemical methods were performed from the end face of the gallery Ga04, to observe the evolution of the rock mass located in the so-called EZ-G08 section during the progress of the excavation. Thus, electrical resistivity measurements were performed, with electrodes placed both on the Ga04 face and in boreholes perpendicular to the face. These experiments revealed a strong anisotropy of the electrical resistivity of the rock mass, and they allowed to study the temporal evolution of the electrical resistivity in the EDZ. An array of more than 700 electrodes was installed on the rough face according to a square mesh with a mean side of 30 cm. On each line of the mesh, the electrodes were equally spaced every 15 cm. 4 horizontal boreholes, 8 m long and 56 mm in diameter, were equipped with lines of 64 electrodes equally spaced every 5 cm. Finally, 2 groups of 4 boreholes, 1 m long and spaced about 20 cm, were equipped with lines of 16 electrodes equally spaced every 5 cm. Using the electrode array of the face, Wenner profiles were acquired along both the horizontal and the vertical lines, highlighting a strong anisotropy of electrical resistivity since the values depend on the direction in which they are measured. In order to characterize this anisotropy, other measurements were done using the array of the face and the lines of the short boreholes, with the so-called square array configuration where the electrodes are located at the corners of squares with different orientations. On the face

  10. Computer program analyzes and monitors electrical power systems (POSIMO)

    Science.gov (United States)

    Jaeger, K.

    1972-01-01

    Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.

  11. Pulse number control of electrical resistance for multi-level storage based on phase change

    International Nuclear Information System (INIS)

    Nakayama, K; Takata, M; Kasai, T; Kitagawa, A; Akita, J

    2007-01-01

    Phase change nonvolatile memory devices composed of SeSbTe chalcogenide semiconductor thin film were fabricated. The resistivity of the SeSbTe system was investigated to apply to multi-level data storage. The chalcogenide semiconductor acts as a programmable resistor that has a large dynamic range. The resistance of the chalcogenide semiconductor can be set to intermediate resistances between the amorphous and crystalline states using electric pulses of a specified power, and it can be controlled by repetition of the electric pulses. The size of the memory cell used in this work is 200 nm thick with a contact area of 1 μm diameter. The resistance of the chalcogenide semiconductor gradually varies from 41 kΩ to 840 Ω within octal steps. The resistance of the chalcogenide semiconductor decreases with increasing number of applied pulses. The step-down characteristic of the resistance can be explained as the crystalline region of the active phase change region increases with increasing number of applied pulses. The extent of crystallization was also estimated by the overall resistivity of the active region of the memory cell

  12. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.

    Science.gov (United States)

    Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  13. Effect of heat treatment on the electrical resistance of photoresist as related to radioisotopic thermoelectric generator aging

    International Nuclear Information System (INIS)

    Johnson, R.T. Jr.

    1979-03-01

    Photoresist is used in electrical contact definition and processing in radioisotopic thermoelectric generators. Inadequate removal of material during processing could lead to electrical shorting when exposed to the high temperature use environment. This effect has been simulated through studies of the electrical resistance of thin layers of photoresist (Kodak Metal Etch Resist) on glass (Corning 7052) with tungsten electrodes. Results show that both the photoresist and the glass contribute to the resistance. The glass resistance decreases with increasing temperature and becomes significant at high temperatures. Annealing studies on the photoresist show that the resistance of the photoresist decreases by over five orders of magnitude upon annealing to 500 0 C, with a corresponding decrease in activation energy from 0.27 eV (350 0 C anneal) to 0.10 eV (500 0 C anneal). Time dependent decreases in resistance of the photoresist were also measured for up to 8 to 9 days during high temperature anneals. Some electrolytic transport of tungsten may occur through the photoresist at high temperatures. Results are compared with data on thermoelectric generators and show that photoresist could cause the electrical aging (voltage degradation) problem observed in some generators

  14. In situ measurement system of electric resistivity for outcrop investigation; Roto de shiyodekiru denkihi teiko keisoku system

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, K; Tamura, T [Osaka City Univ., Osaka (Japan). Faculty of Science; Morikawa, T [Osaka Prefectural Government, Osaka (Japan)

    1997-05-27

    A simplified electrical resistivity measuring device has been developed as a trial for field and laboratory uses, and some measurements were conducted. For this device, four probe electrodes are penetrated in the clay specimen, to calculate the resistivity from the voltage between both ends of the reference resistance connected with current electrodes in a series and the voltage between intermediate two voltage electrodes. It can be used in the field measurements. For the measurements, specimens of marine and lacustrine clayey sediments with clear stratigraphic levels in southern Osaka Group were used. In the laboratory, in addition to basic physical tests, diatom analysis and measurements of conductivity of clay suspension were also conducted. As a result of the experiments, the electric resistivity of marine clay obtained at the outcrop was lower than lacustrine clay as expected. The value of the former was a half of that of the latter. The frequency dependence in the high frequency region above 1 MHz was the reverse. The difference in electrical resistivity values between non-agitated specimens was about four times. The electrical resistivity of clay suspensions varied in two orders. 3 refs., 9 figs.

  15. Application of two electrical methods for the rapid assessment of freezing resistance in Salix epichloro

    Energy Technology Data Exchange (ETDEWEB)

    Tsarouhas, V.; Kenney, W.A.; Zsuffa, L. [University of Toronto, Ontario (Canada). Faculty of Forestry

    2000-09-01

    The importance of early selection of frost-resistant Salix clones makes it desirable to select a rapid and accurate screening method for assessing freezing resistance among several genotypes. Two electrical methods, stem electrical impedance to 1 and 10 khz alternating current, and electrolyte leakage of leaf tissue, were evaluated for detecting freezing resistance on three North America Salix epichloro Michx., clones after subjecting them to five different freezing temperatures (-1, -2, -3, -4, and -5 deg C). Differences in the electrical impedance to 1 and 10 kHz, and the ratio of the impedance at the two frequencies (low/high) before and after the freezing treatment (DZ{sub low}, DZ{sub high}, and DZ{sub ratio}, respectively) were estimated. Electrolyte leakage was expressed as relative conductivity (RC{sub t}) and index of injury (IDX{sub t}). Results from the two methods, obtained two days after the freezing stress, showed that both electrical methods were able to detect freezing injury in S. eriocephala. However, the electrolyte leakage method detected injury in more levels of freezing stress (-3, -4, and -5 deg C) than the impedance (-4, and -5 deg C), it assessed clonal differences in S. eriocephala freezing resistance, and it was best suited to correlate electrical methods with the visual assessed freezing injury. No significant impedance or leakage changes were found after the -1 and -2 deg C freezing temperatures. (author)

  16. Impact of electric and magnetic fields in a resistant medium on the ...

    African Journals Online (AJOL)

    In this paper, we compare the impact of electric and magnetic fields in a resistant medium on the velocity of a particle subject to varying path angles by using numerical integration of finite difference method. The results show that the magnetic field has much impact on the velocity than the electric field. Journal of the Nigerian ...

  17. Induced effects of gamma-rays and fast neutrons on the D.C. electric resistivity of polyethylene for high level dosimetry

    International Nuclear Information System (INIS)

    Youssef, S.K.; Mashad, A.M.; Osiris, W.C.; Adawi, M.A.

    1988-01-01

    The effects of gamma- and neutron-irradiations on the D.C. electric resistivity of polyethylene were investigated. The results showed that, the D.C. electric resistivity of polyethylene decreased as the samples irradiation by gamma doses as well as fast neutron fluences over the ranges 10 2 -6x10 6 Gy, and 10 8 -10 11 n/cm 2 , respectively. Moreover, electric resistivity of the polyethylene samples indicated more sensitivity change when irradiated by fast neutrons in comparison with equivalent doses of gamma-radiation. Semi-empirical formulae were deduced for the calculation of gamma-dose and/or neutron fluence from the changes in the electric resistivity of the detector. Storage of the irradiated specimens at room decay temperature showed a continuous increase in the relative fade of electric resistivity by recovery with time. The retained electric resistivity by recovery showed values of about 47% and 33% for post specimens irradiated by 6x10 6 Gy and 1x10 11 n/cm 2 , respectively, after 80 hours

  18. Electrical Resistance Tomography to Monitor Mitigation of Metal-Toxic Acid-Leachates Ruby Gulch Waste Rock Repository Gilt Edge Mine Superfund Site, South Dakota USA

    Science.gov (United States)

    Versteeg, R.; Heath, G.; Richardson, A.; Paul, D.; Wangerud, K.

    2003-12-01

    At a cyanide heap-leach open-pit mine, 15-million cubic yards of acid-generating sulfides were dumped at the head of a steep-walled mountain valley, with 30 inches/year precipitation generating 60- gallons/minute ARD leachate. Remediation has reshaped the dump to a 70-acre, 3.5:1-sloped geometry, installed drainage benches and runoff diversions, and capped the repository and lined diversions with a polyethylene geomembrane and cover system. Monitoring was needed to evaluate (a) long-term geomembrane integrity, (b) diversion liner integrity and long-term effectiveness, (c) ARD geochemistry, kinetics and pore-gas dynamics within the repository mass, and (d) groundwater interactions. Observation wells were paired with a 600-electrode resistivity survey system. Using near-surface and down-hole electrodes and automated data collection and post-processing, periodic two- and three-dimensional resistivity images are developed to reflect current and changed-conditions in moisture, temperature, geochemical components, and flow-direction analysis. Examination of total resistivity values and time variances between images allows direct observation of liner and cap integrity with precise identification and location of leaks; likewise, if runoff migrates from degraded diversion ditches into the repository zone, there is an accompanying and noticeable change in resistivity values. Used in combination with monitoring wells containing borehole resistivity electrodes (calibrated with direct sampling of dump water/moisture, temperature and pore-gas composition), the resistivity arrays allow at-depth imaging of geochemical conditions within the repository mass. The information provides early indications of progress or deficiencies in de-watering and ARD- mitigation that is the remedy intent. If emerging technologies present opportunities for secondary treatment, deep resistivity images may assist in developing application methods and evaluating the effectiveness of any reagents

  19. Influence of crystal field excitations on thermal and electrical resistivity of normal rare-earth metals

    Energy Technology Data Exchange (ETDEWEB)

    Durczewski, K.; Gajek, Z.; Mucha, J. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)

    2014-11-15

    A simple formula describing the influence of the crystalline electric field free-ion excitations on the temperature dependence of the contribution of the s-f scattering to the thermal resistivity of normal rare-earth metals is presented. The corresponding formula for the electrical resistivity is also given and compared to the one being currently used. Theoretical electron-phonon scattering contributions derived in earlier papers and constant impurity scattering contributions are added to the derived s-f contribution formulae in order to fit the total electrical and thermal resistivity represented as functions of the temperature to experimental dependences on the temperature for DyIn{sub 3} and in this way to manifest applicability of the derived formulae to real materials. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Influence of crystal field excitations on thermal and electrical resistivity of normal rare-earth metals

    International Nuclear Information System (INIS)

    Durczewski, K.; Gajek, Z.; Mucha, J.

    2014-01-01

    A simple formula describing the influence of the crystalline electric field free-ion excitations on the temperature dependence of the contribution of the s-f scattering to the thermal resistivity of normal rare-earth metals is presented. The corresponding formula for the electrical resistivity is also given and compared to the one being currently used. Theoretical electron-phonon scattering contributions derived in earlier papers and constant impurity scattering contributions are added to the derived s-f contribution formulae in order to fit the total electrical and thermal resistivity represented as functions of the temperature to experimental dependences on the temperature for DyIn 3 and in this way to manifest applicability of the derived formulae to real materials. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Electric field tomography for contactless imaging of resistivity in biomedical applications.

    Science.gov (United States)

    Korjenevsky, A V

    2004-02-01

    The technique of contactless imaging of resistivity distribution inside conductive objects, which can be applied in medical diagnostics, has been suggested and analyzed. The method exploits the interaction of a high-frequency electric field with a conductive medium. Unlike electrical impedance tomography, no electric current is injected into the medium from outside. The interaction is accompanied with excitation of high-frequency currents and redistribution of free charges inside the medium leading to strong and irregular perturbation of the field's magnitude outside and inside the object. Along with this the considered interaction also leads to small and regular phase shifts of the field in the area surrounding the object. Measuring these phase shifts using a set of electrodes placed around the object enables us to reconstruct the internal structure of the medium. The basics of this technique, which we name electric field tomography (EFT), are described, simple analytical estimations are made and requirements for measuring equipment are formulated. The realizability of the technique is verified by numerical simulations based on the finite elements method. Results of simulation have confirmed initial estimations and show that in the case of EFT even a comparatively simple filtered backprojection algorithm can be used for reconstructing the static resistivity distribution in biological tissues.

  2. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  3. Optimal Electrode Selection for Electrical Resistance Tomography in Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi

    2017-01-01

    Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection. PMID:28772485

  4. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate.

    Science.gov (United States)

    Zhao, J Z; Collins, H L; Li, Y X; Mau, R F L; Thompson, G D; Hertlein, M; Andaloro, J T; Boykin, R; Shelton, A M

    2006-02-01

    Six to nine populations of the diamondback moth, Plutella xylostella (L.), were collected annually from fields of crucifer vegetables in the United States and Mexico from 2001 to 2004 for baseline susceptibility tests and resistance monitoring to spinosad, indoxacarb, and emamectin benzoate. A discriminating concentration for resistance monitoring to indoxacarb and emamectin benzoate was determined based on baseline data in 2001 and was used in the diagnostic assay for each population in 2002-2004 together with a discriminating concentration for spinosad determined previously. Most populations were susceptible to all three insecticides, but a population from Hawaii in 2003 showed high levels of resistance to indoxacarb. Instances of resistance to spinosad occurred in Hawaii (2000), Georgia (2001), and California (2002) as a consequence of a few years of extensive applications in each region. The collaborative monitoring program between university and industry scientists we discuss in this article has provided useful information to both parties as well as growers who use the products. These studies provide a baseline for developing a more effective resistance management program for diamondback moth.

  5. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Baker, Nick; Luo, Haoze; Iannuzzo, Francesco

    2017-01-01

    the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal......-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs), it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies...... decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage) cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more...

  6. Imaging Saltwater Intrusion Along the Coast of Monterey Bay Using Long-Offset Electrical Resistivity Tomography

    Science.gov (United States)

    Goebel, M.; Knight, R. J.; Pidlisecky, A.

    2016-12-01

    Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.

  7. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds

    DEFF Research Database (Denmark)

    Munk, Patrick; Dalhoff Andersen, Vibe; de Knegt, Leonardo

    2016-01-01

    Objectives Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read...... mapping shows promise for quantitative resistance monitoring. Methods We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based...... cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal...

  8. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    Science.gov (United States)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  9. On the use of electrical resistivity methods in monitoring infiltration of ...

    African Journals Online (AJOL)

    One of the principal environmental concerns relating to coal combustion waste disposal is the potential for groundwater contamination from salt fluxes and trace elements that may be leached into the underlying groundwater system. Since changes in moisture and salt concentrations usually provide contrasts in electrical ...

  10. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  11. Evaluation of an antimicrobial resistance monitoring program for campylobacter in poultry by simulation

    DEFF Research Database (Denmark)

    Regula, G.; Wong, Danilo Lo Fo; Ledergerber, U.

    2005-01-01

    An ideal national resistance monitoring program should deliver a precise estimate of the resistance situation for a given combination of bacteria and antimicrobial at a low cost. To achieve this, decisions need to be made on the number of samples to be collected at each of different possible...... sampling points. Existing methods of sample size calculation can not be used to solve this problem, because sampling decisions do not only depend on the prevalence of resistance and sensitivity and specificity of resistance testing, but also on the prevalence of the bacteria, and test characteristics...... of isolation of these bacteria. Our aim was to develop a stochastic simulation model that optimized a national resistance monitoring program, taking multi-stage sampling, imperfect sensitivity and specificity of diagnostic tests, and cost-effectiveness considerations into account. The process of resistance...

  12. Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2009-08-15

    The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

  13. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    Science.gov (United States)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  14. The influence of basic physical properties of soil on its electrical resistivity value under loose and dense condition

    International Nuclear Information System (INIS)

    Abidin, M H Z; Ahmad, F; Wijeyesekera, D C; Saad, R

    2014-01-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρ bulk/dry ), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρ bulk/dry , ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  15. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  16. The application of real-time, non-destructive electrical tomographic imaging to heritage conservation

    OpenAIRE

    Ogilvy, Richard

    2008-01-01

    Significant advances have been made in recent times with the non-invasive electrical tomographic imaging of the shallow subsurface. These emerging technologies are analogous to magnetic resonance imaging (MRI) or CT scans used in medical physics. Electrical Resistivity Tomography (ERT) is increasingly used to underpin studies in waste management, contaminated land characterisation and remediation, monitoring groundwater resources and the monitoring of geohazards or safety-critical plant. Ther...

  17. Electrical detection of liquid lithium leaks from pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  18. Fibre Bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges, yet are not widely used in civil engineering applications. The use of fibre optic strain sensors (with a cross comparison with the output of electrical resistance gauges) to monitor the production of corrosion by-products in civil engineering concrete structures containing reinforcement bars has been investigated and results reported

  19. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.

    Science.gov (United States)

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T

    2016-04-01

    In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors

    International Nuclear Information System (INIS)

    Kang, S.M.; Yoon, S.G.; Suh, S.J.; Yoon, D.H.

    2008-01-01

    Tantalum nitride thin films were deposited by radio frequency (RF) reactive sputtering at various N 2 /Ar gas flow ratios and working pressures to examine the change of their electrical resistivity. From the X-ray diffraction (XRD) and four-point probe sheet resistance measurements of the TaN x films, it was found that the change of the crystalline structures of the TaN x films as a function of the N 2 partial pressure caused an abrupt change of the electrical resistivity. When the hexagonal structure TaN thin films changed to an f.c.c. structure, the sheet resistance increased from 16 Ω/sq to 1396 Ω/sq. However, we were able to control the electrical resistivity of the TaN thin film in the range from 69 Ω/sq to 875 Ω/sq, with no change in crystalline structure, within a certain range of working pressures. The size of the grains in the scanning electron microscopy (SEM) images seemed to decrease with the increase of working pressure

  1. The Skid Resistance Evaluation on the Longterm Monitored Road Sections

    Directory of Open Access Journals (Sweden)

    Kotek Peter

    2014-12-01

    Full Text Available The article deals with the analysis of the skid resistance results measured at the long-term monitored road sections in Slovakia in perspective of the possibility of the deterioration functions determination for the purposes of the pavement management system. There were 11 road sections evaluated, on which have been surface characteristics measured since 1998. The focus was on the evaluation of the longitudinal friction coefficient Mu measured by device Skiddometer BV11, which is the property of the Slovak Road Administration. Beside the Mu parameter, the test conditions were observed and evaluated, as well (measured speed, air and surface temperature, type of asphalts of the wearing course, traffic load, and the season (spring, autumn, respectively in which the skid resistance measurements were performed. In conclusion, there was reviewed a presumption of the possibility to determine a deterioration functions for skid resistance in point of view the quality of the data, which have been collected on the Slovak long-term monitored road sections.

  2. An alternative methodology for the analysis of electrical resistivity data from a soil gas study

    Science.gov (United States)

    Johansson, Sara; Rosqvist, Hâkan; Svensson, Mats; Dahlin, Torleif; Leroux, Virginie

    2011-08-01

    The aim of this paper is to present an alternative method for the analysis of resistivity data. The methodology was developed during a study to evaluate if electrical resistivity can be used as a tool for analysing subsurface gas dynamics and gas emissions from landfills. The main assumption of this study was that variations in time of resistivity data correspond to variations in the relative amount of gas and water in the soil pores. Field measurements of electrical resistivity, static chamber gas flux and weather data were collected at a landfill in Helsingborg, Sweden. The resistivity survey arrangement consisted of nine lines each with 21 electrodes in an investigation area of 16 ×20 m. The ABEM Lund Imaging System provided vertical and horizontal resistivity profiles every second hour. The data were inverted in Res3Dinv using L1-norm-based optimization method with a standard least-squares formulation. Each horizontal soil layer was then represented as a linear interpolated raster model. Different areas underneath the gas flux measurement points were defined in the resistivity model of the uppermost soil layer, and the vertical extension of the zones could be followed at greater depths in deeper layer models. The average resistivity values of the defined areas were calculated and plotted on a time axis, to provide graphs of the variation in resistivity with time in a specific section of the ground. Residual variation of resistivity was calculated by subtracting the resistivity variations caused by the diurnal temperature variations from the measured resistivity data. The resulting residual resistivity graphs were compared with field data of soil moisture, precipitation, soil temperature and methane flux. The results of the study were qualitative, but promising indications of relationships between electrical resistivity and variations in the relative amount of gas and water in the soil pores were found. Even though more research and better data quality is

  3. Carbon fiber epoxy composites for both strengthening and health monitoring of structures.

    Science.gov (United States)

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-05-06

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  4. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  5. Electrical resistance and magnetoresistance of UCoAl under high pressure

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Oomi, G.; Andreev, Alexander V.; Sechovský, V.; Shiokawa, Y.

    --, - (2002), s. 126-128 ISSN 0022-3131 R&D Projects: GA ČR GP202/01/D045 Institutional research plan: CEZ:AV0Z1010914 Keywords : UCoAl * non-Fermi liquid * itinerant metamagnetism * electrical resistance * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.572, year: 2002

  6. Chronological change of electrical resistance in GeCu2Te3 amorphous film induced by surface oxidation

    International Nuclear Information System (INIS)

    Saito, Yuta; Shindo, Satoshi; Sutou, Yuji; Koike, Junichi

    2014-01-01

    Unusual chronological electrical resistance change behavior was investigated for amorphous GeCu 2 Te 3 phase change material. More than a 1 order decrease of electrical resistance was observed in the air even at room temperature. The resistance of the amorphous film gradually increased with increasing temperature and then showed a drop upon crystallization. Such unusual behavior was attributed to the oxidation of the amorphous GeCu 2 Te 3 film. From the compositional depth profile measurement, the GeCu 2 Te 3 film without any capping layer was oxidized in air at room temperature and the formed oxide was mainly composed of germanium oxide. Consequently, a highly-conductive Cu-rich layer was formed in the vicinity of the surface of the film, which reduced the total resistance of the film. The present results could provide insight into the chronological change of electrical resistance in amorphous chalcogenide materials, indicating that not only relaxation of the amorphous, but also a large atomic diffusion contributes to the chronological resistance change. (paper)

  7. 2D and 3D Subsurface Geo-electrical Resistivity Imaging of ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-12

    Apr 12, 2018 ... heavy metals is rare through ingestion or dermal contact, but it is possible. ... Earth). Experimental: Electrical Resistivity Tomography. (ERT) survey was ... hence the area is prone to a good age of leach material that has been ...

  8. Electrical resistivity of Y(Fe1-x Alx)2 in the spin glass concentration range

    International Nuclear Information System (INIS)

    Cunha, S.F. da; Souza, G.P. de; Takeushi, A.Y.

    1986-01-01

    The temperature dependence of the electrical resistivity of the Y(Fe 1-x Al x ) 2 system (0.125 ≤ x ≤ 0.25) was measured. This system exhibits a minimum at low temperatures for the concentration range where the phase diagram presents a spin glass-ferromagnetic transition. A negative temperature coefficient is observed at high temperatures for x > 0.18 and was attributed to the high value of the electrical resistivity in this concentration range. (Author) [pt

  9. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  10. Temperature dependence of residual electrical resistivity of Cu-Au in pseudopotential approximation

    International Nuclear Information System (INIS)

    Khwaja, F.A.; Ahmed, I.; Shaukat, A.

    1986-08-01

    The problem of temperature dependence of residual electrical resistivity of Cu-Au system is re-examined in the light of static distortion and thermal vibration of the lattice along with the short-range-order of atoms above critical temperature. The extended version of Ziman's formula for resistivity obtained yields a unified version for the calculation of resistivity in pseudopotential approximation. The temperature dependence of the quantity Δρ/ρ in this framework for Cu-Au system is found to be in better agreement with the experimental data as compared to previous calculation. (author)

  11. Study on strength estimation of soil cement used in the embedded pile method by electrical resistivity measurement

    Science.gov (United States)

    Mochida, Y.; Sakurai, Y.; Indra, H.; Karimi, A. L.

    2017-11-01

    Problems caused by poor quality control and quality assurance of the pre-boring embedded pile construction, such as on domestic apartment house is still occurring nowadays. An adequate consideration for invisible risks inside or below the ground is important in pile foundation construction therefore the demand for advanced and reliable quality assurance is increase in the future. In this research, to understand the quality of the construction at early stage, the compressive strength of cement-soil mixture of pile construction after 28 days is estimated using electrical resistivity value of the mixture. More accurate measurement for electrical resistivity value is conducted by inserting the electrodes without using potassium chloride solution as a catalyst. The result showed that there is a certain tendency in the electric resistivity value at the early age regarding to the type of soil (sand, clay) mixed in. The most accurate estimation was achieved from the electric resistivity value at the first day and several days onwards, and from the compressive strength after 3 days.

  12. The Electrical Resistivity and Acoustic Emission Response Law and Damage Evolution of Limestone in Brazilian Split Test

    Directory of Open Access Journals (Sweden)

    Xinji Xu

    2016-01-01

    Full Text Available The Brazilian split test was performed on two groups of limestone samples with loading directions vertical and parallel to the bedding plane, and the response laws of the electrical resistivity and acoustic emission (AE in the two loading modes were obtained. The test results showed that the Brazilian split test with loading directions vertical and parallel to the bedding showed obviously different results and anisotropic characteristics. On the basis of the response laws of the electrical resistivity and AE, the damage variables based on the electrical resistivity and AE properties were modified, and the evolution laws of the damage variables in the Brazilian split test with different loading directions were obtained. It was found that the damage evolution laws varied with the loading direction. Specifically, in the time-varying curve of the damage variable with the loading direction vertical to the bedding, the damage variable based on electrical resistivity properties showed an obvious damage weakening stage while that based on AE properties showed an abrupt increase under low load.

  13. Measurements of electrical conductivity for characterizing and monitoring nuclear waste repositories

    International Nuclear Information System (INIS)

    Morrison, H.F.; Becker, A.; Lee, K.H.

    1986-11-01

    The detection of major fractures is one topic of this study but another equally important problem is to develop quantitative relationships between large scale resistivity and fracture systems in rock. There has been very little work done on this central issue. Empirical relations between resistivity and porosity have been derived on the basis of laboratory samples or from well logging, but there are no comparable 'laws' for rock masses with major fracture or joint patterns. Hydrologic models for such rocks have been recently been derived but the corresponding resistivity models have not been attempted. Resistivity due to fracture distributions with preferred orientation could be determined with such models, as could quantitative interpretation of changes as fracture aperature varies with load. This study is not only important for the assessment of a repository site, but has far ranging implications in reservoir studies for oil, gas, and geothermal resources. The electrical conductivity can be measured in two ways. Current can be injected into the ground through pairs of electrodes and corresponding voltage drops can be measured in the vicinity with other pairs of electrodes. The electrical conductivity can also be measured inductively. Instead of injecting current into the ground as described in the dc resistivity method, currents can be induced to flow by a changing magnetic field. In these inductive or electromagnetic (em) methods the interpretation depends both on transmitter-receiver geometry and frequency of operation. In principle the interpretation should be more definitive than with the dc resistivity methods. Rigorous confirmation of this statement in inhomogeneous media awaits the development of generalized inversion techniques for em methods

  14. Maskless X-Ray Writing of Electrical Devices on a Superconducting Oxide with Nanometer Resolution and Online Process Monitoring.

    Science.gov (United States)

    Mino, Lorenzo; Bonino, Valentina; Agostino, Angelo; Prestipino, Carmelo; Borfecchia, Elisa; Lamberti, Carlo; Operti, Lorenza; Fretto, Matteo; De Leo, Natascia; Truccato, Marco

    2017-08-22

    X-ray nanofabrication has so far been usually limited to mask methods involving photoresist impression and subsequent etching. Herein we show that an innovative maskless X-ray nanopatterning approach allows writing electrical devices with nanometer feature size. In particular we fabricated a Josephson device on a Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) superconducting oxide micro-crystal by drawing two single lines of only 50 nm in width using a 17.4 keV synchrotron nano-beam. A precise control of the fabrication process was achieved by monitoring in situ the variations of the device electrical resistance during X-ray irradiation, thus finely tuning the irradiation time to drive the material into a non-superconducting state only in the irradiated regions, without significantly perturbing the crystal structure. Time-dependent finite element model simulations show that a possible microscopic origin of this effect can be related to the instantaneous temperature increase induced by the intense synchrotron picosecond X-ray pulses. These results prove that a conceptually new patterning method for oxide electrical devices, based on the local change of electrical properties, is actually possible with potential advantages in terms of heat dissipation, chemical contamination, miniaturization and high aspect ratio of the devices.

  15. Effect of electrode shape on grounding resistances - Part 2

    DEFF Research Database (Denmark)

    Tomaskovicova, Sonia; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2016-01-01

    Although electric resistivity tomography (ERT) is now regarded as a standard tool in permafrost monitoring, high grounding resistances continue to limit the acquisition of time series over complete freeze-thaw cycles. In an attempt to alleviate the grounding resistance problem, we have tested three...... electrode designs featuring increasing sizes and surface area, in the laboratory and at three different field sites in Greenland. Grounding resistance measurements showed that changing the electrode shape (using plates instead of rods) reduced the grounding resistances at all sites by 28%-69% during...... unfrozen and frozen ground conditions. Using meshes instead of plates (the same rectangular shape and a larger effective surface area) further improved the grounding resistances by 29%-37% in winter. Replacement of rod electrodes of one entire permanent permafrost monitoring array by meshes resulted...

  16. Surface electric resistance of YBa2Cu3O7-δ ceramics and its dependence on magnetic field

    International Nuclear Information System (INIS)

    Gorochev, O.A.; Graboj, I.Eh.; Kaul', A.R.; Mitrofanov, V.P.

    1989-01-01

    Method of dielectric resonator in the 4.2-300 K temperature range is used to measure surface electric resistance of YBa 2 Cu 3 O 7-δ ceramics samples produced by different technologies. The temperature dependence of surface resistance near transition temperature is calculated. At 77.3 K dependence of electric resistance on external magnetic field at H≤200Oe is determined. Calculated dependence is verified in experiment

  17. Electrical Properties of PPy-Coated Conductive Fabrics for Human Joint Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Jiyong Hu

    2016-03-01

    Full Text Available Body motion signals indicate several pathological features of the human body, and a wearable human motion monitoring system can respond to human joint motion signal in real time, thereby enabling the prevention and treatment of some diseases. Because conductive fabrics can be well integrated with the garment, they are ideal as a sensing element of wearable human motion monitoring systems. This study prepared polypyrrole conductive fabric by in situ polymerization, and the anisotropic property of the conductive fabric resistance, resistance–strain relationship, and the relationship between resistance and the human knee and elbow movements are discussed preliminarily.

  18. Ion implantation to improve mechanical and electrical properties of resistive materials based on ruthenium dioxide

    International Nuclear Information System (INIS)

    Byeli, A.V.; Shykh, S.K.; Beresina, V.P.

    1996-01-01

    This paper reports the influence of ion implantation, using different chemical species, on the surface micromorphology, wear resistance, coefficient of friction and electrical resistivity, and its variation during friction for resistive materials based on ruthenium dioxide. It is demonstrated that nitrogen and hydrogen ions are the most effective for modifying surface properties. (Author)

  19. Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)

    Science.gov (United States)

    Siami-Irdemoosa, Elnaz

    In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.

  20. A Coupled model for ERT monitoring of contaminated sites

    Science.gov (United States)

    Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya

    2018-02-01

    The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.

  1. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  2. An experimental approach of decoupling Seebeck coefficient and electrical resistivity

    Science.gov (United States)

    Muhammed Sabeer N., A.; Paulson, Anju; Pradyumnan, P. P.

    2018-04-01

    The Thermoelectrics (TE) has drawn increased attention among renewable energy technologies. The performance of a thermoelectric material is quantified by a dimensionless thermoelectric figure of merit, ZT=S2σT/κ, where S and σ vary inversely each other. Thus, improvement in ZT is not an easy task. So, researchers have been trying different parameter variations during thin film processing to improve TE properties. In this work, tin nitride (Sn3N4) thin films were deposited on glass substrates by reactive RF magnetron sputtering and investigated its thermoelectric response. To decouple the covariance nature of Seebeck coefficient and electrical resistivity for the enhancement of power factor (S2σ), the nitrogen gas pressure during sputtering was reduced. Reduction in nitrogen gas pressure reduced both sputtering pressure and amount of nitrogen available for reaction during sputtering. This experimental approach of combined effect introduced preferred orientation and stoichiometric variations simultaneously in the sputtered Sn3N4 thin films. The scattering mechanism associated with these variations enhanced TE properties by independently drive the Seebeck coefficient and electrical resistivity parameters.

  3. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  4. Direct observations of surface water-groundwater interaction using electrical resistivity tomography

    NARCIS (Netherlands)

    Noell, Ursula; Wießner, Claudia; Ganz, Christina; Westhoff, Martijn

    2011-01-01

    Electrical resistivity tomography is a helpful tool to observe the infiltration process in and through the soil. Array 3-D measurements and 3-D inversion schemes are required for reliable interpretation of heterogeneous subsurface structures. Smoothing of the inversion can be minimized by using

  5. Effect of hydrothermal treatment of coal on the oxidation susceptibility and electrical resistivity of HTT coke

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, N.B.; Sarkar, P.; Choudhury, A. [Central Fuel Research Institute, P.O. FRI, Dhanbad-828108, Jharkhand (India)

    2005-02-25

    The influence of hydrothermal treatment of coal prior to carbonization, on the oxidation susceptibility of resultant coke/char, calcined at 1350, 1800 and 2200 {sup o}C has been investigated. The non-isothermal thermogravimetric analysis technique has been employed, and parameters such as onset, DTG peak temperatures, and cumulative oxidation loss (wt.%) at different temperatures have been utilized to compare proneness to oxidation with respective untreated samples apart from electrical resistivity. Data suggest that all the cokes/chars samples produced from hydrothermally treated coals are less reactive and more electrically conductive (less resistive) than their respective untreated counterparts. But the extent of improvement of oxidation resistance and electrical conductivity appears to be coal-specific. The kinetic parameters obtained by non-linear regression analysis on multi-curve reveal that the n{sup th} order reaction model (where 'n' was found to vary from 0.9 to 1.3) is the best-fitted model. The higher activation energy values observed for hydrothermally treated coke samples are in agreement with the observation of TG analysis data. Overall results indicate the importance of introducing a hydrothermal treatment step for the improvement of oxidation resistance as well as electrical conductivity of the coke samples.

  6. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  7. Electrical resistance tomography using steel cased boreholes as long electrodes

    International Nuclear Information System (INIS)

    Daily, W; Newmark, R L; Ramirez, A

    1999-01-01

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted

  8. Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Rita Salvado

    2015-05-01

    Full Text Available This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  9. Noninvasive Monitoring of Soil Static Characteristics and Dynamic States

    DEFF Research Database (Denmark)

    Cassiani, Giorgio; Ursino, Nadia; Deiana, Rita

    2012-01-01

    of possible climatic changes. We used long-term electromagnetic induction (EMI) time lapse monitoring and short-term irrigation experiments monitored using electrical resistivity tomography (ERT) and EMI, supported by time domain reflectometry (TDR) soil moisture measurements. Mapping of natural ?-ray...... emission, texture analysis, and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We observe that the growth of vegetation, with the associated below-ground allocation of biomass, has a significant impact on the soil moisture dynamics. It is well known...

  10. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Directory of Open Access Journals (Sweden)

    Harald van Lintel

    2010-01-01

    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  11. Analysis of Printing Substrate, Ink Age and Number of IR Drying Influence on Electrical Resistance of Conductive Inks

    Directory of Open Access Journals (Sweden)

    Josip Jerić

    2015-05-01

    Full Text Available As a result of availability of new technologies, functional printing as a segment has become one of the most interesting directions of research and development in graphic technology. Conductive inks are not a novelty and they already have broad possibilities in production of everyday products. There is still a big market for the broadening of their use, as well as a possibility of further enhancing their properties. This paper analyzes the influence of printing substrate, age of ink and the number of IR drying on the electrical resistance of the conductive inks. In the paper, subject of analysis was the change of electrical resistance in the line that was 9 cm long and 10 typographic points wide. The semi-automated screen-printing machine was used for printing. Three types of printing substrates were used; uncoated, coated and recycled paper. Two types of inks were used; newly opened ink and ink that was out of date for half year. After the printing, prints were dried using the IR dryer. Prints were dried once, and then additional three times. After the first and last drying, multimeter was used to measure electrical resistance of the lines. Analysis of the data shows that the older ink produces prints with higher electrical resistance. There are also notable differences in the electrical resistance based on the printing substrate.

  12. Aging and condition monitoring of electric cables in nuclear power plants

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed

  13. Prognostics and Health Monitoring: Application to Electric Vehicles

    Science.gov (United States)

    Kulkarni, Chetan S.

    2017-01-01

    As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.

  14. Monitoring the agricultural landscape for insect resistance

    Science.gov (United States)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural

  15. Monitoring of Carrying Cable in the Well by Electric Drive of Winch at the Logging Works

    International Nuclear Information System (INIS)

    Odnokopylov, I G; Gneushev, V V; Larioshina, I A

    2016-01-01

    Emergency situations during logging operations are considered. The necessity of monitoring of the carrying cable in the well was shown, especially at the jet perforation and seismic researches of wells. The way of monitoring of logging cable and geophysical probe by means of the electric drive of tripping works of the logging winch is offered. This method allows timely to identify the wedges of geophysical equipment and the tension of the cable in well without interfering into construction of logging installation by means of algorithmic processing of sensors of electric drive. Research was conducted on the simulation model; these results indirectly confirm the possibility of using of electric drive for monitoring of downhole equipment. (paper)

  16. Monitoring of Carrying Cable in the Well by Electric Drive of Winch at the Logging Works

    Science.gov (United States)

    Odnokopylov, I. G.; Gneushev, V. V.; Larioshina, I. A.

    2016-01-01

    Emergency situations during logging operations are considered. The necessity of monitoring of the carrying cable in the well was shown, especially at the jet perforation and seismic researches of wells. The way of monitoring of logging cable and geophysical probe by means of the electric drive of tripping works of the logging winch is offered. This method allows timely to identify the wedges of geophysical equipment and the tension of the cable in well without interfering into construction of logging installation by means of algorithmic processing of sensors of electric drive. Research was conducted on the simulation model; these results indirectly confirm the possibility of using of electric drive for monitoring of downhole equipment.

  17. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    Science.gov (United States)

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the

  18. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    Directory of Open Access Journals (Sweden)

    Nick Baker

    2017-03-01

    Full Text Available In fast switching power semiconductors, the use of a fourth terminal to provide the reference potential for the gate signal—known as a kelvin-source terminal—is becoming common. The introduction of this terminal presents opportunities for condition monitoring systems. This article demonstrates how the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs, it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more detailed information regarding the aging process of a device.

  19. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  20. Anisotropy of electrical resistivity in PVT grown WSe2-x crystals

    Science.gov (United States)

    Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.

    2018-05-01

    Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.

  1. Resistance monitoring and cross-resistance role of CYP6CW1 between buprofezin and pymetrozine in field populations of Laodelphax striatellus (Fallén)

    OpenAIRE

    Zhang, Yueliang; Han, Yangchun; Liu, Baosheng; Yang, Qiong; Guo, Huifang; Liu, Zewen; Wang, Lihua; Fang, Jichao

    2017-01-01

    Monitoring resistance and investigating insecticide resistance mechanisms are necessary for controlling the small brown planthopper, Laodelphax striatellus. The susceptibility to four common insecticides of L. striatellus collected from Jiangsu, Anhui, Zhejiang and Jilin provinces of China in 2015 was monitored. The results showed that all field populations remained susceptible to chlorpyrifos and thiamethoxam with resistance ratios (RRs) of 2.3- to 9.5 and 1.6- to 3.3, respectively, while th...

  2. Crystal structure and electrical resistivity studies of Gd(Fe1-x Cox)2 intermetallics

    International Nuclear Information System (INIS)

    Onak, M.; Guzdek, P.; Stoch, P.; Chmist, J.; Bednarski, M.; Panta, A.; Pszczola, J.

    2007-01-01

    From X-ray analysis (295 K) it was found that the cubic, MgCu 2 -type, Fd3m crystal structure appears across the Gd(Fe 1-x Co x ) 2 series. Electrical resistivity measurements for the Gd(Fe 1-x Co x ) 2 intermetallics were performed in a wide temperature region and the parameters characterizing the resistivity dependence on temperature and composition were determined. The differential of the electrical resistivity against temperature was used to estimate Curie temperatures. The Curie temperature versus x, high and moderately increasing in the iron-rich area, rapidly drops in the cobalt-rich region. The obtained results are compared with the data known for the Dy(Fe 1-x Co x ) 2 series. The Curie temperature is related to both the number of 3d electrons and the de Gennes factor

  3. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, J. Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Doug [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mihalic, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  4. Electrical resistivity sounding to study water content distribution in heterogeneous soils

    Science.gov (United States)

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to assess ER sounding applicability to study soil water distribution in spatially heterogeneous soils. The 30x30-m study plot was located at ...

  5. Increase of the electrical resistance of thin aluminium film due to 14 MeV neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, S K; Kumar, U; Singh, S P; Bhattacharya, S; Nigam, A K [Banaras Hindu Univ. (India). Dept. of Physics

    1978-01-01

    The effect of 14 MeV neutron bombardment on the electrical resistance of 500 A thick vacuum-coated Al film is investigated. In the beginning, a slow, then sharp and finally again slow increase is observed in the electrical resistance of the film. Transmission electron micrographs of the film after the same dose of neutron irradiation show a large number of defects produced in the film due to neutron irradiation, which seems to be the cause of this increase.

  6. Electrical resistivity tomography (ERT surveys on glacial deposits in Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Andrei ZAMOSTEANU

    2014-11-01

    Full Text Available The study presents preliminary results regarding the use of electrical resistivity surveys in the assessment of the internal structure of the glacial deposits from the Romanian Carpathians.ERT is a geophysical method used to quantify changes in electrical resistivity of the ground towards passing electric current across an array of electrodes and simultaneous measurement of the induced potential gradient. Using specific software the measurements are further processed and correlated with the topography in order to obtain bedrock resistivity features. Therefore, the method is useful to evaluate the characteristics of geological strata and is widely used for mapping shallow subsurface geological structures. In the mountain regions ERT studies have been applied in different glacial and periglacial geomorphological studies - for permafrost detection (in Romanian Carpathians - Urdea et. al., 2008; Vespremeanu-Stroe et al., 2012, slope deformation analysis, the assessment of slip surface depths, sediment thickness, groundwater levels etc. One of the most commonly 2-D array used is the Wenner electrode configuration, which is moderately sensitive to both horizontal and vertical ground structures.Due to their elevations and Pleistocene’s climatic conditions, the Romanian Carpathians have been partially affected by Quaternary glaciations. The glaciers descended to about 1050-1200 m a.s.l. (Urdea and Reurther, 2009 in the Transylvanian Alps and Rodna Mountains (Eastern Carpathians carving a large number of U-shaped valleys and glacial cirques (Mîndrescu, 2006 and forming accumulations of unconsolidated glacial debris (moraines. Our study areas are two sites located in the northern (Rodna Mts. and southern (Iezer Păpuşa Mts. part of the mountain range.

  7. The Behaviour of Laboratory Soil Electrical Resistivity Value under Basic Soil Properties Influences

    International Nuclear Information System (INIS)

    Hazreek, Z A M; Aziman, M; Azhar, A T S; Chitral, W D; Fauziah, A; Rosli, S

    2015-01-01

    Electrical resistivity method (ERM) was a popular indirect geophysical tools adopted in engineering, environmental and archaeological studies. In the past, results of the electrical resistivity value (ERV) were always subjected to a long discussion and debate among the related parties such as an engineers, geophysicists and geologists due to its lack of clarification and evidences in quantitative point of view. Most of the results produced in the past was always been justified using qualitative ways which difficult to be accept by certain parties. In order to reduce the knowledge gap between those parties, this study has performed a laboratory experiment of soil box resistivity test which supported by an additional basic geotechnical test as referred to particle size distribution test (d), moisture content test (w), density test (ρ bulk ) and Atterberg limit test (LL, PL and PI). The test was performed to establish a series of electrical resistivity value with different quantity of water content for Clayey SILT and Silty SAND soil. It was found that the ERV of Silty SAND (600 - 7300 Ωm) was higher than Clayey SILT (13 - 7700 Ωm) due to the different quantity of basic soil properties value obtained from the basic geotechnical test. This study was successfully demonstrated that the fluctuation of ERV has greatly influenced by the variations of the soil physical properties (d, w, ρ bulk , LL, PL and PI). Hence, the confidence level of ERV interpretation will be increasingly meaningful since it able to be proved by others parameter generated by laboratory direct test

  8. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance.

    Science.gov (United States)

    Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F

    2017-10-01

    Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in

  9. Electrical Resistivity Models in Geological Formations in the Southern Area of the East of Cuba

    Directory of Open Access Journals (Sweden)

    José Antonio García-Gutiérrez

    2017-04-01

    Full Text Available The purpose of this study is to develop electrical resistivity models in geological formations of greater interest for geological engineering in the southern area of the East of Cuba. A procedure for the generalization of the geo-electrical database was prepared to generate the referred geo-electrical models. A total of 38 works with 895 vertical electrical surveys, of which 317 (35.4% located near (parametrical drills. Three models for the Paso Real formation and one for the Capdevila, the most distributed in the region under investigation were defined. The surface quartz sands from the municipality of Sandino were identified to have higher electrical resistivity averages (1241 Ω•m, while they do not exceed 86 Ω•m in the lower horizons to resolve basic tasks of the geological engineering investigations. The assessment of the cover clayey sandy soils was satisfactory in both geological formations while the determination of the water table depth was unfavorable. The remaining tasks varied between relatively favorable to unfavorable according to the geological formations.

  10. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    Science.gov (United States)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  11. A conductive grating sensor for online quantitative monitoring of fatigue crack

    Science.gov (United States)

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  12. In-mine electrical resistance tomography for imaging the continuity of tabular orebodies

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2006-09-01

    Full Text Available One of the strengths of the electrical resistance tomography (ERT) technique is its flexibility in terms of survey geometries. In this paper an unconventional and novel ERT application that is geometrically analogous to in-seam seismic tomography...

  13. A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xinmin; Liu, Dong' an; Peng, Linfa [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) plays a significant role on the power loss in a proton exchange membrane (PEM) fuel cell. There are two types of contact behavior at the interface of the BPP and GDL, which are the mechanical one and the electrical one. Furthermore, the electrical contact behavior is dependent on the mechanical one. Thus, prediction of the contact resistance is a coupled mechanical-electrical problem. The current FEM models for contact resistance estimation can only simulate the mechanical contact behavior and moreover they are based on the assumption that the contact surface is equipotential, which is not the case in a real BPP/GDL assembly due to the round corner and margin of the BPP. In this study, a mechanical-electrical FEM model was developed to predict the contact resistance between the BPP and GDL based on the experimental interfacial contact resistivity. At first, the interfacial contact resistivity was obtained by experimentally measuring the contact resistance between the GDL and a flat graphite plate of the same material and processing conditions as the BPP. Then, with the interfacial contact resistivity, the mechanical and electrical contact behaviors were defined and the potential distribution of the BPP/GDL assembly was analyzed using the mechanical-electrical FEM model. At last, the contact resistance was calculated according to the potential drop and the current of the contact surface. The numerical results were validated by comparing with those of the model reported previously. The influence of the round corner of the BPP on the contact resistance was also studied and it is found that there exists an optimal round corner that can minimize the contact resistance. This model is beneficial in understanding the mechanical and electrical contact behaviors between the BPP and GDL, and can be used to predict the contact resistance in a new BPP/GDL assembly. (author)

  14. The electrical resistivity and percolation threshold of MWCNTs/polymer composites filled with a few aligned carbonyl iron particles

    Science.gov (United States)

    Dong, Shuai; Wang, Xiaojie

    2018-03-01

    Conductive polymer composites (CPCs) consist of multi-walled carbon nanotubes (MWCNTs), a few carbonyl iron particles (CIPs) and polydimethylsiloxane (PDMS) are fabricated under a moderate magnetic field. The alignment of CIPs will change the structure of MWCNT network, and consequently the electrical properties of CPCs. The volume fraction of CIPs is fixed at 0.08 vol% at which CIPs will not directly participate in electric conduction. The electrical resistivity of CPCs and the changes of resistance versus strain are evaluated at various MWCNT volume fractions. The testing results show that a percolation threshold as low as 0.19 vol% is obtained due to the effect of aligned CIPs, comparing with 0.39 vol% of isotropic MWCNT/CIP/PDMS (prepared without magnetic field). Meanwhile, the anisotropic structure reduces the electrical resistivity by more than 80% when the MWCNT volume fractions is over the percolation threshold.

  15. Dynamic optical tweezers based assay for monitoring early drug resistance

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Zhu, Siwei; Feng, Jie; Zhang, Yuquan; Min, Changjun; Yuan, X-C

    2013-01-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained. (letter)

  16. Elasticity and electrical resistivity of chalk and greensand during water flooding with selective ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Alexeev, Artem

    2018-01-01

    is water-wet after flooding. Greensand remained mixed wet throughout the experiments. Electrical resistivity data are in agreement with this interpretation. The electrical resistivity data during flooding revealed that the formation brine is not fully replaced by the injected water in both chalk......Water flooding with selective ions has in some cases lead to increased oil recovery. We investigate the physical processes on a pore scale that are responsible for changes in petrophysical and mechanical properties of four oil-bearing chalk and four oil-bearing greensand samples caused by flooding...... with brines containing varying amounts of dissolved NaCl, Na2SO4, MgCl2 and MgSO4. Ultrasonic P-wave velocity and AC resistivity measurements were performed prior to, during and after flow through experiments in order to identify and quantify the processes related to water flooding with selective ions. Low...

  17. Optimized design of a low-resistance electrical conductor for the multimegahertz range

    Science.gov (United States)

    Kurs, André; Kesler, Morris; Johnson, Steven G.

    2011-04-01

    We propose a design for a conductive wire composed of several mutually insulated coaxial conducting shells. With the help of numerical optimization, it is possible to obtain electrical resistances significantly lower than those of a heavy-gauge copper wire or litz wire in the 2-20 MHz range. Moreover, much of the reduction in resistance can be achieved for just a few shells; in contrast, litz wire would need to contain ˜104 strands to perform comparably in this frequency range.

  18. Regulations and monitoring of the financial part of the electricity market

    International Nuclear Information System (INIS)

    Eriksson, Svante; Eliasson, Torben; Jenssen Aasmund

    2001-11-01

    The electricity derivatives market has grown significantly during the last few years. It refers to all commodity derivatives (options, futures and forwards) based on electricity and traded either on the Nord Pool Exchange or bilaterally between single parties. The growth of the derivatives market has also led to an increasing need for relevant regulation and monitoring. In this report ECON describes how the common financial regulations (e.g. Sweden's Securities Operations Act) affect power sector companies and how the electricity derivatives market is being monitored by the Swedish and the Norwegian financial supervisory authorities. The aim of the report is to give ideas about possible future research projects about the electricity derivatives market. In Sweden commodity derivatives based on electricity are generally considered to be 'financial instruments' according to The Trading in Financial Instruments Act. At least this seems to be the case with contracts traded on Nord Pool and bilateral contracts that can be subject to clearing by Nord Pool. In some cases, companies wanting to offer services regarding financial instruments in the Swedish market need a special licence and it comes from the Swedish Financial Supervisory Authority. The services that require a special permit are: trading financial instruments, in one's own name, on behalf of another party, brokering of contacts between purchasers and sellers, trading in financial instruments on one's own account, management of another party's financial instruments, and underwriting or other participation in issuances of securities or offers to purchase or sell financial instruments directly to the public. A licence to conduct a securities operation brings with it, among other things, certain mandatory capital requirements. Securities operations should also be conducted in such a manner that public confidence is maintained in the securities markets. Regulation should insure that for example, insider trading is

  19. Soil Structure Evaluation Across Geologic Transition Zones Using 2D Electrical Resistivity Imaging Technique

    Directory of Open Access Journals (Sweden)

    Geraldine C Anukwu

    2017-06-01

    Full Text Available This study utilizes the electrical resistivity values obtained using 2-D Electrical resistivity imaging (ERI technique to evaluate the subsurface lithology across different geological units. The primary objective was to determine the effect of subsurface lithology on the integrity of a road pavement, which had developed cracks and potholes at various locations. The dipole-dipole configuration was utilized and a total of nine traverses were established in the study area, whose geology cuts across both the basement and sedimentary complexes. The inverted resistivity section obtained showed significant variation in resistivity along established traverses and also across the different rock units, with the resistivity value ranging from about 4 ohm-m to greater than 7000 ohm- m. The lithology as interpreted from the resistivity section revealed the presence topsoil, clay, sandy clay, sand, sand stones/basement rocks, with varying vertical and horizontal arrangements to a depth of 40m. Results suggest that the geologic sequence and structure might have contributed to the observed pavement failure. The capability of the 2D ERI as an imaging tool is observed, especially across the transition zones as depicted in this study. The study further stressed the ability of this technique if properly designed and implemented, to be capable of providing a wealth of information that could complement other traditional geotechnical and geologic techniques.

  20. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    International Nuclear Information System (INIS)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-01-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed

  1. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  2. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  3. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts

    International Nuclear Information System (INIS)

    Ng, K.W.; Man, H.C.; Cheng, F.T.; Yue, T.M.

    2007-01-01

    Laser cladding of Mo on Cu has been attempted with the aim of enhancing the wear resistance and hence increasing the service life of electrical contacts made of Cu. In order to overcome the difficulties arising from the large difference in thermal properties and the low mutual solubility between Cu and Mo, Ni was introduced as an intermediate layer between Mo and Cu. The Ni and Mo layers were laser clad one after the other to form a sandwich layer of Mo/Ni/Cu. Excellent bonding between the clad layer and the Cu substrate was ensured by strong metallurgical bonding. The hardness of the surface of the clad layer is seven times higher than that of the Cu substrate. Pin-on-disc wear tests consistently showed that the abrasive wear resistance of the clad layer was also improved by a factor of seven as compared with untreated Cu substrate. The specific electrical contact resistance of the clad surface was about 5.6 x 10 -7 Ω cm 2

  4. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    Science.gov (United States)

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electrical resistance determination of actual contact area of cold welded metal joints

    Science.gov (United States)

    Hordon, M. J.

    1970-01-01

    Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.

  6. Dependent of electrical resistivity of thin wire on magnetic field and temperature

    International Nuclear Information System (INIS)

    Sadeghi, E.; Zare, M.

    2006-01-01

    Variation of electrical resistivity of Bismuth nano wire versus magnetic field the and temperature are considered. We study the size effect and surface scattering of the carrier in thin wire for systems with ellipsoidal Fermi surfaces. Results are in good agreement with experimental points

  7. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    CSIR Research Space (South Africa)

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  8. Electrical resistivity tomography investigations in the ufita Valley (southern Italy.

    Directory of Open Access Journals (Sweden)

    C. Basso

    2008-06-01

    Full Text Available Several Electrical Resistivity Tomography (ERT surveys have been carried out to study the subsurface structural and sedimentary settings of the upper Ufita River valley, and to evaluate their efficiency to distinguish the geological boundary between shallow Quaternary sedimentary deposits and clayey bedrock characterized by moderate resistivity contrast. Five shallow ERTs were carried out across a morphological scarp running at the foot of the northeastern slope of the valley. This valley shoulder is characterized by a set of triangular facets, that some authors associated to the presence of a SW-dipping normal fault. The geological studies allow us to interpret the shallow ERTs results obtaining a resistivity range for each Quaternary sedimentary deposit. The tomographies showed the geometrical relationships of alluvial and slope deposits, having a maximum thickness of 30-40 m, and the morphology of the bedrock. The resistivity range obtained for each sedimentary body has been used for calibrating the tomographic results of one 3560m-long deep ERT carried out across the deeper part of the intramountain depression with an investigation depth of about 170 m. The deep resistivity result highlighted the complex alluvial setting, characterized by alternating fine grained lacustrine deposits and coarser gravelly fluvial sediments.

  9. Artificial intelligence-based condition monitoring for practical electrical drives

    OpenAIRE

    Ashari, Djoni; Pislaru, Crinela; Ball, Andrew; Gu, Fengshou

    2012-01-01

    The main types of existing Condition Monitoring methods (MCSA, GA, IAS) for electrical drives are\\ud described. Then the steps for the design of expert systems are presented: problem identification and analysis, system specification, development tool selection, knowledge based, prototyping and testing. The employment of SOMA (Self-Organizing Migrating Algorithm) used for the optimization of ambient\\ud vibration energy harvesting is analyzed. The power electronics devices are becoming smaller ...

  10. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  11. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    International Nuclear Information System (INIS)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-01-01

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness

  12. In-mine (tunnel-to-tunnel) electrical resistance tomography in South African platinum mines

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-12-01

    Full Text Available The applicability of tunnel-to-tunnel electrical resistance tomography (ERT) for imaging disruptive geological structures ahead of mining, in an igneous platinum mining environment is assessed. The geophysical targets of interest are slump...

  13. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw = 6.1, northern Italy)

    Science.gov (United States)

    Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.

    2014-04-01

    This work shows the result of an electrical resistivity tomography (ERT) survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (northern Italy) earthquake that occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno River in the urban areas of San Carlo and Mirabello (southwestern portion of Ferrara Province). In total, six electrical resistivity tomographies were performed and calibrated with surface geological surveys, exploratory boreholes and aerial photo interpretations. This was one of first applications of the electrical resistivity tomography method in investigating coseismic liquefaction.

  14. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw = 6.1, North Italy)

    Science.gov (United States)

    Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.

    2013-10-01

    This work shows the result of an Electrical Resistivity Tomography survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (North Italy) earthquake occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno river in the urban areas of San Carlo, a hamlet of Sant'Agostino municipality, and of Mirabello (south-western portion of the Ferrara Province). Totally, six Electrical Resistivity Tomography were performed and calibrated with surface geological surveys, exploratory borehole and aerial photo interpretations. This was one of the first applications of the Electrical Resistivity Tomography method in investigating coseismic liquefaction.

  15. Numerical analysis of historical change of the electric resistance in the TVF glass melter

    International Nuclear Information System (INIS)

    Kawamura, Takumi; Sakai, Takaaki

    2004-09-01

    Concerning to the TVF glass melter in the Tokai reprocessing center, it is being planned to detect the deposition of the noble metals in a glass melter and remove them periodically to extend the melter lifetime. Numerical analysis has been performed for the electric resistance evaluation in order to estimate the sedimentation situation and current density distribution from the melter resistance. Electric field analysis was carried out by using MAGNA-FIM code and the influence factors to melter resistance was evaluated concerning to the sedimentation situation and glass temperature. In addition, transitions of the sedimentation and melter resistances were estimated from the operation history of the TVF-1 melter. As a result, the followings were obtained. From the evaluation of the influence factors to melter resistance, it turns out that the volume and the noble metals concentration of a sediment influence notably to melter resistance when the sediment contacts to electrodes. The sediment temperature at the melter bottom has small sensitivity in case of the non-contact situation. The glass temperature in the melter upper part, however, has big sensitivity in melter resistance irrespective of the existence of contact. Based on the above sensitivity evaluation, Numerical analysis was carried out supposing the sedimentation process which suits to a melter resistance fall during the operation history of the TVF-1 melter. As input conditions, the voltage between electrodes and the temperature in the melter were referred from the operation history data. It was assumed that the noble metals concentration in a sediment increased constantly for every operation batch. As a result, the characteristics of melter resistance history was reproduced successfully in general. Thereby, it became prospective to predict the sedimentation situation by using the new resistance analysis model for the glass melter. (author)

  16. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  17. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  18. Geo-electric measurements – internal state of historic masonry

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    A geophysical resistivity measuring device was modified to perform automatic monitoring of historical masonry structures before, during and after grout injection for consolidation purposes. The obtained image is called a geo-electrical tomography. The technique was used to evaluate the deteriorated masonry of the recently partly collapsed Maagdentoren in Zichem,(B). Geo-electric measuring techniques have been adapted from application in geology to be used as a non-destructive technique for t...

  19. Método da eletrorresistividade aplicado no monitoramento temporal da pluma de contaminação em área de disposição de resíduos sólidos urbanos Electrical resistivity method applied in the temporal monitoring of the contamination plume in disposal area of urban solid waste

    Directory of Open Access Journals (Sweden)

    José Ricardo Melges Bortolin

    2010-12-01

    Full Text Available Este trabalho apresenta os resultados do monitoramento temporal da pluma de contaminação do aterro controlado de Rio Claro, São Paulo, por meio do método da eletrorresistividade, que consistiu na comparação dos resultados de várias seções de imageamento elétrico, executados nos mesmo locais, nos anos de 1999 e 2008. Zonas de baixa resistividade, com valores menores ou iguais a 50 Ω.m, foram associadas à contaminação por chorume. Desse modo, foi possível identificar dois sentidos do fluxo da pluma: (1 em direção ao sul, e (2 em direção ao oeste. Nas seções de 2008, a pluma de contaminação apresentou-se mais extensa e profunda do que em 1999. De forma complementar, as sondagens elétricas verticais aferiram a profundidade do nível freático e o sentido do fluxo d'água, subsidiando a interpretação dos imageamentos.This paper shows the results of a periodical monitoring of the contamination plume of a controlled landfill in Rio Claro, São Paulo, Brazil, using electrical resistivity geophysical method. The monitoring consisted on comparing the results of several electrical sections, performed at the same location, in the years of 1999 and 2008. Low resistivity zones, with values lower than or equal to 50 Ω.m, have been associated to contamination by leachate. Thus, it was possible to identify two directions for the contamination flows: (1 toward south, and (2 toward west. In the results of 2008, the contamination plume was more extensive and profound than in 1999. The vertical electrical soundings indicated the water table depth and the water flow directions, helping the interpretation of results of the electrical profiles.

  20. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    Science.gov (United States)

    Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.

    2015-01-01

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  1. Electrical resistance oscillations during plastic deformation in A Ti-Al-Nb-Zr alloy at 4·2 K

    Science.gov (United States)

    Nikiforenko, V. N.; Lavrentev, F. F.

    1986-10-01

    The serrated plastic flow in titanium alloy containing 5% Al, 2·5% Zr and 2% Nb has been investigated by measuring its electrical resistance and applying selective chemical etching. The electrical resistance was found to oscillate under active deformation at 4·2 K. Analysis of the possible causes seems to indicate a dominant role of break by dislocation pile-ups through obstacles, viz second phase precipitates and grain boundaries.

  2. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state

  3. Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it

    Science.gov (United States)

    Hoffman, Robert A.

    1980-01-01

    The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.

  4. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  5. Electrical resistivity of thin metal films and multilayers

    International Nuclear Information System (INIS)

    Fenn, M.

    1999-01-01

    The electrical resistivity and temperature coefficient of resistivity (TCR) of thin films and multilayers of Cu, Nb and Zr have been measured over a wide range of layer thicknesses. The structure of the films has been characterised using transmission electron microscopy (TEM) and x-ray reflectivity. The experimental results have been compared with the semiclassical theory due to Dimmich. The values of the grain boundary reflectivity, R, in the single films has been found to be approximately 0.35 for Cu in agreement with the literature. The value of R for Nb and Zr has been found to vary with grain size, although it is approximately 0.55 for Nb and 0.925 for Zr over a wide range of grain sizes, and this is believed to be presented for the first time. The value of the interfacial specularity parameter, p, is not found to have a significant effect compared to R in the single films. Dimmich's theoretical expression for the TCR does not match experiment, but by adapting the resistivity expression of the theory to different temperatures a satisfactory fit has been obtained. It has been concluded that the assumption of the free electron model in the presence of grain boundary scattering is in error. The adapted theory predicts negative TCR in sufficiently thin films with experimentally plausible values of the input parameters, and this is believed to be demonstrated for the first time. The experimental resistivity of the multilayers was much lower than expected from the resistivity of the single films. A theoretical fit to the experimental resistivity and TCR of the multilayers was obtained by adjusting the parameter values obtained from single films, and the value of p was found to be significant. This procedure leads to a contradiction in the value of R for Nb. With a view to extending the above work to magnetic multilayers, an AC susceptometer has been designed, built and tested. The results indicate that this instrument would be suitable for work on magnetic

  6. Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Niestępski, Sebastian; Osińska, Adriana; Nalepa, Beata

    2017-11-01

    The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.

  7. Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania

    Directory of Open Access Journals (Sweden)

    Genton Blaise

    2006-12-01

    Full Text Available Abstract Artemisinin-based combination therapies (ACTs are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance.

  8. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    Science.gov (United States)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  9. The effects of dopants on the electrical resistivity in lead magnesium niobate multilayer ceramic capacitors

    International Nuclear Information System (INIS)

    Chang, D.D.; Ling, H.C.

    1989-01-01

    Electrical resistivity studies were performed on multilayer ceramic capacitors (MLC) based on lead magnesium niobate and containing dopants of lead titanate, lead zinc niobate, and lead cobalt niobate. The results showed that lead titanate and/or lead zinc niobate had no effect on the electrical resistivity while lead cobalt niobate decreased the resistivity. In samples without lead cobalt niobate, we observed a conduction mechanism with an activation energy of --1 eV, which is commonly observed in barium titanate based dielectrics. This is attributed to ionic conduction via the motion of oxygen vacancies. The increase in conductivity (or decrease in resistivity) resulting from the addition of lead cobalt niobate was rationalized as due to electronic conduction through charge hopping among the cations. This conduction mechanism was characterized by an activation energy of --0.5 eV. Since the activation energy associated with the long-term failure was previously determined by a matrix of temperature and voltage accelerated life tests to be -- 1 eV, they conclude that conduction through charge hopping is not affecting the long-term reliability of these devices

  10. Using Resistivity Measurements to Determine Anisotropy in Soil and Weathered Rock

    Directory of Open Access Journals (Sweden)

    S. Soto-Caban

    2013-08-01

    Full Text Available This study uses electrical resistivity measurements of soils and weathered rock to perform a fast and reliable evaluation of field anisotropy. Two test sites at New Concord, Ohio were used for the study. These sites are characterized by different landform and slightly east dipping limestone and siltstone formations of Pennsylvanian age. The measured resistivity ranged from 19 Ω∙m to 100 ��∙m, and varied with depth, landform, and season. The anisotropy was determined by a comparison of resistance values along the directions of strike and the dip. Measurements showed that the orientation of electrical anisotropy in the shallow ground may vary due to fluid connection, which is determined by the pore geometry in soil and rock, as well as by the direction of fluid movement. Results from this study indicated that a portable electrical resistivity meter is sensitive and reliable enough to be used for shallow ground fluid monitoring.

  11. Geoelectrical monitoring of landslides: results from the sites of Laakirchen (Austria) and Rosano (Italy)

    Science.gov (United States)

    Guardiani, Carlotta; Amabile, Anna Sara; Jochum, Birgit; Ottowitz, David; Supper, Robert

    2017-04-01

    One of the main precursors for landslide activation/reactivation is intense and prolonged precipitation, with consequent pore water pressure rise due to infiltration of rainfall that seeps into the ground. Monitoring hydrological parameters such as precipitation, water content and pore pressure, in combination with displacement analysis for early warning purposes, is necessary to understand the triggering processes. Since the reduction over time of electrical resistivity corresponds to an increase of water content, electrical resistivity monitoring can help to interpret the modifications of slope saturation conditions after heavy rainfalls. In this study, we present the results of the ERT monitoring data from two landslide areas, Laakirchen (47.961692N, 13.809897E) and Rosano (44.662453N, 9.104703E). During March 2010, a shallow rotational landslide was triggered by snow melting and intense rainfall in Laakirchen, in the vicinity of a newly constructed house. Laakirchen landslide was monitored by geophysical/geotechnical measurements from September 2011 to June 2013. In December 2004, Rosano landslide reactivation affected rural buildings: slope deformations caused mainly damages to properties, infrastructures and lifelines. Rosano landslide has been defined as a composite landslide, with a general dynamic behavior that can be regarded as a slow earthflow. The installation of the monitoring system took place in July 2012 and the data acquisition lasted until April 2015. These sites are part of the geoelectrical monitoring network set up by the Geological Survey of Austria for testing the self-developed GEOMON4D geoelectrical system, in combination with complementary geotechnical monitoring sensors (rain gauge, automatic inclinometer, water pressure and water content sensors) to support the interpretation of the electrical response of the near surface (R. Supper et al., 2014). The measurements were funded by the TEMPEL project (Austrian Science Fund, TRP 175-N21

  12. Design of a pressurized water loop heated by electric resistances

    International Nuclear Information System (INIS)

    Ribeiro, S.V.G.

    1981-01-01

    A pressurized water loop design is presented. Its operating pressure is 420 psi and we seek to simulate qualitatively some thermo-hydraulic phenomena of PWR reactors. The primary circuit simulator consists basically of two elements: 1)the test section housing 16 electric resistences dissipating a total power of 100 Kw; 2)the loop built of SCH40S 304L steel piping, consisting of the pump, a heat exchanger and the pressurizer. (Author) [pt

  13. Analysis and interpretation of electrical resistivity tomography data of alluvial aquifer of Tamanrasset Southern Algeria

    Science.gov (United States)

    Zeddouri, Aziez; Elkheir, Abderrahmane Ben; Hadj-Said, Samia; Taupin, Jean-Denis; Leduc, Christian; Patris, Nicholas

    2018-05-01

    A groundwater exploration work in the Tamanrasset region in southern Algeria was started in August 2016 to assess the water reserves in the hydrogeological system related to the Oued Tamanrasset underflow water table which overcomes a volcanic basement. Five (05) electrical resistivity tomography (ERT) surveys were conducted in Tamanrasset area by using ABEM Terrameter LS system. the low electrical contrast between wet alluvium and water saturated alterites makes difficult the electrical response interpretation. to overcome the difficulties of interpretation of ERT profiles, field investigations, laboratory tests and software simulations, were carried out in order to clearly identify the structure of the hydrogeological system. The experimental investigation of the electrical characteristics of the alluvium as a function of water saturation was carried by the use of two devices (Wenner α and Schlumberger). Samples true resistivity values varies between 50 Ω.m for a 100% saturated sample and 1250 Ω.m for a 25% saturation sample. The interpretation of the measurements by the RES2DINV software made it possible to give 2D images of the subsoil up to a depth of 50 m. the electrical contrast between the bedrock and the overlying formations made it possible to identify it, however, it was difficult to distinguish alterites from alluvium. A methodology combining piezometric survey, geo-electrical measurements and field observations improves the interpretation of electrical tomography profiles and the application of the ERT method for accurate characterization of water resources in the Tamanrasset region.

  14. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  15. Influence of Dry Cleaning on the Electrical Resistance of Screen Printed Conductors on Textiles

    Directory of Open Access Journals (Sweden)

    Kazani Ilda

    2016-09-01

    Full Text Available Electrically conducting inks were screen printed on various textile substrates. The samples were dry cleaned with the usual chemicals in order to investigate the influence of the mechanical treatment on the electrical conductivity. It was found that dry cleaning has a tremendous influence on this electrical conductivity. For several samples, it is observed that the electrical resistance increases with the square of the number of dry cleaning cycles. In order to explain this observation a theoretical model and a numerical simulation have been carried out, by assuming that dry cleaning cycles introduce a crack in the conducting layer. The theoretical analysis and the numerical analysis both confirmed the experimental observations.

  16. Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure

    KAUST Repository

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2014-01-01

    Electrical Resistance Tomography (ERT) is a promising health monitoring technique to assess damage in laminated composites. Yet, the missing link between the various complex degradation mechanisms within the laminate and its global change

  17. Electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys

    International Nuclear Information System (INIS)

    Paja, A.; Stobiecki, T.

    1984-07-01

    The concentration dependence of the electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys has been studied over a broad composition range. The measurements for RF sputtered films made in the liquid helium temperature have been analyzed in the framework of the diffraction model. The calculated results are in good agreement with the experimental data in the range of concentration 0.12< x <0.37 where samples are amorphous and have a metallic character. (author)

  18. Significance of steel electrical resistance method in the evaluation of reinforcement corrosion in cementitious systems

    Directory of Open Access Journals (Sweden)

    Krajci, L.

    2004-06-01

    Full Text Available The suitable detection system of steel reinforcement corrosion in concrete structures contributes to the reduction of their maintenance costs. Method of steel electrical resistance represents non-destructive monitoring of steel in cementitious systems. Specially prepared and arranged test specimen of steel as a corrosion sensor is embedded in mortar specimen. Verification tests of this method based on chloride corrosion of steel in mortars as well as its visual inspection are introduced. Significance of steel electrical resistance method lies in the expression of steel corrosion by these quantitative parameters: reduction of cross-section of steel, thickness of corroded layer and loss of weight of steel material. This method is an integral method that allows the indirect determination of mentioned corrosion characteristics. The comparison of verified method with gravimetric evaluation of steel corrosion gives a good correspondence. Test results on mortars with calcium chloride dosages between 0.5% and 4.0% by weight of cement prove high sensitiveness and reliability of steel electrical resistance method.

    La utilización de un sistema de detección de la corrosión de las armaduras en estructuras de hormigón puede contribuir a la reducción de sus costes de mantenimiento. El método de la resistencia eléctrica del acero consiste en la monitorización no-destructiva realizada sobre el acero en sistemas cementantes. Dentro de la muestra de mortero se coloca el sistema de detección, especialmente preparado y fijado, actuando como un sensor de la corrosión. En este trabajo se presentan ensayos de verificación de este método, junto con inspecciones visuales, en morteros sometidos a corrosión de armaduras por efecto de los cloruros. La efectividad de este método de la resistencia eléctrica del acero se expresa, en la corrosión de armaduras, de acuerdo a los siguientes parámetros cuantitativos: reducción de la sección transversal del

  19. Exploring electrical resistance: a novel kinesthetic model helps to resolve some misconceptions

    Science.gov (United States)

    Cottle, Dan; Marshall, Rick

    2016-09-01

    A simple ‘hands on’ physical model is described which displays analogous behaviour to some aspects of the free electron theory of metals. Using it students can get a real feel for what is going on inside a metallic conductor. Ohms Law, the temperature dependence of resistivity, the dependence of resistance on geometry, how the conduction electrons respond to a potential difference and the concepts of mean free path and drift speed of the conduction electrons can all be explored. Some quantitative results obtained by using the model are compared with the predictions of Drude’s free electron theory of electrical conduction.

  20. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  1. Cutting tool wear monitoring with the use of impedance layers

    OpenAIRE

    Sadílek, Marek; Kratochvíl, Jiří; Petrů, Jana; Čep, Robert; Zlámal, Tomáš; Stančeková, Dana

    2014-01-01

    The article deals with problems of cutting process monitoring in real time. It is focused on tool wear by means of impedance layers applied on ceramic cutting inserts. In the experimental part the cutting process is monitored using electrical resistance measurement. The results are compared and verified using the monitored cutting temperature and tool wear. The testing of impedance layers is reasonable mainly for cutting edge diagnostics. The width of this layer determines the wear allowance ...

  2. Radiaton-resistant electrical insulation on the base of cement binders

    International Nuclear Information System (INIS)

    Afanas'ev, V.V.; Korenevskij, V.V.; Pisachev, S.Yu.

    1985-01-01

    The problems of designing radiation-resistant electrical insulations on the base of BATs and Talum cements for the UNK magnets operating under constant and pulse modes are discussed. The data characterizing dielectrical ad physico-mechanical properties of 25 various compositions are given. Two variants of manufacturing coils are considered: solid and with the use of asbestos tape impregnated with aluminous cement solution. The data obtained testify to the fact that the advantages of insulation on Talum cement are raised radiation resistance, high strength (particularly compression strength), weak porosity, high elasticity modulus and high thermal conductivity. BATs cement insulation is characterized by high radiation resistance, absence of shrinkage, rather low elasticity modulus and high dielectrical characteristics under normal conditions. The qualities of the solid insulation variant are its high technological effectiveness and posibility to fill up the spaces of complex configuration. In case of using as solid insulation Talum cement, however special measures for moisture removal are required. The advantage of insulation on the base of the asbestos tape is its reliability. For complex configuration magnets, however to realize is such insulation somewhat difficult

  3. Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity

    Science.gov (United States)

    Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.

    2012-12-01

    In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.

  4. Comparative evaluation of experimental and theoretical erosion resistance of materials upon electric pulse treatment

    International Nuclear Information System (INIS)

    Karpman, M.G.; Fetisov, G.P.; Bologov, D.V.

    1999-01-01

    Using the Palatnik criterion a comparative analysis is performed of the theoretical and experimental data on comparative electric erosion and erosion resistance of the electrodes and parts made of different materials upon their treatment using electric pulse technique. A reasonable qualitative agreement of the theoretical and experimental data indicates the possibility of using the Palatnik criterion to predict the serviceability of different pairs of the materials in conditions of electroerosion wear [ru

  5. Electromagnetic SAMPO monitoring soundings at Olkiluoto 2011 with updated interpretations

    International Nuclear Information System (INIS)

    Korhonen, K.

    2013-11-01

    The Geological Survey of Finland (GTK) has carried out electromagnetic depth soundings annually at fixed stations in Olkiluoto since 2004 as part of a monitoring programme. The goal of the programme is to detect and monitor changes in the electrical properties of the bedrock above and in the vicinity of the underground nuclear waste disposal facility. A new Sampo monitoring survey was carried out during September-October 2011. The survey resulted in 39 soundings at 17 measurement stations. The nominal coil separations of 200, 400, 500, 600 and 800 meters were used. Eight stations were selected for detailed annual layer-model interpretation. The layer models were based on prior geological and geophysical knowledge of the area. The thicknesses of the layer-model layers were kept fixed whereas their resistivities were solved for each subsequent year independent of each other. Many time series indicate clear trends in electrical resistivity. However, even though the data was carefully corrected and edited, the time series display a fairly large amount of variability increasing the uncertainty of the calculated trends. (orig.)

  6. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  7. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  8. The electrical resistivity method in cased boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  9. Effect of pressure on the electrical resistivity and magnetism in UPdSn

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Alsmadi, A. M.; Sechovský, V.; Kamarád, Jiří; Nakotte, H.; Lacerda, A. H.; Mihálik, M.

    2003-01-01

    Roč. 23, 1-2 (2003), s. 177-180 ISSN 0895-7959 R&D Projects: GA ČR GP202/01/D045 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : UPdSn * electrical resistivity * magnetoresistance * Si Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.440, year: 2003

  10. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    Directory of Open Access Journals (Sweden)

    Sanaz A. Mohammadi

    2012-11-01

    Full Text Available This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FeSEM, and energy-dispersive X-ray spectroscopy (EDAX. The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.

  11. Three Dimensional Visualization for the Steam Injection into Water Pool using Electrical Resistance Tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Lee, Jeong Seong; Kim, Sin; Kim, Kyung Youn

    2010-01-01

    The direct injection of steam into a water pool is a method of heat transfer used in many process industries. The amount of research in this area however is limited to the nuclear industry, with applications relating to reactor cooling systems. Electrical resistance tomography (ERT), a low cost, non-invasive and which has high temporal resolution characteristics, can be used as a visualization tool for the resistivity distribution for the steam injection into water pool such as IRWST. In this paper, three dimensional resistivity distribution of the process is obtained through ERT using iterative Gauss-Newton method. Numerical experiments are performed by assuming different resistive objects in the water pool. Numerical results show that ERT is successful in estimating the resistivity distribution for the injection of steam in the water pool

  12. An Internet of Things Approach to Electrical Power Monitoring and Outage Reporting

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Daniel B [ORNL

    2017-01-01

    The so-called Internet of Things concept has captured much attention recently as ordinary devices are connected to the Internet for monitoring and control purposes. One enabling technology is the proliferation of low-cost, single board computers with built-in network interfaces. Some of these are capable of hosting full-fledged operating systems that provide rich programming environments. Taken together, these features enable inexpensive solutions for even traditional tasks such as the one presented here for electrical power monitoring and outage reporting.

  13. Real time monitoring system used in route planning for the electric vehicle

    Science.gov (United States)

    Ionescu, LM; Mazare, A.; Serban, G.; Ionita, S.

    2017-10-01

    The electric vehicle is a new consumer of electricity that is becoming more and more widespread. Under these circumstances, new strategies for optimizing power consumption and increasing vehicle autonomy must be designed. These must include route planning along with consumption, fuelling points and points of interest. The hardware and software solution proposed by us allows: non-invasive monitoring of power consumption, energy autonomy - it does not add any extra consumption, data transmission to a server and data fusion with the route, the points of interest of the route and the power supply points. As a result: an optimal route planning service will be provided to the driver, considering the route, the requirements of the electric vehicle and the consumer profile. The solution can be easily installed on any type of electric car - it does not involve any intervention on the equipment.

  14. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    Science.gov (United States)

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  15. Imaging Preferential Flow Pathways of Contaminants from Passive Acid Mine Drainage Mitigation Sites Using Electrical Resistivity

    Science.gov (United States)

    Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.

    2017-12-01

    The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.

  16. Monitoring the Resistive Plate Chambers in the Muon Spectrometer of ATLAS.

    CERN Document Server

    Al-Qahtani, Shaikha

    2017-01-01

    A software was developed to monitor the resistive plate chambers. The purpose of the program is to detect any weak or dead chambers and locate them for repair. The first use of the program was able to spot several chambers with problems to be investigated.

  17. Determination of Soil Moisture Content using Laboratory Experimental and Field Electrical Resistivity Values

    Science.gov (United States)

    Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.

    2018-04-01

    The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.

  18. Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project (TCDP

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2008-01-01

    Full Text Available The Taiwan Chelungpu-fault drilling project (TCDP has undertaken scientific drilling and directly sampled the sub-surface rupture of the 1999 Chi-Chi earthquake. Audio-magnetotelluric (AMT measurements were used to investigate electrical resistivity structure at the TCDP site from 2004 - 2006. These data show a geoelectric strike direction of N15°E to N30°E. Inversion and forward modeling of the AMT data were used to generate a 1-D resistivity model that has a prominent low resistivity zone (< 10 ohm-m between depths of 1100 and 1500 m. When combined with porosity measurements, theAMT measurements imply that the ground water has a resistivity of 0.55 ohm-m at the depth of the fault zone.

  19. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si

    Science.gov (United States)

    Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad

    2018-06-01

    This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.

  20. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  1. Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Szentes

    2012-06-01

    Full Text Available The electrical resistivity and thermal properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP composites have been investigated in the presence of coupling agents applied for improving the compatibility between the nanotubes and the polymer. A novel olefin-maleic-anhydride copolymer and an olefin-maleic-anhydride copolymer based derivative have been used as compatibilizers to achieve better dispersion of MWCNTs in the polymer matrix. The composites have been produced by extrusion followed by injection moulding. They contained different amounts of MWCNTs (0.5, 2, 3 and 5 wt% and coupling agent to enhance the interactions between the carbon nanotubes and the polymer. The electrical resistivity of the composites has been investigated by impedance spectroscopy, whereas their thermal properties have been determined using a thermal analyzer operating on the basis of the periodic thermal perturbation method. Rheological properties, BET-area and adsorption-desorption isotherms have been determined. Dispersion of MWCNTs in the polymer has been studied by scanning electron microscopy (SEM.

  2. Detection of leaks in underground storage tanks using electrical resistance methods: 1996 results

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.

    1996-10-01

    This document provides a summary of a field experiment performed under a 15m diameter steel tank mockup located at the Hanford Reservation, Washington. The purpose of this test was to image a contaminant plume as it develops in soil under a tank already contaminated by previous leakage and to determine whether contaminant plumes can be detected without the benefit of background data. Measurements of electrical resistance were made before and during a salt water release. These measurements were made in soil which contained the remnants of salt water plumes released during previous tests in 1994 and in 1995. About 11,150 liters of saline solution were released along a portion of the tank's edge in 1996. Changes in electrical resistivity due to release of salt water conducted in 1996 were determined in two ways: (1) changes relative to the 1996 pre-spill data, and (2) changes relative to data collected near the middle of the 1996 spill after the release flow rate was increased. In both cases, the observed resistivity changes show clearly defined anomalies caused by the salt water release. These results indicate that when a plume develops over an existing plume and in a geologic environment similar to the test site environment, the resulting resistivity changes are easily detectable. Three dimensional tomographs of the resistivity of the soil under the tank show that the salt water release caused a region of low soil resistivity which can be observed directly without the benefit of comparing the tomograph to tomographs or data collected before the spill started. This means that it may be possible to infer the presence of pre-existing plumes if there is other data showing that the regions of low resistivity are correlated with the presence of contaminated soil. However, this approach does not appear reliable in defining the total extent of the plume due to the confounding effect that natural heterogeneity has on our ability to define the margins of the anomaly

  3. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  4. Ubiquitous monitoring of electrical household appliances.

    Science.gov (United States)

    Lloret, Jaime; Macías, Elsa; Suárez, Alvaro; Lacuesta, Raquel

    2012-11-07

    The number of appliances at home is increasing continuously, mainly because they make our lives easier. Currently, technology is integrated in all objects of our daily life. TCP/IP let us monitor our home in real time and check ubiquitously if something is happening at home. Bearing in mind this idea, we have developed a low-cost system, which can be used in any type of electrical household appliance that takes information from the appliance and posts the information to the Twitter Social network. Several sensors placed in the household appliances gather the sensed data and send them wired or wirelessly, depending on the case, using small and cheap devices to a gateway located in the home. This gateway takes decisions, based on the received data, and sends notifications to Twitter. We have developed a software application that takes the values and decides when to issue an alarm to the registered users (Twitter friends of our smart home). The performance of our system has been measured taking into account the home network (using IEEE 802.3u and IEEE 802.11g) and the data publishing in Twitter. As a result, we have generated an original product and service for any electrical household appliance, regardless of the model and manufacturer, that helps home users improve their quality of life. The paper also shows that there is no system with the same innovative features like the ones presented in this paper.

  5. Ubiquitous Monitoring of Electrical Household Appliances

    Science.gov (United States)

    Lloret, Jaime; Macías, Elsa; Suárez, Alvaro; Lacuesta, Raquel

    2012-01-01

    The number of appliances at home is increasing continuously, mainly because they make our lives easier. Currently, technology is integrated in all objects of our daily life. TCP/IP let us monitor our home in real time and check ubiquitously if something is happening at home. Bearing in mind this idea, we have developed a low-cost system, which can be used in any type of electrical household appliance that takes information from the appliance and posts the information to the Twitter Social network. Several sensors placed in the household appliances gather the sensed data and send them wired or wirelessly, depending on the case, using small and cheap devices to a gateway located in the home. This gateway takes decisions, based on the received data, and sends notifications to Twitter. We have developed a software application that takes the values and decides when to issue an alarm to the registered users (Twitter friends of our smart home). The performance of our system has been measured taking into account the home network (using IEEE 802.3u and IEEE 802.11g) and the data publishing in Twitter. As a result, we have generated an original product and service for any electrical household appliance, regardless of the model and manufacturer, that helps home users improve their quality of life. The paper also shows that there is no system with the same innovative features like the ones presented in this paper. PMID:23202205

  6. Adjoint-state inversion of electric resistivity tomography data of seawater intrusion at the Argentona coastal aquifer (Spain)

    Science.gov (United States)

    Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián

    2016-04-01

    Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.

  7. Radiation resistance of insulating materials for electric wires

    International Nuclear Information System (INIS)

    Kanemitsuya, Kazuhiko; Okuda, Tomoaki; Tachibana, Tadao; Yagi, Toshiaki; Seguchi, Tadao.

    1990-01-01

    In no halogen incombustible materials, smoke and poisonous gas generation at the time of burning is small, and corrosive gas rarely arises. Since no halogen electric wires and cables which use these material maintain safety for people and equipment in the case of fires, those are used for ships, tunnels, subways and so on. Also in nuclear power stations, the demand for no halogen cables becomes high although the condition of adoption is difficult. In this study, for the purpose of developing the no halogen cables for nuclear power stations, the basic data on the radiation resistance of no halogen incombustible materials were collected, and by using chemical analysis method, the radiation deterioration behavior was examined. The samples were those with base polymers of VLDPE, ULDPE, EEA, EMA and EVA. Gamma ray irradiation, tensile test, chemi-luminescence measurement, and the determination of gel fraction and swelling rate were carried out. The results are reported, In no halogen materials, when ethylene system copolymer is used as the base polymer instead of PE, the composition with good radiation resistance can be obtained, and by combining amine oxidation inhibitor, it is further improved. (K.I.)

  8. Fringe effect of electrical capacitance and resistance tomography sensors

    International Nuclear Information System (INIS)

    Sun, Jiangtao; Yang, Wuqiang

    2013-01-01

    Because of the ‘soft-field’ nature, all electrical tomography sensors suffer from electric field distortion, i.e. the fringe effect. In electrical resistance tomography (ERT) sensors, small pin electrodes are commonly used. It is well known that the pin electrodes result in severe electric field distortion or the fringe effect, and the sensing region of such an ERT sensor spreads out of the pin electrode plane to a large volume. This is also true for electrical capacitance tomography (ECT) sensors, even though it is less severe because of larger electrodes and grounded end guards used. However, when the length of electrodes in an ECT sensor without guards is reduced to almost the same dimension as those in an ERT sensor, the fringe effect is equally obvious. To investigate the fringe effect of ERT and ECT sensors with and without guards, simulations were carried out with different length of electrodes and the results are compared with the corresponding 2D simulation. It is concluded that ECT and ERT sensors with longer electrodes have less fringe effect. Because grounded end guards are effective in reducing the fringe effect of ECT sensors, we propose to apply grounded guards in ERT sensors and integrate ECT and ERT sensors together. Simulation results reveal that ERT sensors with grounded guards have less fringe effect. While commonly current excitation is used with ERT sensors, we propose voltage excitation instead to apply the grounded guards. The feasibility of this approach has been verified by experiment. Finally, a common structure for reducing the fringe effect is proposed for ECT and ERT sensors for the first time to simplify the sensor structure and reduce the mutual interference in ECT/ERT dual-modality measurements. (paper)

  9. Electro-location, tomography and porosity measurements in geotechnical centrifuge models based on electrical resistivity concepts

    Science.gov (United States)

    Li, Zhihua

    This research was focused on the development of electrical techniques for soil characterization and soil dynamic behavior assessment. The research carried out mainly includes (1) development of a needle probe tool for assessment of soil spatial variability in terms of porosity with high-resolution in the centrifuge testing; (2) development of an electro-location technique to accurately detect buried objects' movements inside the soil during dynamic events; (3) collaborative development of a new electrode switching system to implement electrical resistivity tomography, and electro-location with high speed and high resolution. To assess soil spatial variability with high-resolution, electrical needle probes with different tip shapes were developed to measure soil electrical resistivity. After normalizing soil resistivity by pore fluid resistivity, this information can be correlated to soil porosity. Calibrations in laboratory prepared soils were conducted. Loosening due to insertion of needle probes was evaluated. A special needle probe tool, along with data acquisition and data processing tools were developed to be operated by the new NEES robot on the centrifuge. The needle probes have great potential to resolve interfaces between soil layers and small local porosity variations with a spatial resolution approximately equal to the spacing between electrodes (about half of the probe diameter). A new electrode switching system was developed to accurately detect buried objects' movements using a new electro-location scheme. The idea was to establish an electromagnetic field in a centrifuge model by injecting low-frequency alternating currents through pairs of boundary electrodes. The locations of buried objects are related to the potentials measured on them. A closed form expression for the electric field in a rectangular specimen with insulated boundaries was obtained based on the method of images. Effects of sampling parameters on spatial resolution and tradeoffs

  10. Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure

    KAUST Repository

    Selvakumaran, Lakshmi

    2014-03-01

    Electrical Resistance Tomography (ERT) is a promising health monitoring technique to assess damage in laminated composites. Yet, the missing link between the various complex degradation mechanisms within the laminate and its global change in resistivity prevents ERT from being used as a quantitative technique. We propose an electrical mesomodel that can establish this link between the various microscale degradations and the resistivity changes in the measurements. The mesoscale homogenization of transverse cracks with local delamination of the ply is first described for in-plane electrical loading for both the outer and the inner plies. The mesoscale model is then extended to include the out-of-plane loading. The relationship between the mesoscale damage indicators and the degradation morphology is identified. These damage indicators are found to be intrinsic to the ply. As such, this defines the first step towards the interpretation of resistivity measurement in terms of micromechanical damage. © 2013 Elsevier Ltd.

  11. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  12. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    Science.gov (United States)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  13. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  14. Thermal conductivity and electrical resistivity standard reference materials: tungsten SRM's 730 and 799, from 4 to 30000K. Final report

    International Nuclear Information System (INIS)

    Hust, J.G.; Giarratano, P.J.

    1975-09-01

    A historical review of the development of thermophysical Standard Reference Materials, SRM's, is given and selection criteria of SRM's are listed. Thermal conductivity and electrical resistivity data for arc cast and sintered tungsten are compiled, analyzed, and correlated. Recommended values of thermal conductivity (SRM 730) and electrical resistivity (SRM 799) for these lots of tungsten are presented for the range 4 to 3000 0 K

  15. Electrical resistivity and thermopower of Nd1-xTbxCo2 compounds

    International Nuclear Information System (INIS)

    Uchima, K; Takaesu, Y; Yonamine, S; Kinjyo, A; Hedo, M; Nakama, T; Yagasaki, K; Burkov, A T

    2010-01-01

    Electrical resistivity ρ and thermopower S of Nd 1-x Tb x Co 2 Laves phase quasibinary alloys (0 ≤ x ≤ 1) are investigated at temperatures from 2 K to 300 K. The magnetic transition temperature T C , determined from resistivity magnetic anomaly, increases linearly with increasing x. The low temperature thermopower changes its sign from negative to positive at the critical composition where the relative orientation of total magnetization and cobalt 3d moment is changed. We propose that this change is related to the dependence of s-d scattering rate on relative polarization of conduction electrons and cobalt 3d band.

  16. Efecto de la glicemia materna en la monitoría electrónica fetal

    OpenAIRE

    Perdomo Murcia, Luis Enrique

    2013-01-01

    Introducción: Después del ingreso de la monitoría fetal electrónica como estudio de bienestar fetal, se ha considerado por décadas que un aporte de carbohidratos a la gestante antes de la realización de la monitoría fetal influye en el reporte pero existen estudios que consideran que los niveles de glicemia materna no afecta la variabilidad de la monitoría fetal. Metodología: Se realizó un estudio de corte transversal, para evaluar el efecto de la glicemia materna en la monitoría fetal ...

  17. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    Science.gov (United States)

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan

    2017-09-01

    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  18. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    Science.gov (United States)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  19. The effect of z-binding yarns on the electrical properties of 3D woven composites

    KAUST Repository

    Saleh, Mohamed Nasr

    2017-09-28

    Electrical resistance monitoring (ERM) has been used to study the effect of the z-binding yarns on the initial electrical resistance (ER) and its change of three architectures of 3D woven carbon fibre composites namely (orthogonal “ORT”, layer-to-layer “LTL” and angle interlock “AI”) when tested in tension. Specimens are loaded in on-axis “warp” and off-axis “45°” directions. In-situ ERM is achieved using the four-probe technique. Monotonic and cyclic “load/unload” tests are performed to investigate the effect of piezo-resistivity and residual plasticity on resistance variation. The resistance increase for the off-axis loaded specimens (∼90%) is found to be higher than that of their on-axis counterparts (∼20%). In the case of cyclic testing, the resistance increase upon unloading is irreversible which suggests permanent damage presence not piezo-resistive effect. At the moment, it is difficult to obtain a direct correlation between resistance variation and damage in 3D woven composites due to the complexity of the conduction path along the three orthogonal directions, however this study demonstrates the potential of using ERM for damage detection in 3D woven carbon fibre-based composites and highlights the challenges that need to be overcome to establish ERM as a Structural Health Monitoring (SHM) technique for such material systems.

  20. Electrical resistance, superconductivity and phase transformations of Rb and Cs under high pressure

    International Nuclear Information System (INIS)

    Ullrich, K.

    1980-01-01

    Four lead electrical resistance measurements were performed on Rb under pressures up to 210 kbar for temperatures in the range 0.05 K to 300 K. Pressure was applied using a Bridgman-anvil-configuration with dense sintered diamond in the highly stressed tip regions of the Carboloy pistons. The sample cell was pressurized at room temperature by a mechanical press connected to the mixing chamber of a 3 He- 4 He-cryostat. The pressure remained essentially constant during cooling. Discontinuous changes in resistance at pressures of 70 and 140 kbar indicate two phase transitions and confirm the results of other authors. The resistance of Rb increases after a minimum at 20 kbar by about two orders of magnitude. (orig.) [de

  1. Well Water and Subsurface Salinity of Tuba Basin Langkawi by Hydrochemical Analysis and Vertical Electrical Resistivity Survey

    International Nuclear Information System (INIS)

    Umar Hamzah; Abdul Rahim Samsudin; Abdul Ghani Rafek; Khairul Azlan Razak

    2009-01-01

    Tuba basin is an alluvial deposit located between granitic hill in the western part of Tuba Island and the Setul formation sedimentary rocks in the eastern site of the island. This basin stretched along 3 km in the NE-SW direction with an estimated width of about 2 km. A geophysical survey using geo electrical technique was carried out to figure out the subsurface structure, to detect the presence of underground aquifers and to investigate any saltwater intrusion into these aquifers in the basin. Concentrations of several elements in the well water were also analyzed to investigate any occurrence of salt water intrusion into the coastal aquifers. For this purpose, the vertical electrical sounding surveys were carried out at 22 randomly distributed stations in the study area. Water samples were also taken from 11 wells for hydrochemical analysis in the laboratory. Our results showed that all water samples were of fresh water type. Electrical resistivity profile constructed from stations located in NE-SW direction from Teluk Berembang to Telok Bujur shows a wide range of resistivities ranging from 4 Ωm to infinity. The top layer with a thickness of 1-3 m and resistivity values of 4 - 12 Ωm is interpreted as clay zone. This layer is overlying a much thicker layer of 10-50 m with resistivity values of 2 - 280 Ωm representing sandy material that may contain fresh water or sand with brackish water. Layers with resistivity values from thousands ohm.m to infinity are interpreted as either granite or limestone bedrock. Maximum thickness observed in this resistivity survey is approximately 70 m. (author)

  2. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yuanyuan; Lin, Guosong; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Electrical contact resistance between bipolar plates (BPPs) and gas diffusion layers (GDLs) in PEM fuel cells has attracted much attention since it is one significant part of the total contact resistance which plays an important role in fuel cell performance. This paper extends a previous model by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783] on the prediction of electrical contact resistance within PEM fuel cells. The original microscale numerical model was based on the Hertz solution for individual elastic contacts, assuming that contact bodies, GDL carbon fibers and BPP asperities are isotropic elastic half-spaces. The new model features a more practical contact by taking into account the bending behavior of carbon fibers as well as their anisotropic properties. The microscale single contact process is solved numerically using the finite element method (FEM). The relationship between the contact pressure and the electrical resistance at the GDL/BPP interface is derived by multiple regression models. Comparisons of the original model by Zhou et al. and the new model with experimental data show that the original model slightly overestimates the electrical contact resistance, whereas a better agreement with experimental data is observed using the new model. (author)

  3. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    Science.gov (United States)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  4. Electrical resistivity variations associated with earthquakes on the san andreas fault.

    Science.gov (United States)

    Mazzella, A; Morrison, H F

    1974-09-06

    A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model.

  5. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    Science.gov (United States)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  6. Electrical resistivity anisotropy of osmium single crystals in the range 4,2 to 300 K

    International Nuclear Information System (INIS)

    Volkenshtejn, N.V.; Dyakina, V.P.; Dyakin, V.V.; Startsev, V.E.; Cherepanov, V.I.; Azhazha, V.M.; Kovtun, G.P.; Elenskij, V.A.; AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst.)

    1981-01-01

    Electrical resistivity and size effect anisotropies of pure osmium single crystals with rhosub(273.2/rhosub(4.2)2600 were investigated in the temperature range 4.2 to 300 K. It is found that the electrical resistivity anisotropy (αT)=rhosub( )/rhosub( ) is less than unit and has a maximum at T approximately 50 K; the size effect anisotropy (rho1)sub( )/(rho1)sub( ) is 0.39+-0.07 at T=4.2 K; at liquid helium temperature, the dependence of thin samples is controlled by the scattering of conduction electrons by the surface of the sample. The results are discussed for the specific shape of the Fermi surface geometry of osmium with an account for the scattering processes of conduction electrons by phonons and by surface of the sample

  7. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  8. Application of Electrical Resistivity Method for Detecting Shallow Old Gold Mine Workings: An Example from Boksburg, South Africa

    Science.gov (United States)

    Diop, S.; Chirenje, E.

    2011-12-01

    Subsidence has been observed at several locations along the northern perimeter of the Central Witwatersrand Mining Basin south of Johannesburg, South Africa. Previous studies have defined the extent and distribution of hundreds of open ventilation shafts and surface collapses linked to areas of known and suspected shallow undermining. Many collapses appear to be in a meta-stable state prone to further collapse, which could and have led to casualties. Identification of zones of incipient instability is therefore an urgent state responsibility to protect life and property, as much of these abandoned mine lands have been invaded by shack dwellers. This paper outlines the results of an investigation using 2D electrical resistivity tomography (ERT) in combination with a standard geotechnical engineering drilling exploration, with the aim of identifying areas of incipient instability and possible future collapse. The electrical resistivity data were acquired via a network of intersecting survey lines using a SYSCAL Pro multimode resistivity imaging system equipped with 72 electrodes. The dipole-dipole and the Schlumberger arrays with an electrode spacing of 5 and 10 m were used. Inversion of the data was carried out using the commercially available software package RES2DINV. Analysis of the electrical resistivity data and conventional site investigation data proved to be a highly effective means of characterizing dangerous, abandoned mine openings of various sizes, depths and origins. Survey results also successfully confirmed the position of known shafts and shallow underground workings. These appeared as electrically well-defined features corresponding extremely closely to both underground plans and invasive site investigation data. The findings obtained from this study offer practical considerations for modeling shallow subsurface conditions, along the Boksburg area; to enable the reliable identification of hazardous areas constituting a potential threat to human

  9. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa

    Science.gov (United States)

    Silber, Reynold E.; Secco, Richard A.; Yong, Wenjun

    2017-07-01

    Characterization of transport properties of liquid Ni at high pressures has important geophysical implications for terrestrial planetary interiors, because Ni is a close electronic analogue of Fe and it is also integral to Earth's core. We report measurements of the electrical resistivity of solid and liquid Ni at pressures 3-9 GPa using a 3000 t multianvil large volume press. A four-wire method, in conjunction with a rapid acquisition meter and polarity switch, was used to overcome experimental challenges such as melt containment and maintaining sample geometry and to mitigate the extreme reactivity/solubility of liquid Ni with most thermocouple and electrode materials. Thermal conductivity is calculated using the Wiedemann-Franz law. Electrical resistivity of solid Ni exhibits the expected P dependence and is consistent with earlier experimental values. Within experimental uncertainties, our results indicate that resistivity of liquid Ni remains invariant along the P-dependent melting boundary, which is in disagreement with earlier prediction for liquid transition metals. The potential reasons for such behavior are examined qualitatively through the impact of P-independent local short-range ordering on electron mean free path and the possibility of constant Fermi surface at the onset of Ni melting. Correlation among metals obeying the Kadowaki-Woods ratio and the group of late transition metals with unfilled d-electron band displaying anomalously shallow melting curves suggests that on the melting boundary, Fe may exhibit the same resistivity behavior as Ni. This could have important implications for the heat flow in the Earth's core.

  10. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  11. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  12. The Implementation Internet of Things(IoT) Technology in Real Time Monitoring of Electrical Quantities

    Science.gov (United States)

    Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.

    2018-04-01

    Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition

  13. Enhancing reactor availability factor by diagnostic monitoring and data acquisition of electrical equipments

    International Nuclear Information System (INIS)

    Singh, G.

    2006-01-01

    Electrical energy has made significant contribution to rapid growth of industrial activity in the country. Development and improvement of energy conversion devices or electrical apparatus have supported the growth. Reliability is probably the most important factor in electrical supply system, not only to give uninterrupted service but to provide an economic supply. Regular diagnostic testing of electrical equipments will make a significant contribution to the reliability of electrical supply. The purpose of diagnostic monitoring is to recognize the development of faults at an early stage, which consequently allows greater freedom to schedule the outages resulting in lower downtime and lower capitalized losses. The insulation constitutes the heart of any electrical/power equipment. The insulation in power equipment in normal condition undergoes certain changes in the physical, chemical, electrical and mechanical properties. The change with respect to time in the presence of an influencing factor, more often a stress (electrical) is referred to as ageing. The deterioration of insulating material plays an important role in the assessing the condition of electrical equipments. The systematic diagnostic tests are also part of the maintenance program to ensure the continued serviceability of electrical equipments, by replacing or repairing the components likely to fail, as revealed by the test. Diagnostic tests are carried out on various electrical equipments for detection of incipient fault, location and judging their severity. (author)

  14. Electrical Resistivity Technique for Groundwater Exploration in Quaternary Deposit

    Science.gov (United States)

    Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Fahmy, K. A.; Faizal, T. B. M.; Sabariah, M.; Ambak, K.; Ismail, M. A. M.

    2018-04-01

    The water security for University Tun Hussein Onn (UTHM) campus was initiated to find alternative sources of water supply. This research began with finding the soil profiles using the geophysical electrical resistivity method across UTHM campus. The resistivity results were calibrated with previous borehole data as well as via groundwater drilling. The drilling work was discovered the groundwater aquifer characterized by the fractured fresh igneous rock at a depth between 43 meter and 55 meter. Further drilling was continued until 100 meter in depth. However, due to not encounter a new rock fractured zone causes the groundwater quantity did not improve even was drilled up to 100 meter depth. In the perspective of water resources, it showed a good potential for water resources for local usages at 104 m3 per day. In addition, the groundwater quality showed the water treatment was required to fulfil the criterion of the national drinking water standards. This study concluded that the first layer of fractured bedrock at UTHM was able to produce significant amounts of groundwater for local consumption usage.

  15. Experimental study of the electric resistivity in Heusler alloys

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1980-01-01

    Electrical resistivity measurements have been performed in the Cu 2 Mn (A1sub(1-x) Snsub(x)) Heusler alloys, where x = 0, 0.05, 0.10 and 0.15, in the temperature range from 4.2 to 800 0 K. Measurements have also been made on the Ni 2 MnX Heusler asloys, with X = In, Sn or Sb, in the range from 4.2 to 300 0 K. The experimental curves clearly show the importance of the ferromagnetic character for the alloys resistivity. The results obtained for the copper alloys, as well as for the Ni 2 MnSn alloy, are in agreement with an interpretation in terms of Bloch-Gruneisen and spin-disorder models, and fail to provide evidences of s-d scattering for the conduction electrons. This is not the case for the Ni 2 MnIn and Ni 2 MnSb alloys, in which the presence of (s-d) interband electronic scattering process, via phonon, was detected. Specially for the two last alloys specific heat and electronic photo-emissivity experiments are suggested. (Author) [pt

  16. Enhanced monitoring of hazardous waste site remediation: Electrical conductivity tomography and citizen monitoring of remediation through the EPA's community advisory group program

    Science.gov (United States)

    Hort, Ryan D.

    In situ chemical oxidation using permanganate has become a common method for degrading trichloroethene (TCE) in contaminated aquifers. Its effectiveness, however, is dependent upon contact between the oxidant and contaminant. Monitoring permanganate movement after injection is often hampered by aquifer heterogeneity and insufficient well coverage. Time lapse electrical conductivity tomography increases the spatial extent of monitoring beyond well locations. This technique can create two- or three-dimensional images of the electrical conductivity within the aquifer to monitor aquifer chemistry changes caused by permanganate injection and oxidation reactions. In-phase and quadrature electrical conductivity were measured in homogeneous aqueous and porous media samples to determine the effects of TCE and humate oxidation by permanganate on both measures of conductivity. Further effects of clean sand, 10% kaolinite (v/v), and 10% smectite (v/v) on both types of conductivity were studied as well. Finally, in-phase electrical conductivity was measured over time after injecting permanganate solution into two-dimensional tanks containing artificial groundwater with and without TCE to observe the movement of the permanganate plume and its interaction with TCE and to examine the effectiveness of time-lapse conductivity tomography for monitoring the plume's movement. In-phase electrical conductivity after oxidation reactions involving permanganate, TCE, and humate could be accurately modeled in homogeneous batch samples. Use of forward modeling of in-phase conductivity from permanganate concentrations may be useful for improving recovery of conductivity values during survey inversion, but further work is needed combining the chemistry modeling with solute transport models. Small pH-related quadrature conductivity decreases were observed after TCE oxidation, and large quadrature conductivity increases were observed as a result of sodium ion addition; however, quadrature

  17. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  18. Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state

    Science.gov (United States)

    Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.

    2018-01-01

    The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.

  19. Gamma-ray and electrical resistivity measurements in soil with application of carbonatite and agricultural fertilizers in Distrito Federal

    International Nuclear Information System (INIS)

    Nascimento, Carlos Tadeu Carvalho do; Gaspar, Jose Carlos; Pires, Augusto Cesar Bittencourt; Ferreira, Francisco Jose Fonseca; Andrade, Leide Rovenia Miranda de

    2008-01-01

    EMBRAPA (Empresa Brasileira de Pesquisa Agropecuaria) and Brasilia University developed a research project about the viability of carbonatite rock as agricultural fertilizer. As an initial experiment, several mixtures of carbonatite, limestone, phosphorous and potassium compounds were added as fertilizers in an oxisol area (red-latosol, according with Brazilian System of Soil Classification), in Distrito Federal, central Brazil. The experiment area was divided in 56 plots (4 x 7m) and each plot received a fertilizer mixture. The purpose of this work was to verify if the addition of fertilizer mixture to the soil modified its radiometric and resistivity properties and if it is possible to identify this change. Gamma-ray and electrical resistivity measurements were obtained in an experimental area and in a natural savannah type vegetation area. The results showed that the fertilizer addition modified soil natural properties causing a small increase in K, U, Th levels and decreasing ten times electrical resistivity. A low contrast of radiation was observed between plots, and then it was not possible to differentiate the several treatments in base of gamma-ray measurements. Electrical resistivity was efficient to identify three groups of plots related to mixtures characteristics, respectively with phosphorous, potassium and limestone / carbonatite predominance. (author)

  20. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    KAUST Repository

    Selzer, Franz; Floresca, Carlo; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Weiß , Nelli; Eychmü ller, Alexander; Amassian, Aram; Mü ller-Meskamp, Lars; Leo, Karl

    2016-01-01

    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.