WorldWideScience

Sample records for electrical neuroimaging evidence

  1. Understanding the impact of TV commercials: electrical neuroimaging.

    Science.gov (United States)

    Vecchiato, Giovanni; Kong, Wanzeng; Maglione, Anton Giulio; Wei, Daming

    2012-01-01

    Today, there is a greater interest in the marketing world in using neuroimaging tools to evaluate the efficacy of TV commercials. This field of research is known as neuromarketing. In this article, we illustrate some applications of electrical neuroimaging, a discipline that uses electroencephalography (EEG) and intensive signal processing techniques for the evaluation of marketing stimuli. We also show how the proper usage of these methodologies can provide information related to memorization and attention while people are watching marketing-relevant stimuli. We note that temporal and frequency patterns of EEG signals are able to provide possible descriptors that convey information about the cognitive process in subjects observing commercial advertisements (ads). Such information could be unobtainable through common tools used in standard marketing research. Evidence of this research shows how EEG methodologies could be employed to better design new products that marketers are going to promote and to analyze the global impact of video commercials already broadcast on TV.

  2. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence.

    Science.gov (United States)

    Cerasa, Antonio; Quattrone, Aldo

    2016-06-01

    Essential tremor (ET) is the most common pathological tremor disorder in the world, and post-mortem evidence has shown that the cerebellum is the most consistent area of pathology in ET. In the last few years, advanced neuroimaging has tried to confirm this evidence. The aim of the present review is to discuss to what extent the evidence provided by this field of study may be generalised. We performed a systematic literature search combining the terms ET with the following keywords: MRI, VBM, MRS, DTI, fMRI, PET and SPECT. We summarised and discussed each study and placed the results in the context of existing knowledge regarding the cerebellar involvement in ET. A total of 51 neuroimaging studies met our search criteria, roughly divided into 19 structural and 32 functional studies. Despite clinical and methodological differences, both functional and structural imaging studies showed similar findings but without defining a clear topography of neurodegeneration. Indeed, the vast majority of studies found functional and structural abnormalities in several parts of the anterior and posterior cerebellar lobules, but it remains to be established to what degree these neural changes contribute to clinical symptoms of ET. Currently, advanced neuroimaging has confirmed the involvement of the cerebellum in pathophysiological processes of ET, although a high variability in results persists. For this reason, the translation of this knowledge into daily clinical practice is again partially limited, although new advanced multivariate neuroimaging approaches (machine-learning) are proving interesting changes of perspective.

  3. Attention to spoken word planning: Chronometric and neuroimaging evidence

    NARCIS (Netherlands)

    Roelofs, A.P.A.

    2008-01-01

    This article reviews chronometric and neuroimaging evidence on attention to spoken word planning, using the WEAVER++ model as theoretical framework. First, chronometric studies on the time to initiate vocal responding and gaze shifting suggest that spoken word planning may require some attention,

  4. GENE X ENVIRONMENT INTERACTIONS IN SCHIZOPHRENIA AND BIPOLAR DISORDER:EVIDENCE FROM NEUROIMAGING

    Directory of Open Access Journals (Sweden)

    Pierre Alexis Geoffroy

    2013-10-01

    Full Text Available Introduction: Schizophrenia (SZ and Bipolar disorder (BD are considered as severe multifactorial diseases, stemming from genetic and environmental influences. Growing evidence supports gene x environment (GxE interactions in these disorders and neuroimaging studies can help us to understand how those factors mechanistically interact. No reviews synthesized the existing data of neuroimaging studies in these issues.Methods: We conduct a systematic review on the neuroimaging studies exploring GxE interactions relative to SZ or BD in PubMed.Results: First results of the influence of genetic and environmental risks on brain structures came from monozygotic twin pairs concordant and discordant for SZ or BD. Few structural magnetic resonance imaging (sMRI studies have explored the GxE interactions. No other imaging methods were found. Two main GxE interactions on brain volumes have arisen. First, an interaction between genetic liability to SZ and obstetric complications on gray matter, cerebrospinal fluid and hippocampal volumes. Second, cannabis use and genetic liability interaction effects on cortical thickness and white matter volumes.Conclusion: Combining GxE interactions and neuroimaging domains is a promising approach. Genetic risk and environmental exposures such as cannabis or obstetrical complications seem to interact leading to specific neuroimaging cerebral alterations in SZ. They are suggestive of GxE interactions that confer phenotypic abnormalities in SZ and possibly BD. We need further, larger neuroimaging studies of GxE interactions for which we may propose a framework focusing on GxE interactions data already known to have a clinical effect such as infections, early stress, urbanicity and substance abuse.

  5. Visual attention and the neuroimage bias.

    Directory of Open Access Journals (Sweden)

    D A Baker

    Full Text Available Several highly-cited experiments have presented evidence suggesting that neuroimages may unduly bias laypeople's judgments of scientific research. This finding has been especially worrisome to the legal community in which neuroimage techniques may be used to produce evidence of a person's mental state. However, a more recent body of work that has looked directly at the independent impact of neuroimages on layperson decision-making (both in legal and more general arenas, and has failed to find evidence of bias. To help resolve these conflicting findings, this research uses eye tracking technology to provide a measure of attention to different visual representations of neuroscientific data. Finding an effect of neuroimages on the distribution of attention would provide a potential mechanism for the influence of neuroimages on higher-level decisions. In the present experiment, a sample of laypeople viewed a vignette that briefly described a court case in which the defendant's actions might have been explained by a neurological defect. Accompanying these vignettes was either an MRI image of the defendant's brain, or a bar graph depicting levels of brain activity-two competing visualizations that have been the focus of much of the previous research on the neuroimage bias. We found that, while laypeople differentially attended to neuroimagery relative to the bar graph, this did not translate into differential judgments in a way that would support the idea of a neuroimage bias.

  6. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  7. Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies

    Institute of Scientific and Technical Information of China (English)

    William; R; Marchand

    2014-01-01

    Mindfulness is the dispassionate,moment-by-moment awareness of sensations,emotions and thoughts.Mindfulness-based interventions are being increasingly used for stress,psychological well being,coping with chronic illness as well as adjunctive treatments for psychiatric disorders.However,the neural mechanisms associated with mindfulness have not been well characterized.Recent functional and structural neuroimaging studies are beginning to provide insights into neural processes associated with the practice of mindfulness.A review of this literature revealed compelling evidence that mindfulness impacts the function of the medial cortex and associated default mode network as well as insula and amygdala.Additionally,mindfulness practice appears to effect lateral frontal regions and basal ganglia,at least in some cases.Structural imaging studies are consistent with these findings and also indicate changes in the hippocampus.While many questions remain unanswered,the current literature provides evidence of brain regions and networks relevant for understanding neural processes associated with mindfulness.

  8. Turner Syndrome: Neuroimaging Findings--Structural and Functional

    Science.gov (United States)

    Mullaney, Ronan; Murphy, Declan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including…

  9. The speed of passionate love, as a subliminal prime: A high-density electrical neuroimaging stud

    OpenAIRE

    Cacioppo Stephanie; Grafton Scott T.; Bianchi-Demicheli F

    2012-01-01

    In line with the psychological model of self expansion recent neuroimaging evidence shows an overlap between the brain network mediating passionate love and that involved in self representation. Nevertheless little remains known about the temporal dynamics of these brain areas. To address this question we recorded brain activity from 20 healthy participants using high density electrophysiological recordings while participants were performing a cognitive priming paradigm known to activate the ...

  10. Neuromarketing: the hope and hype of neuroimaging in business.

    Science.gov (United States)

    Ariely, Dan; Berns, Gregory S

    2010-04-01

    The application of neuroimaging methods to product marketing - neuromarketing - has recently gained considerable popularity. We propose that there are two main reasons for this trend. First, the possibility that neuroimaging will become cheaper and faster than other marketing methods; and second, the hope that neuroimaging will provide marketers with information that is not obtainable through conventional marketing methods. Although neuroimaging is unlikely to be cheaper than other tools in the near future, there is growing evidence that it may provide hidden information about the consumer experience. The most promising application of neuroimaging methods to marketing may come before a product is even released - when it is just an idea being developed.

  11. Turner syndrome: neuroimaging findings: structural and functional.

    LENUS (Irish Health Repository)

    Mullaney, Ronan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including the parietal lobe; cerebellum, amygdala, hippocampus; and basal ganglia; and perhaps differences in "connectivity" between frontal and parieto-occipital regions. Finally, there is preliminary evidence that genomic imprinting, sex hormones and growth hormone have significant modulatory effects on brain maturation in TS.

  12. Medial Temporal Lobe Contributions to Future Thinking: Evidence from Neuroimaging and Amnesia

    Directory of Open Access Journals (Sweden)

    Mieke Verfaellie

    2012-09-01

    Full Text Available Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics' cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory.

  13. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    Science.gov (United States)

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  14. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  15. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

    Science.gov (United States)

    Cole, James H; Franke, Katja

    2017-12-01

    The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Clocking the social mind by identifying mental processes in the IAT with electrical neuroimaging.

    Science.gov (United States)

    Schiller, Bastian; Gianotti, Lorena R R; Baumgartner, Thomas; Nash, Kyle; Koenig, Thomas; Knoch, Daria

    2016-03-08

    Why do people take longer to associate the word "love" with outgroup words (incongruent condition) than with ingroup words (congruent condition)? Despite the widespread use of the implicit association test (IAT), it has remained unclear whether this IAT effect is due to additional mental processes in the incongruent condition, or due to longer duration of the same processes. Here, we addressed this previously insoluble issue by assessing the spatiotemporal evolution of brain electrical activity in 83 participants. From stimulus presentation until response production, we identified seven processes. Crucially, all seven processes occurred in the same temporal sequence in both conditions, but participants needed more time to perform one early occurring process (perceptual processing) and one late occurring process (implementing cognitive control to select the motor response) in the incongruent compared with the congruent condition. We also found that the latter process contributed to individual differences in implicit bias. These results advance understanding of the neural mechanics of response time differences in the IAT: They speak against theories that explain the IAT effect as due to additional processes in the incongruent condition and speak in favor of theories that assume a longer duration of specific processes in the incongruent condition. More broadly, our data analysis approach illustrates the potential of electrical neuroimaging to illuminate the temporal organization of mental processes involved in social cognition.

  17. Neuroimaging Evidence of Comprehension Monitoring

    Directory of Open Access Journals (Sweden)

    Linda Baker

    2014-04-01

    Full Text Available The purpose of this article is to synthesize the emerging neuroimaging literature that reveals how the brain responds when readers and listeners encounter texts that demand monitoring of their ongoing comprehension processes. Much of this research has been undertaken by cognitive scientists who do not frame their work in metacognitive terms, and therefore it is less likely to be familiar to psychologists who study metacognition in educational contexts. The important role of metacognition in the development and use of academic skills is widely recognized. Metacognition is typically defined as the awareness and control of one's own cognitive processes. In the domain of reading, the most important metacognitive skill is comprehension monitoring, the evaluation and regulation of comprehension. Readers who monitor their understanding realize when they have encountered difficulty making sense of the text, and they apply error correction procedures to attempt to resolve the difficulty. Metacognition depends on executive control skills that continue to develop into early adulthood, in parallel with the maturation of the executive control regions of the prefrontal cortex. Functional magnetic resonance imaging (fMRI and event-related potentials (ERP have been used for some time to study neural correlates of basic reading processes such as word identification, but it is only within recent years that researchers have turned to the higher-level processes of text comprehension. The article describes illustrative studies that reveal changes in neural activity when adults apply lexical, syntactic, or semantic standards to evaluate their understanding.

  18. Neuroimaging for psychotherapy research: current trends.

    Science.gov (United States)

    Weingarten, Carol P; Strauman, Timothy J

    2015-01-01

    This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive compulsive disorder (OCD), and schizophrenia. The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research.

  19. Guidelines for the ethical use of neuroimages in medical testimony: report of a multidisciplinary consensus conference.

    Science.gov (United States)

    Meltzer, C C; Sze, G; Rommelfanger, K S; Kinlaw, K; Banja, J D; Wolpe, P R

    2014-04-01

    With rapid advances in neuroimaging technology, there is growing concern over potential misuse of neuroradiologic imaging data in legal matters. On December 7 and 8, 2012, a multidisciplinary consensus conference, Use and Abuse of Neuroimaging in the Courtroom, was held at Emory University in Atlanta, Georgia. Through this interactive forum, a highly select group of experts-including neuroradiologists, neurologists, forensic psychiatrists, neuropsychologists, neuroscientists, legal scholars, imaging statisticians, judges, practicing attorneys, and neuroethicists-discussed the complex issues involved in the use of neuroimaging data entered into legal evidence and for associated expert testimony. The specific contexts of criminal cases, child abuse, and head trauma were especially considered. The purpose of the conference was to inform the development of guidelines on expert testimony for the American Society of Neuroradiology and to provide principles for courts on the ethical use of neuroimaging data as evidence. This report summarizes the conference and resulting recommendations.

  20. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  1. Occipital headaches and neuroimaging in children.

    Science.gov (United States)

    Bear, Joshua J; Gelfand, Amy A; Goadsby, Peter J; Bass, Nancy

    2017-08-01

    To investigate the common thinking, as reinforced by the International Classification of Headache Disorders, 3rd edition (beta), that occipital headaches in children are rare and suggestive of serious intracranial pathology. We performed a retrospective chart review cohort study of all patients ≤18 years of age referred to a university child neurology clinic for headache in 2009. Patients were stratified by headache location: solely occipital, occipital plus other area(s) of head pain, or no occipital involvement. Children with abnormal neurologic examinations were excluded. We assessed location as a predictor of whether neuroimaging was ordered and whether intracranial pathology was found. Analyses were performed with cohort study tools in Stata/SE 13.0 (StataCorp, College Station, TX). A total of 308 patients were included. Median age was 12 years (32 months-18 years), and 57% were female. Headaches were solely occipital in 7% and occipital-plus in 14%. Patients with occipital head pain were more likely to undergo neuroimaging than those without occipital involvement (solely occipital: 95%, relative risk [RR] 10.5, 95% confidence interval [CI] 1.4-77.3; occipital-plus: 88%, RR 3.7, 95% CI 1.5-9.2; no occipital pain: 63%, referent). Occipital pain alone or with other locations was not significantly associated with radiographic evidence of clinically significant intracranial pathology. Children with occipital headache are more likely to undergo neuroimaging. In the absence of concerning features on the history and in the setting of a normal neurologic examination, neuroimaging can be deferred in most pediatric patients when occipital pain is present. © 2017 American Academy of Neurology.

  2. Neuroimaging in Antisocial Personality Disorder

    Directory of Open Access Journals (Sweden)

    Abdullah Yildirim

    2015-03-01

    Full Text Available Neuroimaging has been used in antisocial personality disorder since the invention of computed tomography and new modalities are introduced as technology advances. Magnetic resonance imaging, diffusion tensor imaging, functional magnetic resonance imaging and radionuclide imaging are such techniques that are currently used in neuroimaging. Although neuroimaging is an indispensible tool for psychiatric reseach, its clinical utility is questionable until new modalities become more accessible and regularly used in clinical practice. The aim of this paper is to provide clinicians with an introductory knowledge on neuroimaging in antisocial personality disorder including basic physics principles, current contributions to general understanding of pathophysiology in antisocial personality disorder and possible future applications of neuroimaging. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2015; 7(1: 98-108

  3. Practical management of heterogeneous neuroimaging metadata by global neuroimaging data repositories.

    Science.gov (United States)

    Neu, Scott C; Crawford, Karen L; Toga, Arthur W

    2012-01-01

    Rapidly evolving neuroimaging techniques are producing unprecedented quantities of digital data at the same time that many research studies are evolving into global, multi-disciplinary collaborations between geographically distributed scientists. While networked computers have made it almost trivial to transmit data across long distances, collecting and analyzing this data requires extensive metadata if the data is to be maximally shared. Though it is typically straightforward to encode text and numerical values into files and send content between different locations, it is often difficult to attach context and implicit assumptions to the content. As the number of and geographic separation between data contributors grows to national and global scales, the heterogeneity of the collected metadata increases and conformance to a single standardization becomes implausible. Neuroimaging data repositories must then not only accumulate data but must also consolidate disparate metadata into an integrated view. In this article, using specific examples from our experiences, we demonstrate how standardization alone cannot achieve full integration of neuroimaging data from multiple heterogeneous sources and why a fundamental change in the architecture of neuroimaging data repositories is needed instead.

  4. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Kim, Jong Ho

    2004-01-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  5. PET-based molecular nuclear neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho [Gil Medical Center, Gachon (Korea, Republic of)

    2004-04-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.

  6. Contributions of neuroimaging in singing voice studies: a systematic review

    Directory of Open Access Journals (Sweden)

    Geová Oliveira de Amorim

    Full Text Available ABSTRACT It is assumed that singing is a highly complex activity, which requires the activation and interconnection of sensorimotor areas. The aim of the current research was to present the evidence from neuroimaging studies in the performance of the motor and sensory system in the process of singing. Research articles on the characteristics of human singing analyzed by neuroimaging, which were published between 1990 and 2016, and indexed and listed in databases such as PubMed, BIREME, Lilacs, Web of Science, Scopus, and EBSCO were chosen for this systematic review. A total of 9 articles, employing magnetoencephalography, functional magnetic resonance imaging, positron emission tomography, and electrocorticography were chosen. These neuroimaging approaches enabled the identification of a neural network interconnecting the spoken and singing voice, to identify, modulate, and correct pitch. This network changed with the singer's training, variations in melodic structure and harmonized singing, amusia, and the relationship among the brain areas that are responsible for speech, singing, and the persistence of musicality. Since knowledge of the neural networks that control singing is still scarce, the use of neuroimaging methods to elucidate these pathways should be a focus of future research.

  7. Disorders of Consciousness: Painless or Painful Conditions?—Evidence from Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Francesca Pistoia

    2016-10-01

    Full Text Available The experience of pain in disorders of consciousness is still debated. Neuroimaging studies, using functional Magnetic Resonance Imaging (fMRI, Positron Emission Tomography (PET, multichannel electroencephalography (EEG and laser-evoked potentials, suggest that the perception of pain increases with the level of consciousness. Brain activation in response to noxious stimuli has been observed in patients with unresponsive wakefulness syndrome (UWS, which is also referred to as a vegetative state (VS, as well as those in a minimally conscious state (MCS. However, all of these techniques suggest that pain-related brain activation patterns of patients in MCS more closely resemble those of healthy subjects. This is further supported by fMRI findings showing a much greater functional connectivity within the structures of the so-called pain matrix in MCS as compared to UWS/VS patients. Nonetheless, when interpreting the results, a distinction is necessary between autonomic responses to potentially harmful stimuli and conscious experience of the unpleasantness of pain. Even more so if we consider that the degree of residual functioning and cortical connectivity necessary for the somatosensory, affective and cognitive-evaluative components of pain processing are not yet clear. Although procedurally challenging, the particular value of the aforementioned techniques in the assessment of pain in disorders of consciousness has been clearly demonstrated. The study of pain-related brain activation and functioning can contribute to a better understanding of the networks underlying pain perception while addressing clinical and ethical questions concerning patient care. Further development of technology and methods should aim to increase the availability of neuroimaging, objective assessment of functional connectivity and analysis at the level of individual cases as well as group comparisons. This will enable neuroimaging to truly become a clinical tool to

  8. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  9. Neuroimaging in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Barkhof, Frederik [VU Univ. Medical Center, Amsterdam (NL). Dept. of Radiology and Image Analysis Center (IAC); Fox, Nick C. [UCL Institute of Neurology, London (United Kingdom). Dementia Research Centre; VU Univ. Medical Center, Amsterdam (Netherlands); Bastos-Leite, Antonio J. [Porto Univ. (Portugal). Dept. of Medical Imaging; Scheltens, Philip [VU Univ. Medical Center, Amsterdam (Netherlands). Dept. of Neurology and Alzheimer Center

    2011-07-01

    Against a background of an ever-increasing number of patients, new management options, and novel imaging modalities, neuroimaging is playing an increasingly important role in the diagnosis of dementia. This up-to-date, superbly illustrated book aims to provide a practical guide to the effective use of neuroimaging in the patient with cognitive decline. It sets out the key clinical and imaging features of the wide range of causes of dementia and directs the reader from clinical presentation to neuroimaging and on to an accurate diagnosis whenever possible. After an introductory chapter on the clinical background, the available ''toolbox'' of structural and functional neuroimaging techniques is reviewed in detail, including CT, MRI and advanced MR techniques, SPECT and PET, and image analysis methods. The imaging findings in normal ageing are then discussed, followed by a series of chapters that carefully present and analyze the key imaging findings in patients with dementias. A structured path of analysis follows the main presenting feature: disorders associated with primary gray matter loss, with white matter changes, with brain swelling, etc. Throughout, a practical approach is adopted, geared specifically to the needs of clinicians (neurologists, radiologists, psychiatrists, geriatricians) working in the field of dementia, for whom this book should prove an invaluable resource. (orig.)

  10. Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging.

    Science.gov (United States)

    Tarnaris, Andrew; Kitchen, Neil D; Watkins, Laurence D

    2009-05-01

    Normal pressure hydrocephalus (NPH) represents a treatable form of dementia. Recent estimates of the incidence of this condition are in the region of 5% of patients with dementia. The symptoms of NPH can vary among individuals and may be confused with those of patients with multi-infarct dementia, dementia of the Alzheimer type, or even Parkinson disease. Traditionally the diagnosis of NPH could only be confirmed postoperatively by a favorable outcome to surgical diversion of CSF. The object of this literature review was to examine the role of structural and functional imaging in providing biomarkers of favorable surgical outcome. A Medline search was undertaken for the years 1980-2006, using the following terms: normal pressure hydrocephalus, adult hydrocephalus, chronic hydrocephalus, imaging, neuroimaging, imaging studies, outcomes, surgical outcomes, prognosis, prognostic value, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. The query revealed 16 studies that correlated imaging with surgical outcomes offering accuracy results. Three studies fulfilled the statistical criteria of a biomarker. A dementia Alzheimer-type pattern on SPECT in patients with idiopathic NPH, the presence of CSF flow void on MR imaging, and the N-acetylaspartate/choline ratio in patients with the secondary form are able to predict surgical outcomes with high accuracy. There is at present Level A evidence for using MR spectroscopy in patients with secondary NPH, and Level B evidence for using SPECT and phase-contrast MR imaging to select patients with idiopathic NPH for shunt placement. The studies, however, need to be repeated by other groups. The current work should act as a platform to design further studies with larger sample sizes.

  11. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    Science.gov (United States)

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  13. Neuroimaging Endophenotypes in Autism Spectrum Disorder

    Science.gov (United States)

    Mahajan, Rajneesh; Mostofsky, Stewart H.

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response and lead to the development of new therapies. PMID:26234701

  14. Neuroimaging of aggressive and violent behaviour in children and adolescents

    Directory of Open Access Journals (Sweden)

    Philipp Sterzer

    2009-10-01

    Full Text Available In recent years, a number of functional and structural neuroimaging studies have investigated the neural bases of aggressive and violent behaviour in children and adolescents. Most functional neuroimaging studies have persued the hypothesis that pathological aggression is a consequence of deficits in the neural circuits involved in emotion processing. There is converging evidence for deficient neural responses to emotional stimuli in youths with a propensity towards aggressive behaviour. In addition, recent neuroimaging work has suggested that aggressive behaviour is also associated with abnormalities in neural processes that subserve both the inhibitory control of behaviour and the flexible adaptation of behaviour in accord with reinforcement information. Structural neuroimaging studies in children and adolescents with conduct problems are still scarce, but point to deficits in brain structures in volved in the processing of social information and in the regulation of social and goal directed behaviour. The indisputable progress that this research field has made in recent years notwithstanding, the overall picture is still rather patchy and there are inconsistencies between studies that await clarification. Despite this, we attempt to provide an integrated view on the neural abnormalities that may contribute to various forms of juvenile aggression and violence, and discuss research strategies that may help to provide a more profound understanding of these important issues in the future.

  15. Neuroimaging of child abuse: A critical review

    Directory of Open Access Journals (Sweden)

    Heledd eHart

    2012-03-01

    Full Text Available Childhood maltreatment is a severe stressor that can lead to the development of behaviour problems and affect brain structure and function. This review summarizes the current evidence for the effects of early childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, executive function and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, grey and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum. Diffusion tensor imaging studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during executive function and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioural and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity, independently of secondary

  16. Evidence from neuroimaging for the role of the menstrual cycle in the interplay of emotion and cognition.

    Directory of Open Access Journals (Sweden)

    Julia eSacher

    2013-07-01

    Full Text Available Women show increased predisposition for certain psychiatric disorders, such as depression, that are associated with disturbances in the integration of emotion and cognition. While this suggests that sex hormones need to be considered as modulating factors in the regulation of emotion, we still lack a sound understanding of how the menstrual cycle impacts emotional states and cognitive function. Though signals for the influence of the menstrual cycle on the integration of emotion and cognition have appeared as secondary findings in numerous behavioral and neuroimaging studies, this has only very rarely been the primary research goal. This review summarizes evidence: (1 that the menstrual cycle modulates the integration of emotional and cognitive processing on a behavioral level, and (2 that this change in behavior can be associated with functional, molecular and structural changes in the brain during a specific menstrual cycle phase. The growing evidence for menstrual cycle-specific differences suggests a modulating role for sex hormones on the neural networks supporting the integration of emotional and cognitive information. It will further be discussed what methodological aspects need to be considered to capture the role of the menstrual cycle in the emotion-cognition interplay more systematically.

  17. [Functional neuroimaging in the diagnosis of patients with Parkinsonism: Update and recommendations for clinical use].

    Science.gov (United States)

    Arbizu, J; Luquin, M R; Abella, J; de la Fuente-Fernández, R; Fernandez-Torrón, R; García-Solís, D; Garrastachu, P; Jiménez-Hoyuela, J M; Llaneza, M; Lomeña, F; Lorenzo-Bosquet, C; Martí, M J; Martinez-Castrillo, J C; Mir, P; Mitjavila, M; Ruiz-Martínez, J; Vela, L

    2014-01-01

    Functional Neuroimaging has been traditionally used in research for patients with different Parkinsonian syndromes. However, the emergence of commercial radiotracers together with the availability of single photon emission computed tomography (SPECT) and, more recently, positron emission tomography (PET) have made them available for clinical practice. Particularly, the development of clinical evidence achieved by functional neuroimaging techniques over the past two decades have motivated a progressive inclusion of several biomarkers in the clinical diagnostic criteria for neurodegenerative diseases that occur with Parkinsonism. However, the wide range of radiotracers designed to assess the involvement of different pathways in the neurodegenerative process underlying Parkinsonian syndromes (dopaminergic nigrostriatal pathway integrity, basal ganglia and cortical neuronal activity, myocardial sympathetic innervation), and the different neuroimaging techniques currently available (scintigraphy, SPECT and PET), have generated some controversy concerning the best neuroimaging test that should be indicated for the differential diagnosis of Parkinsonism. In this article, a panel of nuclear medicine and neurology experts has evaluated the functional neuroimaging techniques emphazising practical considerations related to the diagnosis of patients with uncertain origin parkinsonism and the assessment Parkinson's disease progression. Copyright © 2014 Elsevier España, S.L. and SEMNIM. All rights reserved.

  18. Neuroimaging of consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, Andrea Eugenio [Birmingham Univ. (United Kingdom). Dept. of Neuropsychiatry; UCL Institute of Neurology, London (United Kingdom). Sobell Dept. of Motor, Neuroscience and Movement Disorders; Nani, Andrea [Birmingham Univ. (United Kingdom). Research Group BSMHFT; Blumenfeld, Hal [Yale University School of Medicine, New Haven, CT (United States). Depts. of Neurology, Neurobiology and Neurosurgery; Laureys, Steven (ed.) [Liege Univ. (Belgium). Cyclotron Research Centre

    2013-07-01

    An important reference work on a multidisciplinary and rapidly expanding area. Particular focus on the relevance of neuroimaging for the diagnosis and treatment of common neuropsychiatric disorders affecting consciousness. Written by world-class experts in the field. Relevant for clinicians, researchers, and scholars across different specialties. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This book presents the state of the art in neuroimaging exploration of the brain correlates of the alterations in consciousness across these conditions, with a particular focus on the potential applications for diagnosis and management. Although the book has a practical approach and is primarily targeted at neurologists, neuroradiologists, and psychiatrists, a wide range of researchers and health care professionals will find it an essential reference that explains the significance of neuroimaging of consciousness for clinical practice. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This

  19. Neuroimaging of consciousness

    International Nuclear Information System (INIS)

    Cavanna, Andrea Eugenio; UCL Institute of Neurology, London; Nani, Andrea; Blumenfeld, Hal; Laureys, Steven

    2013-01-01

    An important reference work on a multidisciplinary and rapidly expanding area. Particular focus on the relevance of neuroimaging for the diagnosis and treatment of common neuropsychiatric disorders affecting consciousness. Written by world-class experts in the field. Relevant for clinicians, researchers, and scholars across different specialties. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This book presents the state of the art in neuroimaging exploration of the brain correlates of the alterations in consciousness across these conditions, with a particular focus on the potential applications for diagnosis and management. Although the book has a practical approach and is primarily targeted at neurologists, neuroradiologists, and psychiatrists, a wide range of researchers and health care professionals will find it an essential reference that explains the significance of neuroimaging of consciousness for clinical practice. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This

  20. Neuroimaging in psychiatry: from bench to bedside

    Directory of Open Access Journals (Sweden)

    David E Linden

    2009-12-01

    Full Text Available This perspective considers the present and the future role of different neuroimaging techniques in the field of psychiatry. After identifying shortcomings of the mainly symptom-focussed diagnostic processes and treatment decisions in modern psychiatry, we suggest topics where neuroimaging methods have the potential to help. These include better understanding of the pathophysiology, improved diagnoses, assistance in therapeutic decisions and the supervision of treatment success by direct assessment of improvement in disease-related brain functions. These different questions are illustrated by examples from neuroimaging studies, with a focus on severe mental and neuropsychiatric illnesses such as schizophrenia, depression and dementia. Despite all reservations addressed in the article, we are optimistic, that neuroimaging has a huge potential with regard to the above-mentioned questions. We expect that neuroimaging will play an increasing role in the future refinement of the diagnostic process and aid in the development of new therapies in the field of psychiatry.

  1. Neuroimaging findings in pediatric sports-related concussion.

    Science.gov (United States)

    Ellis, Michael J; Leiter, Jeff; Hall, Thomas; McDonald, Patrick J; Sawyer, Scott; Silver, Norm; Bunge, Martin; Essig, Marco

    2015-09-01

    The goal in this review was to summarize the results of clinical neuroimaging studies performed in patients with sports-related concussion (SRC) who were referred to a multidisciplinar ypediatric concussion program. The authors conducted a retrospective review of medical records and neuroimaging findings for all patients referred to a multidisciplinary pediatric concussion program between September 2013 and July 2014. Inclusion criteria were as follows: 1) age ≤ 19 years; and 2) physician-diagnosed SRC. All patients underwent evaluation and follow-up by the same neurosurgeon. The 2 outcomes examined in this review were the frequency of neuroimaging studies performed in this population (including CT and MRI) and the findings of those studies. Clinical indications for neuroimaging and the impact of neuroimaging findings on clinical decision making were summarized where available. This investigation was approved by the local institutional ethics review board. A total of 151 patients (mean age 14 years, 59% female) were included this study. Overall, 36 patients (24%) underwent neuroimaging studies, the results of which were normal in 78% of cases. Sixteen percent of patients underwent CT imaging; results were normal in 79% of cases. Abnormal CT findings included the following: arachnoid cyst (1 patient), skull fracture (2 patients), suspected intracranial hemorrhage (1 patient), and suspected hemorrhage into an arachnoid cyst (1 patient). Eleven percent of patients underwent MRI; results were normal in 75% of cases. Abnormal MRI findings included the following: intraparenchymal hemorrhage and sylvian fissure arachnoid cyst (1 patient); nonhemorrhagic contusion (1 patient); demyelinating disease (1 patient); and posterior fossa arachnoid cyst, cerebellar volume loss, and nonspecific white matter changes (1 patient). Results of clinical neuroimaging studies are normal in the majority of pediatric patients with SRC. However, in selected cases neuroimaging can provide

  2. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  3. Neuroimaging findings in movement disorders

    International Nuclear Information System (INIS)

    Topalov, N.

    2015-01-01

    Full text: Neuroimaging methods are of great importance for the differential diagnostic delimitation of movement disorders associated with structural damage (neoplasms, ischemic lesions, neuroinfections) from those associated with specific pathophysiological mechanisms (dysmetabolic disorders, neurotransmitter disorders). Learning objective: Presentation of typical imaging findings contributing to nosological differentiation in groups of movement disorders with similar clinical signs. In this presentation are discussed neuroimaging findings in Parkinson‘s disease, atypical parkinsonian syndromes (multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration), parkinsonism in genetically mediated diseases (Wilson’s disease, pantothenate kinase-associated neurodegeneration – PKAN), vascular parkinsonism, hyperkinetic movement disorders (palatal tremor, Huntington‘s chorea, symptomatic chorea in ischemic stroke and diabetes, rubral tremor, ballismus, hemifacial spasm). Contemporary neuroimaging methods enable support for diagnostic and differential diagnostic precision of a number of hypo- and hyperkinetic movement disorders, which is essential for neurological clinical practice

  4. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.

    Science.gov (United States)

    Janssen, Ronald J; Mourão-Miranda, Janaina; Schnack, Hugo G

    2018-04-22

    Psychiatric prognosis is a difficult problem. Making a prognosis requires looking far into the future, as opposed to making a diagnosis, which is concerned with the current state. During the follow-up period, many factors will influence the course of the disease. Combined with the usually scarcer longitudinal data and the variability in the definition of outcomes/transition, this makes prognostic predictions a challenging endeavor. Employing neuroimaging data in this endeavor introduces the additional hurdle of high dimensionality. Machine-learning techniques are especially suited to tackle this challenging problem. This review starts with a brief introduction to machine learning in the context of its application to clinical neuroimaging data. We highlight a few issues that are especially relevant for prediction of outcome and transition using neuroimaging. We then review the literature that discusses the application of machine learning for this purpose. Critical examination of the studies and their results with respect to the relevant issues revealed the following: 1) there is growing evidence for the prognostic capability of machine-learning-based models using neuroimaging; and 2) reported accuracies may be too optimistic owing to small sample sizes and the lack of independent test samples. Finally, we discuss options to improve the reliability of (prognostic) prediction models. These include new methodologies and multimodal modeling. Paramount, however, is our conclusion that future work will need to provide properly (cross-)validated accuracy estimates of models trained on sufficiently large datasets. Nevertheless, with the technological advances enabling acquisition of large databases of patients and healthy subjects, machine learning represents a powerful tool in the search for psychiatric biomarkers. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Retrospective study on structural neuroimaging in first-episode psychosis

    Directory of Open Access Journals (Sweden)

    Ricardo Coentre

    2016-05-01

    Full Text Available Background. No consensus between guidelines exists regarding neuroimaging in first-episode psychosis. The purpose of this study is to assess anomalies found in structural neuroimaging exams (brain computed tomography (CT and magnetic resonance imaging (MRI in the initial medical work-up of patients presenting first-episode psychosis. Methods. The study subjects were 32 patients aged 18–48 years (mean age: 29.6 years, consecutively admitted with first-episode psychosis diagnosis. Socio-demographic and clinical data and neuroimaging exams (CT and MRI were retrospectively studied. Diagnostic assessments were made using the Operational Criteria Checklist +. Neuroimaging images (CT and MRI and respective reports were analysed by an experienced consultant psychiatrist. Results. None of the patients had abnormalities in neuroimaging exams responsible for psychotic symptoms. Thirty-seven percent of patients had incidental brain findings not causally related to the psychosis (brain atrophy, arachnoid cyst, asymmetric lateral ventricles, dilated lateral ventricles, plagiocephaly and falx cerebri calcification. No further medical referral was needed for any of these patients. No significant differences regarding gender, age, diagnosis, duration of untreated psychosis, in-stay and cannabis use were found between patients who had neuroimaging abnormalities versus those without. Discussion. This study suggests that structural neuroimaging exams reveal scarce abnormalities in young patients with first-episode psychosis. Structural neuroimaging is especially useful in first-episode psychosis patients with neurological symptoms, atypical clinical picture and old age.

  6. Neuroimaging of neurotic disorders

    International Nuclear Information System (INIS)

    Okubo, Yoshiro; Yahata, Noriaki

    2006-01-01

    Neuroimaging has been involved in recent biological approaches with evidence for neurotic disorders in place of diagnostic criteria on Freud theory hitherto. This review describes the present states of brain imaging in those disorders. Emotion has such three bases for environmental stimuli as recognition/evaluation of causable factors, manifestation, and its control, each of which occurs in various different regions connected by neuro-net work in the brain. The disorders are regarded as abnormality of the circuit that can be imaged. Documented and discussed are the actual regions imaged by MRI and PET in panic disorder, social phobia, phobias to specified things, posttraumatic stress disorder and obsessive-compulsive disorder. The approach is thought important for elucidating not only the pathogenesis of the disorders but also the human emotional functions and mechanism of the mind, which may lead to a better treatment of the disorders in future. (T.I)

  7. Neuroimaging in Psychiatry: A Review of the Background and ...

    African Journals Online (AJOL)

    There are two different types of neuroimaging of value in clinical psychiatry, namely: structural neuroimaging techniques (e.g., CT, MRI) which provide static images of the skull, and brain, and funnctional neuroimaging techniques (e.g., single photon emission CT [SPECT], positron emission tomography [PET], functional MRI ...

  8. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  9. Neuroimaging in childhood headache: a systematic review

    International Nuclear Information System (INIS)

    Alexiou, George A.; Argyropoulou, Maria I.

    2013-01-01

    Headache is a common complaint in children, one that gives rise to considerable parental concern and fear of the presence of a space-occupying lesion. The evaluation and diagnosis of headache is very challenging for paediatricians, and neuroimaging by means of CT or MRI is often requested as part of the investigation. CT exposes children to radiation, while MRI is costly and sometimes requires sedation or general anaesthesia, especially in children younger than 6 years. This review of the literature on the value of neuroimaging in children with headache showed that the rate of pathological findings is generally low. Imaging findings that led to a change in patient management were in almost all cases reported in children with abnormal signs on neurological examination. Neuroimaging should be limited to children with a suspicious clinical history, abnormal neurological findings or other physical signs suggestive of intracranial pathology. Well-designed prospective studies are needed to better define the clinical findings that warrant neuroimaging in children with headache. (orig.)

  10. Neuroimaging in childhood headache: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, George A. [University of Ioannina, Department of Neurosurgery, Medical School, P.O. Box 103, Ioannina (Greece); Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece)

    2013-07-15

    Headache is a common complaint in children, one that gives rise to considerable parental concern and fear of the presence of a space-occupying lesion. The evaluation and diagnosis of headache is very challenging for paediatricians, and neuroimaging by means of CT or MRI is often requested as part of the investigation. CT exposes children to radiation, while MRI is costly and sometimes requires sedation or general anaesthesia, especially in children younger than 6 years. This review of the literature on the value of neuroimaging in children with headache showed that the rate of pathological findings is generally low. Imaging findings that led to a change in patient management were in almost all cases reported in children with abnormal signs on neurological examination. Neuroimaging should be limited to children with a suspicious clinical history, abnormal neurological findings or other physical signs suggestive of intracranial pathology. Well-designed prospective studies are needed to better define the clinical findings that warrant neuroimaging in children with headache. (orig.)

  11. Neuroimaging in Mental Health Care: Voices in Translation

    Directory of Open Access Journals (Sweden)

    Emily L. Borgelt

    2012-10-01

    Full Text Available Images of brain function, popularly called neuroimages, have become a mainstay of contemporary communication about neuroscience and mental health. Paralleling media coverage of neuroimaging research and the high visibility of clinics selling scans is pressure from sponsors to move basic research about brain function along the translational pathway. Indeed, neuroimaging benefit mental health care with early or tailored intervention, opportunities for education and planning, and access to resources afforded by objectification of disorder. However, risks of premature technology transfer, such as misinterpretation, misrepresentation, and increased stigmatization, could compromise patient care.Stakeholder views on neuroimaging for mental health care are a largely untapped resource of information and guidance for translational efforts. We argue that the insights of key stakeholders – researchers, healthcare providers, patients, and families - have an essential role to play upstream in professional, critical, and ethical discourse about neuroimaging in mental health. Here we integrate previously orthogonal lines of inquiry involving stakeholder research to describe the translational landscape as well as challenges on its horizon.

  12. [How to start a neuroimaging study].

    Science.gov (United States)

    Narumoto, Jin

    2012-06-01

    In order to help researchers understand how to start a neuroimaging study, several tips are described in this paper. These include 1) Choice of an imaging modality, 2) Statistical method, and 3) Interpretation of the results. 1) There are several imaging modalities available in clinical research. Advantages and disadvantages of each modality are described. 2) Statistical Parametric Mapping, which is the most common statistical software for neuroimaging analysis, is described in terms of parameter setting in normalization and level of significance. 3) In the discussion section, the region which shows a significant difference between patients and normal controls should be discussed in relation to the neurophysiology of the disease, making reference to previous reports from neuroimaging studies in normal controls, lesion studies and animal studies. A typical pattern of discussion is described.

  13. Neuroimaging in eating disorders

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2011-09-01

    Full Text Available Ignacio Jáuregui-LoberaBehavioral Sciences Institute and Pablo de Olavide University, Seville, SpainAbstract: Neuroimaging techniques have been useful tools for accurate investigation of brain structure and function in eating disorders. Computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy, and voxel-based morphometry have been the most relevant technologies in this regard. The purpose of this review is to update the existing data on neuroimaging in eating disorders. The main brain changes seem to be reversible to some extent after adequate weight restoration. Brain changes in bulimia nervosa seem to be less pronounced than in anorexia nervosa and are mainly due to chronic dietary restrictions. Different subtypes of eating disorders might be correlated with specific brain functional changes. Moreover, anorectic patients who binge/purge may have different functional brain changes compared with those who do not binge/purge. Functional changes in the brain might have prognostic value, and different changes with respect to the binding potential of 5-HT1A, 5-HT2A, and D2/D3 receptors may be persistent after recovering from an eating disorder.Keywords: neuroimaging, brain changes, brain receptors, anorexia nervosa, bulimia nervosa, eating disorders

  14. Introduction to neuroimaging

    International Nuclear Information System (INIS)

    Orrison, W.W.

    1989-01-01

    The author focuses on neuroradiology with emphasis on the current imaging modalities. There are chapters on angiography, myelography, nuclear medicine, ultrasonography, computer tomography (CT), and magnetic resonance (MR) imaging. The other chapters are dedicated to the spine, skull, head and neck, and pediatric neuroimaging

  15. Functional neuroimaging studies of episodic memory. Functional dissociation in the medial temporal lobe structures

    International Nuclear Information System (INIS)

    Tsukiura, Takashi

    2008-01-01

    Previous functional neuroimaging studies have demonstrated the critical role of the medial temporal lobe (MTL) regions in the encoding and retrieval of episodic memory. It has also been shown that an emotional factor in human memory enhances episodic encoding and retrieval. However, there is little evidence regarding the specific contribution of each MTL region to the relational, contextual, and emotional processes of episodic memory. The goal of this review article is to identify differential activation patterns of the processes between MTL regions. Results from functional neuroimaging studies of episodic memory show that the hippocampus is involved in encoding the relation between memory items, whereas the entorhinal and perirhinal cortices (anterior parahippocampal gyrus) contribute to the encoding of a single item. Additionally, the parahippocampal cortex (posterior parahippocampal gyrus) is selectively activated during the processing of contextual information of episodic memory. A similar pattern of functional dissociation is found in episodic memory retrieval. Functional neuroimaging has also shown that emotional information of episodic memory enhances amygdala-MTL correlations and that this enhancement is observed during both the encoding and retrieval of emotional memories. These findings from pervious neuroimaging studies suggest that different MTL regions could organize memory for personally experienced episodes via the 'relation' and 'context' factors of episodic memory, and that the emotional factor of episodes could modulate the functional organization in the MTL regions. (author)

  16. Neuroimaging and Research into Second Language Acquisition

    Science.gov (United States)

    Sabourin, Laura

    2009-01-01

    Neuroimaging techniques are becoming not only more and more sophisticated but are also coming to be increasingly accessible to researchers. One thing that one should take note of is the potential of neuroimaging research within second language acquisition (SLA) to contribute to issues pertaining to the plasticity of the adult brain and to general…

  17. Big Data and Neuroimaging.

    Science.gov (United States)

    Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron; Mejia, Amanda; Xu, Yuting; Crainiceanu, Ciprian; Caffo, Brian; Lindquist, Martin A

    2017-12-01

    Big Data are of increasing importance in a variety of areas, especially in the biosciences. There is an emerging critical need for Big Data tools and methods, because of the potential impact of advancements in these areas. Importantly, statisticians and statistical thinking have a major role to play in creating meaningful progress in this arena. We would like to emphasize this point in this special issue, as it highlights both the dramatic need for statistical input for Big Data analysis and for a greater number of statisticians working on Big Data problems. We use the field of statistical neuroimaging to demonstrate these points. As such, this paper covers several applications and novel methodological developments of Big Data tools applied to neuroimaging data.

  18. Cycles in deregulated electricity markets: Empirical evidence from two decades

    International Nuclear Information System (INIS)

    Arango, Santiago; Larsen, Erik

    2011-01-01

    In this article, we discuss the 'cycle hypothesis' in electricity generation, which states that the introduction of deregulation in an electricity system might lead to sustained fluctuations of over- and under-capacity. The occurrence of cycles is one of the major threats for electricity markets as it affects the security of supply, and creates uncertainty in both the profitability of electricity companies and in consumer prices. We discuss the background for these cycles using analogies with other capital-intensive industries, along with evidence from the analysis of behavioral simulation models as well as from experimental electricity markets. Using data from the oldest deregulated markets we find support for the hypothesis in the case of the English and Chilean markets, based on an autocorrelation analysis. Evidence from the Nordpool market is more ambiguous, although we might be observing the first half of a cycle in generation capacity. Comparing a simulation of the English market performed in 1992 with the actual performance we can observe that the qualitative behavior of the model is consistent with the actual evolution. Finally, we discuss possible mechanisms for damping cycles in electricity generation, such as mothballing, capacity payments, and reliability markets. - Research highlights: → We explore the emergence of cycles in the electricity generation capacity after deregulation. → We discuss the reason for cycles in generation capacity and compare different theories. → Analysis of England and Chile data show strong indications that cycles have emerged.

  19. Paediatric population neuroimaging and the Generation R Study

    DEFF Research Database (Denmark)

    White, Tonya; Muetzel, Ryan L.; El Marroun, Hanan

    2018-01-01

    Paediatric population neuroimaging is an emerging field that falls at the intersection between developmental neuroscience and epidemiology. A key feature of population neuroimaging studies involves large-scale recruitment that is representative of the general population. One successful approach f...

  20. Neuroimaging in aging: brain maintenance [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lars Nyberg

    2017-07-01

    Full Text Available Neuroimaging studies of the aging brain provide support that the strongest predictor of preserved memory and cognition in older age is brain maintenance, or relative lack of brain pathology. Evidence for brain maintenance comes from different levels of examination, but up to now relatively few studies have used a longitudinal design. Examining factors that promote brain maintenance in aging is a critical task for the future and may be combined with the use of new techniques for multimodal imaging.

  1. Molecular neuroimaging of emotional decision-making.

    Science.gov (United States)

    Takahashi, Hidehiko

    2013-04-01

    With the dissemination of non-invasive human neuroimaging techniques such as fMRI and the advancement of cognitive science, neuroimaging studies focusing on emotions and social cognition have become established. Along with this advancement, behavioral economics taking emotional and social factors into account for economic decisions has been merged with neuroscientific studies, and this interdisciplinary approach is called neuroeconomics. Past neuroeconomics studies have demonstrated that subcortical emotion-related brain structures play an important role in "irrational" decision-making. The research field that investigates the role of central neurotransmitters in this process is worthy of further development. Here, we provide an overview of recent molecular neuroimaging studies to further the understanding of the neurochemical basis of "irrational" or emotional decision-making and the future direction, including clinical implications, of the field. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. The Neuro-Image: Alain Resnais's Digital Cinema without the Digits

    NARCIS (Netherlands)

    Pisters, P.

    2011-01-01

    This paper proposes to read cinema in the digital age as a new type of image, the neuroimage. Going back to Gilles Deleuze's cinema books and it is argued that the neuro-image is based in the future. The cinema of Alain Resnais is analyzed as a neuro-image and digital cinema .

  3. Structural neuroimaging in neuropsychology: History and contemporary applications.

    Science.gov (United States)

    Bigler, Erin D

    2017-11-01

    Neuropsychology's origins began long before there were any in vivo methods to image the brain. That changed with the advent of computed tomography in the 1970s and magnetic resonance imaging in the early 1980s. Now computed tomography and magnetic resonance imaging are routinely a part of neuropsychological investigations with an increasing number of sophisticated methods for image analysis. This review examines the history of neuroimaging utilization in neuropsychological investigations, highlighting the basic methods that go into image quantification and the various metrics that can be derived. Neuroimaging methods and limitations for identify what constitutes a lesion are discussed. Likewise, the influence of various demographic and developmental factors that influence quantification of brain structure are reviewed. Neuroimaging is an integral part of 21st Century neuropsychology. The importance of neuroimaging to advancing neuropsychology is emphasized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Neuroimaging of amblyopia and binocular vision: a review.

    Science.gov (United States)

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  5. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    OpenAIRE

    Risacher, Shannon L.; Saykin, Andrew J.

    2013-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, famili...

  6. The Co-evolution of Neuroimaging and Psychiatric Neurosurgery.

    Science.gov (United States)

    Dyster, Timothy G; Mikell, Charles B; Sheth, Sameer A

    2016-01-01

    The role of neuroimaging in psychiatric neurosurgery has evolved significantly throughout the field's history. Psychiatric neurosurgery initially developed without the benefit of information provided by modern imaging modalities, and thus lesion targets were selected based on contemporary theories of frontal lobe dysfunction in psychiatric disease. However, by the end of the 20th century, the availability of structural and functional magnetic resonance imaging (fMRI) allowed for the development of mechanistic theories attempting to explain the anatamofunctional basis of these disorders, as well as the efficacy of stereotactic neuromodulatory treatments. Neuroimaging now plays a central and ever-expanding role in the neurosurgical management of psychiatric disorders, by influencing the determination of surgical candidates, allowing individualized surgical targeting and planning, and identifying network-level changes in the brain following surgery. In this review, we aim to describe the coevolution of psychiatric neurosurgery and neuroimaging, including ways in which neuroimaging has proved useful in elucidating the therapeutic mechanisms of neuromodulatory procedures. We focus on ablative over stimulation-based procedures given their historical precedence and the greater opportunity they afford for post-operative re-imaging, but also discuss important contributions from the deep brain stimulation (DBS) literature. We conclude with a discussion of how neuroimaging will transition the field of psychiatric neurosurgery into the era of precision medicine.

  7. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  8. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  9. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  10. The progress and clinical application of radionuclide neuroimaging

    International Nuclear Information System (INIS)

    Chen Wenxin; He Pinyu

    2008-01-01

    Development of site-specific brain radiopharmaceuticals extends the the functional neuroimaging applications in the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. This article highlights recent advances and clinical applications of the functional neuroimaging in Parkinson disease, epilepsy, dementia, substance abuse, psychiatric disorders and brain functional research. (authors)

  11. Pituitary gland in psychiatric disorders: a review of neuroimaging findings.

    Science.gov (United States)

    Atmaca, Murad

    2014-08-01

    In this paper, it was reviewed neuroimaging results of the pituitary gland in psychiatric disorders, particularly schizophrenia, mood disorders, anxiety disorders, and somatoform disorders. The author made internet search in detail by using PubMed database including the period between 1980 and 2012 October. It was included in the articles in English, Turkish and French languages on pituitary gland in psychiatric disorders through structural or functional neuroimaging results. After searching mentioned in the Methods section in detail, investigations were obtained on pituitary gland neuroimaging in a variety of psychiatric disorders. There have been so limited investigations on pituitary neuroimaging in psychiatric disorders including major psychiatric illnesses like schizophrenia and mood disorders. Current findings are so far from the generalizability of the results. For this reason, it is required to perform much more neuroimaging studies of pituitary gland in all psychiatric disorders to reach the diagnostic importance of measuring it.

  12. Potential neuroimaging biomarkers of pathologic brain changes in Mild Cognitive Impairment and Alzheimer's disease: a systematic review.

    Science.gov (United States)

    Ruan, Qingwei; D'Onofrio, Grazia; Sancarlo, Daniele; Bao, Zhijun; Greco, Antonio; Yu, Zhuowei

    2016-05-16

    Neuroimaging-biomarkers of Mild Cognitive Impairment (MCI) allow an early diagnosis in preclinical stages of Alzheimer's disease (AD). The goal in this paper was to review of biomarkers for Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD), with emphasis on neuroimaging biomarkers. A systematic review was conducted from existing literature that draws on markers and evidence for new measurement techniques of neuroimaging in AD, MCI and non-demented subjects. Selection criteria included: 1) age ≥ 60 years; 2) diagnosis of AD according to NIAAA criteria, 3) diagnosis of MCI according to NIAAA criteria with a confirmed progression to AD assessed by clinical follow-up, and 4) acceptable clinical measures of cognitive impairment, disability, quality of life, and global clinical assessments. Seventy-two articles were included in the review. With the development of new radioligands of neuroimaging, today it is possible to measure different aspects of AD neuropathology, early diagnosis of MCI and AD become probable from preclinical stage of AD to AD dementia and non-AD dementia. The panel of noninvasive neuroimaging-biomarkers reviewed provides a set methods to measure brain structural and functional pathophysiological changes in vivo, which are closely associated with preclinical AD, MCI and non-AD dementia. The dynamic measures of these imaging biomarkers are used to predict the disease progression in the early stages and improve the assessment of therapeutic efficacy in these diseases in future clinical trials.

  13. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning.

    Science.gov (United States)

    Chein, Jason M; Schneider, Walter

    2005-12-01

    Functional magnetic resonance imaging and a meta-analysis of prior neuroimaging studies were used to characterize cortical changes resulting from extensive practice and to evaluate a dual-processing account of the neural mechanisms underlying human learning. Three core predictions of the dual processing theory are evaluated: 1) that practice elicits generalized reductions in regional activity by reducing the load on the cognitive control mechanisms that scaffold early learning; 2) that these control mechanisms are domain-general; and 3) that no separate processing pathway emerges as skill develops. To evaluate these predictions, a meta-analysis of prior neuroimaging studies and a within-subjects fMRI experiment contrasting unpracticed to practiced performance in a paired-associate task were conducted. The principal effect of practice was found to be a reduction in the extent and magnitude of activity in a cortical network spanning bilateral dorsal prefrontal, left ventral prefrontal, medial frontal (anterior cingulate), left insular, bilateral parietal, and occipito-temporal (fusiform) areas. These activity reductions are shown to occur in common regions across prior neuroimaging studies and for both verbal and nonverbal paired-associate learning in the present fMRI experiment. The implicated network of brain regions is interpreted as a domain-general system engaged specifically to support novice, but not practiced, performance.

  14. Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports.

    Science.gov (United States)

    Fox, Kieran C R; Nijeboer, Savannah; Solomonova, Elizaveta; Domhoff, G William; Christoff, Kalina

    2013-01-01

    Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW) during waking, and dream mentation during sleep. This overlap has encouraged speculation that both "daydreaming" and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI) studies of the default mode network (DMN, with high chances of MW) and rapid eye movement (REM) sleep (with high chances of dreaming). Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC), medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an "intensified" version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal-directed waking thought.

  15. Neuroimaging studies of self-reflection

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying

    2004-01-01

    This paper reviews some basic findings and methodological issues in neuroimaging studies of self-referential processing.As a general rule,making judgments about one's self,inclusive of personality trait adjectives or current mental states(person's prefer ences,norms,aesthetic values and feeling)uniformly generates medial prefrontal activations,regardless of stimulus materials(words or pictures)and modality(visual or auditory).Cingulate activations are also observed in association with most self-referential processing.Methodological issues include treating self-referential processing as either representing one's own personality traits or representing one's own current mental states.Finally,self-referential processing could Be considered as implement of "I think therefore I am" approach to neuroimaging the self.

  16. Terminology development towards harmonizing multiple clinical neuroimaging research repositories.

    Science.gov (United States)

    Turner, Jessica A; Pasquerello, Danielle; Turner, Matthew D; Keator, David B; Alpert, Kathryn; King, Margaret; Landis, Drew; Calhoun, Vince D; Potkin, Steven G; Tallis, Marcelo; Ambite, Jose Luis; Wang, Lei

    2015-07-01

    Data sharing and mediation across disparate neuroimaging repositories requires extensive effort to ensure that the different domains of data types are referred to by commonly agreed upon terms. Within the SchizConnect project, which enables querying across decentralized databases of neuroimaging, clinical, and cognitive data from various studies of schizophrenia, we developed a model for each data domain, identified common usable terms that could be agreed upon across the repositories, and linked them to standard ontological terms where possible. We had the goal of facilitating both the current user experience in querying and future automated computations and reasoning regarding the data. We found that existing terminologies are incomplete for these purposes, even with the history of neuroimaging data sharing in the field; and we provide a model for efforts focused on querying multiple clinical neuroimaging repositories.

  17. 25 years of neuroimaging in amyotrophic lateral sclerosis

    Science.gov (United States)

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  18. Neuropsychological and neuroimaging underpinnings of schizoaffective disorder: a systematic review.

    Science.gov (United States)

    Madre, M; Canales-Rodríguez, E J; Ortiz-Gil, J; Murru, A; Torrent, C; Bramon, E; Perez, V; Orth, M; Brambilla, P; Vieta, E; Amann, B L

    2016-07-01

    The neurobiological basis and nosological status of schizoaffective disorder remains elusive and controversial. This study provides a systematic review of neurocognitive and neuroimaging findings in the disorder. A comprehensive literature search was conducted via PubMed, ScienceDirect, Scopus and Web of Knowledge (from 1949 to 31st March 2015) using the keyword 'schizoaffective disorder' and any of the following terms: 'neuropsychology', 'cognition', 'structural neuroimaging', 'functional neuroimaging', 'multimodal', 'DTI' and 'VBM'. Only studies that explicitly examined a well defined sample, or subsample, of patients with schizoaffective disorder were included. Twenty-two of 43 neuropsychological and 19 of 51 neuroimaging articles fulfilled inclusion criteria. We found a general trend towards schizophrenia and schizoaffective disorder being related to worse cognitive performance than bipolar disorder. Grey matter volume loss in schizoaffective disorder is also more comparable to schizophrenia than to bipolar disorder which seems consistent across further neuroimaging techniques. Neurocognitive and neuroimaging abnormalities in schizoaffective disorder resemble more schizophrenia than bipolar disorder. This is suggestive for schizoaffective disorder being a subtype of schizophrenia or being part of the continuum spectrum model of psychosis, with schizoaffective disorder being more skewed towards schizophrenia than bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Neuroimaging of amblyopia and binocular vision: a review

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-08-01

    Full Text Available Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia. Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarise the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging (fMRI. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence show that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterise the brain response changes associated with these treatments and help devise them.

  20. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  1. Attention and Emotion-Enhanced Memory: A Systematic Review and Meta-Analysis of Behavioural and Neuroimaging Evidence

    OpenAIRE

    Kohler, Mark; Cross, Zachariah; Santamaria, Amanda

    2018-01-01

    The interaction between attention and emotion is posited to influence long-term memory consolidation. We systematically reviewed experiments investigating the influence of attention on emotional memory to determine: (i) the reported effect of attention on memory for emotional stimuli, and (ii) whether there is homogeneity between behavioural and neuroimaging based effects. Over half of the 47 included experiments found a moderate-to-large effect of attention on emotional memory as measured be...

  2. Neuroimaging of love: fMRI meta-analysis evidence toward new perspectives in sexual medicine.

    Science.gov (United States)

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco; Patel, Nisa; Frum, Chris; Lewis, James W

    2010-11-01

    Brain imaging is becoming a powerful tool in the study of human cerebral functions related to close personal relationships. Outside of subcortical structures traditionally thought to be involved in reward-related systems, a wide range of neuroimaging studies in relationship science indicate a prominent role for different cortical networks and cognitive factors. Thus, the field needs a better anatomical/network/whole-brain model to help translate scientific knowledge from lab bench to clinical models and ultimately to the patients suffering from disorders associated with love and couple relationships. The aim of the present review is to provide a review across wide range of functional magnetic resonance imaging (fMRI) studies to critically identify the cortical networks associated with passionate love, and to compare and contrast it with other types of love (such as maternal love and unconditional love for persons with intellectual disabilities). Retrospective review of pertinent neuroimaging literature. Review of published literature on fMRI studies of love illustrating brain regions associated with different forms of love. Although all fMRI studies of love point to the subcortical dopaminergic reward-related brain systems (involving dopamine and oxytocin receptors) for motivating individuals in pair-bonding, the present meta-analysis newly demonstrated that different types of love involve distinct cerebral networks, including those for higher cognitive functions such as social cognition and bodily self-representation. These metaresults provide the first stages of a global neuroanatomical model of cortical networks involved in emotions related to different aspects of love. Developing this model in future studies should be helpful for advancing clinical approaches helpful in sexual medicine and couple therapy. © 2010 International Society for Sexual Medicine.

  3. Neuroimaging Studies of Essential Tremor: How Well Do These Studies Support/Refute the Neurodegenerative Hypothesis?

    Directory of Open Access Journals (Sweden)

    Elan D. Louis

    2014-05-01

    Full Text Available Background: Tissue‐based research has recently led to a new patho‐mechanistic model of essential tremor (ET—the cerebellar degenerative model. We are not aware of a study that has reviewed the current neuroimaging evidence, focusing on whether the studies support or refute the neurodegenerative hypothesis of ET. This was our aim.Methods: References for this review were identified by searches of PubMed (1966 to February 2014.Results: Several neuroimaging methods have been used to study ET, most of them based on magnetic resonance imaging (MRI. The methods most specific to address the question of neurodegeneration are MRI‐based volumetry, magnetic resonance spectroscopy, and diffusion‐weighted imaging. Studies using each of these methods provide support for the presence of cerebellar degeneration in ET, finding reduced cerebellar brain volumes, consistent decreases in cerebellar N‐acetylaspartate, and increased mean diffusivity. Other neuroimaging techniques, such as functional MRI and positron emission tomography (PET are less specific, but still sensitive to potential neurodegeneration. These techniques are used for measuring a variety of brain functions and their impairment. Studies using these modalities also largely support cerebellar neuronal impairment. In particular, changes in 11C‐flumazenil binding in PET studies and changes in iron deposition in an MRI study provide evidence along these lines. The composite data point to neuronal impairment and likely neuronal degeneration in ET.Discussion: Recent years have seen a marked increase in the number of imaging studies of ET. As a whole, the combined data provide support for the presence of cerebellar neuronal degeneration in this disease.

  4. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  5. Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls

    Science.gov (United States)

    Arbabshirani, Mohammad R.; Plis, Sergey; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need

  6. Evolving Evidence for the Value of Neuroimaging Methods and Biological Markers in Subjects Categorized with Subjective Cognitive Decline.

    Science.gov (United States)

    Lista, Simone; Molinuevo, Jose L; Cavedo, Enrica; Rami, Lorena; Amouyel, Philippe; Teipel, Stefan J; Garaci, Francesco; Toschi, Nicola; Habert, Marie-Odile; Blennow, Kaj; Zetterberg, Henrik; O'Bryant, Sid E; Johnson, Leigh; Galluzzi, Samantha; Bokde, Arun L W; Broich, Karl; Herholz, Karl; Bakardjian, Hovagim; Dubois, Bruno; Jessen, Frank; Carrillo, Maria C; Aisen, Paul S; Hampel, Harald

    2015-09-24

    There is evolving evidence that individuals categorized with subjective cognitive decline (SCD) are potentially at higher risk for developing objective and progressive cognitive impairment compared to cognitively healthy individuals without apparent subjective complaints. Interestingly, SCD, during advancing preclinical Alzheimer's disease (AD), may denote very early, subtle cognitive decline that cannot be identified using established standardized tests of cognitive performance. The substantial heterogeneity of existing SCD-related research data has led the Subjective Cognitive Decline Initiative (SCD-I) to accomplish an international consensus on the definition of a conceptual research framework on SCD in preclinical AD. In the area of biological markers, the cerebrospinal fluid signature of AD has been reported to be more prevalent in subjects with SCD compared to healthy controls; moreover, there is a pronounced atrophy, as demonstrated by magnetic resonance imaging, and an increased hypometabolism, as revealed by positron emission tomography, in characteristic brain regions affected by AD. In addition, SCD individuals carrying an apolipoprotein ɛ4 allele are more likely to display AD-phenotypic alterations. The urgent requirement to detect and diagnose AD as early as possible has led to the critical examination of the diagnostic power of biological markers, neurophysiology, and neuroimaging methods for AD-related risk and clinical progression in individuals defined with SCD. Observational studies on the predictive value of SCD for developing AD may potentially be of practical value, and an evidence-based, validated, qualified, and fully operationalized concept may inform clinical diagnostic practice and guide earlier designs in future therapy trials.

  7. Update on neuroimaging phenotypes of mid-hindbrain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Jissendi-Tchofo, Patrice [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); CHU Saint-Pierre, Radiology Department, Pediatric Neuroradiology Section, Brussels (Belgium); Severino, Mariasavina [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Nguema-Edzang, Beatrice; Toure, Cisse; Soto Ares, Gustavo [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); Barkovich, Anthony James [University of California, Neuroradiology Section, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-10-23

    Neuroimaging techniques including structural magnetic resonance imaging (MRI) and functional positron emission tomography (PET) are useful in categorizing various midbrain-hindbrain (MHB) malformations, both in allowing diagnosis and in helping to understand the developmental processes that were disturbed. Brain imaging phenotypes of numerous malformations are characteristic features that help in guiding the genetic testing in case of direct neuroimaging-genotype correlation or, at least, to differentiate among MHB malformations entities. The present review aims to provide the reader with an update of the use of neuroimaging applications in the fine analysis of MHB malformations, using a comprehensive, recently proposed developmental and genetic classification. We have performed an extensive systematic review of the literature, from the embryology main steps of MHB development through the malformations entities, with regard to their molecular and genetic basis, conventional MRI features, and other neuroimaging characteristics. We discuss disorders in which imaging features are distinctive and how these features reflect the structural and functional impairment of the brain. Recognition of specific MRI phenotypes, including advanced imaging features, is useful to recognize the MHB malformation entities, to suggest genetic investigations, and, eventually, to monitor the disease outcome after supportive therapies. (orig.)

  8. Nipype: A flexible, lightweight and extensible neuroimaging data processing framework

    Directory of Open Access Journals (Sweden)

    Krzysztof eGorgolewski

    2011-08-01

    Full Text Available Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM are used to process and analyze large and often diverse (highly multi-dimensional data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient and optimal use of neuroimaging analysis approaches: 1 No uniform access to neuroimaging analysis software and usage information; 2 No framework for comparative algorithm development and dissemination; 3 Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; 4 Neuroimaging software packages do not address computational efficiency; and 5 Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype, an open-source, community-developed, software package and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is BSD licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.

  9. Linking variability in brain chemistry and circuit function through multimodal human neuroimaging

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, A R

    2012-01-01

    and dopamine system and its effects on threat- and reward-related brain function, we review evidence for how such a multimodal neuroimaging strategy can be successfully implemented. Furthermore, we discuss how multimodal PET-fMRI can be integrated with techniques such as imaging genetics, pharmacological......Identifying neurobiological mechanisms mediating the emergence of individual differences in behavior is critical for advancing our understanding of relative risk for psychopathology. Neuroreceptor positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) can be used...

  10. The blood-brain barrier is intact after levodopa-induced dyskinesias in parkinsonian primates--evidence from in vivo neuroimaging studies

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Jenkins, Bruce G; Choi, Ji-Kyung

    2009-01-01

    It has been suggested, based on rodent studies, that levodopa (L-dopa) induced dyskinesia is associated with a disrupted blood-brain barrier (BBB). We have investigated BBB integrity with in vivo neuroimaging techniques in six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned primates...

  11. NeuroDebian Virtual Machine Deployment Facilitates Trainee-Driven Bedside Neuroimaging Research.

    Science.gov (United States)

    Cohen, Alexander; Kenney-Jung, Daniel; Botha, Hugo; Tillema, Jan-Mendelt

    2017-01-01

    Freely available software, derived from the past 2 decades of neuroimaging research, is significantly more flexible for research purposes than presently available clinical tools. Here, we describe and demonstrate the utility of rapidly deployable analysis software to facilitate trainee-driven translational neuroimaging research. A recipe and video tutorial were created to guide the creation of a NeuroDebian-based virtual computer that conforms to current neuroimaging research standards and can exist within a HIPAA-compliant system. This allows for retrieval of clinical imaging data, conversion to standard file formats, and rapid visualization and quantification of individual patients' cortical and subcortical anatomy. As an example, we apply this pipeline to a pediatric patient's data to illustrate the advantages of research-derived neuroimaging tools in asking quantitative questions "at the bedside." Our goal is to provide a path of entry for trainees to become familiar with common neuroimaging tools and foster an increased interest in translational research.

  12. Meeting Curation Challenges in a Neuroimaging Group

    Directory of Open Access Journals (Sweden)

    Angus Whyte

    2008-08-01

    Full Text Available The SCARP project is a series of short studies with two aims; firstly to discover more about disciplinary approaches and attitudes to digital curation through ‘immersion’ in selected cases; secondly to apply known good practice, and where possible, identify new lessons from practice in the selected discipline areas. The study summarised here is of the Neuroimaging Group in the University of Edinburgh’s Division of Psychiatry, which plays a leading role in eScience collaborations to improve the infrastructure for neuroimaging data integration and reuse. The Group also aims to address growing data storage and curation needs, given the capabilities afforded by new infrastructure. The study briefly reviews the policy context and current challenges to data integration and sharing in the neuroimaging field. It then describes how curation and preservation risks and opportunities for change were identified throughout the curation lifecycle; and their context appreciated through field study in the research site. The results are consistent with studies of neuroimaging eInfrastructure that emphasise the role of local data sharing and reuse practices. These sustain mutual awareness of datasets and experimental protocols through sharing peer to peer, and among senior researchers and students, enabling continuity in research and flexibility in project work. This “human infrastructure” is taken into account in considering next steps for curation and preservation of the Group’s datasets and a phased approach to supporting data documentation.

  13. Functional neuroimaging of emotional learning and autonomic reactions.

    Science.gov (United States)

    Peper, Martin; Herpers, Martin; Spreer, Joachim; Hennig, Jürgen; Zentner, Josef

    2006-06-01

    This article provides a selective overview of the functional neuroimaging literature with an emphasis on emotional activation processes. Emotions are fast and flexible response systems that provide basic tendencies for adaptive action. From the range of involved component functions, we first discuss selected automatic mechanisms that control basic adaptational changes. Second, we illustrate how neuroimaging work has contributed to the mapping of the network components associated with basic emotion families (fear, anger, disgust, happiness), and secondary dimensional concepts that organise the meaning space for subjective experience and verbal labels (emotional valence, activity/intensity, approach/withdrawal, etc.). Third, results and methodological difficulties are discussed in view of own neuroimaging experiments that investigated the component functions involved in emotional learning. The amygdala, prefrontal cortex, and striatum form a network of reciprocal connections that show topographically distinct patterns of activity as a correlate of up and down regulation processes during an emotional episode. Emotional modulations of other brain systems have attracted recent research interests. Emotional neuroimaging calls for more representative designs that highlight the modulatory influences of regulation strategies and socio-cultural factors responsible for inhibitory control and extinction. We conclude by emphasising the relevance of the temporal process dynamics of emotional activations that may provide improved prediction of individual differences in emotionality.

  14. Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.

    Science.gov (United States)

    Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn

    2013-11-01

    The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.

  15. Do acquisitions by electric utility companies create value? Evidence from deregulated markets

    International Nuclear Information System (INIS)

    Kishimoto, Jo; Goto, Mika; Inoue, Kotaro

    2017-01-01

    In the early 1990s, the United Kingdom (the UK) initiated widespread reforms in the electricity industry through a series of market liberalization policies. Several other countries have subsequently followed the lead and restructured their electricity industry. A major outcome of the deregulation effort is the spate of takeovers, both domestic and global, by electric utility companies. With the entry of new players and increasing competition, the business environment of the electricity industry has changed dramatically. This study analyzes the economic impact of mergers and acquisitions (M&As) in the electric utility industry after deregulation. We have examined acquisitions that took place between 1998 and 2013 in the United States, Canada, the UK, Germany, and France. Although previous studies showed no evidence of a positive effect on acquiring firms through M&As, we find that acquisitions by electric utility companies increased the acquiring firms’ share value and improved their operating performance, primarily through efficiency gains after the deregulation. These results are consistent with the empirical evidence and implications presented by Andrade et al. (2001) that M&A created value for the shareholders of the acquiring and target combined firms. - Highlights: • This study examined mergers and acquisitions (M&A) in electric utility industry. • The sample covered M&A between 1998 and 2013 in North America and Europe. • We found M&A significantly increased acquiring firms’ share value and operating performance. • Deregulation policy realized gains for shareholders without incurring costs for consumers.

  16. Finding related functional neuroimaging volumes

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2004-01-01

    We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving ea...

  17. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    Science.gov (United States)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  18. Looking inside the brain the power of neuroimaging

    CERN Document Server

    Le Bihan, Denis

    2014-01-01

    It is now possible to witness human brain activity while we are talking, reading, or thinking, thanks to revolutionary neuroimaging techniques like magnetic resonance imaging (MRI). These groundbreaking advances have opened infinite fields of investigation—into such areas as musical perception, brain development in utero, and faulty brain connections leading to psychiatric disorders—and have raised unprecedented ethical issues. In Looking Inside the Brain, one of the leading pioneers of the field, Denis Le Bihan, offers an engaging account of the sophisticated interdisciplinary research in physics, neuroscience, and medicine that have led to the remarkable neuroimaging methods that give us a detailed look into the human brain. Introducing neurological anatomy and physiology, Le Bihan walks readers through the historical evolution of imaging technology—from the x-ray and CT scan to the PET scan and MRI—and he explains how neuroimaging uncovers afflictions like stroke or cancer and the workings of high...

  19. The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome.

    Science.gov (United States)

    Manley, Andrew T; Maertens, Paul M

    2015-01-01

    By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound. Copyright © 2014 by the American Society of Neuroimaging.

  20. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE

    Directory of Open Access Journals (Sweden)

    Mark eSundman

    2015-09-01

    Full Text Available Traumatic brain injury (TBI has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE. The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc., and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau, review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.

  1. Responsible Reporting: Neuroimaging News in the Age of Responsible Research and Innovation.

    Science.gov (United States)

    de Jong, Irja Marije; Kupper, Frank; Arentshorst, Marlous; Broerse, Jacqueline

    2016-08-01

    Besides offering opportunities in both clinical and non-clinical domains, the application of novel neuroimaging technologies raises pressing dilemmas. 'Responsible Research and Innovation' (RRI) aims to stimulate research and innovation activities that take ethical and social considerations into account from the outset. We previously identified that Dutch neuroscientists interpret "responsible innovation" as educating the public on neuroimaging technologies via the popular press. Their aim is to mitigate (neuro)hype, an aim shared with the wider emerging RRI community. Here, we present results of a media-analysis undertaken to establish whether the body of articles in the Dutch popular press presents balanced conversations on neuroimaging research to the public. We found that reporting was mostly positive and framed in terms of (healthcare) progress. There was rarely a balance between technology opportunities and limitations, and even fewer articles addressed societal or ethical aspects of neuroimaging research. Furthermore, neuroimaging metaphors seem to favour oversimplification. Current reporting is therefore more likely to enable hype than to mitigate it. How can neuroscientists, given their self-ascribed social responsibility, address this conundrum? We make a case for a collective and shared responsibility among neuroscientists, journalists and other stakeholders, including funders, committed to responsible reporting on neuroimaging research.

  2. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model. In this ...

  3. When Should Neuroimaging be Applied in the Criminal Court?

    DEFF Research Database (Denmark)

    Ryberg, Jesper

    2014-01-01

    When does neuroimaging constitute a sufficiently developed technology to be put into use in the work of determining whether or not a defendant is guilty of crime? This question constitutes the starting point of the present paper. First, it is suggested that an overall answer is provided by what i......-suited for delivering the sort of theoretical guidance that is required for assessing the desirability of using neuroimaging in the work of the criminal court....

  4. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    International Nuclear Information System (INIS)

    Lavoie-Courchesne, S; Chouinard-Decorte, F; Doyon, J; Bellec, P; Rioux, P; Sherif, T; Rousseau, M-E; Das, S; Adalat, R; Evans, A C; Craddock, C; Margulies, D; Chu, C; Lyttelton, O

    2012-01-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  5. Neurobiological narratives: Experiences of mood disorder through the lens of neuroimaging

    DEFF Research Database (Denmark)

    Buchman, Daniel Z; Borgelt, Emily L; Whiteley, Louise Emma

    2013-01-01

    of receiving neuroimaging for prediction, diagnosis and planning treatment. The participants discussed the potential role of neuroimages in (i) mitigating stigma; (ii) supporting morally loaded explanations of mental illness due to an imbalance of brain chemistry; (iii) legitimising psychiatric symptoms, which...... illness view functional neuroimaging, or of the potential psychological impacts of its clinical use. We conducted 12 semi-structured interviews with adults diagnosed with major depression or bipolar disorder, probing their experiences with mental health care and their perspectives on the prospect...... to biologisation of mental illness, and argue for bringing these voices into upstream ethics discussion....

  6. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sleep Deprivation Promotes Habitual Control over Goal-Directed Control: Behavioral and Neuroimaging Evidence.

    Science.gov (United States)

    Chen, Jie; Liang, Jie; Lin, Xiao; Zhang, Yang; Zhang, Yan; Lu, Lin; Shi, Jie

    2017-12-06

    Sleep is one of the most fundamental processes of life, playing an important role in the regulation of brain function. The long-term lack of sleep can cause memory impairments, declines in learning ability, and executive dysfunction. In the present study, we evaluated the effects of sleep deprivation on instrumental learning behavior, particularly goal-directed and habitual actions in humans, and investigated the underlying neural mechanisms. Healthy college students of either gender were enrolled and randomly divided into sleep deprivation group and sleep control group. fMRI data were collected. We found that one night of sleep deprivation led to greater responsiveness to stimuli that were associated with devalued outcomes in the slips-of-action test, indicating a deficit in the formation of goal-directed control and an overreliance on habits. Furthermore, sleep deprivation had no effect on the expression of acquired goal-directed action. The level of goal-directed action after sleep deprivation was positively correlated with baseline working memory capacity. The neuroimaging data indicated that goal-directed learning mainly recruited the ventromedial PFC (vmPFC), the activation of which was less pronounced during goal-directed learning after sleep deprivation. Activation of the vmPFC during goal-directed learning during training was positively correlated with the level of goal-directed action performance. The present study suggests that people rely predominantly on habits at the expense of goal-directed control after sleep deprivation, and this process involves the vmPFC. These results contribute to a better understanding of the effects of sleep loss on decision-making. SIGNIFICANCE STATEMENT Understanding the cognitive consequences of sleep deprivation has become extremely important over the past half century, given the continued decline in sleep duration in industrialized societies. Our results provide novel evidence that goal-directed action may be

  8. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  9. Demand Response in U.S. Electricity Markets: Empirical Evidence

    OpenAIRE

    Cappers, Peter

    2009-01-01

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in ...

  10. Efeitos cerebrais da maconha: resultados dos estudos de neuroimagem Brain effects of cannabis: neuroimaging findings

    Directory of Open Access Journals (Sweden)

    José Alexandre Crippa

    2005-03-01

    Full Text Available A maconha é a droga ilícita mais utilizada. Apesar disto, apenas um pequeno número de estudos investigaram as conseqüências neurotóxicas de longo prazo do uso de cannabis. As técnicas de neuroimagem se constituem em poderosos instrumentos para investigar alterações neuroanatômicas e neurofuncionais e suas correlações clínicas e neuropsicológicas. Uma revisão computadorizada da literatura foi conduzida nos indexadores MEDLINE e PsycLIT entre 1966 e novembro de 2004 com os termos 'cannabis', 'marijuana', 'neuroimaging', 'magnetic resonance', 'computed tomography', 'positron emission tomography', 'single photon emission computed tomography", 'SPET', 'MRI' e 'CT'. Estudos de neuroimagem estrutural apresentam resultados conflitantes, com a maioria dos estudos não relatando atrofia cerebral ou alterações volumétricas regionais. Contudo, há uma pequena evidência de que usuários de longo prazo que iniciaram um uso regular no início da adolescência apresentam atrofia cerebral assim como redução na substância cinzenta. Estudos de neuroimagem funcional relatam aumento na atividade neural em regiões que podem estar relacionadas com intoxicação por cannabis e alteração do humor (lobos frontais mesial e orbital e redução na atividade de regiões relacionadas com funções cognitivas prejudicadas durante a intoxicação aguda. A questão crucial se efeitos neurotóxicos residuais ocorrem após o uso prolongado e regular de maconha permanece obscura, não existindo até então estudo endereçando esta questão diretamente. Estudos de neuroimagem com melhores desenhos, combinados com avaliação cognitiva, podem ser elucidativos neste aspecto.Cannabis is the most widely used illicit drug. Despite this, only a small number of studies have investigated the long-term neurotoxic consequences of cannabis use. Structural and functional neuroimaging techniques are powerful research tools to investigate possible cannabis

  11. Running Neuroimaging Applications on Amazon Web Services: How, When, and at What Cost?

    Directory of Open Access Journals (Sweden)

    Tara M. Madhyastha

    2017-11-01

    Full Text Available The contribution of this paper is to identify and describe current best practices for using Amazon Web Services (AWS to execute neuroimaging workflows “in the cloud.” Neuroimaging offers a vast set of techniques by which to interrogate the structure and function of the living brain. However, many of the scientists for whom neuroimaging is an extremely important tool have limited training in parallel computation. At the same time, the field is experiencing a surge in computational demands, driven by a combination of data-sharing efforts, improvements in scanner technology that allow acquisition of images with higher image resolution, and by the desire to use statistical techniques that stress processing requirements. Most neuroimaging workflows can be executed as independent parallel jobs and are therefore excellent candidates for running on AWS, but the overhead of learning to do so and determining whether it is worth the cost can be prohibitive. In this paper we describe how to identify neuroimaging workloads that are appropriate for running on AWS, how to benchmark execution time, and how to estimate cost of running on AWS. By benchmarking common neuroimaging applications, we show that cloud computing can be a viable alternative to on-premises hardware. We present guidelines that neuroimaging labs can use to provide a cluster-on-demand type of service that should be familiar to users, and scripts to estimate cost and create such a cluster.

  12. What do people with dementia and their carers want to know about neuroimaging for dementia?

    Science.gov (United States)

    Featherstone, Hannah; Butler, Marie-Louise; Ciblis, Aurelia; Bokde, Arun L; Mullins, Paul G; McNulty, Jonathan P

    2017-05-01

    Neuroimaging forms an important part of dementia diagnosis. Provision of information on neuroimaging to people with dementia and their carers may aid understanding of the pathological, physiological and psychosocial changes of the disease, and increase understanding of symptoms. This qualitative study aimed to investigate participants' knowledge of the dementia diagnosis pathway, their understanding of neuroimaging and its use in diagnosis, and to determine content requirements for a website providing neuroimaging information. Structured interviews and a focus group were conducted with carers and people with dementia. The findings demonstrate an unmet need for information on neuroimaging both before and after the examination. Carers were keen to know about neuroimaging at a practical and technical level to help avoid diagnosis denial. People with dementia requested greater information, but with a caveat to avoid overwhelming detail, and were less likely to favour an Internet resource.

  13. Diagnostic and therapeutic utility of neuroimaging in depression: an overview.

    Science.gov (United States)

    Wise, Toby; Cleare, Anthony J; Herane, Andrés; Young, Allan H; Arnone, Danilo

    2014-01-01

    A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, "machine learning" methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level.

  14. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    Science.gov (United States)

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  15. Functional Neuroimaging in Psychopathy.

    Science.gov (United States)

    Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Di Pietro, Simone; Alessi, Maria Chiara; Di Cesare, Gianluigi; Criscuolo, Silvia; De Rossi, Pietro; Tatarelli, Roberto; Girardi, Paolo; Ferracuti, Stefano

    2015-01-01

    Psychopathy is associated with cognitive and affective deficits causing disruptive, harmful and selfish behaviour. These have considerable societal costs due to recurrent crime and property damage. A better understanding of the neurobiological bases of psychopathy could improve therapeutic interventions, reducing the related social costs. To analyse the major functional neural correlates of psychopathy, we reviewed functional neuroimaging studies conducted on persons with this condition. We searched the PubMed database for papers dealing with functional neuroimaging and psychopathy, with a specific focus on how neural functional changes may correlate with task performances and human behaviour. Psychopathy-related behavioural disorders consistently correlated with dysfunctions in brain areas of the orbitofrontal-limbic (emotional processing and somatic reaction to emotions; behavioural planning and responsibility taking), anterior cingulate-orbitofrontal (correct assignment of emotional valence to social stimuli; violent/aggressive behaviour and challenging attitude) and prefrontal-temporal-limbic (emotional stimuli processing/response) networks. Dysfunctional areas more consistently included the inferior frontal, orbitofrontal, dorsolateral prefrontal, ventromedial prefrontal, temporal (mainly the superior temporal sulcus) and cingulated cortices, the insula, amygdala, ventral striatum and other basal ganglia. Emotional processing and learning, and several social and affective decision-making functions are impaired in psychopathy, which correlates with specific changes in neural functions. © 2015 S. Karger AG, Basel.

  16. Neuroimaging of Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2005-01-01

    Main purposes of neuroimaging in Alzheimer's disease have been moved from diagnosis of advanced Alzheimer's disease to diagnosis of very early Alzheimer's disease at a prodromal stage of mild cognitive impairment, prediction of conversion from mild cognitive impairment to Alzheimer's disease, and differential diagnosis from other diseases causing dementia. Structural MRI studies and functional studies using fluorodeoxyglucose (FDG)-PET and brain perfusion SPECT are widely used in diagnosis of Alzheimer's disease. Outstanding progress in diagnostic accuracy of these neuroimaging modalities has been obtained using statistical analysis on a voxel-by-voxel basis after spatial normalization of individual scans to a standardized brain-volume template instead of visual inspection or a conventional region of interest technique. In a very early stage of Alzheimer's disease, this statistical approach revealed gray matter loss in the entorhinal and hippocampal areas and hypometabolism or hypoperfusion in the posterior cingulate cortex. These two findings might be related in view of anatomical knowledge that the regions are linked through the circuit of Papez. This statistical approach also offers accurate evaluation of therapeutical effects on brain metabolism or perfusion. The latest development in functional imaging relates to the final pathological hallmark of Alzheimer's disease-amyloid plaques. Amyloid imaging might be an important surrogate marker for trials of disease-modifying agents. (author)

  17. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    Science.gov (United States)

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  18. Diagnostic and therapeutic utility of neuroimaging in depression: an overview

    Directory of Open Access Journals (Sweden)

    Wise T

    2014-08-01

    Full Text Available Toby Wise,1 Anthony J Cleare,1 Andrés Herane,1,2 Allan H Young,1 Danilo Arnone1 1King’s College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom; 2Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile Abstract: A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, “machine learning” methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level. Keywords: depression, mood disorder, neuroimaging, diagnosis, treatment

  19. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.

    Science.gov (United States)

    Nemoto, Kiyotaka; Dan, Ippeita; Rorden, Christopher; Ohnishi, Takashi; Tsuzuki, Daisuke; Okamoto, Masako; Yamashita, Fumio; Asada, Takashi

    2011-01-25

    A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites.

  20. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016.

    Science.gov (United States)

    Etchell, Andrew C; Civier, Oren; Ballard, Kirrie J; Sowman, Paul F

    2018-03-01

    Stuttering is a disorder that affects millions of people all over the world. Over the past two decades, there has been a great deal of interest in investigating the neural basis of the disorder. This systematic literature review is intended to provide a comprehensive summary of the neuroimaging literature on developmental stuttering. It is a resource for researchers to quickly and easily identify relevant studies for their areas of interest and enable them to determine the most appropriate methodology to utilize in their work. The review also highlights gaps in the literature in terms of methodology and areas of research. We conducted a systematic literature review on neuroimaging studies on developmental stuttering according to the PRISMA guidelines. We searched for articles in the pubmed database containing "stuttering" OR "stammering" AND either "MRI", "PET", "EEG", "MEG", "TMS"or "brain" that were published between 1995/​01/​01 and 2016/​01/​01. The search returned a total of 359 items with an additional 26 identified from a manual search. Of these, there were a total of 111 full text articles that met criteria for inclusion in the systematic literature review. We also discuss neuroimaging studies on developmental stuttering published throughout 2016. The discussion of the results is organized first by methodology and second by population (i.e., adults or children) and includes tables that contain all items returned by the search. There are widespread abnormalities in the structural architecture and functional organization of the brains of adults and children who stutter. These are evident not only in speech tasks, but also non-speech tasks. Future research should make greater use of functional neuroimaging and noninvasive brain stimulation, and employ structural methodologies that have greater sensitivity. Newly planned studies should also investigate sex differences, focus on augmenting treatment, examine moments of dysfluency and longitudinally or

  1. Recent progress of neuroimaging studies on sleeping brain

    International Nuclear Information System (INIS)

    Sasaki, Yuka

    2012-01-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed. (author)

  2. [Recent progress of neuroimaging studies on sleeping brain].

    Science.gov (United States)

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  3. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  4. ORIGINAL ARTICLE EEG changes and neuroimaging abnormalities ...

    African Journals Online (AJOL)

    salah

    Clinical Genetics Department, Human Genetics & Genome Research Division, ... neuroimaging changes of the brain and EEG abnormalities in correlation to the ... level and by developmental changes2. .... for IQ as a confounding factor.30.

  5. The electricity consumption and economic growth nexus: Evidence from Greece

    International Nuclear Information System (INIS)

    Polemis, Michael L.; Dagoumas, Athanasios S.

    2013-01-01

    This paper attempts to cast light into the relationship between electricity consumption and economic growth in Greece in a multivariate framework. For this purpose we used cointegration techniques and the vector error correction model in order to capture short-run and long-run dynamics over the sample period 1970–2011. The empirical results reveal that in the long-run electricity demand appears to be price inelastic and income elastic, while in the short-run the relevant elasticities are below unity. We also argue that the causal relationship between electricity consumption and economic growth in Greece is bi-directional. Our results strengthen the notion that Greece is an energy dependent country and well directed energy conservation policies could even boost economic growth. Furthermore, the implementation of renewable energy sources should provide significant benefits ensuring sufficient security of supply in the Greek energy system. This evidence can provide a new basis for discussion on the appropriate design and implementation of environmental and energy policies for Greece and other medium sized economies with similar characteristics. -- Highlights: •We examine the causality between electricity consumption and economic growth. •We used cointegration techniques to capture short-run and long-run dynamics. •The relationship between electricity consumption and GDP is bi-directional. •Residential energy switching in Greece is still limited. •The implementation of renewable energy sources should ensure security of supply

  6. PET radioligand injection for pig neuroimaging

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Munk, Ole Lajord; Landau, Anne M.

    2018-01-01

    Pigs are useful models in neuroimaging studies with positron emission tomography. Radiolabeled ligands are injected intravenously at the start of the scan and in pigs, the most easily accessible route of administration is the ear vein. However, in brain studies the short distance between the brai...

  7. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  8. What's new in neuroimaging methods?

    Science.gov (United States)

    Bandettini, Peter A.

    2009-01-01

    The rapid advancement of neuroimaging methodology and availability has transformed neuroscience research. The answers to many questions that we ask about how the brain is organized depend on the quality of data that we are able to obtain about the locations, dynamics, fluctuations, magnitudes, and types of brain activity and structural changes. In this review, an attempt is made to take a snapshot of the cutting edge of a small component of the very rapidly evolving field of neuroimaging. For each area covered, a brief context is provided along with a summary of a few of the current developments and issues. Then, several outstanding papers, published in the past year or so, are described, providing an example of the directions in which each area is progressing. The areas covered include functional MRI (fMRI), voxel based morphometry (VBM), diffusion tensor imaging (DTI), electroencephalography (EEG), magnetoencephalography (MEG), optical imaging, and positron emission tomography (PET). More detail is included on fMRI, as subsections include: functional MRI interpretation, new functional MRI contrasts, MRI technology, MRI paradigms and processing, and endogenous oscillations in functional MRI. PMID:19338512

  9. Online open neuroimaging mass meta-analysis

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Kempton, Matthew J.; Williams, Steven C. R.

    We describe a system for meta-analysis where a wiki stores numerical data in a simple format and a web service performs the numerical computation. We initially apply the system on multiple meta-analyses of structural neuroimaging data results. The described system allows for mass meta-analysis, e...

  10. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    Science.gov (United States)

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  11. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations

    Directory of Open Access Journals (Sweden)

    Lawrence Leung

    2013-01-01

    Full Text Available With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract with a suggested protocol of approach.

  12. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations.

    Science.gov (United States)

    Leung, Lawrence

    2013-01-01

    With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing) and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract) with a suggested protocol of approach.

  13. Neuroimaging of person perception: A social-visual interface.

    Science.gov (United States)

    Brooks, Jeffrey A; Freeman, Jonathan B

    2017-12-21

    The visual system is able to extract an enormous amount of socially relevant information from the face, including social categories, personality traits, and emotion. While facial features may be directly tied to certain perceptions, emerging research suggests that top-down social cognitive factors (e.g., stereotypes, social-conceptual knowledge, prejudice) considerably influence and shape the perceptual process. The rapid integration of higher-order social cognitive processes into visual perception can give rise to systematic biases in face perception and may potentially act as a mediating factor for intergroup behavioral and evaluative biases. Drawing on neuroimaging evidence, we review the ways that top-down social cognitive factors shape visual perception of facial features. This emerging work in social and affective neuroscience builds upon work on predictive coding and perceptual priors in cognitive neuroscience and visual cognition, suggesting domain-general mechanisms that underlie a social-visual interface through which social cognition affects visual perception. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hirayama disease: diagnostic essentials in neuroimaging.

    Science.gov (United States)

    Kapetanakis, Stylianos; Chourmouzi, Danae; Terzoudi, Aikaterini; Georgiou, Nikiforos; Giovannopoulou, Eirini

    2017-12-01

    A 22-year-old male presented with progressive muscular weakness of the upper extremities. MRI of the cervical spine established the final diagnosis of Hirayama disease (HD). HD is a rare disease with benign progress. Neurologists and radiologists should be aware of the specific neuroimaging signs of this rare clinical entity.

  15. Cross-View Neuroimage Pattern Analysis for Alzheimer's Disease Staging

    Directory of Open Access Journals (Sweden)

    Sidong eLiu

    2016-02-01

    Full Text Available The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer's disease (AD, is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed 9 types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.

  16. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  17. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  18. Functional neuroimaging in Tourette syndrome: recent perspectives

    Directory of Open Access Journals (Sweden)

    Debes NM

    2017-04-01

    Full Text Available Nanette Mol Debes, Marie Préel, Liselotte Skov Pediatric Department, Tourette Clinic, Herlev University Hospital, Herlev, DenmarkAbstract: The most recent functional neuroimaging studies on Tourette syndrome (TS are reviewed in this paper. Although it can be difficult to compare functional neuroimaging studies due to differences in methods, differences in age of the included subjects, and differences in the extent to which the presence of comorbidity, medical treatment, and severity of tics are considered in the various studies; most studies show that the cortico-striato-thalamo-cortical circuit seems to be involved in the generation of tics. Changes in this circuit seem to be correlated with tic severity. Correlations have been found between the presence of tics and hypermetabolism in various brain regions. Abnormalities of GABAergic, serotonergic, and dopaminergic neurotransmission in patients with TS have been suggested. During tic suppression, increased activity in the inferior frontal gyrus is seen. The premotor cortex might be involved in inhibition of motor control in subjects with TS. The right anterior insula is suggested to be a part of the urge–tic network. Several studies have shown altered motor network activations and sensorimotor gating deficits in subjects with TS. In future studies, inclusion of more well-defined subjects and further examination of premonitory urge and tic suppression is needed in order to increase the knowledge about the pathophysiology and treatment possibilities of TS. Keywords: functional neuroimaging, Tourette syndrome

  19. Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging

    International Nuclear Information System (INIS)

    Kulkami, Makarand

    2011-01-01

    Full text: High spatial resolution is one of the major problems in neuroimaging, par ticularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve patholo gies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.

  20. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases.

    Science.gov (United States)

    Cole, James H

    2018-07-01

    The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health. © 2018 WILEY Periodicals, Inc.

  1. Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies.

    Science.gov (United States)

    Sharma, Anup; Newberg, Andrew B

    Mind-Body practices constitute a large and diverse group of practices that can substantially affect neurophysiology in both healthy individuals and those with various psychiatric disorders. In spite of the growing literature on the clinical and physiological effects of mind-body practices, very little is known about their impact on central nervous system (CNS) structure and function in adolescents with psychiatric disorders. This overview highlights findings in a select group of mind-body practices including yoga postures, yoga breathing techniques and meditation practices. Mind-body practices offer novel therapeutic approaches for adolescents with psychiatric disorders. Findings from these studies provide insights into the design and implementation of neuroimaging studies for adolescents with psychiatric disorders. Clinical neuroimaging studies will be critical in understanding how different practices affect disease pathogenesis and symptomatology in adolescents. Neuroimaging of mind-body practices on adolescents with psychiatric disorders will certainly be an open and exciting area of investigation.

  2. Conceptual and methodological challenges for neuroimaging studies of autistic spectrum disorders

    OpenAIRE

    Mazzone, Luigi; Curatolo, Paolo

    2010-01-01

    Abstract Autistic Spectrum Disorders (ASDs) are a set of complex developmental disabilities defined by impairment in social interaction and communication, as well as by restricted interests or repetitive behaviors. Neuroimaging studies have substantially advanced our understanding of the neural mechanisms that underlie the core symptoms of ASDs. Nevertheless, a number of challenges still remain in the application of neuroimaging techniques to the study of ASDs. We review three major conceptua...

  3. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Science.gov (United States)

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  4. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Directory of Open Access Journals (Sweden)

    Anwar S. Shatil

    2015-01-01

    Full Text Available With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1 inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2 highlight their main advantages; 3 discuss when it may (and may not be advisable to use them; 4 review some of their potential problems and barriers to access; and finally 5 give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc., a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  5. The search for neuroimaging and cognitive endophenotypes

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W.; Kjærstad, Hanne L; Meluken, Iselin

    2017-01-01

    and structural neuroimaging. Seventy-seven cross-sectional studies met the inclusion criteria. The present review revealed that URs in comparison with HCs showed: (i) widespread deficits in verbal memory, sustained attention, and executive function; (ii) abnormalities in the reactivity to and regulation...

  6. Neuroimaging Measures as Endophenotypes in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Meredith N. Braskie

    2011-01-01

    Full Text Available Late onset Alzheimer's disease (AD is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4 has been replicated consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by which proposed risk factors influence the brain.

  7. Functional neuroimaging in Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2006-01-01

    Recent progress in the title is reviewed often referring to authors' investigations. The method eZIS developed by them is for automated diagnosis of brain perfusion SPECT, where voxel-based analysis can be done using a Z-score map calculable from patient's data and standard database with 3D-stereotactic surface projection. Decreases of regional cerebral blood flow (rCBF) and of glucose metabolism detectable in specified brain regions by PET or SPECT in patients with mild cognitive impairment (MCI), are found useful for predicting the stage progression of MCI to Alzheimer disease (AD) in future. Partial volume correction method, essentially the division of images of a gray matter SPECT by MR, has elevated the precision of cerebral image analysis. Differential diagnosis of AD and dementia with Lewy bodies, the second most common form of dementia, is possible by the difference of occipital perfusion or glucose metabolism. Evidences by rCBF SPECT as well as by symptomatic ones have been accumulated recently for the therapeutic effect of donepezil, an inhibitor of acetylcholine esterase used for AD treatment. PET and SPECT imaging for the assessment of rCBF and metabolism has thus played very important roles in AD diagnosis, staging, differentiation, prediction and drug effect assessment. Recent advance in voxel-based statistical analysis of PET and SPECT images has raised the value of neuroimaging in dementia. (T.I.)

  8. The cerebellum and cognition: evidence from functional imaging studies.

    Science.gov (United States)

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  9. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    Science.gov (United States)

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  10. Partial Least Squares tutorial for analyzing neuroimaging data

    Directory of Open Access Journals (Sweden)

    Patricia Van Roon

    2014-09-01

    Full Text Available Partial least squares (PLS has become a respected and meaningful soft modeling analysis technique that can be applied to very large datasets where the number of factors or variables is greater than the number of observations. Current biometric studies (e.g., eye movements, EKG, body movements, EEG are often of this nature. PLS eliminates the multiple linear regression issues of over-fitting data by finding a few underlying or latent variables (factors that account for most of the variation in the data. In real-world applications, where linear models do not always apply, PLS can model the non-linear relationship well. This tutorial introduces two PLS methods, PLS Correlation (PLSC and PLS Regression (PLSR and their applications in data analysis which are illustrated with neuroimaging examples. Both methods provide straightforward and comprehensible techniques for determining and modeling relationships between two multivariate data blocks by finding latent variables that best describes the relationships. In the examples, the PLSC will analyze the relationship between neuroimaging data such as Event-Related Potential (ERP amplitude averages from different locations on the scalp with their corresponding behavioural data. Using the same data, the PLSR will be used to model the relationship between neuroimaging and behavioural data. This model will be able to predict future behaviour solely from available neuroimaging data. To find latent variables, Singular Value Decomposition (SVD for PLSC and Non-linear Iterative PArtial Least Squares (NIPALS for PLSR are implemented in this tutorial. SVD decomposes the large data block into three manageable matrices containing a diagonal set of singular values, as well as left and right singular vectors. For PLSR, NIPALS algorithms are used because it provides amore precise estimation of the latent variables. Mathematica notebooks are provided for each PLS method with clearly labeled sections and subsections. The

  11. Identifying electricity-saving potential in rural China: Empirical evidence from a household survey

    International Nuclear Information System (INIS)

    Yu, Yihua; Guo, Jin

    2016-01-01

    In recent years, there has been a fast-growing body of literature examining energy-saving potential in relation to electricity. However, empirical studies focusing on non-Western nations are limited. To fill this gap, this study intends to examine the electricity-saving potential of rural households in China using a unique data set from the China Residential Electricity Consumption Survey (CRECS) in collaboration with the China General Social Survey (CGSS), conducted nationwide at the household level in rural China. We use a stochastic frontier model, which allows us to decompose residential electricity consumption into the minimum necessary amount of consumption based on physical characteristics (e.g. house size, house age, number of televisions or refrigerators) and estimate the consumption slack (i.e. the amount of electricity consumption that could be saved), which depends on various factors. We find that rural households in China are generally efficient in electricity saving and the saving potential is affected by (fast) information feedback and social-demographic characteristics, instead of by the (averaged) electricity price, or energy efficiency labelling signals. In addition, we find no evidence of regional heterogeneity on electricity saving potential for rural households. Policy implications are derived. - Highlights: •Electricity saving potential of rural households in China is examined. •Unique survey data from the CRECS in collaboration with the CGSS are used. •A stochastic frontier model is applied. •Information feedback and social-demographic characteristics matter. •Electricity price or energy efficiency tier rating does not matter.

  12. Electricity consumption-real GDP causality nexus: Evidence from a bootstrapped causality test for 30 OECD countries

    International Nuclear Information System (INIS)

    Narayan, Paresh Kumar; Prasad, Arti

    2008-01-01

    The goal of this paper is to examine any causal effects between electricity consumption and real GDP for 30 OECD countries. We use a bootstrapped causality testing approach and unravel evidence in favour of electricity consumption causing real GDP in Australia, Iceland, Italy, the Slovak Republic, the Czech Republic, Korea, Portugal, and the UK. The implication is that electricity conservation policies will negatively impact real GDP in these countries. However, for the rest of the 22 countries our findings suggest that electricity conversation policies will not affect real GDP

  13. Reading the Freudian theory of sexual drives from a functional neuroimaging perspective

    Directory of Open Access Journals (Sweden)

    Serge eStoléru

    2014-03-01

    Full Text Available One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentally consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of sexual arousal. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character.

  14. Statistical Challenges in "Big Data" Human Neuroimaging.

    Science.gov (United States)

    Smith, Stephen M; Nichols, Thomas E

    2018-01-17

    Smith and Nichols discuss "big data" human neuroimaging studies, with very large subject numbers and amounts of data. These studies provide great opportunities for making new discoveries about the brain but raise many new analytical challenges and interpretational risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The search for the number form area: A functional neuroimaging meta-analysis.

    Science.gov (United States)

    Yeo, Darren J; Wilkey, Eric D; Price, Gavin R

    2017-07-01

    Recent studies report a putative "number form area" (NFA) in the inferior temporal gyrus (ITG) suggested to be specialized for Arabic numeral processing. However, a number of earlier studies report no such NFA. The reasons for such discrepancies across studies are unclear. To examine evidence for a convergent NFA across studies, we conducted two activation likelihood estimation meta-analyses on 31 and a subset of 20 neuroimaging studies that have contrasted digits with other meaningful symbols. Results suggest the potential existence of an NFA in the right ITG, in addition to a 'symbolic number processing network' comprising bilateral parietal regions, and right-lateralized superior and inferior frontal regions. Critically, convergent localization for the NFA was only evident when contrasts were appropriately controlled for task demands, and does not appear to depend on employing methods designed to overcome fMRI signal dropout in the ITG. Importantly, only five studies had foci within the identified ITG NFA cluster boundary, indicating that more empirical evidence is necessary to determine the true functional specialization and regional specificity of the putative NFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    Science.gov (United States)

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional

  17. Neuroimaging in human MDMA (Ecstasy) users: A cortical model

    Science.gov (United States)

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2009-01-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. MDMA and Ecstasy are often used synonymously but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and non-human primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research. PMID:18991874

  18. Neuroimaging. Recent issues and future progresses

    International Nuclear Information System (INIS)

    Fukuyama, Hidenao

    2002-01-01

    Recent advances in the technology of non-invasive neuroimaging techniques, include X-ray CT, magnetic resonance imaging, positron CT, etc. The trend of neuroimaging is from the diagnosis of the brain structural change to the functional localization of the brain function with accurate topographical data. Brain activation studies disclosed the responsible regions in the brain for various kinds of paradigms, including motor, sensory, cognitive functions. Another aspect of brain imaging shows the pathophysiological changes of the neurological disorders, such as Alzheimer's disease by abnormal CBF or metabolism changes. It is very important to note that the neurotransmitter receptor imaging is now available for various kinds of transmitters. We recently developed a new tracer for nicotinic type acetylcholine receptor, which might be involved in the pathophysiology of Alzheimer's disease and its treatment. In the near future, we will be able to visualize the proteins in the brain such as amyloid protein, which will make us to diagnose Alzheimer's patients accurately, and with respect to neuroscience research, not only neuronal functional localizations but also relationship between them will become important to disclose the functional aspects of the brain. (author)

  19. Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study

    Science.gov (United States)

    Ortigue, Stephanie; Sinigaglia, Corrado; Rizzolatti, Giacomo; Grafton, Scott T.

    2010-01-01

    Background When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. Methodology/Principal Findings Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4) a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. Conclusions/Significance We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network mediates the

  20. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    Science.gov (United States)

    Kuss, Daria J.; Griffiths, Mark D.

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches. PMID:24961198

  1. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2012-09-01

    Full Text Available In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  2. Internet and gaming addiction: a systematic literature review of neuroimaging studies.

    Science.gov (United States)

    Kuss, Daria J; Griffiths, Mark D

    2012-09-05

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  3. Correlation analysis of findings from neuroimaging and histopathology in focal cortical dysplasia

    International Nuclear Information System (INIS)

    Ma Mingping; Fan Jianzhong; Jiang Zirong; Bao Qiang; Du Ruibin; Ritter, J.L.

    2009-01-01

    Objective: To characterize neuroimaging features of focal cortical dysplasia (FCD) retrospectively and correlate those with pathological findings, which may improve our understanding of neuroimaging characteristics of FCD. Methods: Clinical information and neuroimaging findings of 28 cases with FCD proved by pathology were retrospectively reviewed, and neuroimaging features of FCD were correlated with the pathological changes. Results: MRI revealed abnormal changes in 24 of 28 patients (85.7%) and no abnormalities were observed in 4 cases. Focal cortical thickening and blurring of the gray- white matter junction were the major features of FCD on MRI. Accompanied abnormal MR signals can also be observed in cortical or subcortical white matter in FCD. The radial band of hyperintensity in subcortical white matter tapering to the ventricle is one of the characteristic features of FCD on MRI. On FDG-PET examination, focal hypometabolism were revealed in 9 of 14 cases (64.3%). Histologically, cortical dyslamination was accompanied by various degrees of dysmorphic neurons and balloon cells in cortical and subcortical areas. Subcortical white matter dysmyelination and spongiotic necrotic changes were found in some cases with FCD. Conclusion: High resolution MRI can reveal most of the lesions in FCD, including abnormal changes of cortical and subcortical white matter, which makes MRI the best pre-operation examination for FCD. (authors)

  4. Neuroimaging of autism

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, Judith S; Cock, Paul de; Lagae, Lieven [University Hospitals of the Catholic University of Leuven, Department of Pediatrics, Leuven (Belgium); Sunaert, Stefan [University Hospitals of the Catholic University of Leuven, Department of Radiology, Leuven (Belgium)

    2010-01-15

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  5. Neuroimaging of autism

    International Nuclear Information System (INIS)

    Verhoeven, Judith S.; Cock, Paul de; Lagae, Lieven; Sunaert, Stefan

    2010-01-01

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  6. Porcupine : A visual pipeline tool for neuroimaging analysis

    NARCIS (Netherlands)

    van Mourik, Tim; Snoek, Lukas; Knapen, T; Norris, David G

    The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer

  7. SHIWA workflow interoperability solutions for neuroimaging data analysis

    NARCIS (Netherlands)

    Korkhov, Vladimir; Krefting, Dagmar; Montagnat, Johan; Truong Huu, Tram; Kukla, Tamas; Terstyanszky, Gabor; Manset, David; Caan, Matthan; Olabarriaga, Silvia

    2012-01-01

    Neuroimaging is a field that benefits from distributed computing infrastructures (DCIs) to perform data- and compute-intensive processing and analysis. Using grid workflow systems not only automates the processing pipelines, but also enables domain researchers to implement their expertise on how to

  8. The neuroimaging evidence for chronic brain damage due to boxing

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, I.F. [Lysholm Radiological Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2000-01-01

    A number of imaging techniques have been used to investigate changes produced in the brain by boxing. Most morphological studies have failed to show significant correlations between putative abnormalities on imaging and clinical evidence of brain damage. Fenestration of the septum pellucidum, with formation of a cavum, one of the most frequent observations, does not appear to correlate with neurological or physiological evidence of brain damage. Serial studies on large groups may be more informative. Magnetic resonance spectroscopy and cerebral blood flow studies have been reported in only small numbers of boxers; serial studies are not available to date. (orig.)

  9. Electric fields in the magnetosphere - the evidence from ISEE, S3-3, GEOS and Viking

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1988-08-01

    Electric field measurements on the satellites S3-3, GEOS-1, GEOS-2, ISEE-1 and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause the average (dawn to dusk directed) tangential electric field component is typically obscured by irregular fluctuations of large amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region. (93 refs.) (author)

  10. Neuroimaging and advanced social living

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    Background: Snow stated in 1959 a modern conflict between classical hermeneutic humanism and natural science which recently has been renewed by Kensei Hiwaki [2011]. However, the last decade has brought a breakthrough in the study of the neural base of mental processes by neuroimaging which may...... patients. Further, this healing principle explains classical relaxation procedures as yoga and meditation as coping techniques. 2. Mental balance between L(x) and NC is not a continued but a discrete variable of general risk attitude differentiating 4 sub-groups corresponding to the classical tempers which...

  11. Human fear conditioning and extinction in neuroimaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Christina Sehlmeyer

    Full Text Available Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance

  12. EEG changes and neuroimaging abnormalities in relevance to ...

    African Journals Online (AJOL)

    Background: Autism is currently viewed as a genetically determined neurodevelopmental disorder although its defi nite underlying etiology remains to be established. Aim of the Study: Our purpose was to assess autism related morphological neuroimaging changes of the brain and EEG abnormalities in correlation to the ...

  13. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.

  14. Publication trends in neuroimaging of minimally conscious states

    Directory of Open Access Journals (Sweden)

    Alex Garnett

    2013-09-01

    Full Text Available We used existing and customized bibliometric and scientometric methods to analyze publication trends in neuroimaging research of minimally conscious states and describe the domain in terms of its geographic, contributor, and content features. We considered publication rates for the years 2002–2011, author interconnections, the rate at which new authors are added, and the domains that inform the work of author contributors. We also provided a content analysis of clinical and ethical themes within the relevant literature. We found a 27% growth in the number of papers over the period of study, professional diversity among a wide range of peripheral author contributors but only few authors who dominate the field, and few new technical paradigms and clinical themes that would fundamentally expand the landscape. The results inform both the science of consciousness as well as parallel ethics and policy studies of the potential for translational challenges of neuroimaging in research and health care of people with disordered states of consciousness.

  15. Neuroimaging of nonaccidental head trauma: pitfalls and controversies

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Sujan [University of Missouri-Kansas School of Medicine, Department of Medicine, Kansas City, MO (United States); Obaldo, Ruby E. [The University of Kansas Medical Center, Department of Radiology, Kansas City, MO (United States); Walsh, Irene R. [The University of Missouri-Kansas City, Children' s Mercy Hospitals and Clinics, Department of Emergency Medicine, Kansas City, MO (United States); Lowe, Lisa H. [The University of Missouri-Kansas City, Children' s Mercy Hospitals and Clinics, Department of Radiology, Kansas City, MO (United States)

    2008-08-15

    Although certain neuroimaging appearances are highly suggestive of abuse, radiological findings are often nonspecific. The objective of this review is to discuss pitfalls, controversies, and mimics occurring in neuroimaging of nonaccidental head trauma in order to allow the reader to establish an increased level of comfort in distinguishing between nonaccidental and accidental head trauma. Specific topics discussed include risk factors, general biomechanics and imaging strategies in nonaccidental head trauma, followed by the characteristics of skull fractures, normal prominent tentorium and falx versus subdural hematoma, birth trauma versus nonaccidental head trauma, hyperacute versus acute on chronic subdural hematomas, expanded subarachnoid space versus subdural hemorrhage, controversy regarding subdural hematomas associated with benign enlarged subarachnoid spaces, controversy regarding hypoxia as a cause of subdural hematoma and/or retinal hemorrhages without trauma, controversy regarding the significance of retinal hemorrhages related to nonaccidental head trauma, controversy regarding the significance of subdural hematomas in general, and pitfalls of glutaric aciduria type 1 and hemophagocytic lymphohistiocytosis mimicking nonaccidental head trauma. (orig.)

  16. Neuroimaging the Effectiveness of Substance Use Disorder Treatments.

    Science.gov (United States)

    Cabrera, Elizabeth A; Wiers, Corinde E; Lindgren, Elsa; Miller, Gregg; Volkow, Nora D; Wang, Gene-Jack

    2016-09-01

    Neuroimaging techniques to measure the function and biochemistry of the human brain such as positron emission tomography (PET), proton magnetic resonance spectroscopy ((1)H MRS), and functional magnetic resonance imaging (fMRI), are powerful tools for assessing neurobiological mechanisms underlying the response to treatments in substance use disorders. Here, we review the neuroimaging literature on pharmacological and behavioral treatment in substance use disorder. We focus on neural effects of medications that reduce craving (e.g., naltrexone, bupropion hydrochloride, baclofen, methadone, varenicline) and that improve cognitive control (e.g., modafinil, N-acetylcysteine), of behavioral treatments for substance use disorders (e.g., cognitive bias modification training, virtual reality, motivational interventions) and neuromodulatory interventions such as neurofeedback and transcranial magnetic stimulation. A consistent finding for the effectiveness of therapeutic interventions identifies the improvement of executive control networks and the dampening of limbic activation, highlighting their values as targets for therapeutic interventions in substance use disorders.

  17. Multiple comparison procedures for neuroimaging genomewide association studies.

    Science.gov (United States)

    Hua, Wen-Yu; Nichols, Thomas E; Ghosh, Debashis

    2015-01-01

    Recent research in neuroimaging has focused on assessing associations between genetic variants that are measured on a genomewide scale and brain imaging phenotypes. A large number of works in the area apply massively univariate analyses on a genomewide basis to find single nucleotide polymorphisms that influence brain structure. In this paper, we propose using various dimensionality reduction methods on both brain structural MRI scans and genomic data, motivated by the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We also consider a new multiple testing adjustment method and compare it with two existing false discovery rate (FDR) adjustment methods. The simulation results suggest an increase in power for the proposed method. The real-data analysis suggests that the proposed procedure is able to find associations between genetic variants and brain volume differences that offer potentially new biological insights. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Neuroimaging in the Diagnostic Evaluation of Eye Pain.

    Science.gov (United States)

    Szatmáry, Gabriella

    2016-09-01

    Ocular or eye pain is a frequent complaint encountered not only by eye care providers but neurologists. Isolated eye pain is non-specific and non-localizing; therefore, it poses significant differential diagnostic problems. A wide range of neurologic and ophthalmic disorders may cause pain in, around, or behind the eye. These include ocular and orbital diseases and primary and secondary headaches. In patients presenting with an isolated and chronic eye pain, neuroimaging is usually normal. However, at the beginning of a disease process or in low-grade disease, the eye may appear "quiet," misleading a provider lacking familiarity with underlying disorders and high index of clinical suspicion. Delayed diagnosis of some neuro-ophthalmic causes of eye pain could result in significant neurologic and ophthalmic morbidity, conceivably even mortality. This article reviews some recent advances in imaging of the eye, the orbit, and the brain, as well as research in which neuroimaging has advanced the discovery of the underlying pathophysiology and the complex differential diagnosis of eye pain.

  19. [Neuropsychology of Tourette's disorder: cognition, neuroimaging and creativity].

    Science.gov (United States)

    Espert, R; Gadea, M; Alino, M; Oltra-Cucarella, J

    2017-02-24

    Tourette's disorder is the result of fronto-striatal brain dysfunction affecting people of all ages, with a debut in early childhood and continuing into adolescence and adulthood. This article reviews the main cognitive, functional neuroimaging and creativity-related studies in a disorder characterized by an excess of dopamine in the brain. Given the special cerebral configuration of these patients, neuropsychological alterations, especially in executive functions, should be expected. However, the findings are inconclusive and are conditioned by factors such as comorbidity with attention deficit hyperactivity disorder and obsessive-compulsive disorder, age or methodological variables. On the other hand, the neuroimaging studies carried out over the last decade have been able to explain the clinical symptoms of Tourette's disorder patients, with special relevance for the supplementary motor area and the anterior cingulate gyrus. Finally, although there is no linear relationship between excess of dopamine and creativity, the scientific literature emphasizes an association between Tourette's disorder and musical creativity, which could be translated into intervention programs based on music.

  20. Neuroimaging of nonaccidental head trauma: pitfalls and controversies

    International Nuclear Information System (INIS)

    Fernando, Sujan; Obaldo, Ruby E.; Walsh, Irene R.; Lowe, Lisa H.

    2008-01-01

    Although certain neuroimaging appearances are highly suggestive of abuse, radiological findings are often nonspecific. The objective of this review is to discuss pitfalls, controversies, and mimics occurring in neuroimaging of nonaccidental head trauma in order to allow the reader to establish an increased level of comfort in distinguishing between nonaccidental and accidental head trauma. Specific topics discussed include risk factors, general biomechanics and imaging strategies in nonaccidental head trauma, followed by the characteristics of skull fractures, normal prominent tentorium and falx versus subdural hematoma, birth trauma versus nonaccidental head trauma, hyperacute versus acute on chronic subdural hematomas, expanded subarachnoid space versus subdural hemorrhage, controversy regarding subdural hematomas associated with benign enlarged subarachnoid spaces, controversy regarding hypoxia as a cause of subdural hematoma and/or retinal hemorrhages without trauma, controversy regarding the significance of retinal hemorrhages related to nonaccidental head trauma, controversy regarding the significance of subdural hematomas in general, and pitfalls of glutaric aciduria type 1 and hemophagocytic lymphohistiocytosis mimicking nonaccidental head trauma. (orig.)

  1. Temporal Explorations in Cosmic Consciousness: Intra-Agential Entanglements and the Neuro-Image

    Directory of Open Access Journals (Sweden)

    Patricia Pisters

    2015-11-01

    Full Text Available When Deleuze in the 1980s argued that ‘the brain is the screen’ he introduced the concepts of movement-image and time-image, two different modes of cinema with particular ontological and aesthetic characteristics. Contemporary cinema, however, has moved into yet another aesthetic mode, which I have proposed to call the neuro-image. One of the characteristics of the neuro-image is that we no longer follow the movements and actions of characters in a certain space (as in the movement-image, nor see the world coloured through their eyes (as in the time-image, but we (often quite literally experience brain worlds more directly, from within mental landscapes. In this essay I will investigate in which ways these brain worlds aesthetically express an embodied and embedded brain, addressing the new materialist dimensions of the neuro-image in a journey of cosmic cinema and, to speak with Barad, ‘meeting the universe halfway.’

  2. Food addiction and neuroimaging.

    Science.gov (United States)

    Zhang, Yi; von Deneen, Karen M; Tian, Jie; Gold, Mark S; Liu, Yijun

    2011-01-01

    Obesity has become a serious epidemic and one of the leading global health problems. However, much of the current debate has been fractious, and etiologies of obesity have been attributed to eating behavior (i.e. fast food consumption), personality, depression, addiction or genetics. One of the interesting new hypotheses for explaining the development of obesity involves a food addiction model, which suggests that food is not eaten as much for survival as pleasure and that hedonic overeating is relevant to both substance-related disorders and eating disorders. Accumulating evidence has shown that there are a number of shared neural and hormonal pathways as well as distinct differences in these pathways that may help researchers discover why certain individuals continue to overeat despite health and other consequences, and becomes more and more obese. Functional neuroimaging studies have further revealed that pleasant smelling, looking, and tasting food has reinforcing characteristics similar to drugs of abuse. Many of the brain changes reported for hedonic eating and obesity are also seen in various types of addictions. Most importantly, overeating and obesity may have an acquired drive similar to drug addiction with respect to motivation and incentive craving. In both cases, the desire and continued satisfaction occur after early and repeated exposure to stimuli. The acquired drive for eating food and relative weakness of the satiety signal would cause an imbalance between the drive and hunger/reward centers in the brain and their regulation. In the current paper, we first provide a summary of literature on food addition from eight different perspectives, and then we proposed a research paradigm that may allow screening of new pharmacological treatment on the basis of functional magnetic resonance imaging (fMRI).

  3. [Seeking the aetiology of autistic spectrum disorder. Part 2: Functional neuroimaging].

    Science.gov (United States)

    Bryńska, Anita

    2012-01-01

    Multiple functional imaging techniques help to a better understanding of the neurobiological basis of autism-spectrum disorders (ASD). The early functional imaging studies on ASD focused on task-specific methods related to core symptom domains and explored patterns of activation in response to face processing, theory of mind tasks, language processing and executive function tasks. On the other hand, fMRI research in ASD focused on the development of functional connectivity methods and has provided evidence of alterations in cortical connectivity in ASD and establish autism as a disorder of under-connectivity among the brain regions participating in cortical networks. This atypical functional connectivity in ASD results in inefficiency and poor integration of processing in network connections to achieve task performance. The goal of this review is to summarise the actual neuroimaging functional data and examine their implication for understanding of the neurobiology of ASD.

  4. Animal minds and neuroimaging--bridging the gap between science and ethics?

    Science.gov (United States)

    Buller, Tom

    2014-04-01

    As Colin Allen has argued, discussions between science and ethics about the mentality and moral status of nonhuman animals often stall on account of the fact that the properties that ethics presents as evidence of animal mentality and moral status, namely consciousness and sentience, are not observable "scientifically respectable" properties. In order to further discussion between science and ethics, it seems, therefore, that we need to identify properties that would satisfy both domains. In this article I examine the mentality and moral status of nonhuman animals from the perspective of neuroethics. By adopting this perspective, we can see how advances in neuroimaging regarding (1) research into the neurobiology of pain, (2) "brain reading," and (3) the minimally conscious state may enable us to identify properties that help bridge the gap between science and ethics, and hence help further the debate about the mentality and moral status of nonhuman animals.

  5. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  6. Neuroimaging of herpesvirus infections in children

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Henry J. [Cincinnati Children' s Medical Center, Department of Radiology, Cincinnati, OH (United States); Hedlund, Gary [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States)

    2007-10-15

    Six members of the herpesvirus family cause well-described neurologic disease in children: herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella-zoster (VZV), Epstein-Barr (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6). When herpesviruses infect the central nervous system (CNS), the clinical presentation is non-specific and often confounding. The clinical urgency is often underscored by progressive neurologic deficits, seizures, or even death, and prompt diagnosis and treatment rely heavily on neuroimaging. This review focuses on the spectrum of cerebral manifestations caused by these viruses, particularly on non-congenital presentations. Recent advances in our understanding of these viruses are discussed, including new polymerase chain reaction techniques that allow parallel detection, which has improved our recognition that the herpesviruses are neurotropic and involve the CNS more often than previously thought. Evolving knowledge has also better elucidated viral neuropathology, particularly the role of VZV vasculitis in the brain, HHV-6 in febrile seizures, and herpesvirus reactivation in immunosuppressed patients. The virology, clinical course, and CNS manifestations of each virus are reviewed, followed by descriptions of neuroimaging findings when these agents infect the brain. Characteristic but often subtle imaging findings are discussed, as well as technical pearls covering appropriate use of MRI and MRI adjuncts to help differentiate viral infection from mimics. (orig.)

  7. Neuroimaging of herpesvirus infections in children

    International Nuclear Information System (INIS)

    Baskin, Henry J.; Hedlund, Gary

    2007-01-01

    Six members of the herpesvirus family cause well-described neurologic disease in children: herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella-zoster (VZV), Epstein-Barr (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6). When herpesviruses infect the central nervous system (CNS), the clinical presentation is non-specific and often confounding. The clinical urgency is often underscored by progressive neurologic deficits, seizures, or even death, and prompt diagnosis and treatment rely heavily on neuroimaging. This review focuses on the spectrum of cerebral manifestations caused by these viruses, particularly on non-congenital presentations. Recent advances in our understanding of these viruses are discussed, including new polymerase chain reaction techniques that allow parallel detection, which has improved our recognition that the herpesviruses are neurotropic and involve the CNS more often than previously thought. Evolving knowledge has also better elucidated viral neuropathology, particularly the role of VZV vasculitis in the brain, HHV-6 in febrile seizures, and herpesvirus reactivation in immunosuppressed patients. The virology, clinical course, and CNS manifestations of each virus are reviewed, followed by descriptions of neuroimaging findings when these agents infect the brain. Characteristic but often subtle imaging findings are discussed, as well as technical pearls covering appropriate use of MRI and MRI adjuncts to help differentiate viral infection from mimics. (orig.)

  8. Pain as a fact and heuristic: how pain neuroimaging illuminates moral dimensions of law.

    Science.gov (United States)

    Pustilnik, Amanda C

    2012-05-01

    In legal domains ranging from tort to torture, pain and its degree do important definitional work by delimiting boundaries of lawfulness and of entitlements. Yet, for all the work done by pain as a term in legal texts and practice, it has a confounding lack of external verifiability. Now, neuroimaging is rendering pain and myriad other subjective states at least partly ascertainable. This emerging ability to ascertain and quantify subjective states is prompting a "hedonic" or a "subjectivist" turn in legal scholarship, which has sparked a vigorous debate as to whether the quantification of subjective states might affect legal theory and practice. Subjectivists contend that much values-talk in law has been a necessary but poor substitute for quantitative determinations of subjective states--determinations that will be possible in the law's "experiential future." This Article argues the converse: that pain discourse in law frequently is a heuristic for values. Drawing on interviews and laboratory visits with neuroimaging researchers, this Article shows current and in-principle limitations of pain quantification through neuroimaging. It then presents case studies on torture-murder, torture, the death penalty, and abortion to show the largely heuristic role of pain discourse in law. Introducing the theory of "embodied morality," the Article describes how moral conceptions of rights and duties are informed by human physicality and constrained by the limits of empathic identification. Pain neuroimaging helps reveal this dual factual and heuristic nature of pain in the law, and thus itself points to the translational work required for neuroimaging to influence, much less transform, legal practice and doctrine.

  9. Neural correlates of fear: insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Garfinkel SN

    2014-12-01

    Full Text Available Sarah N Garfinkel,1,2 Hugo D Critchley1,2 1Sackler Centre for Consciousness Science, 2Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Brighton, UK Abstract: Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions, and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of

  10. Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study.

    Directory of Open Access Journals (Sweden)

    Stephanie Ortigue

    Full Text Available BACKGROUND: When we observe an individual performing a motor act (e.g. grasping a cup we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping and the intention underlying it (i.e. grasping for drinking. Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers were presented with two-frame video-clips. The first frame (T0 showed an object with or without context; the second frame (T1 showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs were recorded time-locked with the frame showing the hand-object interaction (T1. The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1 bilateral posterior cortical activations; 2 a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3 a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4 a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. CONCLUSIONS/SIGNIFICANCE: We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network

  11. The iconography of mourning and its neural correlates: a functional neuroimaging study.

    Science.gov (United States)

    Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C; Viviani, Roberto

    2017-08-01

    The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. © The Author (2017). Published by Oxford University Press.

  12. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology.

    Science.gov (United States)

    Coull, J T

    1998-07-01

    Attention and arousal are multi-dimensional psychological processes, which interact closely with one another. The neural substrates of attention, as well as the interaction between arousal and attention, are discussed in this review. After a brief discussion of psychological and neuropsychological theories of attention, event-related potential correlates of attention are discussed. Essentially, attention acts to modulate stimulus-induced electrical potentials (N100/P100, P300, N400), rather than generating any unique potentials of its own. Functional neuroimaging studies of attentional orienting, selective attention, divided attention and sustained attention (and its inter-dependence on underlying levels of arousal) are then reviewed. A distinction is drawn between the brain areas which are crucially involved in the top-down modulation of attention (the 'sources' of attention) and those sensory-association areas whose activity is modulated by attention (the 'sites' of attentional expression). Frontal and parietal (usually right-lateralised) cortices and thalamus are most often associated with the source of attentional modulation. Also, the use of functional neuroimaging to test explicit hypotheses about psychological theories of attention is emphasised. These experimental paradigms form the basis for a 'new generation' of functional imaging studies which exploit the dynamic aspect of imaging and demonstrate how it can be used as more than just a 'brain mapping' device. Finally, a review of psychopharmacological studies in healthy human volunteers outlines the contributions of the noradrenergic, cholinergic and dopaminergic neurotransmitter systems to the neurochemical modulation of human attention and arousal. While, noradrenergic and cholinergic systems are involved in 'low-level' aspects of attention (e.g. attentional orienting), the dopaminergic system is associated with more 'executive' aspects of attention such as attentional set-shifting or working memory.

  13. Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.

    Science.gov (United States)

    Pfeifer, Jennifer H; Peake, Shannon J

    2012-01-01

    This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  15. Altered Brain Activity in Unipolar Depression Revisited: Meta-analyses of Neuroimaging Studies.

    Science.gov (United States)

    Müller, Veronika I; Cieslik, Edna C; Serbanescu, Ilinca; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2017-01-01

    During the past 20 years, numerous neuroimaging experiments have investigated aberrant brain activation during cognitive and emotional processing in patients with unipolar depression (UD). The results of those investigations, however, vary considerably; moreover, previous meta-analyses also yielded inconsistent findings. To readdress aberrant brain activation in UD as evidenced by neuroimaging experiments on cognitive and/or emotional processing. Neuroimaging experiments published from January 1, 1997, to October 1, 2015, were identified by a literature search of PubMed, Web of Science, and Google Scholar using different combinations of the terms fMRI (functional magnetic resonance imaging), PET (positron emission tomography), neural, major depression, depression, major depressive disorder, unipolar depression, dysthymia, emotion, emotional, affective, cognitive, task, memory, working memory, inhibition, control, n-back, and Stroop. Neuroimaging experiments (using fMRI or PET) reporting whole-brain results of group comparisons between adults with UD and healthy control individuals as coordinates in a standard anatomic reference space and using an emotional or/and cognitive challenging task were selected. Coordinates reported to show significant activation differences between UD and healthy controls during emotional or cognitive processing were extracted. By using the revised activation likelihood estimation algorithm, different meta-analyses were calculated. Meta-analyses tested for brain regions consistently found to show aberrant brain activation in UD compared with controls. Analyses were calculated across all emotional processing experiments, all cognitive processing experiments, positive emotion processing, negative emotion processing, experiments using emotional face stimuli, experiments with a sex discrimination task, and memory processing. All meta-analyses were calculated across experiments independent of reporting an increase or decrease of activity in

  16. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    Science.gov (United States)

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  17. Is the statistic value all we should care about in neuroimaging?

    Science.gov (United States)

    Chen, Gang; Taylor, Paul A; Cox, Robert W

    2017-02-15

    Here we address an important issue that has been embedded within the neuroimaging community for a long time: the absence of effect estimates in results reporting in the literature. The statistic value itself, as a dimensionless measure, does not provide information on the biophysical interpretation of a study, and it certainly does not represent the whole picture of a study. Unfortunately, in contrast to standard practice in most scientific fields, effect (or amplitude) estimates are usually not provided in most results reporting in the current neuroimaging publications and presentations. Possible reasons underlying this general trend include (1) lack of general awareness, (2) software limitations, (3) inaccurate estimation of the BOLD response, and (4) poor modeling due to our relatively limited understanding of FMRI signal components. However, as we discuss here, such reporting damages the reliability and interpretability of the scientific findings themselves, and there is in fact no overwhelming reason for such a practice to persist. In order to promote meaningful interpretation, cross validation, reproducibility, meta and power analyses in neuroimaging, we strongly suggest that, as part of good scientific practice, effect estimates should be reported together with their corresponding statistic values. We provide several easily adaptable recommendations for facilitating this process. Published by Elsevier Inc.

  18. NeuroVault and the vision for data sharing in neuroimaging

    OpenAIRE

    Gorgolewski, Chris

    2017-01-01

    Talk from the 14 January 2014 "GlaxoSmithKline - Neurophysics Workshop on Skeptical Neuroimaging", an activity hosted at Imperial College and coordinated with the Neurophysics Marie Curie Initial Training Network of which GSK is a participant.

  19. Neuroimaging and electroconvulsive therapy

    DEFF Research Database (Denmark)

    Bolwig, Tom G

    2014-01-01

    BACKGROUND: Since the 1970s, a number of neuroimaging studies of electroconvulsive therapy (ECT) have been conducted to elucidate the working action of this highly efficacious treatment modality. The technologies used are single photon emission tomography, positron emission tomography, magnetic...... in localized cortical and subcortical areas of the brain and have revealed differences in neurophysiology and metabolism between the hyperactive ictal state and the restorative interictal/postictal periods. Recent magnetic resonance imaging studies seem to pave way for new insights into ECT's effects...... on increased connectivity in the brain during depression. CONCLUSION: The existing data reveal considerable variations among studies and therefore do not yet allow the formulation of a unified hypothesis for the mechanism of ECT. The rapid developments in imaging technology, however, hold promises for further...

  20. The utility of neuroimaging in the management of dementia

    Directory of Open Access Journals (Sweden)

    Uduak E Williams

    2015-01-01

    Full Text Available Dementia is a syndrome of progressive dysfunction of two or more cognitive domains associated with impairment of activities of daily living. An understanding of the pathophysiology of dementia and its early diagnosis is important in the pursuit of possible disease modifying therapy for dementia. Neuroimaging has greatly transformed this field of research as its function has changed from a mere tool for diagnosing treatable causes of dementia to an instrument for pre-symptomatic diagnosis of dementia. This review focuses on the diagnostic utility of neuroimaging in the management of progressive dementias. Structural imaging techniques like computerized tomography scan and magnetic resonance imaging highlights the anatomical, structural and volumetric details of the brain; while functional imaging techniques such as positron emission tomography, arterial spin labeling, single photon emission computerized tomography and blood oxygen level-dependent functional magnetic resonance imaging focuses on chemistry, circulatory status and physiology of the different brain structures and regions.

  1. Cognitive and emotional processes during dreaming: a neuroimaging view.

    Science.gov (United States)

    Desseilles, Martin; Dang-Vu, Thien Thanh; Sterpenich, Virginie; Schwartz, Sophie

    2011-12-01

    Dream is a state of consciousness characterized by internally-generated sensory, cognitive and emotional experiences occurring during sleep. Dream reports tend to be particularly abundant, with complex, emotional, and perceptually vivid experiences after awakenings from rapid eye movement (REM) sleep. This is why our current knowledge of the cerebral correlates of dreaming, mainly derives from studies of REM sleep. Neuroimaging results show that REM sleep is characterized by a specific pattern of regional brain activity. We demonstrate that this heterogeneous distribution of brain activity during sleep explains many typical features in dreams. Reciprocally, specific dream characteristics suggest the activation of selective brain regions during sleep. Such an integration of neuroimaging data of human sleep, mental imagery, and the content of dreams is critical for current models of dreaming; it also provides neurobiological support for an implication of sleep and dreaming in some important functions such as emotional regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Nervous System Injury and Neuroimaging of Zika Virus Infection

    Science.gov (United States)

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383

  3. Design and rationale for examining neuroimaging genetics in ischemic stroke

    Science.gov (United States)

    Giese, Anne-Katrin; Schirmer, Markus D.; Donahue, Kathleen L.; Cloonan, Lisa; Irie, Robert; Winzeck, Stefan; Bouts, Mark J.R.J.; McIntosh, Elissa C.; Mocking, Steven J.; Dalca, Adrian V.; Sridharan, Ramesh; Xu, Huichun; Frid, Petrea; Giralt-Steinhauer, Eva; Holmegaard, Lukas; Roquer, Jaume; Wasselius, Johan; Cole, John W.; McArdle, Patrick F.; Broderick, Joseph P.; Jimenez-Conde, Jordi; Jern, Christina; Kissela, Brett M.; Kleindorfer, Dawn O.; Lemmens, Robin; Lindgren, Arne; Meschia, James F.; Rundek, Tatjana; Sacco, Ralph L.; Schmidt, Reinhold; Sharma, Pankaj; Slowik, Agnieszka; Thijs, Vincent; Woo, Daniel; Worrall, Bradford B.; Kittner, Steven J.; Mitchell, Braxton D.; Rosand, Jonathan; Golland, Polina; Wu, Ona

    2017-01-01

    Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI–GENetics Interface Exploration (MRI-GENIE) study. Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment. PMID:28852707

  4. Sturge-Weber syndrome. The current neuro-imaging data

    International Nuclear Information System (INIS)

    Boukobza, M.; Cambra, M.R.; Merland, J.J.; Enjolras, O.

    2000-01-01

    Sturge-Weber syndrome (SWS) is a rare congenital sporadic disease with neuro-ocular and cutaneous vascular findings. Clinically, the full-blown condition consists of a facial port-wine stain (PWS) the V1 facial trigeminal skin area, alone or in combination with V2 and V3 PWS, seizures and ocular abnormalities (glaucoma and choroidal angioma). Radiologically, a leptomeningeal (pial) capillary and venous malformation, mostly located in the parieto-occipital area, cerebral atrophy and calcifications are demonstrated. An ipsilateral enlarged choroid plexus may be an early anatomic symptom. Development neuro-diagnostic technique for the screening of infants with an at-risk V1 PWS, as well as for the follow-up of patients with evidence SWS. Accelerated myelination in the involved hemisphere may be early diagnostic feature before 6 months of age. Later, hyperintensity of white matter on T2 is considered a symptom of gliosis. Clinically, progression of the diseases is associated with anatomic changes and correlates with the extent of the pial vascular anomaly, extent and severity of cerebral atrophy, and white matter abnormalities. A neonatal neuro-imaging work-up, using CT or MRI, may not demonstrate the pial anomaly and should be repeated after 6 to 12 months in an at-risk infant with V1 PWS. (authors)

  5. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.

    Science.gov (United States)

    Thompson, Paul M; Stein, Jason L; Medland, Sarah E; Hibar, Derrek P; Vasquez, Alejandro Arias; Renteria, Miguel E; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J; Martin, Nicholas G; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C; Andreassen, Ole A; Apostolova, Liana G; Appel, Katja; Armstrong, Nicola J; Aribisala, Benjamin; Bastin, Mark E; Bauer, Michael; Bearden, Carrie E; Bergmann, Orjan; Binder, Elisabeth B; Blangero, John; Bockholt, Henry J; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I; Booth, Tom; Bowman, Ian J; Bralten, Janita; Brouwer, Rachel M; Brunner, Han G; Brohawn, David G; Buckner, Randy L; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R; Calhoun, Vince D; Cannon, Dara M; Cantor, Rita M; Carless, Melanie A; Caseras, Xavier; Cavalleri, Gianpiero L; Chakravarty, M Mallar; Chang, Kiki D; Ching, Christopher R K; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Deary, Ian J; de Geus, Eco J C; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E; Foroud, Tatiana; Fox, Peter T; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C; Godlewska, Beata; Goldstein, Rita Z; Gollub, Randy L; Grabe, Hans J; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E; Gur, Ruben C; Göring, Harald H H; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B; Hall, Jeremy; Hardy, John; Hartman, Catharina A; Hass, Johanna; Hatton, Sean N; Haukvik, Unn K; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J; Hollinshead, Marisa; Holmes, Avram J; Homuth, Georg; Hoogman, Martine; Hong, L Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Hwang, Kristy S; Jack, Clifford R; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G; Kahn, René S; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B J; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A; Lauriello, John; Lawrie, Stephen M; Lee, Phil H; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D; Li, Chiang-Shan; Liberg, Benny; Liewald, David C; Liu, Xinmin; Lopez, Lorna M; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W J; Macqueen, Glenda M; Malt, Ulrik F; Mandl, René; Manoach, Dara S; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Moses, Eric K; Mueller, Bryon A; Muñoz Maniega, Susana; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E; Nilsson, Lars-Göran; Nugent, Allison C; Nyberg, Lars; Olvera, Rene L; Oosterlaan, Jaap; Ophoff, Roel A; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D; Penninx, Brenda W; Peterson, Charles P; Pfennig, Andrea; Phillips, Mary; Pike, G Bruce; Poline, Jean-Baptiste; Potkin, Steven G; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L; Roffman, Joshua L; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J; Royle, Natalie A; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S; Salami, Alireza; Satterthwaite, Theodore D; Savitz, Jonathan; Saykin, Andrew J; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G; Schork, Andrew J; Schulz, S Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M; Simmons, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soares, Jair C; Sponheim, Scott R; Sprooten, Emma; Starr, John M; Steen, Vidar M; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G; Teumer, Alexander; Toga, Arthur W; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J; van Eijk, Kristel; van Erp, Theo G M; van Haren, Neeltje E M; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C; Veltman, Dick J; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M; Weale, Michael E; Weiner, Michael W; Wen, Wei; Westlye, Lars T; Whalley, Heather C; Whelan, Christopher D; White, Tonya; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P; Thalamuthu, Anbupalam; Schofield, Peter R; Freimer, Nelson B; Lawrence, Natalia S; Drevets, Wayne

    2014-06-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.

  6. On the electricity shortage, price and electricity theft nexus

    International Nuclear Information System (INIS)

    Jamil, Faisal

    2013-01-01

    Pakistan is facing severe electricity shortfall of its history since 2006. Several measures have been implemented in order to mitigate electricity shortage. The focus has been on raising the installed capacity of electricity generation and transmission. The present policy results in expensive thermal electricity generation mostly using expensive and environmentally hazardous furnace oil and inability of utilities to recover their cost of supply although there is unprecedented rise in electricity tariffs. This study concentrates on the electricity demand and traces the relationship between electricity shortfalls, tariff rate and electricity theft in the background of recent electricity crisis using the data for the period 1985–2010. We employed the Granger causality test through error correction model and out-of-sample causality through variance decomposition method. Empirical evidence shows that electricity theft greatly influences electricity shortfalls through lowering investment and inefficient use of electricity. The study concludes that electricity crisis cannot be handled without combating rampant electricity theft in the country. - Highlights: ► The study investigates relationship among electricity outages, price and electricity theft. ► It employed Johansen approach, ECM and variance decomposition analysis. ► Empirical evidence shows that electricity theft causes outages and rising tariff rates. ► Variance decomposition analysis results are slightly different from ECM

  7. Dizziness in a community hospital: central neurological causes, clinical predictors, and diagnostic yield and cost of neuroimaging studies.

    Science.gov (United States)

    Ammar, Hussam; Govindu, Rukma; Fouda, Ragai; Zohdy, Wael; Supsupin, Emilio

    2017-03-01

    Objectives : Neuroimaging is contributing to the rising costs of dizziness evaluation. This study examined the rate of central neurological causes of dizziness, relevant clinical predictors, and the costs and diagnostic yields of neuroimaging in dizziness assessment. Methods : We retrospectively reviewed the records of 521 adult patients who visited the hospital during a 12-month period with dizziness as the chief complaint. Clinical findings were analyzed using Fisher's exact test to determine how they correlated with central neurological causes of dizziness identified by neuroimaging. Costs and diagnostic yields of neuroimaging were calculated. Results : Of the 521 patients, 1.5% had dizziness produced by central neurological causes. Gait abnormalities, limb ataxia, diabetes mellitus, and the existence of multiple neurological findings predicted central causes. Cases were associated with gait abnormalities, limb ataxia, diabetes mellitus, and the existence of multiple neurological findings . Brain computed tomography (CT) and magnetic resonance imaging (MRI) were performed in 42% and 9.5% of the examined cases, respectively, with diagnostic yields of 3.6% and 12%, respectively. Nine cases of dizziness were diagnosed from 269 brain scans, costing $607 914. Conclusion : Clinical evaluation can predict the presence of central neurological causes of dizziness, whereas neuroimaging is a costly and low-yield approach. Guidelines are needed for physicians, regarding the appropriateness of ordering neuroimaging studies. Abbreviations : OR: odds ratio; CI: confidence interval; ED: emergency department; CT: computed tomography; MRI: magnetic resonance imaging; HINTS: Head impulse, Nystagmus, Test of skew.

  8. The Appropriate Use of Neuroimaging in the Diagnostic Work-Up of Dementia

    Science.gov (United States)

    2014-01-01

    Background Diagnosis of dementia is challenging and requires both ruling out potentially treatable underlying causes and ruling in a diagnosis of dementia subtype to manage patients and suitably plan for the future. Objectives This analysis sought to determine the appropriate use of neuroimaging during the diagnostic work-up of dementia, including indications for neuroimaging and comparative accuracy of alternative technologies. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published between 2000 and 2013. Review Methods Data on diagnostic accuracy and impact on clinical decision making were abstracted from included studies. Quality of evidence was assessed using GRADE. Results The search yielded 5,374 citations and 15 studies were included. Approximately 10% of dementia cases are potentially treatable, though less than 1% reverse partially or fully. Neither prediction rules nor clinical indications reliably select the subset of patients who will likely benefit from neuroimaging. Clinical utility is highest in ambiguous cases or where dementia may be mixed, and lowest for clinically diagnosed Alzheimer disease or clinically excluded vascular dementia. There is a lack of evidence that MRI is superior to CT in detecting a vascular component to dementia. Accuracy of structural imaging is moderate to high for discriminating different types of dementia. Limitations There was significant heterogeneity in estimates of diagnostic accuracy, which often prohibited a statistical summary of findings. The quality of data reported by studies prohibited calculation of likelihood ratios in the present analysis. No studies from primary care were found; thus, generalizability beyond tertiary care settings may be limited. Conclusions A diagnosis of reversible dementia is rare. Imaging has the most

  9. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies.

    Science.gov (United States)

    Torta, D M; Legrain, V; Mouraux, A; Valentini, E

    2017-04-01

    Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electricity consumption and economic growth: evidence from Korea

    International Nuclear Information System (INIS)

    Yoo, Seung-Hoon

    2005-01-01

    This paper investigates the short- and long-run causality issues between electricity consumption and economic growth in Korea by using the co-integration and error-correction models. It employs annual data covering the period 1970-2002. The overall results show that there exists bi-directional causality between electricity consumption and economic growth. This means that an increase in electricity consumption directly affects economic growth and that economic growth also stimulates further electricity consumption

  11. Neural, cognitive, and neuroimaging markers of the suicidal brain

    Directory of Open Access Journals (Sweden)

    Sobanski T

    2015-05-01

    Full Text Available Thomas Sobanski,1 Karl-Jürgen Bär,2 Gerd Wagner2 1Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Thüringen-Kliniken "Georgius Agricola" GmbH, Saalfeld, Germany; 2Department of Psychiatry and Psychotherapy, Psychiatric Brain and Body Research Group Jena, Jena University Hospital, Jena, GermanyAbstract: Suicidal behavior (SB is characterized by the occurrence of suicide attempts with substantial intent to die. SB is a major health problem worldwide. In the great majority of cases, SB occurs in patients suffering from psychiatric disorders, mainly from affective disorders or schizophrenia. Despite this high association, there is growing evidence from genetic studies that SB might represent a psychiatric condition on its own. This review provides an overview of the most significant neurobiological and neurocognitive findings in SB. We provide evidence for specific dysfunctions within the serotonergic system, for distinct morphological abnormalities in the gray and white matter composition as well as for neurofunctional alterations in the fronto-striatal network. Additionally, the putative role of impulsivity and hopelessness as trait-like risk factors for SB is outlined. Both the personality traits are associated with altered prefrontal cortex function and deficits in cognitive and affective control similar to the findings in SB. Given the difficulties of clinical risk assessment, there is a need to identify specific markers that can predict SB more reliably. Some recent neurocognitive and functional/structural neuroimaging findings might be appropriate to use as SB indicators in the close future.Keywords: suicidal behavior, biological markers, serotonin, hopelessness, impulsivity, major depressive disorder, fMRI, PET, SPECT

  12. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    Directory of Open Access Journals (Sweden)

    D. Val-Laillet

    2015-01-01

    Full Text Available Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI, positron emission tomography (PET, single photon emission computed tomography (SPECT, pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS and transcranial direct-current stimulation (tDCS. Converging evidence points at

  13. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    Science.gov (United States)

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  14. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    Science.gov (United States)

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  15. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

    Directory of Open Access Journals (Sweden)

    Simonetti, Patricia

    2015-03-01

    Full Text Available Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system. Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus. Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area. Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

  16. Making MR Imaging Child's Play - Pediatric Neuroimaging Protocol, Guidelines and Procedure

    Science.gov (United States)

    Raschle, Nora M.; Lee, Michelle; Buechler, Roman; Christodoulou, Joanna A.; Chang, Maria; Vakil, Monica; Stering, Patrice L.; Gaab, Nadine

    2009-01-01

    Within the last decade there has been an increase in the use of structural and functional magnetic resonance imaging (fMRI) to investigate the neural basis of human perception, cognition and behavior 1, 2. Moreover, this non-invasive imaging method has grown into a tool for clinicians and researchers to explore typical and atypical brain development. Although advances in neuroimaging tools and techniques are apparent, (f)MRI in young pediatric populations remains relatively infrequent 2. Practical as well as technical challenges when imaging children present clinicians and research teams with a unique set of problems 3, 2. To name just a few, the child participants are challenged by a need for motivation, alertness and cooperation. Anxiety may be an additional factor to be addressed. Researchers or clinicians need to consider time constraints, movement restriction, scanner background noise and unfamiliarity with the MR scanner environment2,4-10. A progressive use of functional and structural neuroimaging in younger age groups, however, could further add to our understanding of brain development. As an example, several research groups are currently working towards early detection of developmental disorders, potentially even before children present associated behavioral characteristics e.g.11. Various strategies and techniques have been reported as a means to ensure comfort and cooperation of young children during neuroimaging sessions. Play therapy 12, behavioral approaches 13, 14,15, 16-18 and simulation 19, the use of mock scanner areas 20,21, basic relaxation 22 and a combination of these techniques 23 have all been shown to improve the participant's compliance and thus MRI data quality. Even more importantly, these strategies have proven to increase the comfort of families and children involved 12. One of the main advances of such techniques for the clinical practice is the possibility of avoiding sedation or general anesthesia (GA) as a way to manage children

  17. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Directory of Open Access Journals (Sweden)

    Liana C L Portugal

    Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model

  18. The semantic variant of primary progressive aphasia: clinical and neuroimaging evidence in single subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Iaccarino

    Full Text Available We present a clinical-neuroimaging study in a series of patients with a clinical diagnosis of semantic variant of primary progressive aphasia (svPPA, with the aim to provide clinical-functional correlations of the cognitive and behavioral manifestations at the single-subject level.We performed neuropsychological investigations, 18F-FDG-PET single-subject and group analysis, with an optimized SPM voxel-based approach, and correlation analyses. A measurement of white matter integrity by means of diffusion tensor imaging (DTI was also available for a subgroup of patients.Cognitive assessment confirmed the presence of typical semantic memory deficits in all patients, with a relative sparing of executive, attentional, visuo-constructional, and episodic memory domains. 18F-FDG-PET showed a consistent pattern of cerebral hypometabolism across all patients, which correlated with performance in semantic memory tasks. In addition, a majority of patients also presented with behavioral disturbances associated with metabolic dysfunction in limbic structures. In a subgroup of cases the DTI analysis showed FA abnormalities in the inferior longitudinal and uncinate fasciculi.Each svPPA individual had functional derangement involving an extended, connected system within the left temporal lobe, a crucial part of the verbal semantic network, as well as an involvement of limbic structures. The latter was associated with behavioral manifestations and extended beyond the area of atrophy shown by CT scan.Single-subject 18F-FDG-PET analysis can account for both cognitive and behavioral alterations in svPPA. This provides useful support to the clinical diagnosis.

  19. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    International Nuclear Information System (INIS)

    Li, Tie-Qiang; Wahlund, Lars-Olof

    2011-01-01

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  20. Neonatal Cerebral Sinovenous Thrombosis : Neuroimaging and Long-term Follow-up

    NARCIS (Netherlands)

    Kersbergen, Karina J.; Groenendaal, Floris; Benders, Manon J. N. L.; de Vries, Linda S.

    Neonates are known to have a higher risk of cerebral sinovenous thrombosis than children of other age groups. The exact incidence in neonates remains unknown and is likely to be underestimated, as clinical presentation is nonspecific and diagnosis can only be made when dedicated neuroimaging

  1. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard

    2011-01-01

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus on v...

  2. Identifying Predictors, Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches

    Science.gov (United States)

    Phillips, Mary L.; Chase, Henry W.; Sheline, Yvette I.; Etkin, Amit; Almeida, Jorge R.C.; Deckersbach, Thilo; Trivedi, Madhukar H.

    2015-01-01

    Objective Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. Method In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. Results The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Conclusions Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes. PMID:25640931

  3. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches.

    Science.gov (United States)

    Phillips, Mary L; Chase, Henry W; Sheline, Yvette I; Etkin, Amit; Almeida, Jorge R C; Deckersbach, Thilo; Trivedi, Madhukar H

    2015-02-01

    Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes.

  4. The Extended Fronto-Striatal Model of Obsessive Compulsive Disorder: Convergence from Event-Related Potentials, Neuropsychology and Neuroimaging

    Directory of Open Access Journals (Sweden)

    Margherita eMelloni

    2012-09-01

    Full Text Available In this work, we explored convergent evidence supporting the fronto-striatal model of obsessive-compulsive disorder (FSMOCD and the contribution of event-related potential (ERP studies to this model. First, we considered minor modifications to the FSMOCD model based on neuroimaging and neuropsychological data. We noted the brain areas most affected in this disorder -anterior cingulate cortex (ACC, basal ganglia (BG and orbito-frontal cortex (OFC- and their related cognitive functions, such as monitoring and inhibition. Then, we assessed the ERPs that are directly related to the FSMOCD, including the error-related negativity (ERN, N200 and P600. Several OCD studies present enhanced ERN and N2 responses during conflict tasks as well as an enhanced P600 during working memory tasks. Evidence from ERP studies (especially regarding ERN and N200 amplitude enhancement, neuroimaging and neuropsychological findings suggests abnormal activity in the OFC, ACC and BG in OCD patients. Moreover, additional findings from these analyses suggest dorsolateral prefrontal and parietal cortex involvement, which might be related to executive function deficits. Thus, these convergent results suggest the existence of a self-monitoring imbalance involving inhibitory deficits and executive dysfunctions. OCD patients present an impaired ability to monitor, control, and inhibit intrusive thoughts, urges, feelings and behaviors. In the current model, this imbalance is triggered by an excitatory role of the BG (associated with cognitive or motor actions without volitional control and inhibitory activity of the OFC as well as excessive monitoring of the ACC to block excitatory impulses. This imbalance would interact with the reduced activation of the parietal-DLPC network, leading to executive dysfunction. ERP research may provide further insight regarding the temporal dynamics of action monitoring and executive functioning in OCD.

  5. Functional neuroimaging of sleep disorders

    International Nuclear Information System (INIS)

    Qiu Chun; Zhao Jun; Guan Yihui

    2013-01-01

    Sleep disorders may affect the health and normal life of human badly. However, the pathophysiology underlying adult sleep disorders is still unclear. Functional neuroimaging can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. This paper reviews functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). Metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging) are mainly reviewed, as well as neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy). Meanwhile, here are some brief introduction of different kinds of sleep disorders. (authors)

  6. A systematic review of temporal discounting in eating disorders and obesity:behavioural and neuroimaging findings

    OpenAIRE

    McClelland, Jessica; Dalton, Bethan; Kekic, Maria; Bartholdy, Savani; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    OBJECTIVE: Eating Disorders (ED) and obesity are suggested to involve a spectrum of self-regulatory control difficulties. Temporal discounting (TD) tasks have been used to explore this idea. This systematic review examines behavioural and neuroimaging TD data in ED and obesity.METHOD: Using PRISMA guidelines, we reviewed relevant articles in MEDLINE, PsycINFO and Embase from inception until 17th August 2016. Studies that reported behavioural differences in TD and/or TD neuroimaging data in ED...

  7. Effects of cannabis on impulsivity: a systematic review of neuroimaging findings.

    Science.gov (United States)

    Wrege, Johannes; Schmidt, Andre; Walter, Anna; Smieskova, Renata; Bendfeldt, Kerstin; Radue, Ernst-Wilhelm; Lang, Undine E; Borgwardt, Stefan

    2014-01-01

    We conducted a systematic review to assess the evidence for specific effects of cannabis on impulsivity, disinhibition and motor control. The review had a specific focus on neuroimaging findings associated with acute and chronic use of the drug and covers literature published up until May 2012. Seventeen studies were identified, of which 13 met the inclusion criteria; three studies investigated acute effects of cannabis (1 fMRI, 2 PET), while six studies investigated non-acute functional effects (4 fMRI, 2 PET), and four studies investigated structural alterations. Functional imaging studies of impulsivity studies suggest that prefrontal blood flow is lower in chronic cannabis users than in controls. Studies of acute administration of THC or marijuana report increased brain metabolism in several brain regions during impulsivity tasks. Structural imaging studies of cannabis users found differences in reduced prefrontal volumes and white matter integrity that might mediate the abnormal impulsivity and mood observed in marijuana users. To address the question whether impulsivity as a trait precedes cannabis consumption or whether cannabis aggravates impulsivity and discontinuation of usage more longitudinal study designs are warranted.

  8. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies.

    Directory of Open Access Journals (Sweden)

    Clare eFinlay

    2014-06-01

    Full Text Available Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson's disease (PD developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography (PET and functional magnetic resonance imaging (fMRI. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry (VBM. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.

  9. Reproducibility of neuroimaging analyses across operating systems.

    Science.gov (United States)

    Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.

  10. A general XML schema and SPM toolbox for storage of neuro-imaging results and anatomical labels.

    Science.gov (United States)

    Keator, David Bryant; Gadde, Syam; Grethe, Jeffrey S; Taylor, Derek V; Potkin, Steven G

    2006-01-01

    With the increased frequency of multisite, large-scale collaborative neuro-imaging studies, the need for a general, self-documenting framework for the storage and retrieval of activation maps and anatomical labels becomes evident. To address this need, we have developed and extensible markup language (XML) schema and associated tools for the storage of neuro-imaging activation maps and anatomical labels. This schema, as part of the XML-based Clinical Experiment Data Exchange (XCEDE) schema, provides storage capabilities for analysis annotations, activation threshold parameters, and cluster and voxel-level statistics. Activation parameters contain information describing the threshold, degrees of freedom, FWHM smoothness, search volumes, voxel sizes, expected voxels per cluster, and expected number of clusters in the statistical map. Cluster and voxel statistics can be stored along with the coordinates, threshold, and anatomical label information. Multiple threshold types can be documented for a given cluster or voxel along with the uncorrected and corrected probability values. Multiple atlases can be used to generate anatomical labels and stored for each significant voxel or cluter. Additionally, a toolbox for Statistical Parametric Mapping software (http://www. fil. ion.ucl.ac.uk/spm/) was created to capture the results from activation maps using the XML schema that supports both SPM99 and SPM2 versions (http://nbirn.net/Resources/Users/ Applications/xcede/SPM_XMLTools.htm). Support for anatomical labeling is available via the Talairach Daemon (http://ric.uthscsa. edu/projects/talairachdaemon.html) and Automated Anatomical Labeling (http://www. cyceron.fr/freeware/).

  11. Clinical and neuroimaging profile of congenital brain malformations in children with spastic cerebral palsy

    International Nuclear Information System (INIS)

    Kulak, W.; Okurowska-Zawada, B.; Sobaniec, W.; Goscik, M.; Olenski, J.

    2008-01-01

    Purpose: Analysis of the incidence of congenital brain malformations in children with spastic cerebral palsy (CP) in a hospital based study. Material and Methods: The present study included 74 boys and 56 girls with spastic tetraplegia, diplegia, and hemiplegia CP. Magnetic resonance imaging MRI findings were analyzed in children with CP. Results: Significant abnormalities relevant to the CP were evident on MRI in 124 (95.3%) subjects. Periventicular leukomalacia (PVL) was detected more frequently in children with spastic diplegia than in patients with tetraplegia or hemiplegia. Cerebral atrophy was found more often in the tetraplegic group compared to the diplegic patients. Porencephalic cysts were detected more often in children with spastic hemiplegia. Congenital brain anomalies were evident in 15 (10.7%) children with spastic CP. Brain malformations included: schizencephaly (5), agenesis corpus callosum (4), polymicrogyria (2), holoprosencephaly (2) and lissencephaly (2). Intractable epilepsy and mental retardation were observed more often in children with brain anomalies. Twelve patients with congenital brain malformations were born at term and three born at preterm. Conclusions: Neuroimaging results in children with CP may help determine the etiology and make better prognosis of CP. (authors)

  12. Imaging stress effects on memory: a review of neuroimaging studies

    NARCIS (Netherlands)

    van Stegeren, A.H.

    2009-01-01

    Objective: To review and give an overview of neuroimaging studies that look at the role of stress (hormones) on memory. Method: An overview will be given of imaging studies that looked at the role of stress (hormones) on memory. Stress is here defined as the acute provocation of the sympathetic

  13. A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Puri, Basant K

    2018-04-01

    There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.

  14. The diagnostic yield of neuroimaging in sixth nerve palsy - Sankara Nethralaya Abducens Palsy Study (SNAPS: Report 1

    Directory of Open Access Journals (Sweden)

    Akshay Gopinathan Nair

    2014-01-01

    Full Text Available Aims: The aim was to assess the etiology of sixth nerve palsy and on the basis of our data, to formulate a diagnostic algorithm for the management in sixth nerve palsy. Design: Retrospective chart review. Results: Of the 104 neurologically isolated cases, 9 cases were attributable to trauma, and 95 (86.36% cases were classified as nontraumatic, neurologically isolated cases. Of the 95 nontraumatic, isolated cases of sixth nerve palsy, 52 cases were associated with vasculopathic risk factors, namely diabetes and hypertension and were classified as vasculopathic sixth nerve palsy (54.7%, and those with a history of sixth nerve palsy from birth (6 cases were classified as congenital sixth nerve palsy (6.3%. Of the rest, neuroimaging alone yielded a cause in 18 of the 37 cases (48.64%. Of the other 19 cases where neuroimaging did not yield a cause, 6 cases were attributed to preceding history of infection (3 upper respiratory tract infection and 3 viral illnesses, 2 cases of sixth nerve palsy were found to be a false localizing sign in idiopathic intracranial hypertension and in 11 cases, the cause was undetermined. In these idiopathic cases of isolated sixth nerve palsy, neuroimaging yielded no positive findings. Conclusions: In the absence of risk factors, a suggestive history, or positive laboratory and clinical findings, neuroimaging can serve as a useful diagnostic tool in identifying the exact cause of sixth nerve palsy. Furthermore, we recommend an algorithm to assess the need for neuroimaging in sixth nerve palsy.

  15. EFNS Task Force on Teaching of Neuroimaging in Neurology Curricula in Europe : present status and recommendations for the future

    NARCIS (Netherlands)

    Pantano, P; Chollet, F; Paulson, O; von Kummer, R; Laihinen, A; Leenders, K; Yancheva, S

    A Task Force on 'Teaching of Neuroimaging in Neurology Curricula in Europe' was appointed in September 1998 by the education committee of the European Federation of Neurological Societies (EFNS) in order to: (1) examine the present status of teaching of neuroimaging in the training of neurology in

  16. EFNS Task Force on Teaching of Neuroimaging in Neurology Curricula in Europe : present status and recommendations for the future

    NARCIS (Netherlands)

    Pantano, P; Chollet, F; Paulson, O; von Kummer, R; Laihinen, A; Leenders, K; Yancheva, S

    2001-01-01

    A Task Force on 'Teaching of Neuroimaging in Neurology Curricula in Europe' was appointed in September 1998 by the education committee of the European Federation of Neurological Societies (EFNS) in order to: (1) examine the present status of teaching of neuroimaging in the training of neurology in

  17. Industrial companies' demand for electricity. Evidence from a micropanel

    International Nuclear Information System (INIS)

    Bjoerner, T.B.; Togeby, M.; Jensen, H.H.

    2001-01-01

    The paper presents a micro-econometric analysis of industrial companies' demand for electricity. Previous studies on electricity consumption in the industrial sector have relied on aggregate data or cross-section observations. Here we present an econometric study on electricity demand based on a panel of 2949 Danish companies followed from 1983 to 1996. It is found that estimators of electricity demand that take account of the panel structure (fixed effect models) yield considerably lower price and production elasticities compared to estimators that do not (like cross-section models). It is also investigated how various company characteristics like size, type of industrial sub-sector and electricity intensity in production influence price and production elasticities. It appears that companies with a high electricity intensity also have a high own-price elasticity

  18. Functional neuroimaging of Alzheimer's disease and other dementias

    International Nuclear Information System (INIS)

    Wang Ruimin

    2001-01-01

    Dementing illnesses comprise Alzheimer's disease (AD), Pick's disease, Multi-infarct dementia (MID) and other neurological disorders. These diseases have different clinical characters respectively. Neuropsychological examinations can help to diagnose and differential diagnose dementias. The development of neuroimaging dementias is more and more rapid. 18 F-FDG PET method shows neo-cortical hypometabolism occurring in the biparietal-temporal lobes and left-right asymmetry of AD patients in the early stage. It can also differential diagnose Ad from other dementias

  19. Economic analysis of price premiums in the presence of non-convexities. Evidence from German electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Paschmann, Martin

    2017-11-15

    Analyzing price data from sequential German electricity markets, namely the day-ahead and intraday auction, a puzzling but apparently systematic pattern of price premiums can be identified. The price premiums are highly correlated with the underlying demand profile. As there is evidence that widespread models for electricity forward premiums are not applicable to the market dynamics under analysis, a theoretical model is developed within this article which reveals that non-convexities in only a subset of sequential markets with differing product granularity may cause systematic price premiums at equilibrium. These price premiums may be bidirectional and reflect a value for additional short-term power supply system flexibility.

  20. Economic analysis of price premiums in the presence of non-convexities. Evidence from German electricity markets

    International Nuclear Information System (INIS)

    Paschmann, Martin

    2017-01-01

    Analyzing price data from sequential German electricity markets, namely the day-ahead and intraday auction, a puzzling but apparently systematic pattern of price premiums can be identified. The price premiums are highly correlated with the underlying demand profile. As there is evidence that widespread models for electricity forward premiums are not applicable to the market dynamics under analysis, a theoretical model is developed within this article which reveals that non-convexities in only a subset of sequential markets with differing product granularity may cause systematic price premiums at equilibrium. These price premiums may be bidirectional and reflect a value for additional short-term power supply system flexibility.

  1. Neuroimaging in dementia and Alzheimer's disease: Current protocols and practice in the Republic of Ireland

    International Nuclear Information System (INIS)

    Kelly, I.; Butler, M.-L.; Ciblis, A.; McNulty, J.P.

    2016-01-01

    Introduction: Neuroimaging plays an essential supportive role in the diagnosis of dementia, assisting in establishing the dementia subtype(s). This has significant value in both treatment and care decisions and has important implications for prognosis. This study aims to explore the development and nature of neuroimaging protocols currently used in the assessment of dementia and Alzheimer's disease (AD). Methods: An online questionnaire was designed and distributed to lead radiography personnel working in computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) departments (n = 94) in both hospital-based and out-patient imaging centres in the Republic of Ireland. Results: Response rates for each modality ranged from 42 to 44%. CT, MRI, and PET were used to specifically diagnose dementia or AD by 43%, 40% and 50% of responding centres respectively. Of these, dementia-specific neuroimaging protocols were utilised in 33%, 50% and 100% of CT, MRI and PET centres respectively, with the remainder using either standard or other non-specific protocols. Both radiologists and clinical specialist radiographers participated in the development of the majority of protocols. The Royal College of Radiologists (RCR) guidelines were most commonly referenced as informing protocol development, however, none of the MRI respondents were able to identify any guidelines used to inform MR protocol development. Conclusion: Currently there is no consensus in Ireland on optimal dementia/AD neuroimaging protocols, particularly for PET and MRI. Similarly the use of validated and published guidelines to inform protocols is not universal. - Highlights: • We examined the nature of neuroimaging protocols for dementia and Alzheimer's disease in Ireland. • Dementia or Alzheimer's disease-specific protocols were used by between 33 and 100% of centres depending on modality. • Stated dementia-specific protocols were identical for CT whereas

  2. Cross-border integration in the European electricity market. Evidence from the pricing behavior of Norwegian and Swiss exporters

    International Nuclear Information System (INIS)

    Balaguer, Jacint

    2011-01-01

    This paper examines the electricity market integration process in two European areas based on the pricing behavior of Norwegian and Swiss exporters. The aim is to gain evidence for the period after the adoption of the 'Second Legislative Package' (2003). The pricing behavior of Norwegian exporters indicates that the wholesale markets for Denmark and Sweden are highly integrated. Moreover, results are fully compatible with the existence of a very competitive marketplace for electricity. This clearly contrasts with the evidence provided by Swiss exporters. In this last case, analysis revealed differences in pricing-to-market behavior between Italy, France and Germany, which indicates that exporters take advantage of international market segmentation and divergences between market structures. This outcome provides a reasonable explanation as to why price differences between countries cannot be fully attributed to transmission costs, as has been claimed in previous research. We also found cross-country convergence in levels of markups and in pricing-to-market behavior of the Swiss exporters for the first part of the period that was analyzed. The evidence is fully consistent with an initial impulse toward market integration originated by reforms implemented at the beginning of the last decade. - Highlights: → We exploit a model based on pricing-to-market behavior. → Price discrimination by Swiss exporters is found. → Nordic electricity markets are found to be already highly integrated. → Market integration was recently improved in continental area. → Results are consistent with reforms under the 'Second Legislative Package'.

  3. Cross-border integration in the European electricity market. Evidence from the pricing behavior of Norwegian and Swiss exporters

    Energy Technology Data Exchange (ETDEWEB)

    Balaguer, Jacint, E-mail: jacint.balaguer@eco.uji.es [Department of Economics, Universitat Jaume I, 12071 Castellon (Spain)

    2011-09-15

    This paper examines the electricity market integration process in two European areas based on the pricing behavior of Norwegian and Swiss exporters. The aim is to gain evidence for the period after the adoption of the 'Second Legislative Package' (2003). The pricing behavior of Norwegian exporters indicates that the wholesale markets for Denmark and Sweden are highly integrated. Moreover, results are fully compatible with the existence of a very competitive marketplace for electricity. This clearly contrasts with the evidence provided by Swiss exporters. In this last case, analysis revealed differences in pricing-to-market behavior between Italy, France and Germany, which indicates that exporters take advantage of international market segmentation and divergences between market structures. This outcome provides a reasonable explanation as to why price differences between countries cannot be fully attributed to transmission costs, as has been claimed in previous research. We also found cross-country convergence in levels of markups and in pricing-to-market behavior of the Swiss exporters for the first part of the period that was analyzed. The evidence is fully consistent with an initial impulse toward market integration originated by reforms implemented at the beginning of the last decade. - Highlights: > We exploit a model based on pricing-to-market behavior. > Price discrimination by Swiss exporters is found. > Nordic electricity markets are found to be already highly integrated. > Market integration was recently improved in continental area. > Results are consistent with reforms under the 'Second Legislative Package'.

  4. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives.

    Science.gov (United States)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa; Thielscher, Axel; Siebner, Hartwig Roman

    2016-10-15

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation and "offline" NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework, emphasizing principal strategies and highlighting promising future directions to exploit the benefits of combining NTBS with neuroimaging or electrophysiology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Power of Neuroimaging Biomarkers for Screening Frontotemporal Dementia

    OpenAIRE

    McMillan, Corey T.; Avants, Brian B.; Cook, Philip; Ungar, Lyle; Trojanowski, John Q.; Grossman, Murray

    2014-01-01

    Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative disease that can result from either frontotemporal lobar degeneration (FTLD) or Alzheimer’s disease (AD) pathology. It is critical to establish statistically powerful biomarkers that can achieve substantial cost-savings and increase feasibility of clinical trials. We assessed three broad categories of neuroimaging methods to screen underlying FTLD and AD pathology in a clinical FTD series: global ...

  6. The utility of neuroimaging in the management of dementia

    OpenAIRE

    Uduak E Williams; Ekanem E Philip Ephraim; Sidney K Oparah

    2015-01-01

    Dementia is a syndrome of progressive dysfunction of two or more cognitive domains associated with impairment of activities of daily living. An understanding of the pathophysiology of dementia and its early diagnosis is important in the pursuit of possible disease modifying therapy for dementia. Neuroimaging has greatly transformed this field of research as its function has changed from a mere tool for diagnosing treatable causes of demen...

  7. DFBIdb: a software package for neuroimaging data management.

    Science.gov (United States)

    Adamson, Christopher L; Wood, Amanda G

    2010-12-01

    We present DFBIdb: a suite of tools for efficient management of neuroimaging project data. Specifically, DFBIdb was designed to allow users to quickly perform routine management tasks of sorting, archiving, exploring, exporting and organising raw data. DFBIdb was implemented as a collection of Python scripts that maintain a project-based, centralised database that is based on the XCEDE 2 data model. Project data is imported from a filesystem hierarchy of raw files, which is an often-used convention of imaging devices, using a single script that catalogues meta-data into a modified XCEDE 2 data model. During the import process data are reversibly anonymised, archived and compressed. The import script was designed to support multiple file formats and features an extensible framework that can be adapted to novel file formats. An ACL-based security model, with accompanying graphical management tools, was implemented to provide a straightforward method to restrict access to raw and meta-data. Graphical user interfaces are provided for data exploration. DFBIdb includes facilities to export, convert and organise customisable subsets of project data according to user-specified criteria. The command-line interface was implemented to allow users to incorporate database commands into more complex scripts that may be utilised to automate data management tasks. By using DFBIdb, neuroimaging laboratories will be able to perform routine data management tasks in an efficient manner.

  8. Approach to ''Mind'' using functional neuroimaging

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2006-01-01

    This review mainly describes authors' recent investigations concerning neuroimages approaching to even human ''mind'' using techniques of PET, SPECT and functional MRI (fMRI). Progress of such studies greatly owes to the development of image statistics of the brain like statistical parametric mapping (www.fil.ion.ucl.ac.uk/spm/), and brain standards (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html, and ric.uthscsa.edu/projects/talairach daemon.html). The author discusses and presents images in cases of hallucinations (SPECT and H 2 15 O-PET), autism (SPECT), sleep, depression, and its therapy by transcaranial magnetic stimulation. These studies are expected to contribute to diagnosis and therapy of endogenous neurological disorders. (T.I.)

  9. Approach to ''Mind'' using functional neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi [Saitama Medical School, Hospital, Moroyama, Saitama (Japan)

    2006-05-15

    This review mainly describes authors' recent investigations concerning neuroimages approaching to even human ''mind'' using techniques of PET, SPECT and functional MRI (fMRI). Progress of such studies greatly owes to the development of image statistics of the brain like statistical parametric mapping (www.fil.ion.ucl.ac.uk/spm/), and brain standards (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html, and ric.uthscsa.edu/projects/talairach daemon.html). The author discusses and presents images in cases of hallucinations (SPECT and H{sub 2}{sup 15}O-PET), autism (SPECT), sleep, depression, and its therapy by transcaranial magnetic stimulation. These studies are expected to contribute to diagnosis and therapy of endogenous neurological disorders. (T.I.)

  10. Silent stroke and advance in neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Yasushi; Sadoshima, Seizo; Hasuo, Kanehiro; Saku, Yoshisuke; Fujishima, Masatoshi (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1990-10-01

    Recently, silent strokes are more frequently demonstrated by CT and MRI with the advance of neuroimaging. The infarcted lesions unrelated to the neurological symptoms were detected in 8, 30, 28, 34, 60, 63% of the patients with cerebral infarction in 1977-78, 1982, 1985, 1986, 1987, 1988, respectively, by CT and/or MRI, and the asymptomatic patients with incidentally diagnosed cerebral infarction were amounted to 16% (8 of 51 cases) in 1988. Of the recent 50 patients with cerebral infarction examined by CT and MRI, asymptomatic cerebrovascular lesions were detected in 25 (50%) by CT and in 35 (70%) by MRI. MRI also revealed asymptomatic old hemorrhage in 7 (14%). The clinical significance of silent stroke was discussed. (author).

  11. Neuroimaging Features of San Luis Valley Syndrome

    Directory of Open Access Journals (Sweden)

    Matthew T. Whitehead

    2015-01-01

    Full Text Available A 14-month-old Hispanic female with a history of double-outlet right ventricle and developmental delay in the setting of recombinant chromosome 8 syndrome was referred for neurologic imaging. Brain MR revealed multiple abnormalities primarily affecting midline structures, including commissural dysgenesis, vermian and brainstem hypoplasia/dysplasia, an interhypothalamic adhesion, and an epidermoid between the frontal lobes that enlarged over time. Spine MR demonstrated hypoplastic C1 and C2 posterior elements, scoliosis, and a borderline low conus medullaris position. Presented herein is the first illustration of neuroimaging findings from a patient with San Luis Valley syndrome.

  12. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    Science.gov (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  13. Responsible Reporting : Neuroimaging News in the Age of Responsible Research and Innovation

    NARCIS (Netherlands)

    de Jong, Irja Marije; Arentshorst, Marlous; Broerse, Jacqueline; Kupper, J.F.H.

    Besides offering opportunities in both clinical and non-clinical domains, the application of novel neuroimaging technologies raises pressing dilemmas. 'Responsible Research and Innovation' (RRI) aims to stimulate research and innovation activities that take ethical and social considerations into

  14. A Neuroimaging Web Services Interface as a Cyber Physical System for Medical Imaging and Data Management in Brain Research: Design Study.

    Science.gov (United States)

    Lizarraga, Gabriel; Li, Chunfei; Cabrerizo, Mercedes; Barker, Warren; Loewenstein, David A; Duara, Ranjan; Adjouadi, Malek

    2018-04-26

    Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable

  15. Cross-subsidy in electricity tariffs: evidence from India

    International Nuclear Information System (INIS)

    Chattopadhyay, P.

    2004-01-01

    The recent reforms in India have been equated to the reduction of cross-subsidization in electricity tariffs. Examining the usefulness of cross subsidies in electricity tariffs in India, I have argued that they are prone to considerable inefficiencies and should be discontinued. I have also formally examined the viability of above-cost tariffs in the industrial sector to allow subsidized domestic and agricultural consumption. Finally, I have used data from a distribution company in the state of Uttar Pradesh, India to estimate industrial demand for electricity and have found that the policy of cross-subsidy may have indeed gone overboard in India. (author)

  16. Neuroimage in neuroecthodermic diseases Part II: Tuberous Sclerosis

    International Nuclear Information System (INIS)

    Menor, F.; Marti-Bonmati, L.; Poyatos, C.; Cortina, H.; Esteban, J.M.; Vilar, J.

    1993-01-01

    A prospective clinicoradiological study has been carried out in 36 patients with tuberous sclerosis. The neuroimaging studies detected some type of disorder in 94% of patients, contributing significantly to the positive diagnosis of the disease. CT was better for viewing periventricular nodules, while MR was more reliable in disclosing the number and location of cortical and white matter lesions. The use of gadolinium-DTPA in MR demonstrated frequent uptake by the periventricular nodules which was exceptional in the cortical and subcortical lesions. The use of contrast, both in CT and in MR, enhanced the images of the 7 presumed giant-cell astrocytomas detected in 6 patients. Uptake by the tumors was always much greater than that observed in the nodules, being and important criterion for the differentiation between nodules and small tumors. The appearance and topography of these CNS lesions can be reasonably well explained by considering the disease to be a disorder of the migration of dysgenic cells. We have found no consistent correlation between the neuroradiological findings and the clinical evolution of the patients. MR and CT are similarly useful in the diagnosis of tuberous sclerosis. Given that MR is more effective in the detection of the set of intracranial lesions, it could be used as the initial technique, resorting to CT in those cases in which the clinical evidence is highly suggestive and the MR study is negative. Periodic MR control is not justified unless there is suspicion of tumor implantation or growth

  17. Heterogeneity within autism spectrum disorders: what have we learned from neuroimaging studies?

    Directory of Open Access Journals (Sweden)

    Rhoshel Krystyna Lenroot

    2013-10-01

    Full Text Available Autism spectrum disorders (ASD display significant heterogeneity. Although most neuroimaging studies in ASD have been designed to identify commonalities among affected individuals, rather than differences, some studies have explored variation within ASD. There have been two general types of approaches used for this in the neuroimaging literature to date: comparison of subgroups within ASD, and analyses using dimensional measures to link clinical variation to brain differences. This review focuses on structural and functional magnetic resonance imaging studies that have used these approaches to begin to explore heterogeneity between individuals with ASD. Although this type of data is yet sparse, recognition is growing of the limitations of behaviourally defined categorical diagnoses for understanding neurobiology. Study designs that are more informative regarding the sources of heterogeneity in ASD have the potential to improve our understanding of the neurobiological processes underlying ASD.

  18. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging.

    Science.gov (United States)

    Pitman, R K; Shin, L M; Rauch, S L

    2001-01-01

    Rapidly evolving brain neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) are proving fruitful in exploring the pathogenesis and pathophysiology of posttraumatic stress disorder (PTSD). Structural abnormalities in PTSD found with MRI include nonspecific white matter lesions and decreased hippocampal volume. These abnormalities may reflect pretrauma vulnerability to develop PTSD, or they may be a consequence of traumatic exposure, PTSD, and/or PTSD sequelae. Functional neuroimaging symptom provocation and cognitive activation paradigms using PET measurement of regional cerebral blood flow have revealed greater activation of the amygdala and anterior paralimbic structures (which are known to be involved in processing negative emotions such as fear), greater deactivation of Broca's region (motor speech) and other nonlimbic cortical regions, and failure of activation of the cingulate cortex (which possibly plays an inhibitory role) in response to trauma-related stimuli in individuals with PTSD. Functional MRI research has shown the amygdala to be hyperresponsive to fear-related stimuli in this disorder. Research with PET suggests that cortical, notably hippocampal, metabolism is suppressed to a greater extent by pharmacologic stimulation of the noradrenergic system in persons with PTSD. The growth of knowledge concerning the anatomical and neurochemical basis of this important mental disorder will hopefully eventually lead to rational psychological and pharmacologic treatments.

  19. Effects of Cannabis on Impulsivity: A Systematic Review of Neuroimaging Findings

    Science.gov (United States)

    Wrege, Johannes; Schmidt, André; Walter, Anna; Smieskova, Renata; Bendfeldt, Kerstin; Radue, Ernst-Wilhelm; Lang, Undine E.; Borgwardt, Stefan

    2014-01-01

    We conducted a systematic review to assess the evidence for specific effects of cannabis on impulsivity, disinhibition and motor control. The review had a specific focus on neuroimaging findings associated with acute and chronic use of the drug and covers literature published up until May 2012. Seventeen studies were identified, of which 13 met the inclusion criteria; three studies investigated acute effects of cannabis (1 fMRI, 2 PET), while six studies investigated non-acute functional effects (4 fMRI, 2 PET), and four studies investigated structural alterations. Functional imaging studies of impulsivity studies suggest that prefrontal blood flow is lower in chronic cannabis users than in controls. Studies of acute administration of THC or marijuana report increased brain metabolism in several brain regions during impulsivity tasks. Structural imaging studies of cannabis users found differences in reduced prefrontal volumes and white matter integrity that might mediate the abnormal impulsivity and mood observed in marijuana users. To address the question whether impulsivity as a trait precedes cannabis consumption or whether cannabis aggravates impulsivity and discontinuation of usage more longitudinal study designs are warranted. PMID:23829358

  20. Data mining a functional neuroimaging database for functional segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  1. The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Boen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Hartman, Catharina A.; Hoekstra, Pieter J.; Penninx, Brenda W.; Schmaal, Lianne; van Tol, Marie-Jose

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  2. Data mining a functional neuroimaging database for functional|segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  3. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Cannon, Dara M.; Cantor, Rita M.; Carless, Melanie A.; Caseras, Xavier; Cavalleri, Gianpiero L.; Chakravarty, M. Mallar; Chang, Kiki D.; Ching, Christopher R. K.; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P.; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Deary, Ian J.; de Geus, Eco J. C.; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I.; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D.; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E.; Foroud, Tatiana; Fox, Peter T.; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C.; Godlewska, Beata; Goldstein, Rita Z.; Gollub, Randy L.; Grabe, Hans J.; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E.; Gur, Ruben C.; Göring, Harald H. H.; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B.; Hall, Jeremy; Hardy, John; Hartman, Catharina A.; Hass, Johanna; Hatton, Sean N.; Haukvik, Unn K.; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B.; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J.; Hollinshead, Marisa; Holmes, Avram J.; Homuth, Georg; Hoogman, Martine; Hong, L. Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E.; Hwang, Kristy S.; Jack, Clifford R.; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G.; Kahn, René S.; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B. J.; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A.; Lauriello, John; Lawrie, Stephen M.; Lee, Phil H.; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D.; Li, Chiang-Shan; Liberg, Benny; Liewald, David C.; Liu, Xinmin; Lopez, Lorna M.; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W. J.; Macqueen, Glenda M.; Malt, Ulrik F.; Mandl, René; Manoach, Dara S.; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Moses, Eric K.; Mueller, Bryon A.; Muñoz Maniega, Susana; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E.; Nilsson, Lars-Göran; Nugent, Allison C.; Nyberg, Lars; Olvera, Rene L.; Oosterlaan, Jaap; Ophoff, Roel A.; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D.; Penninx, Brenda W.; Peterson, Charles P.; Pfennig, Andrea; Phillips, Mary; Pike, G. Bruce; Poline, Jean-Baptiste; Potkin, Steven G.; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L.; Roffman, Joshua L.; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J.; Royle, Natalie A.; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S.; Salami, Alireza; Satterthwaite, Theodore D.; Savitz, Jonathan; Saykin, Andrew J.; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G.; Schork, Andrew J.; Schulz, S. Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M.; Simmons, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soares, Jair C.; Sponheim, Scott R.; Sprooten, Emma; Starr, John M.; Steen, Vidar M.; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G.; Teumer, Alexander; Toga, Arthur W.; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; van den Heuvel, Martijn; van der Wee, Nic J.; van Eijk, Kristel; van Erp, Theo G. M.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C.; Veltman, Dick J.; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M.; Weale, Michael E.; Weiner, Michael W.; Wen, Wei; Westlye, Lars T.; Whalley, Heather C.; Whelan, Christopher D.; White, Tonya; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P.; Thalamuthu, Anbupalam; Schofield, Peter R.; Freimer, Nelson B.; Lawrence, Natalia S.; Drevets, Wayne

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  4. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    P.M. Thompson (Paul); J.L. Stein; S.E. Medland (Sarah Elizabeth); D.P. Hibar (Derrek); A.A. Vásquez (Arias); M.E. Rentería (Miguel); R. Toro (Roberto); N. Jahanshad (Neda); G. Schumann (Gunter); B. Franke (Barbara); M.J. Wright (Margaret); N.G. Martin (Nicholas); I. Agartz (Ingrid); M. Alda (Martin); S. Alhusaini (Saud); L. Almasy (Laura); K. Alpert (Kathryn); N.C. Andreasen; O.A. Andreassen (Ole); L.G. Apostolova (Liana); K. Appel (Katja); N.J. Armstrong (Nicola); B. Aribisala (Benjamin); M.E. Bastin (Mark); M. Bauer (Michael); C.E. Bearden (Carrie); Ø. Bergmann (Ørjan); E.B. Binder (Elisabeth); J. Blangero (John); H.J. Bockholt; E. Bøen (Erlend); M. Bois (Monique); D.I. Boomsma (Dorret); T. Booth (Tom); I.J. Bowman (Ian); L.B.C. Bralten (Linda); R.M. Brouwer (Rachel); H.G. Brunner; D.G. Brohawn (David); M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); J. Bustillo; V.D. Calhoun (Vince); D.M. Cannon (Dara); R.M. Cantor; M.A. Carless (Melanie); X. Caseras (Xavier); G. Cavalleri (Gianpiero); M.M. Chakravarty (M. Mallar); K.D. Chang (Kiki); C.R.K. Ching (Christopher); A. Christoforou (Andrea); S. Cichon (Sven); V.P. Clark; P. Conrod (Patricia); D. Coppola (Domenico); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); I.J. Deary (Ian); E.J.C. de Geus (Eco); A. den Braber (Anouk); G. Delvecchio (Giuseppe); C. Depondt (Chantal); L. de Haan (Lieuwe); G.I. de Zubicaray (Greig); D. Dima (Danai); R. Dimitrova (Rali); S. Djurovic (Srdjan); H. Dong (Hongwei); D.J. Donohoe (Dennis); A. Duggirala (Aparna); M.D. Dyer (Matthew); S.M. Ehrlich (Stefan); C.J. Ekman (Carl Johan); T. Elvsåshagen (Torbjørn); L. Emsell (Louise); S. Erk; T. Espeseth (Thomas); J. Fagerness (Jesen); S. Fears (Scott); I. Fedko (Iryna); G. Fernandez (Guillén); S.E. Fisher (Simon); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); S. Frangou (Sophia); E.M. Frey (Eva Maria); T. Frodl (Thomas); V. Frouin (Vincent); H. Garavan (Hugh); S. Giddaluru (Sudheer); D.C. Glahn (David); B. Godlewska (Beata); R.Z. Goldstein (Rita); R.L. Gollub (Randy); H.J. Grabe (Hans Jörgen); O. Grimm (Oliver); O. Gruber (Oliver); T. Guadalupe (Tulio); R.E. Gur (Raquel); R.C. Gur (Ruben); H.H.H. Göring (Harald); S. Hagenaars (Saskia); T. Hajek (Tomas); G.B. Hall (Garry); J. Hall (Jeremy); J. Hardy (John); C.A. Hartman (Catharina); J. Hass (Johanna); W. Hatton; U.K. Haukvik (Unn); K. Hegenscheid (Katrin); J. Heinz (Judith); I.B. Hickie (Ian); B.C. Ho (Beng ); D. Hoehn (David); P.J. Hoekstra (Pieter); M. Hollinshead (Marisa); A.J. Holmes (Avram); G. Homuth (Georg); M. Hoogman (Martine); L.E. Hong (L.Elliot); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); H.E. Hulshoff Pol (Hilleke); K.S. Hwang (Kristy); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); C. Johnston; E.G. Jönsson (Erik); R.S. Kahn (René); D. Kasperaviciute (Dalia); S. Kelly (Steve); S. Kim (Shinseog); P. Kochunov (Peter); L. Koenders (Laura); B. Krämer (Bernd); J.B.J. Kwok (John); J. Lagopoulos (Jim); G. Laje (Gonzalo); M. Landén (Mikael); B.A. Landman (Bennett); J. Lauriello; S. Lawrie (Stephen); P.H. Lee (Phil); S. Le Hellard (Stephanie); H. Lemaître (Herve); C.D. Leonardo (Cassandra); C.-S. Li (Chiang-shan); B. Liberg (Benny); D.C. Liewald (David C.); X. Liu (Xinmin); L.M. Lopez (Lorna); E. Loth (Eva); A. Lourdusamy (Anbarasu); M. Luciano (Michelle); F. MacCiardi (Fabio); M.W.J. Machielsen (Marise); G.M. MacQueen (Glenda); U.F. Malt (Ulrik); R. Mandl (René); D.S. Manoach (Dara); J.-L. Martinot (Jean-Luc); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); M. Mattingsdal (Morten); A. Meyer-Lindenberg; C. McDonald (Colm); A.M. McIntosh (Andrew); F.J. Mcmahon (Francis J); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); Y. Milaneschi (Yuri); S. Mohnke (Sebastian); G.W. Montgomery (Grant); D.W. Morris (Derek W); E.K. Moses (Eric); B.A. Mueller (Bryon ); S. Muñoz Maniega (Susana); T.W. Mühleisen (Thomas); B. Müller-Myhsok (Bertram); B. Mwangi (Benson); M. Nauck (Matthias); K. Nho (Kwangsik); T.E. Nichols (Thomas); L.G. Nilsson; A.C. Nugent (Allison); L. Nyberg (Lisa); R.L. Olvera (Rene); J. Oosterlaan (Jaap); R.A. Ophoff (Roel); M. Pandolfo (Massimo); M. Papalampropoulou-Tsiridou (Melina); M. Papmeyer (Martina); T. Paus (Tomas); Z. Pausova (Zdenka); G. Pearlson (Godfrey); B.W.J.H. Penninx (Brenda); C.P. Peterson (Charles); A. Pfennig (Andrea); M. Phillips (Mary); G.B. Pike (G Bruce); J.B. Poline (Jean Baptiste); S.G. Potkin (Steven); B. Pütz (Benno); A. Ramasamy (Adaikalavan); J. Rasmussen (Jerod); M. Rietschel (Marcella); M. Rijpkema (Mark); S.L. Risacher (Shannon); J.L. Roffman (Joshua); R. Roiz-Santiañez (Roberto); N. Romanczuk-Seiferth (Nina); E.J. Rose (Emma); N.A. Royle (Natalie); D. Rujescu (Dan); M. Ryten (Mina); P.S. Sachdev (Perminder); A. Salami (Alireza); T.D. Satterthwaite (Theodore); J. Savitz (Jonathan); A.J. Saykin (Andrew); C. Scanlon (Cathy); L. Schmaal (Lianne); H. Schnack (Hugo); N.J. Schork (Nicholas); S.C. Schulz (S.Charles); R. Schür (Remmelt); L.J. Seidman (Larry); L. Shen (Li); L. Shoemaker (Lawrence); A. Simmons (Andrew); S.M. Sisodiya (Sanjay); C. Smith (Colin); J.W. Smoller; J.C. Soares (Jair); S.R. Sponheim (Scott); R. Sprooten (Roy); J.M. Starr (John); V.M. Steen (Vidar); S. Strakowski (Stephen); L.T. Strike (Lachlan); J. Sussmann (Jessika); P.G. Sämann (Philipp); A. Teumer (Alexander); A.W. Toga (Arthur); D. Tordesillas-Gutierrez (Diana); D. Trabzuni (Danyah); S. Trost (Sarah); J. Turner (Jessica); M. van den Heuvel (Martijn); N.J. van der Wee (Nic); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); M.C. Valdés Hernández (Maria); D.J. Veltman (Dick); A. Versace (Amelia); H. Völzke (Henry); R. Walker (Robert); H.J. Walter (Henrik); L. Wang (Lei); J.M. Wardlaw (J.); M.E. Weale (Michael); M.W. Weiner (Michael); W. Wen (Wei); L.T. Westlye (Lars); H.C. Whalley (Heather); C.D. Whelan (Christopher); T.J.H. White (Tonya); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); D. Zilles (David); M.P. Zwiers (Marcel); A. Thalamuthu (Anbupalam); J.R. Almeida (Jorge); C.J. Schofield (Christopher); N.B. Freimer (Nelson); N.S. Lawrence (Natalia); D.A. Drevets (Douglas)

    2014-01-01

    textabstractThe Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in

  5. Effects of computerized cognitive training on neuroimaging outcomes in older adults: a systematic review.

    Science.gov (United States)

    Ten Brinke, Lisanne F; Davis, Jennifer C; Barha, Cindy K; Liu-Ambrose, Teresa

    2017-07-10

    Worldwide, the population is aging and the number of individuals diagnosed with dementia is rising rapidly. Currently, there are no effective pharmaceutical cures. Hence, identifying lifestyle approaches that may prevent, delay, or treat cognitive impairment and dementia in older adults is becoming increasingly important. Computerized Cognitive Training (CCT) is a promising strategy to combat cognitive decline. Yet, the underlying mechanisms of the effect of CCT on cognition remain poorly understood. Hence, the primary objective of this systematic review was to examine peer-reviewed literature ascertaining the effect of CCT on both structural and functional neuroimaging measures among older adults to gain insight into the underlying mechanisms by which CCT may benefit cognitive function. In accordance with PRISMA guidelines, we used the following databases: MEDLINE, EMBASE, and CINAHL. Two independent reviewers abstracted data using pre-defined terms. These included: main study characteristics such as the type of training (i.e., single- versus multi-domain), participant demographics (age ≥ 50 years; no psychiatric conditions), and the inclusion of neuroimaging outcomes. The Physiotherapy Evidence Database (PEDro) scale was used to assess quality of all studies included in this systematic review. Nine studies were included in this systematic review, with four studies including multiple MRI sequences. Results of this systematic review are mixed: CCT was found to increase and decrease both brain structure and function in older adults. In addition, depending on region of interest, both increases and decreases in structure and function were associated with behavioural performance. Of all studies included in this systematic review, results from the highest quality studies, which were two randomized controlled trials, demonstrated that multi-domain CCT could lead to increases in hippocampal functional connectivity. Further high quality studies that include an active

  6. Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use

    Science.gov (United States)

    Ernst, Monique; Luciana, Monica

    2015-01-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  7. Motives to adopt renewable electricity technologies: Evidence from Sweden

    International Nuclear Information System (INIS)

    Bergek, Anna; Mignon, Ingrid

    2017-01-01

    The diffusion of renewable electricity technologies (RETs) has to speed up for countries to reach their, often ambitious, targets for renewable energy generation. This requires a large number of actors – including individuals, companies and other organizations – to adopt RETs. Policies will most likely be needed to induce adoption, but there is limited knowledge about what motivates RET adoption. The purpose of this paper is to complement and expand the available empirical evidence regarding motives to adopt RETs through a survey to over 600 RET adopters in Sweden. The main finding of the study is that there are many different motives to adopt RETs and that RET adopters are a heterogeneous group with regard to motives. Although environmental concerns, interest in the technology, access to an RE resource and prospects to generate economic revenues are important motives in general, adopters differ with regard to how large importance they attach to the same motive and each adopter can also have several different motives to adopt. There are also differences in motives between adopter categories (especially independent power producers vs. individuals and diversified companies) and between RETs (especially wind power vs. solar power). This implies that a variety of policy instruments might be needed to induce further adoption of a variety of RETs by a variety of adopter categories. - Highlights: • There are many different motives to adopt renewable electricity technologies (RETs). • Adopters attach different levels of importance to the same motive. • Adopters can have several different motives to adopt a particular RET. • Motives to adopt RETs differ between wind power, solar PV and small-scale hydro. • Motives to adopt RETs differ between IPPs, individuals and diversified companies.

  8. Neuroimaging Studies Of Striatum In Cognition, Part I: Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Jean-Sebastien eProvost

    2015-10-01

    Full Text Available The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  9. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email: tieqiang.li@karolinska.se; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))

    2011-02-15

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  10. A simple tool for neuroimaging data sharing

    Directory of Open Access Journals (Sweden)

    Christian eHaselgrove

    2014-05-01

    Full Text Available Data sharing is becoming increasingly common, but despite encouragement and facilitation by funding agencies, journals, and some research efforts, most neuroimaging data acquired today is still not shared due to political, financial, social, and technical barriers to sharing data that remain. In particular, technical solutions are few for researchers that are not a part of larger efforts with dedicated sharing infrastructures, and social barriers such as the time commitment required to share can keep data from becoming publicly available.We present a system for sharing neuroimaging data, designed to be simple to use and to provide benefit to the data provider. The system consists of a server at the International Neuroinformatics Coordinating Facility (INCF and user tools for uploading data to the server. The primary design principle for the user tools is ease of use: the user identifies a directory containing DICOM data, provides their INCF Portal authentication, and provides identifiers for the subject and imaging session. The user tool anonymizes the data and sends it to the server. The server then runs quality control routines on the data, and the data and the quality control reports are made public. The user retains control of the data and may change the sharing policy as they need. The result is that in a few minutes of the user’s time, DICOM data can be anonymized and made publicly available, and an initial quality control assessment can be performed on the data. The system is currently functional, and user tools and access to the public image database are available at http://xnat.incf.org/.

  11. Neuroimaging features of Cornelia de Lange syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Matthew T. [Department of Radiology, Washington, DC (United States); Nagaraj, Usha D. [Department of Radiology, Washington, DC (United States); Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Pearl, Phillip L. [Department of Radiology, Washington, DC (United States); Boston Children' s Hospital, Department of Neurology, Boston, MA (United States)

    2015-08-15

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms ''Cornelia'', ''Brachmann'' and ''de Lange.'' The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present. (orig.)

  12. Neuroimaging features of Cornelia de Lange syndrome

    International Nuclear Information System (INIS)

    Whitehead, Matthew T.; Nagaraj, Usha D.; Pearl, Phillip L.

    2015-01-01

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms ''Cornelia'', ''Brachmann'' and ''de Lange.'' The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present. (orig.)

  13. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  14. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Veltman, Dick J.; Booij, Jan; Emmerik-van Oortmerssen, Katelijne; den Brink, Wim

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys) function in stimulant dependence, including cocaine, (meth-) amphetamine, ecstasy and nicotine

  15. Neuroimaging of Narcolepsy and Kleine-Levin Syndrome.

    Science.gov (United States)

    Hong, Seung Bong

    2017-09-01

    Narcolepsy is a chronic neurologic disorder with the abnormal regulation of the sleep-wake cycle, resulting in excessive daytime sleepiness, disturbed nocturnal sleep, and manifestations related to rapid eye movement sleep, such as cataplexy, sleep paralysis, and hypnagogic hallucination. Over the past decade, numerous neuroimaging studies have been performed to characterize the pathophysiology and various clinical features of narcolepsy. This article reviews structural and functional brain imaging findings in narcolepsy and Kleine-Levin syndrome. Based on the current state of research, brain imaging is a useful tool to investigate and understand the neuroanatomic correlates and brain abnormalities of narcolepsy and other hypersomnia. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    NARCIS (Netherlands)

    Crunelle, C.L.; Veltman, D.J.; Booij, J.; van Emmerik-van Oortmerssen, K.; van den Brink, W.

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence,

  17. Hypnosis and pain perception: An Activation Likelihood Estimation (ALE) meta-analysis of functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-12-01

    Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Restoring the Generalizability of SVM Based Decoding in High Dimensional Neuroimage Data

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2011-01-01

    Variance inflation is caused by a mismatch between linear projections of test and training data when projections are estimated on training sets smaller than the dimensionality of the feature space. We demonstrate that variance inflation can lead to an increased neuroimage decoding error rate...

  19. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome.

    Science.gov (United States)

    Lugar, Heather M; Koller, Jonathan M; Rutlin, Jerrel; Marshall, Bess A; Kanekura, Kohsuke; Urano, Fumihiko; Bischoff, Allison N; Shimony, Joshua S; Hershey, Tamara

    2016-02-18

    Wolfram syndrome is a rare autosomal recessive genetic disease characterized by insulin dependent diabetes and vision, hearing and brain abnormalities which generally emerge in childhood. Mutations in the WFS1 gene predispose cells to endoplasmic reticulum stress-mediated apoptosis and may induce myelin degradation in neuronal cell models. However, in vivo evidence of this phenomenon in humans is lacking. White matter microstructure and regional volumes were measured using magnetic resonance imaging in children and young adults with Wolfram syndrome (n = 21) and healthy and diabetic controls (n = 50). Wolfram patients had lower fractional anisotropy and higher radial diffusivity in major white matter tracts and lower volume in the basilar (ventral) pons, cerebellar white matter and visual cortex. Correlations were found between key brain findings and overall neurological symptoms. This pattern of findings suggests that reduction in myelin is a primary neuropathological feature of Wolfram syndrome. Endoplasmic reticulum stress-related dysfunction in Wolfram syndrome may interact with the development of myelin or promote degeneration of myelin during the progression of the disease. These measures may provide objective indices of Wolfram syndrome pathophysiology that will be useful in unraveling the underlying mechanisms and in testing the impact of treatments on the brain.

  20. Online Open Neuroimaging Mass Meta-Analysis with a Wiki

    DEFF Research Database (Denmark)

    Nielsen, Finn Arup; Kempton, Matthew J.; Williams, Steven C. R.

    2015-01-01

    We describe a system for meta-analysis where a wiki stores numerical data in a simple comma-separated values format and a web service performs the numerical statistical computation. We initially apply the system on multiple meta-analyses of structural neuroimaging data results. The described system...... allows for mass meta-analysis, e.g., meta-analysis across multiple brain regions and multiple mental disorders providing an overview of important relationships and their uncertainties in a collaborative environment....

  1. Conceptual and methodological challenges for neuroimaging studies of autistic spectrum disorders

    Directory of Open Access Journals (Sweden)

    Mazzone Luigi

    2010-03-01

    Full Text Available Abstract Autistic Spectrum Disorders (ASDs are a set of complex developmental disabilities defined by impairment in social interaction and communication, as well as by restricted interests or repetitive behaviors. Neuroimaging studies have substantially advanced our understanding of the neural mechanisms that underlie the core symptoms of ASDs. Nevertheless, a number of challenges still remain in the application of neuroimaging techniques to the study of ASDs. We review three major conceptual and methodological challenges that complicate the interpretation of findings from neuroimaging studies in ASDs, and that future imaging studies should address through improved designs. These include: (1 identification and implementation of tasks that more specifically target the neural processes of interest, while avoiding the confusion that the symptoms of ASD may impose on both the performance of the task and the detection of brain activations; (2 the inconsistency that disease heterogeneity in persons with ASD can generate on research findings, particularly heterogeneity of symptoms, symptom severity, differences in IQ, total brain volume, and psychiatric comorbidity; and (3 the problems with interpretation of findings from cross-sectional studies of persons with ASD across differing age groups. Failure to address these challenges will continue to hinder our ability to distinguish findings that outline the causes of ASDs from brain processes that represent downstream or compensatory responses to the presence of the disease. Here we propose strategies to address these issues: 1 the use of simple and elementary tasks, that are easier to understand for autistic subjects; 2 the scanning of a more homogenous group of persons with ASDs, preferably at younger age; 3 the performance of longitudinal studies, that may provide more straight forward and reliable results. We believe that this would allow for a better understanding of both the central pathogenic

  2. Market power in the Nordic electricity wholesale market: A survey of the empirical evidence

    International Nuclear Information System (INIS)

    Fridolfsson, Sven-Olof; Tangeras, Thomas P.

    2009-01-01

    We review the recent empirical research assessing market power on the Nordic wholesale market for electricity, Nord Pool. The studies find no evidence of systematic exploitation of system level market power on Nord Pool. Local market power arising from transmission constraints seems to be more problematic in some price areas across the Nordic countries. Market power can manifest itself in a number of ways that have so far escaped empirical scrutiny. We discuss investment incentives, vertical integration and buyer power, as well as withholding of base-load (nuclear) capacity.

  3. Neuroimaging: do we really need new contrast agents for MRI?

    International Nuclear Information System (INIS)

    Roberts, T.P.L.; Chuang, N.; Roberts, H.C.

    2000-01-01

    The use of exogenous contrast media in magnetic resonance imaging of the brain has brought dramatic improvement in the sensitivity of detection and delineation of pathological structures, such as primary and metastatic brain tumors, inflammation and ischemia. Disruption of the blood brain barrier leads to accumulation of the intravenously injected contrast material in the extravascular space, leading to signal enhancement. Magnetic resonance angiography benefits from T 1 -shortening effects of contrast agent, improving small vessel depiction and providing vascular visualization even in situations of slow flow. High speed dynamic MRI after bolus injection of contrast media allows tracer kinetic modeling of cerebral perfusion. Progressive enhancement over serial post-contrast imaging allows modeling of vascular permeability and thus quantitative estimation of the severity of blood brain barrier disruption. With such an array of capabilities and ever improving technical abilities, it seems that the role of contrast agents in MR neuroimaging is established and the development of new agents may be superfluous. However, new agents are being developed with prolonged intravascular residence times, and with in-vivo binding of ever-increasing specificity. Intravascular, or blood pool, agents are likely to benefit magnetic resonance angiography of the carotid and cerebral vessels; future agents may allow the visualization of therapeutic drug delivery, the monitoring of, for example, gene expression, and the imaging evaluation of treatment efficacy. So while there is a substantial body of work that can be performed with currently available contrast agents, especially in conjunction with optimized image acquisition strategies, post processing, and mathematical analysis, there are still unrealized opportunities for novel contrast agent introduction, particularly those exploiting biological specificity. This article reviews the current use of contrast media in magnetic resonance

  4. Neuroimaging after mild traumatic brain injury: Review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Cyrus Eierud

    2014-01-01

    Full Text Available This paper broadly reviews the study of mild traumatic brain injury (mTBI, across the spectrum of neuroimaging modalities. Among the range of imaging methods, however, magnetic resonance imaging (MRI is unique in its applicability to studying both structure and function. Thus we additionally performed meta-analyses of MRI results to examine 1 the issue of anatomical variability and consistency for functional MRI (fMRI findings, 2 the analogous issue of anatomical consistency for white-matter findings, and 3 the importance of accounting for the time post injury in diffusion weighted imaging reports. As we discuss, the human neuroimaging literature consists of both small and large studies spanning acute to chronic time points that have examined both structural and functional changes with mTBI, using virtually every available medical imaging modality. Two key commonalities have been used across the majority of imaging studies. The first is the comparison between mTBI and control populations. The second is the attempt to link imaging results with neuropsychological assessments. Our fMRI meta-analysis demonstrates a frontal vulnerability to mTBI, demonstrated by decreased signal in prefrontal cortex compared to controls. This vulnerability is further highlighted by examining the frequency of reported mTBI white matter anisotropy, in which we show a strong anterior-to-posterior gradient (with anterior regions being more frequently reported in mTBI. Our final DTI meta-analysis examines a debated topic arising from inconsistent anisotropy findings across studies. Our results support the hypothesis that acute mTBI is associated with elevated anisotropy values and chronic mTBI complaints are correlated with depressed anisotropy. Thus, this review and set of meta-analyses demonstrate several important points about the ongoing use of neuroimaging to understand the functional and structural changes that occur throughout the time course of mTBI recovery

  5. Electricity demand and basic needs: Empirical evidence from China's households

    International Nuclear Information System (INIS)

    He, Xiaoping; Reiner, David

    2016-01-01

    An increasing block tariff (IBT) has been implemented nationwide in the residential sector in China since 2012. However, knowledge about IBT design is still limited, particularly how to determine the electricity volume for the first block of an IBT scheme. Assuming the first block should be set based on some measure of electricity poverty; we attempt to model household electricity demand such that the range of basic needs can be established. We show that in Chinese households there exists a threshold for electricity consumption with respect to income, which could be considered a measure of electricity poverty, and the threshold differs between rural and urban areas. For rural (urban) families, electricity consumption at the level of 7th (5th) income decile households can be considered the threshold for basic needs or a measure of electricity poverty since household electricity demand in rural (urban) areas does not respond to income changes until after 7th (5th) income decile. Accordingly, the first IBT block for some provinces (e.g., Beijing) appears to have been set at a level that is too high. Over time however, given continued rapid growth, the IBT will begin to better reflect actual basic needs. - Highlights: • Basic electricity needs of a household are investigated with survey data. • The Basic electricity needs differ between the rural and urban households. • The first block of the IBTs in China has proven too high and beyond the basic needs. • The initial policy targets of the IBTs in China will be difficult to achieve.

  6. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    Science.gov (United States)

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  7. Adolescent Schizophrenia: A Methodologic Review of the Current Neuroimaging and Neuropsychologic Literature.

    Science.gov (United States)

    Findling, Robert L.; And Others

    1995-01-01

    This paper reviews the methodology in articles that have reported structural neuroimaging or neuropsychological data in adolescent patients with schizophrenia. Identification of methodological issues led to the finding that, at present, no conclusions can be made regarding the presence or absence of neuropsychologic dysfunction or structural…

  8. [Exploring dream contents by neuroimaging].

    Science.gov (United States)

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2014-04-01

    Dreaming is a subjective experience during sleep that is often accompanied by vivid perceptual and emotional contents. Because of its fundamentally subjective nature, the objective study of dream contents has been challenging. However, since the discovery of rapid eye movements during sleep, scientific knowledge on the relationship between dreaming and physiological measures including brain activity has accumulated. Recent advances in neuroimaging analysis methods have made it possible to uncover direct links between specific dream contents and brain activity patterns. In this review, we first give a historical overview on dream researches with a focus on the neurophysiological and behavioral signatures of dreaming. We then discuss our recent study in which visual dream contents were predicted, or decoded, from brain activity during sleep onset periods using machine learning-based pattern recognition of functional MRI data. We suggest that advanced analytical tools combined with neural and behavioral databases will reveal the relevance of spontaneous brain activity during sleep to waking experiences.

  9. Effects of Behavioral Genetic Evidence on Perceptions of Criminal Responsibility and Appropriate Punishment

    Science.gov (United States)

    Appelbaum, Paul S.; Scurich, Nicholas; Raad, Raymond

    2015-01-01

    Demonstrations of a link between genetic variants and criminal behavior have stimulated increasing use of genetic evidence to reduce perceptions of defendants’ responsibility for criminal behavior and to mitigate punishment. However, because only limited data exist regarding the impact of such evidence on decision makers and the public at large, we recruited a representative sample of the U.S. adult population (n=960) for a web-based survey. Participants were presented with descriptions of three legal cases and were asked to: determine the length of incarceration for a convicted murderer; adjudicate an insanity defense; and decide whether a defendant should receive the death penalty. A fully crossed, between-participants, factorial design was used, varying the type of evidence (none, genetic, neuroimaging, both), heinousness of the crime, and past criminal record, with sentence or verdict as the primary outcome. Also assessed were participants’ apprehension of the defendant, belief in free will, political ideology, and genetic knowledge. Across all three cases, genetic evidence had no significant effects on outcomes. Neuroimaging data showed an inconsistent effect in one of the two cases in which it was introduced. In contrast, heinousness of the offense and past criminal record were strongly related to participants’ decisions. Moreover, participants’ beliefs about the controllability of criminal behavior and political orientations were significantly associated with their choices. Our findings suggest that neither hopes that genetic evidence will modify judgments of culpability and punishment nor fears about the impact of genetic evidence on decision makers are likely to come to fruition. PMID:26240516

  10. Effects of Behavioral Genetic Evidence on Perceptions of Criminal Responsibility and Appropriate Punishment.

    Science.gov (United States)

    Appelbaum, Paul S; Scurich, Nicholas; Raad, Raymond

    2015-05-01

    Demonstrations of a link between genetic variants and criminal behavior have stimulated increasing use of genetic evidence to reduce perceptions of defendants' responsibility for criminal behavior and to mitigate punishment. However, because only limited data exist regarding the impact of such evidence on decision makers and the public at large, we recruited a representative sample of the U.S. adult population (n=960) for a web-based survey. Participants were presented with descriptions of three legal cases and were asked to: determine the length of incarceration for a convicted murderer; adjudicate an insanity defense; and decide whether a defendant should receive the death penalty. A fully crossed, between-participants, factorial design was used, varying the type of evidence (none, genetic, neuroimaging, both), heinousness of the crime, and past criminal record, with sentence or verdict as the primary outcome. Also assessed were participants' apprehension of the defendant, belief in free will, political ideology, and genetic knowledge. Across all three cases, genetic evidence had no significant effects on outcomes. Neuroimaging data showed an inconsistent effect in one of the two cases in which it was introduced. In contrast, heinousness of the offense and past criminal record were strongly related to participants' decisions. Moreover, participants' beliefs about the controllability of criminal behavior and political orientations were significantly associated with their choices. Our findings suggest that neither hopes that genetic evidence will modify judgments of culpability and punishment nor fears about the impact of genetic evidence on decision makers are likely to come to fruition.

  11. Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity.

    Science.gov (United States)

    Yalachkov, Yavor; Kaiser, Jochen; Naumer, Marcus J

    2012-02-01

    Neuroimaging studies on cue reactivity have substantially contributed to the understanding of addiction. In the majority of studies drug cues were presented in the visual modality. However, exposure to conditioned cues in real life occurs often simultaneously in more than one sensory modality. Therefore, multisensory cues should elicit cue reactivity more consistently than unisensory stimuli and increase the ecological validity and the reliability of brain activation measurements. This review includes the data from 44 whole-brain functional neuroimaging studies with a total of 1168 subjects (812 patients and 356 controls). Correlations between neural cue reactivity and clinical covariates such as craving have been reported significantly more often for multisensory than unisensory cues in the motor cortex, insula and posterior cingulate cortex. Thus, multisensory drug cues are particularly effective in revealing brain-behavior relationships in neurocircuits of addiction responsible for motivation, craving awareness and self-related processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Comparative study of the neuropsychological and neuroimaging evaluations in children with dyslexia.

    Science.gov (United States)

    Arduini, Rodrigo Genaro; Capellini, Simone Aparecida; Ciasca, Sylvia Maria

    2006-06-01

    We analyzed retrospectively the neuroimaging exams of children with a confirmed diagnosis of dyslexia and correlated our findings with the evaluation of higher cortical functions. We studied 34 medical files of patients of the Ambulatory of Neuro-difficulties in Learning, FCM/UNICAMP. All of them had been sent to the ambulatory with primary or secondary complaints of difficulties at school and were submitted to neuropsychological evaluation and imaging exam (SPECT). From the children evaluated 58.8% had exams presenting dysfunction with 47% presenting hypoperfusion in the temporal lobe. As for the higher cortical functions, the most affected abilities were reading, writing and memory. There was significance between the hypoperfused areas and the variables schooling, reading, writing, memory and mathematic reasoning. The SPECTs showed hypoperfusion in areas involved in the reading and writing processes. Both are equivalent in terms of involved functional areas and are similar in children with or without specific dysfunctions in neuroimaging.

  13. Neuroimaging in aphasia treatment research: Consensus and practical guidelines for data analysis

    Science.gov (United States)

    Meinzer, Marcus; Beeson, Pélagie M.; Cappa, Stefano; Crinion, Jenny; Kiran, Swathi; Saur, Dorothee; Parrish, Todd; Crosson, Bruce; Thompson, Cynthia K.

    2012-01-01

    Functional magnetic resonance imaging is the most widely used imaging technique to study treatment-induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to the challenges researchers face when studying patient populations with brain damage in cross-sectional settings. The present review focuses on issues specifically relevant to neuroimaging data analysis in aphasia treatment research identified in discussions among international researchers at the Neuroimaging in Aphasia Treatment Research Workshop held at Northwestern University (Evanston, Illinois, USA). In particular, we aim to provide the reader with a critical review of unique problems related to the pre-processing, statistical modeling and interpretation of such data sets. Despite the fact that data analysis procedures critically depend on specific design features of a given study, we aim to discuss and communicate a basic set of practical guidelines that should be applicable to a wide range of studies and useful as a reference for researchers pursuing this line of research. PMID:22387474

  14. Labor demand effects of rising electricity prices: Evidence for Germany

    International Nuclear Information System (INIS)

    Cox, Michael; Peichl, Andreas; Pestel, Nico; Siegloch, Sebastian

    2014-01-01

    Germany continues to play a pioneering role in replacing conventional power plants with renewable energy sources. While this might be beneficial with respect to environmental quality, it also implies increasing electricity prices. The extent to which this is associated with negative impacts on employment depends on the interrelationship between labor and electricity as input factors in the production process. In this paper, we estimate cross-price elasticities between electricity and heterogeneous labor for the German manufacturing sector. We use administrative linked employer–employee micro-data combined with information on sector-level electricity prices and usage over the period 2003–2007. We find positive, but small conditional cross-price elasticities of labor demand with respect to electricity prices, which means that electricity as an input factor can be replaced by labor to a limited extent when the production level is held constant. In the case of adjustable output, we find negative unconditional cross-price elasticities, implying that higher electricity prices lead to output reductions and to lower labor demand, with low- and high-skilled workers being affected more than medium-skilled. Resulting adverse distributional effects and potential overall job losses may pose challenges for policy-makers in securing public support for the German energy turnaround. - Highlights: • We estimate cross-price elasticities for electricity and labor in manufacturing. • We use linked employer–employee micro-data from Germany for 2003 to 2007. • We find a weak substitutability between electricity and labor for constant output. • We find complementarity between electricity and labor for adjustable output. • Low- and high-skilled workers are more affected than medium-skilled

  15. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    Science.gov (United States)

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice.

    Science.gov (United States)

    Bufkin, Jana L; Luttrell, Vickie R

    2005-04-01

    With the availability of new functional and structural neuroimaging techniques, researchers have begun to localize brain areas that may be dysfunctional in offenders who are aggressive and violent. Our review of 17 neuroimaging studies reveals that the areas associated with aggressive and/or violent behavioral histories, particularly impulsive acts, are located in the prefrontal cortex and the medial temporal regions. These findings are explained in the context of negative emotion regulation, and suggestions are provided concerning how such findings may affect future theoretical frameworks in criminology, crime prevention efforts, and the functioning of the criminal justice system.

  17. Intention, false beliefs, and delusional jealousy: insights into the right hemisphere from neurological patients and neuroimaging studies.

    Science.gov (United States)

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2011-01-01

    Jealousy sits high atop of a list comprised of the most human emotional experiences, although its nature, rationale, and origin are poorly understood. In the past decade, a series of neurological case reports and neuroimaging findings have been particularly helpful in piecing together jealousy's puzzle. In order to understand and quantify the neurological factors that might be important in jealousy, we reviewed the current literature in this specific field. We made an electronic search, and examined all literature with at least an English abstract, through Mars 2010. The search identified a total of 20 neurological patients, who experienced jealousy in relation with a neurological disorder; and 22 healthy individuals, who experienced jealousy under experimental neuroimaging settings. Most of the clinical cases of reported jealousy after a stroke had delusional-type jealousy. Right hemispheric stroke was the most frequently reported neurological disorder in these patients, although there was a wide range of more diffuse neurological disorders that may be reported to be associated with different other types of jealousy. This is in line with recent neuroimaging data on false beliefs, moral judgments, and intention [mis]understanding. Together the present findings provide physicians and psychologists with a potential for high impact in understanding the neural mechanisms and treatment of jealousy. By combining findings from case reports and neuroimaging data, the present article allows for a novel and unique perspective, and explores new directions into the neurological jealous mind.

  18. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    Science.gov (United States)

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  19. Advances on functional neuroimaging in substance misuse

    International Nuclear Information System (INIS)

    Lv Rongbin; Liu Xingdang; Han Mei

    2009-01-01

    Over the past decade, functional neuroimaging has contributed greatly to our knowledge about the neuropharmacology of substance misuse in man. In this review, discussed the application and the progress of the positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging in the substance misuse. After reading some papers, found that the dopamine transporter was significantly decreased in the brain of subjects with heroin abuse. Also observed a significant decrease of regional cerebral blood flow in bilateral cerebral frontal lobes, temporal lobes, the insula and the ipsilateral basal nuclei in substance misuse subjects. Taken together, functional images will lead the direction in future research formedication development of addiction treatment. (authors)

  20. The role of social stimuli content in neuroimaging studies investigating alcohol cue-reactivity

    NARCIS (Netherlands)

    Groefsema, M.M.; Engels, R.C.M.E.; Luijten, M.

    2016-01-01

    Introduction: Cue-reactivity is thought to play a fundamental role in the maintenance of addiction. The incentive sensitization theory proposes that conditioned responses are related to increased sensitivity of the reward-related dopaminergic pathways in the brain. However, neuroimaging studies on

  1. Hypomyelination and congenital cataract: neuroimaging features of a novel inherited white matter disorder

    NARCIS (Netherlands)

    Rossi, A.; Biancheri, R.; Zara, F.; Bruno, C.; Uziel, G.; van der Knaap, M.S.; Minetti, C.; Tortori-Donati, P.

    2008-01-01

    BACKGROUND AND PURPOSE: Hypomyelination and congenital cataract (HCC) is an autosomal recessive white matter disease caused by deficiency of hyccin, a membrane protein implicated in both central and peripheral myelination. We aimed to describe the neuroimaging features of this novel entity.

  2. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    Science.gov (United States)

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  3. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    Science.gov (United States)

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  4. The dynamics of sectoral electricity demand for a panel of US states: New evidence on the consumption–growth nexus

    International Nuclear Information System (INIS)

    Saunoris, James W.; Sheridan, Brandon J.

    2013-01-01

    In this paper, we use a panel of the 48 contiguous US states over the period 1970–2009 to examine the dynamics of electricity demand in addressing the four hypotheses set forth in the literature: growth, conservation, neutrality, and feedback. In doing so we provide both short-run and long-run elasticity estimates for electricity demand. Recent developments in nonstationary panel estimation techniques allow for heterogeneity in the coefficients while examining the direction of causality among electricity consumption, electricity prices, and income growth. In addition to the full sample, we also disaggregate the sample into three sectors: commercial, industrial, and residential. The short-run results provide evidence in favor of the growth hypothesis for the aggregate sample, as well as for the industrial sector. For the residential and commercial sectors, the conservation hypothesis is supported. Long-run results favor the conservation hypothesis. To ascertain differences in electricity demand relating to electricity intensity we also examine states based on their efficiency in electricity consumption. Overall, the results yield in favor of the growth hypothesis for low intensity states and conservation hypothesis for high intensity states. - Highlights: • We use dynamic panel techniques to model electricity demand by sector for US states. • The conservation hypothesis is supported in the long run; short-run results are mixed. • The conservation hypothesis is supported in the high-electricity-intensity subsample. • The growth hypothesis is supported in the low-electricity-intensity subsample. • Policies aimed at energy conservation should be long-run in nature

  5. Functional neuroimaging in the assessment of cerebral ischaemia

    International Nuclear Information System (INIS)

    Sartor, K.; Heiland, S.

    1997-01-01

    Cerebral infarct causes over 170, 000 deaths per year in the United States. Recent developments in neuroimaging are providing an insight into focal cerebral ischaemia, including its pathophysiology and the area of brain at risk. Perfusion-weighted magnetic resonance (MR) allows evaluation of the blood supply to the ischaemic area, and diffusion-weighted MR permits assessment of tissue damage. Although both functional imaging techniques require some refinement, it is likely that they will soon become part of the normal clinical routine and allow accurate characterisation of pathology. It is expected that this may eventually lead to the development of new treatments. (orig.)

  6. Frequency Constrained ShiftCP Modeling of Neuroimaging Data

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai; Madsen, Kristoffer H.

    2011-01-01

    The shift invariant multi-linear model based on the CandeComp/PARAFAC (CP) model denoted ShiftCP has proven useful for the modeling of latency changes in trial based neuroimaging data[17]. In order to facilitate component interpretation we presently extend the shiftCP model such that the extracted...... components can be constrained to pertain to predefined frequency ranges such as alpha, beta and gamma activity. To infer the number of components in the model we propose to apply automatic relevance determination by imposing priors that define the range of variation of each component of the shiftCP model...

  7. Validation of Alzheimer's disease CSF and plasma biological markers: the multicentre reliability study of the pilot European Alzheimer's Disease Neuroimaging Initiative (E-ADNI)

    DEFF Research Database (Denmark)

    Buerger, Katharina; Frisoni, Giovanni; Uspenskaya, Olga

    2009-01-01

    BACKGROUND: Alzheimer's Disease Neuroimaging Initiatives ("ADNI") aim to validate neuroimaging and biochemical markers of Alzheimer's disease (AD). Data of the pilot European-ADNI (E-ADNI) biological marker programme of cerebrospinal fluid (CSF) and plasma candidate biomarkers are reported. METHO...

  8. Sparse multivariate measures of similarity between intra-modal neuroimaging datasets

    Directory of Open Access Journals (Sweden)

    Maria J. Rosa

    2015-10-01

    Full Text Available An increasing number of neuroimaging studies are now based on either combining more than one data modality (inter-modal or combining more than one measurement from the same modality (intra-modal. To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA. However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA, overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labelling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  9. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  10. Applications of Neuroimaging to Disease-Modification Trials in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Adam S. Fleisher

    2009-01-01

    Full Text Available Critical to development of new therapies for Alzheimer’s disease (AD is the ability to detect clinical or pathological change over time. Clinical outcome measures typically used in therapeutic trials have unfortunately proven to be relatively variable and somewhat insensitive to change in this slowly progressive disease. For this reason, development of surrogate biomarkers that identify significant disease-associated brain changes are necessary to expedite treatment development in AD. Since AD pathology is present in the brain many years prior to clinical manifestation, ideally we want to develop biomarkers of disease that identify abnormal brain structure or function even prior to cognitive decline. Magnetic resonance imaging, fluorodeoxyglucose positron emission tomography, new amyloid imaging techniques, and spinal fluid markers of AD all have great potential to provide surrogate endpoint measures for AD pathology. The Alzheimer’s disease neuroimaging initiative (ADNI was developed for the distinct purpose of evaluating surrogate biomarkers for drug development in AD. Recent evidence from ADNI demonstrates that imaging may provide more sensitive, and earlier, measures of disease progression than traditional clinical measures for powering clinical drug trials in Alzheimer's disease. This review discusses recently presented data from the ADNI dataset, and the importance of imaging in the future of drug development in AD.

  11. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...

  12. Neuroimaging studies of the striatum in cognition Part I: healthy individuals.

    Science.gov (United States)

    Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury

    2015-01-01

    The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  13. Electricity consumption and economic growth nexus in Bangladesh: Revisited evidences

    Energy Technology Data Exchange (ETDEWEB)

    Ahamad, Mazbahul Golam, E-mail: mg.ahamad@gmail.com [Research Division, Centre for Policy Dialogue (CPD), House: 40C, Road: 11, Dhanmondi, Dhaka 1209 (Bangladesh); Islam, A.K.M. Nazrul, E-mail: nazrul2002@yahoo.com [Research Division, Centre for Policy Dialogue (CPD), House: 40C, Road: 11, Dhanmondi, Dhaka 1209 (Bangladesh)

    2011-10-15

    In this paper, an attempt is being made to examine the causal relationship between per capita electricity consumption and per capita GDP of Bangladesh using the vector error correction specified Granger causality test to search their short-run, long-run and joint causal relationships for the period of 1971-2008. Empirical findings reveal that there is a short-run unidirectional causal flow running from per capita electricity consumption to per capita GDP without feedback. The presence of a positive short-run causality explains that an increase in electricity consumption directly affects economic activity in Bangladesh. Likewise, results from joint causality exhibit the same as in short-run. By contrast, long-run results show a bi-directional causality running from electricity consumption to economic growth with feedback. These findings can provide essential policy insights to design immediate and long-term growth prospect for Bangladesh keeping in mind its present planned growth strategy and dismal power and energy sector. - Highlights: > Short-run causality running from electricity consumption to economic growth. > Positive SR causality explains electricity generation directly affects economic growth. > For long run, causality runs from electricity consumption to economic growth with feedback. > Joint causality implies the same as in short-run.

  14. Electricity consumption and economic growth nexus in Bangladesh: Revisited evidences

    International Nuclear Information System (INIS)

    Ahamad, Mazbahul Golam; Islam, A.K.M. Nazrul

    2011-01-01

    In this paper, an attempt is being made to examine the causal relationship between per capita electricity consumption and per capita GDP of Bangladesh using the vector error correction specified Granger causality test to search their short-run, long-run and joint causal relationships for the period of 1971-2008. Empirical findings reveal that there is a short-run unidirectional causal flow running from per capita electricity consumption to per capita GDP without feedback. The presence of a positive short-run causality explains that an increase in electricity consumption directly affects economic activity in Bangladesh. Likewise, results from joint causality exhibit the same as in short-run. By contrast, long-run results show a bi-directional causality running from electricity consumption to economic growth with feedback. These findings can provide essential policy insights to design immediate and long-term growth prospect for Bangladesh keeping in mind its present planned growth strategy and dismal power and energy sector. - Highlights: → Short-run causality running from electricity consumption to economic growth. → Positive SR causality explains electricity generation directly affects economic growth. → For long run, causality runs from electricity consumption to economic growth with feedback. → Joint causality implies the same as in short-run.

  15. Household electricity access, availability and human well-being: Evidence from India

    International Nuclear Information System (INIS)

    Ahmad, Sohail; Mathai, Manu V.; Parayil, Govindan

    2014-01-01

    According to the 2011 Census of India, over 31% of India's 1.2 billion people lived in nearly 8000 towns and cities; the remaining 830 million people lived in over 638,000 villages. About 55% of rural households and 93% of urban households had access to electricity. The 2005 Indian Human Development Survey showed that on average, electricity availability (hours of supply per day) in rural and urban households were 14 and 19 h, respectively (Desai et al., 2007). Using nationally representative data from Indian Human Development Survey, this study estimated the impact of electricity access and availability on two attributes of human well-being, viz. education and health attainment. It found a significant positive relationship between electricity availability and well-being in rural and urban households. Electricity accessibility, revealed a significant positive relationship only for rural households. The paper concludes with implications for electricity policy and infrastructure choices. - Graphical abstract: Impact of electricity security on the attributes of human well-being. - Highlights: • Nexus between well-being, and electricity access and availability is quantified. • Electricity access is positively associated with well-being in rural but not urban. • Electricity availability negatively associates with morbidity and absenteeism. • Electricity security as human well-being enabler seeks nuanced policy attention. • Decentralized rapidly deployable modular technologies and microgrids are advocated

  16. Functional neuroimaging studies of prospective memory: what have we learnt so far?

    Science.gov (United States)

    Burgess, Paul W; Gonen-Yaacovi, Gil; Volle, Emmanuelle

    2011-07-01

    The complexity of the behaviour described by the term "prospective memory" meant that it was not at all clear, when the earliest studies were conducted, that this would prove a fruitful area for neuroimaging study. However, a consistent relation rapidly emerged between activation in rostral prefrontal cortex (approximating Brodmann Area 10) and performance of prospective memory paradigms. This consistency has greatly increased the accumulation of findings, since each study has offered perspectives on the previous ones. Considerable help too has come from broad agreement between functional neuroimaging findings and those from other methods (e.g. human lesion studies, electrophysiology). The result has been a quite startling degree of advance given the relatively few studies that have been conducted. These findings are summarised, along with those from other brain regions, and new directions suggested. Key points are that there is a medial-lateral dissociation within rostral PFC. Some (but not all) regions of medial rostral PFC are typically more active during performance of the ongoing task only, and lateral aspects are relatively more active during conditions involving delayed intentions. Some of these rostral PFC activations seem remarkably insensitive to the form of stimulus material presented, the nature of the ongoing task, the specifics of the intention, how easy or hard the PM cue is to detect, or the intended action is to recall. However there are other regions within rostral PFC where haemodynamic changes vary with alterations in these, and other, aspects of prospective memory paradigms. It is concluded that rostral PFC most likely plays a super-ordinate role during many stages of creating, maintaining and enacting delayed intentions, which in some cases may be linked to recent evidence showing that this brain region is involved in the control of stimulus-oriented vs. stimulus-independent attending. Other key brain regions activated during prospective

  17. Exploring responsible innovation : Dutch public perceptions of the future of medical neuroimaging technology

    NARCIS (Netherlands)

    Arentshorst, Marlous E.; Broerse, Jacqueline E W; de Cock Buning, J.T.

    2016-01-01

    Insight into public perceptions provides opportunities to take public desires and concerns into account in an early phase of innovation development in order to maximise the potential benefits for users of the future. Public perceptions of neuroimaging in health care are presented in this article,

  18. Application of neuroanatomical ontologies for neuroimaging data annotation

    Directory of Open Access Journals (Sweden)

    Jessica A Turner

    2010-06-01

    Full Text Available The annotation of functional neuroimaging results for data sharing and reuse is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus. This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a sub-part of the middle frontal gyrus to more general (how many activations were found in areas connected via a known white matter tract?. In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuranatomical ontology is publicly available as a view of FMA at the Bioportal website at http://rest.bioontology.org/bioportal/ontologies/download/10005. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

  19. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...... are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS...... experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation...

  20. Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology.

    Science.gov (United States)

    Höfer, Peter; Lanzenberger, Rupert; Kasper, Siegfried

    2013-02-01

    Testosterone plays a substantial role in a number of physiological processes in the brain. It is able to modulate the expression of certain genes by binding to androgen receptors. Acting via neurotransmitter receptors, testosterone shows the potential to mediate a non-genomic so-called "neuroactive effect". Various neurotransmitter systems are also influenced by the aromatized form of testosterone, estradiol. The following article summarizes the findings of preclinical and clinical neuroimaging studies including structural and functional magnetic resonance imaging (MRI/fMRI), voxel based morphometry (VBM), as well as pharmacological fMRI (phfMRI) and positron emission tomography (PET) regarding the effects of testosterone on the human brain. The impact of testosterone on the pathogenesis of psychiatric disorders and on sex-related prevalence differences have been supported by a wide range of clinical studies. An antidepressant effect of testosterone can be implicitly explained by its effects on the limbic system--especially amygdala, a major target in the treatment of depression--solidly demonstrated by a large body of neuroimaging findings. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  1. Design and rationale for examining neuroimaging genetics in ischemic stroke: The MRI-GENIE study.

    Science.gov (United States)

    Giese, Anne-Katrin; Schirmer, Markus D; Donahue, Kathleen L; Cloonan, Lisa; Irie, Robert; Winzeck, Stefan; Bouts, Mark J R J; McIntosh, Elissa C; Mocking, Steven J; Dalca, Adrian V; Sridharan, Ramesh; Xu, Huichun; Frid, Petrea; Giralt-Steinhauer, Eva; Holmegaard, Lukas; Roquer, Jaume; Wasselius, Johan; Cole, John W; McArdle, Patrick F; Broderick, Joseph P; Jimenez-Conde, Jordi; Jern, Christina; Kissela, Brett M; Kleindorfer, Dawn O; Lemmens, Robin; Lindgren, Arne; Meschia, James F; Rundek, Tatjana; Sacco, Ralph L; Schmidt, Reinhold; Sharma, Pankaj; Slowik, Agnieszka; Thijs, Vincent; Woo, Daniel; Worrall, Bradford B; Kittner, Steven J; Mitchell, Braxton D; Rosand, Jonathan; Golland, Polina; Wu, Ona; Rost, Natalia S

    2017-10-01

    To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.

  2. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    Science.gov (United States)

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  3. Demand response in U.S. electricity markets: Empirical evidence

    International Nuclear Information System (INIS)

    Cappers, Peter; Goldman, Charles; Kathan, David

    2010-01-01

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ∝38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation. (author)

  4. Neuroimaging of Fear-Associated Learning

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  5. The impacts of cognitive-behavioral therapy on the treatment of phobic disorders measured by functional neuroimaging techniques: a systematic review

    Directory of Open Access Journals (Sweden)

    Amanda Galvao-de Almeida

    2013-09-01

    Full Text Available Objective: Functional neuroimaging techniques represent fundamental tools in the context of translational research integrating neurobiology, psychopathology, neuropsychology, and therapeutics. In addition, cognitive-behavioral therapy (CBT has proven its efficacy in the treatment of anxiety disorders and may be useful in phobias. The literature has shown that feelings and behaviors are mediated by specific brain circuits, and changes in patterns of interaction should be associated with cerebral alterations. Based on these concepts, a systematic review was conducted aiming to evaluate the impact of CBT on phobic disorders measured by functional neuroimaging techniques. Methods: A systematic review of the literature was conducted including studies published between January 1980 and April 2012. Studies written in English, Spanish or Portuguese evaluating changes in the pattern of functional neuroimaging before and after CBT in patients with phobic disorders were included. Results: The initial search strategy retrieved 45 studies. Six of these studies met all inclusion criteria. Significant deactivations in the amygdala, insula, thalamus and hippocampus, as well as activation of the medial orbitofrontal cortex, were observed after CBT in phobic patients when compared with controls. Conclusion: In spite of their technical limitations, neuroimaging techniques provide neurobiological support for the efficacy of CBT in the treatment of phobic disorders. Further studies are needed to confirm this conclusion.

  6. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    Directory of Open Access Journals (Sweden)

    Guido eGerig

    2011-10-01

    Full Text Available The use of structural magnetic resonance imaging (sMRI and diffusion tensor imaging (DTI in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain structural and white matter pathway abnormalities via sMRI and DTI, as advanced MR imaging technology is readily available and automated image analysis methodology have recently been transferred from the human to animal imaging setting. For this purpose, we developed a synergistic, parallel approach to imaging and image analysis for the human and the rodent branch of our study. We propose an equivalent design in both the selection of the developmental assessment stage and the neuroimaging setup. This approach brings significant advantages to study neurobiological features of early brain development that are common to animals and humans but also preserve analysis capabilities only possible in animal research. This paper presents the main framework and individual methods for the proposed cross-species study design, as well as preliminary DTI cross-species comparative results in the intra-uterine cocaine exposure study.

  7. Behavioural, computational, and neuroimaging studies of acquired apraxia of speech

    Directory of Open Access Journals (Sweden)

    Kirrie J Ballard

    2014-11-01

    Full Text Available A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions - the speech motor programming disorder apraxia of speech (AOS and the linguistic / grammatical disorder of Broca’s aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca's area and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localised lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally.

  8. Automatic analysis (aa: efficient neuroimaging workflows and parallel processing using Matlab and XML

    Directory of Open Access Journals (Sweden)

    Rhodri eCusack

    2015-01-01

    Full Text Available Recent years have seen neuroimaging data becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complex to set up and run (increasing the risk of human error and time consuming to execute (restricting what analyses are attempted. Here we present an open-source framework, automatic analysis (aa, to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (redone. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA. However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast and efficient, for simple single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  9. COINS: An innovative informatics and neuroimaging tool suite built for large heterogeneous datasets

    Directory of Open Access Journals (Sweden)

    Adam eScott

    2011-12-01

    Full Text Available The availability of well-characterized neuroimaging data with large numbers of subjects, especially for clinical populations, is critical to advancing our understanding of the healthy and diseased brain. Such data enables questions to be answered in a much more generalizable manner and also has the potential to yield solutions derived from novel methods that were conceived after the original studies' implementation. Though there is currently growing interest in data sharing, the neuroimaging community has been struggling for years with how to best encourage sharing data across brain imaging studies. With the advent of studies that are much more consistent across sites (e.g., resting fMRI, diffusion tensor imaging, and structural imaging the potential of pooling data across studies continues to gain momentum.At the Mind Research Network (MRN, we have developed the COllaborative Informatics and Neuroimaging Suite (COINS; http://coins.mrn.org to provide researchers with an information system based on an open-source model that includes web-based tools to manage studies, subjects, imaging, clinical data and other assessments. The system currently hosts data from 9 institutions, over 300 studies, over 14,000 subjects, and over 19,000 MRI, MEG, and EEG scan sessions in addition to more than 180,000 clinical assessments. In this paper we provide a description of COINS with comparison to a valuable and popular system known as XNAT. Although there are many similarities between COINS and other electronic data management systems, the differences that may concern researchers in the context of multi-site, multi-organizational data-sharing environments with intuitive ease of use and PHI security are emphasized as important attributes.

  10. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML.

    Science.gov (United States)

    Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J; Wild, Conor J; Auer, Tibor; Linke, Annika C; Peelle, Jonathan E

    2014-01-01

    Recent years have seen neuroimaging data sets becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complicated to set up and run (increasing the risk of human error) and time consuming to execute (restricting what analyses are attempted). Here we present an open-source framework, automatic analysis (aa), to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (re)done. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  11. The application of neuroimaging to social inequity and language disparity: A cautionary examination

    Directory of Open Access Journals (Sweden)

    Monica E. Ellwood-Lowe

    2016-12-01

    Full Text Available In the nascent field of the cognitive neuroscience of socioeconomic status (SES, researchers are using neuroimaging to examine how growing up in poverty affects children’s neurocognitive development, particularly their language abilities. In this review we highlight difficulties inherent in the frequent use of reverse inference to interpret SES-related abnormalities in brain regions that support language. While there is growing evidence suggesting that SES moderates children’s developing brain structure and function, no studies to date have elucidated explicitly how these neural findings are related to variations in children’s language abilities, or precisely what it is about SES that underlies or contributes to these differences. This issue is complicated by the fact that SES is confounded with such linguistic factors as cultural language use, first language, and bilingualism. Thus, SES-associated differences in brain regions that support language may not necessarily indicate differences in neurocognitive abilities. In this review we consider the multidimensionality of SES, discuss studies that have found SES-related differences in structure and function in brain regions that support language, and suggest future directions for studies in the area of cognitive neuroscience of SES that are less reliant on reverse inference.

  12. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine.

    Science.gov (United States)

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the

  13. Analyse Risk-Return Paradox: Evidence from Electricity Sector of Pakistan

    OpenAIRE

    Naqi Shah, Sadia; Qayyum, Abdul

    2016-01-01

    This study analyse risk return relationship of the electricity companies of Pakistan by using the log return series of these electricity companies. Financial time series data have the property of autoregressive heteroscedasticity so move towards the GARCH family test. As the study want to analyse the risk return relationship so, GARCH-M Model of Engel et al (1987) is used, who empirically found relationship between risk and return. Results show that risk return in case of Pakistan electricity...

  14. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    International Nuclear Information System (INIS)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D.

    2003-01-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting

  15. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D

    2003-03-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting.

  16. Porcupine: A visual pipeline tool for neuroimaging analysis.

    Directory of Open Access Journals (Sweden)

    Tim van Mourik

    2018-05-01

    Full Text Available The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer analysis scripts, spanning different tools across multiple programming languages. This makes it more difficult to share or recreate code, reducing the reproducibility of the analysis. We present a tool, Porcupine, that constructs one's analysis visually and automatically produces analysis code. The graphical representation improves understanding of the performed analysis, while retaining the flexibility of modifying the produced code manually to custom needs. Not only does Porcupine produce the analysis code, it also creates a shareable environment for running the code in the form of a Docker image. Together, this forms a reproducible way of constructing, visualising and sharing one's analysis. Currently, Porcupine links to Nipype functionalities, which in turn accesses most standard neuroimaging analysis tools. Our goal is to release researchers from the constraints of specific implementation details, thereby freeing them to think about novel and creative ways to solve a given problem. Porcupine improves the overview researchers have of their processing pipelines, and facilitates both the development and communication of their work. This will reduce the threshold at which less expert users can generate reusable pipelines. With Porcupine, we bridge the gap between a conceptual and an implementational level of analysis and make it easier for researchers to create reproducible and shareable science. We provide a wide range of examples and documentation, as well as installer files for all platforms on our website: https://timvanmourik.github.io/Porcupine. Porcupine is free, open source, and released under the GNU General Public License v3.0.

  17. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives.

    Science.gov (United States)

    Cardoso de Almeida, Jorge Renner; Phillips, Mary Louise

    2013-01-15

    Differentiating bipolar disorder (BD) from recurrent unipolar depression (UD) is a major clinical challenge. Main reasons for this include the higher prevalence of depressive relative to hypo/manic symptoms during the course of BD illness and the high prevalence of subthreshold manic symptoms in both BD and UD depression. Identifying objective markers of BD might help improve accuracy in differentiating between BD and UD depression, to ultimately optimize clinical and functional outcome for all depressed individuals. Yet, only eight neuroimaging studies to date have directly compared UD and BD depressed individuals. Findings from these studies suggest more widespread abnormalities in white matter connectivity and white matter hyperintensities in BD than UD depression, habenula volume reductions in BD but not UD depression, and differential patterns of functional abnormalities in emotion regulation and attentional control neural circuitry in the two depression types. These findings suggest different pathophysiologic processes, especially in emotion regulation, reward, and attentional control neural circuitry in BD versus UD depression. This review thereby serves as a call to action to highlight the pressing need for more neuroimaging studies, using larger samples sizes, comparing BD and UD depressed individuals. These future studies should also include dimensional approaches, studies of at-risk individuals, and more novel neuroimaging approaches, such as connectivity analysis and machine learning. Ultimately, these approaches might provide biomarkers to identify individuals at future risk for BD versus UD and biological targets for more personalized treatment and new treatment developments for BD and UD depression. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. The teen brain: insights from neuroimaging.

    Science.gov (United States)

    Giedd, Jay N

    2008-04-01

    Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.

  19. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies.

    Science.gov (United States)

    Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten

    2016-02-01

    This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  1. Methodological aspects of functional neuroimaging at high field strength: a critical review

    International Nuclear Information System (INIS)

    Scheef, L.; Landsberg, M.W.; Boecker, H.

    2007-01-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications. (orig.)

  2. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives.

    Science.gov (United States)

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J; Faraone, Stephen V; Hartman, Catharina; Buitelaar, Jan

    2015-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of ADHD. The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) project. It is a multi-site prospective cohort study designed to investigate the course of ADHD, its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and its consequences in adolescence and adulthood. From the original 365 ADHD families and 148 control (CON) IMAGE families, consisting of 506 participants with an ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls, 79 % participated in the NeuroIMAGE follow-up study. Combined with newly recruited participants the NeuroIMAGE study comprehends an assessment of 1,069 children (751 from ADHD families; 318 from CON families) and 848 parents (582 from ADHD families; 266 from CON families). For most families, data for more than one child (82 %) and both parents (82 %) were available. Collected data include a diagnostic interview, behavioural questionnaires, cognitive measures, structural and functional neuroimaging, and genome-wide genetic information. The NeuroIMAGE dataset allows examining the course of ADHD over adolescence into young adulthood, identifying phenotypic, cognitive, and neural mechanisms associated with the persistence versus remission of ADHD, and studying their genetic and environmental underpinnings. The inclusion of siblings of ADHD probands and controls allows modelling of shared familial influences on the ADHD phenotype.

  3. Relevance of neuroimaging for neurocognitive and behavioral outcome after pediatric traumatic brain injury.

    Science.gov (United States)

    Königs, Marsh; Pouwels, Petra Jw; Ernest van Heurn, L W; Bakx, Roel; Jeroen Vermeulen, R; Carel Goslings, J; Poll-The, Bwee Tien; van der Wees, Marleen; Catsman-Berrevoets, Coriene E; Oosterlaan, Jaap

    2018-02-01

    This study aims to (1) investigate the neuropathology of mild to severe pediatric TBI and (2) elucidate the predictive value of conventional and innovative neuroimaging for functional outcome. Children aged 8-14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mild RF+ , n = 20) or moderate/severe TBI (n = 17) at 2.8 years post-injury. Neuroimaging measures included: acute computed tomography (CT), volumetric analysis on post-acute conventional T1-weighted magnetic resonance imaging (MRI) and post-acute diffusion tensor imaging (DTI, analyzed using tract-based spatial statistics and voxel-wise regression). Functional outcome was measured using Common Data Elements for neurocognitive and behavioral functioning. The results show that intracranial pathology on acute CT-scans was more prevalent after moderate/severe TBI (65%) than after mild RF+ TBI (35%; p = .035), while both groups had decreased white matter volume on conventional MRI (ps ≤ .029, ds ≥ -0.74). The moderate/severe TBI group further showed decreased fractional anisotropy (FA) in a widespread cluster affecting all white matter tracts, in which regional associations with neurocognitive functioning were observed (FSIQ, Digit Span and RAVLT Encoding) that consistently involved the corpus callosum. FA had superior predictive value for functional outcome (i.e. intelligence, attention and working memory, encoding in verbal memory and internalizing problems) relative to acute CT-scanning (i.e. internalizing problems) and conventional MRI (no predictive value). We conclude that children with mild RF+ TBI and moderate/severe TBI are at risk of persistent white matter abnormality. Furthermore, DTI has superior predictive value for neurocognitive out-come relative to conventional neuroimaging.

  4. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study.

    Science.gov (United States)

    Hart, John; Kraut, Michael A; Womack, Kyle B; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C Munro

    2013-03-01

    OBJECTIVES To assess cognitive impairment and depression in aging former professional football (National Football League [NFL]) players and to identify neuroimaging correlates of these dysfunctions. DESIGN We compared former NFL players with cognitive impairment and depression, cognitively normal retired players who were not depressed, and matched healthy control subjects. SETTING Research center in the North Texas region of the United States. PATIENTS Cross-sectional sample of former NFL players with and without a history of concussion recruited from the North Texas region and age-, education-, and IQ-matched controls. Thirty-four retired NFL players (mean age, 61.8 years) underwent neurological and neuropsychological assessment. A subset of 26 players also underwent detailed neuroimaging; imaging data in this subset were compared with imaging data acquired in 26 healthy matched controls. MAIN OUTCOME MEASURES Neuropsychological measures, clinical diagnoses of depression, neuroimaging mea-sures of white matter pathology, and a measure of cerebral blood flow. RESULTS Of the 34 former NFL players, 20 were cognitively normal. Four were diagnosed as having a fixed cognitive deficit; 8, mild cognitive impairment; 2, dementia; and 8, depression. Of the subgroup in whom neuroimaging data were acquired, cognitively impaired participants showed the greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in cognitively impaired and depressed retired players compared with their respective controls. Regional blood flow differences in the cognitively impaired group (left temporal pole, inferior parietal lobule, and superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming, and word finding). CONCLUSIONS Cognitive deficits and depression appear to be more common in aging former NFL players compared with healthy

  5. Electric Currents along Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  6. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    Science.gov (United States)

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  7. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging.

    Science.gov (United States)

    Eugene, Andy R; Masiak, Jolanta

    2016-06-01

    Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants.

  8. NEUROIMAGING AND PATTERN RECOGNITION TECHNIQUES FOR AUTOMATIC DETECTION OF ALZHEIMER’S DISEASE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Rupali Kamathe

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia with currently unavailable firm treatments that can stop or reverse the disease progression. A combination of brain imaging and clinical tests for checking the signs of memory impairment is used to identify patients with AD. In recent years, Neuroimaging techniques combined with machine learning algorithms have received lot of attention in this field. There is a need for development of automated techniques to detect the disease well before patient suffers from irreversible loss. This paper is about the review of such semi or fully automatic techniques with detail comparison of methods implemented, class labels considered, data base used and the results obtained for related study. This review provides detailed comparison of different Neuroimaging techniques and reveals potential application of machine learning algorithms in medical image analysis; particularly in AD enabling even the early detection of the disease- the class labelled as Multiple Cognitive Impairment.

  9. Key Drivers of PPPs in Electricity Generation in Developing Countries : Cross-Country Evidence of Switching between PPP Investment in Fossil Fuel and Renewable-Based Generation

    OpenAIRE

    Vagliasindi, Maria

    2012-01-01

    This paper presents new global evidence on the key determinants of public-private partnership investment in electricity generated by fossil fuels and renewable energy based on a panel data analysis for 105 developing countries over a period of 16 years from 1993 to 2008. It aims to identify the key factors affecting private investors' decision to enter electricity generation, through probi...

  10. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine

    NARCIS (Netherlands)

    Pettersson-Yeo, W.; Benetti, S.; Marquand, A.F.; Joules, R.; Catani, M.; Williams, S.C.; Allen, P.; McGuire, P.; Mechelli, A.

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification

  11. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  12. Does electricity consumption panel Granger cause GDP? A new global evidence

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Paresh Kumar [School of Accounting, Economics and Finance, Faculty of Business and Economics, Deakin University, Melbourne (Australia); Narayan, Seema [School of Economics, Finance, and Marketing, RMIT University, Melbourne (Australia); Popp, Stephan [Department of Economics, University of Duisburg-Essen (Germany)

    2010-10-15

    The goal of this paper is to undertake a panel data investigation of long-run Granger causality between electricity consumption and real GDP for seven panels, which together consist of 93 countries. We use a new panel causality test and find that in the long-run both electricity consumption and real GDP have a bidirectional Granger causality relationship except for the Middle East where causality runs only from GDP to electricity consumption. Finally, for the G6 panel the estimates reveal a negative sign effect, implying that increasing electricity consumption in the six most industrialised nations will reduce GDP. (author)

  13. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    Science.gov (United States)

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Accelerating Neuroimage Registration through Parallel Computation of Similarity Metric.

    Directory of Open Access Journals (Sweden)

    Yun-Gang Luo

    Full Text Available Neuroimage registration is crucial for brain morphometric analysis and treatment efficacy evaluation. However, existing advanced registration algorithms such as FLIRT and ANTs are not efficient enough for clinical use. In this paper, a GPU implementation of FLIRT with the correlation ratio (CR as the similarity metric and a GPU accelerated correlation coefficient (CC calculation for the symmetric diffeomorphic registration of ANTs have been developed. The comparison with their corresponding original tools shows that our accelerated algorithms can greatly outperform the original algorithm in terms of computational efficiency. This paper demonstrates the great potential of applying these registration tools in clinical applications.

  15. Mindfulness meditation-related pain relief: Evidence for unique brain mechanisms in the regulation of pain

    Science.gov (United States)

    Zeidan, F.; Grant, J.A.; Brown, C.A.; McHaffie, J.G.; Coghill, R.C.

    2013-01-01

    The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain. PMID:22487846

  16. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

    NARCIS (Netherlands)

    Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O'Brien, J. T.; Barkhof, F.; Benavente, O.R.; Black, S.E.; Brayne, C.; Breteler, M.; Chabriat, H.; deCarli, C.; de Leeuw, F.E.; Doubal, F.; Duering, M.; Fox, N.C.; Greenberg, S.; Hachinski, V.; Kilimann, I.; Mok, V.; van Oostenbrugge, R.; Pantoni, L.; Speck, O.; Stephan, B.C.M.; Teipel, S.; Viswanathan, A.; Werring, D.; Chen, C.; Smith, C.; van Buchem, M.; Norrving, B.; Gorelick, P.B.; Dichgans, M.

    2013-01-01

    Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have

  17. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and roadmap for future research

    Science.gov (United States)

    Phillips, Mary L; Swartz, Holly A.

    2014-01-01

    Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual

  18. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  19. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  20. Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Royal, Jason M; Peterson, Bradley S

    2007-01-01

    BACKGROUND: Tourette syndrome (TS) and Attention-Deficit/Hyperactivity Disorder (ADHD) are common and debilitating neuropsychiatric illnesses that typically onset in the preschool years. Recently, both conditions have been subject to neuroimaging studies, with the aim of understanding...... contrast these findings with those in ADHD without comorbid tic disorders. RESULTS: The frequent comorbidity of TS and ADHD may reflect a common underlying neurobiological substrate, and studies confirm the hypothesized involvement of fronto-striatal circuits in both TS and ADHD. However, poor inhibitory...

  1. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    OpenAIRE

    Daria J. Kuss; Mark D. Griffiths

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gami...

  2. The application of neuroimaging to social inequity and language disparity: A cautionary examination.

    Science.gov (United States)

    Ellwood-Lowe, Monica E; Sacchet, Matthew D; Gotlib, Ian H

    2016-12-01

    In the nascent field of the cognitive neuroscience of socioeconomic status (SES), researchers are using neuroimaging to examine how growing up in poverty affects children's neurocognitive development, particularly their language abilities. In this review we highlight difficulties inherent in the frequent use of reverse inference to interpret SES-related abnormalities in brain regions that support language. While there is growing evidence suggesting that SES moderates children's developing brain structure and function, no studies to date have elucidated explicitly how these neural findings are related to variations in children's language abilities, or precisely what it is about SES that underlies or contributes to these differences. This issue is complicated by the fact that SES is confounded with such linguistic factors as cultural language use, first language, and bilingualism. Thus, SES-associated differences in brain regions that support language may not necessarily indicate differences in neurocognitive abilities. In this review we consider the multidimensionality of SES, discuss studies that have found SES-related differences in structure and function in brain regions that support language, and suggest future directions for studies in the area of cognitive neuroscience of SES that are less reliant on reverse inference. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Functional neuroimaging of psychotherapeutic processes in anxiety and depression: from mechanisms to predictions.

    Science.gov (United States)

    Lueken, Ulrike; Hahn, Tim

    2016-01-01

    The review provides an update of functional neuroimaging studies that identify neural processes underlying psychotherapy and predict outcomes following psychotherapeutic treatment in anxiety and depressive disorders. Following current developments in this field, studies were classified as 'mechanistic' or 'predictor' studies (i.e., informing neurobiological models about putative mechanisms versus aiming to provide predictive information). Mechanistic evidence points toward a dual-process model of psychotherapy in anxiety disorders with abnormally increased limbic activation being decreased, while prefrontal activity is increased. Partly overlapping findings are reported for depression, albeit with a stronger focus on prefrontal activation following treatment. No studies directly comparing neural pathways of psychotherapy between anxiety and depression were detected. Consensus is accumulating for an overarching role of the anterior cingulate cortex in modulating treatment response across disorders. When aiming to quantify clinical utility, the need for single-subject predictions is increasingly recognized and predictions based on machine learning approaches show high translational potential. Present findings encourage the search for predictors providing clinically meaningful information for single patients. However, independent validation as a crucial prerequisite for clinical use is still needed. Identifying nonresponders a priori creates the need for alternative treatment options that can be developed based on an improved understanding of those neural mechanisms underlying effective interventions.

  4. Differentiating emotional processing and attention in psychopathy with functional neuroimaging.

    Science.gov (United States)

    Anderson, Nathaniel E; Steele, Vaughn R; Maurer, J Michael; Rao, Vikram; Koenigs, Michael R; Decety, Jean; Kosson, David S; Calhoun, Vince D; Kiehl, Kent A

    2017-06-01

    Individuals with psychopathy are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to emotional deficits in persons with psychopathy, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n = 120) evaluated for psychopathic traits using the Hare Psychopathy Checklist-Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing, while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience network regions. During explicit emotional processing, psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits.

  5. Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Pradat, Pierre-François; El Mendili, Mohamed-Mounir

    2014-01-01

    Neuroimaging allows investigating the extent of neurological systems degeneration in amyotrophic lateral sclerosis (ALS). Advanced MRI methods can detect changes related to the degeneration of upper motor neurons but have also demonstrated the participation of other systems such as the sensory system or basal ganglia, demonstrating in vivo that ALS is a multisystem disorder. Structural and functional imaging also allows studying dysfunction of brain areas associated with cognitive signs. From a biomarker perspective, numerous studies using diffusion tensor imaging showed a decrease of fractional anisotropy in the intracranial portion of the corticospinal tract but its diagnostic value at the individual level remains limited. A multiparametric approach will be required to use MRI in the diagnostic workup of ALS. A promising avenue is the new methodological developments of spinal cord imaging that has the advantage to investigate the two motor system components that are involved in ALS, that is, the lower and upper motor neuron. For all neuroimaging modalities, due to the intrinsic heterogeneity of ALS, larger pooled banks of images with standardized image acquisition and analysis procedures are needed. In this paper, we will review the main findings obtained with MRI, PET, SPECT, and nuclear magnetic resonance spectroscopy in ALS. PMID:24949452

  6. Ethical concepts and future challenges of neuroimaging: an Islamic perspective.

    Science.gov (United States)

    Al-Delaimy, Wael K

    2012-09-01

    Neuroscience is advancing at a rapid pace, with new technologies and approaches that are creating ethical challenges not easily addressed by current ethical frameworks and guidelines. One fascinating technology is neuroimaging, especially functional Magnetic Resonance Imaging (fMRI). Although still in its infancy, fMRI is breaking new ground in neuroscience, potentially offering increased understanding of brain function. Different populations and faith traditions will likely have different reactions to these new technologies and the ethical challenges they bring with them. Muslims are approximately one-fifth of world population and they have a specific and highly regulated ethical and moral code, which helps them deal with scientific advances and decision making processes in an Islamically ethical manner. From this ethical perspective, in light of the relevant tenets of Islam, neuroimaging poses various challenges. The privacy of spirituality and the thought process, the requirement to put community interest before individual interest, and emphasis on conscious confession in legal situations are Islamic concepts that can pose a challenge for the use of something intrusive such as an fMRI. Muslim moral concepts such as There shall be no harm inflicted or reciprocated in Islam and Necessities overrule prohibitions are some of the criteria that might appropriately be used to guide advancing neuroscience. Neuroscientists should be particularly prudent and well prepared in implementing neuroscience advances that are breaking new scientific and ethical ground. Neuroscientists should also be prepared to assist in setting the ethical frameworks in place in advance of what might be perceived as runaway applications of technology.

  7. Neural correlates of the LSD experience revealed by multimodal neuroimaging.

    Science.gov (United States)

    Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J

    2016-04-26

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

  8. Mindcontrol: Organize, quality control, annotate, edit, and collaborate on neuroimaging processing results

    OpenAIRE

    Keshavan, Anisha; Madan, Christopher; Datta, Esha; McDonough, Ian

    2017-01-01

    Mindcontrol is an open-source web-based dashboard to quality control and curate neuroimaging data. At Neurohackweek 2016, a group assembled to add new features to the Mindcontrol interface. Contributors used Python, Javascript, and Git to configure Mindcontrol for the ABIDE and CoRR open datasets, and add new types of plots to the interface. All contributions are freely available online, and the code is being actively maintained at http://www.github.com/akeshavan/mindcontrol.

  9. Multimodal Neuroimaging Differences in Nicotine Abstinent vs. Satiated Smokers.

    Science.gov (United States)

    Chaarani, Bader; Spechler, Philip A; Ivanciu, Alexandra; Snowe, Mitchell; Nickerson, Joshua P; Higgins, Stephen T; Garavan, Hugh

    2018-04-06

    Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared to non-smokers when assessing neurobiological markers of nicotine dependence. Smokers(N=15) and sociodemographically matched non-smokers(N=15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence, and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudo-continuous arterial spin labeling to measure cerebral blood flow (CBF). Whole brain voxel-wise ANCOVAs were carried out on stop success and stop fail SST contrasts and CBF maps to assess differences among non-, abstinent and satiated smokers. Cluster-correction was performed using AFNI's 3dClustSim to achieve a significance of pSmokers exhibited higher brain activation in bilateral inferior frontal gyrus (IFG), a brain region known to be involved in inhibitory control, during successful response inhibitions relative to non-smokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral IFG than non-smokers. These hypo-perfusions were not different between abstinence and satiety. These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. Our multi-modal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggest targets for assessing the efficacy of therapeutic interventions.

  10. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies

    NARCIS (Netherlands)

    Peper, J.S.; Hulshoff Pol, H.E.; Crone, E.A.; van Honk, J.

    2011-01-01

    Puberty is an important period during development hallmarked by increases in sex steroid levels. Human neuroimaging studies have consistently reported that in typically developing pubertal children, cortical and subcortical gray matter is decreasing, whereas white matter increases well into

  11. The clinical outcome and neuroimaging of acute encephalopathy after status epilepticus in Dravet syndrome.

    Science.gov (United States)

    Tian, Xiaojuan; Ye, Jintang; Zeng, Qi; Zhang, Jing; Yang, Xiaoling; Liu, Aijie; Yang, Zhixian; Liu, Xiaoyan; Wu, Xiru; Zhang, Yuehua

    2018-06-01

    To analyze the clinical outcome and neuroimaging over a long duration follow-up in the currently largest series of acute encephalopathy after status epilepticus in patients with Dravet syndrome. Clinical and neuroimaging data of patients with Dravet syndrome with a history of acute encephalopathy (coma >24h) after status epilepticus from February 2005 to December 2016 at Peking University First Hospital were reviewed retrospectively. Thirty-five patients (15 males, 20 females) with a history of acute encephalopathy were enrolled from a total of 624 patients with Dravet syndrome (5.6%). The median onset age of acute encephalopathy was 3 years 1 month. The duration of status epilepticus varied between 40 minutes to 12 hours. Thirty-four patients had a high fever when status epilepticus occurred, and only one had a normal temperature. Coma lasted from 2 to 20 days. Twelve patients died and 23 survived with massive neurological regression. The median follow-up time was 2 years 1 month. Neuroimaging of 20 out of 23 survivors during the recovery phase showed diverse degrees of cortical atrophy with or without subcortical lesions. Acute encephalopathy after status epilepticus is more prone to occur in patients with Dravet syndrome who had a high fever. The mortality rate is high in severe cases. Survivors are left with severe neurological sequelae but often with either no seizure or low seizure frequency. Acute encephalopathy is more prone to occur in patients with Dravet syndrome with a high fever. The mortality rate is high for acute encephalopathy after status epilepticus in patients with Dravet syndrome. Survivors have neurological sequelae. © 2018 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  12. Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames

    OpenAIRE

    Filimon, Flavia

    2015-01-01

    The use and neural representation of egocentric spatial reference frames is well-documented. In contrast, whether the brain represents spatial relationships between objects in allocentric, object-centered, or world-centered coordinates is debated. Here, I review behavioral, neuropsychological, neurophysiological (neuronal recording), and neuroimaging evidence for and against allocentric, object-centered, or world-centered spatial reference frames. Based on theoretical considerations, simulati...

  13. Predictive modelling using neuroimaging data in the presence of confounds.

    Science.gov (United States)

    Rao, Anil; Monteiro, Joao M; Mourao-Miranda, Janaina

    2017-04-15

    When training predictive models from neuroimaging data, we typically have available non-imaging variables such as age and gender that affect the imaging data but which we may be uninterested in from a clinical perspective. Such variables are commonly referred to as 'confounds'. In this work, we firstly give a working definition for confound in the context of training predictive models from samples of neuroimaging data. We define a confound as a variable which affects the imaging data and has an association with the target variable in the sample that differs from that in the population-of-interest, i.e., the population over which we intend to apply the estimated predictive model. The focus of this paper is the scenario in which the confound and target variable are independent in the population-of-interest, but the training sample is biased due to a sample association between the target and confound. We then discuss standard approaches for dealing with confounds in predictive modelling such as image adjustment and including the confound as a predictor, before deriving and motivating an Instance Weighting scheme that attempts to account for confounds by focusing model training so that it is optimal for the population-of-interest. We evaluate the standard approaches and Instance Weighting in two regression problems with neuroimaging data in which we train models in the presence of confounding, and predict samples that are representative of the population-of-interest. For comparison, these models are also evaluated when there is no confounding present. In the first experiment we predict the MMSE score using structural MRI from the ADNI database with gender as the confound, while in the second we predict age using structural MRI from the IXI database with acquisition site as the confound. Considered over both datasets we find that none of the methods for dealing with confounding gives more accurate predictions than a baseline model which ignores confounding, although

  14. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods.

    Directory of Open Access Journals (Sweden)

    Krzysztof J Gorgolewski

    2017-03-01

    Full Text Available The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS. The portability of these applications (BIDS Apps is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.

  15. Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network

    Directory of Open Access Journals (Sweden)

    Jeffry R. Alger

    2016-01-01

    Full Text Available The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network is an ongoing multi-center collaborative research group established to conduct integrated studies in participants with urologic chronic pelvic pain syndrome (UCPPS. The goal of these investigations is to provide new insights into the etiology, natural history, clinical, demographic and behavioral characteristics, search for new and evaluate candidate biomarkers, systematically test for contributions of infectious agents to symptoms, and conduct animal studies to understand underlying mechanisms for UCPPS. Study participants were enrolled in a one-year observational study and evaluated through a multisite, collaborative neuroimaging study to evaluate the association between UCPPS and brain structure and function. 3D T1-weighted structural images, resting-state fMRI, and high angular resolution diffusion MRI were acquired in five participating MAPP Network sites using 8 separate MRI hardware and software configurations. We describe the neuroimaging methods and procedures used to scan participants, the challenges encountered in obtaining data from multiple sites with different equipment/software, and our efforts to minimize site-to-site variation.

  16. Recommendations for sex/gender neuroimaging research: Key principles and implications for research design, analysis and interpretation

    Directory of Open Access Journals (Sweden)

    Gina eRippon

    2014-08-01

    Full Text Available For over a decade, neuroimaging (NI technologies have had an increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which s/he develops and functions. The study of the relationship between sex and gender could offer a valuable example of such research. We identify here four main principles that should inform NI research. First, the principle of overlap, arising from evidence of significant overlap of female/male distributions on measures of many gendered behaviours. Second, the principle of mosaicism, arising from evidence that for both behaviour and brain, each individual manifests a complex and idiosyncratic combination of feminine and masculine characteristics. Third, the principle of contingency, arising from evidence that female/male behavioural differences are contingent on time, place, social group and context. Fourth, the principle of entanglement, arising from an awareness that the neural phenotypes that NI techniques measure are a function of the interactive and reciprocal influence of biology and environment. These important principles have emerged and become well-established over the past few decades, but their implications are often not reflected in the design and interpretation of NI sex/gender research. We therefore offer a set of guidelines for researchers to ensure that NI sex/gender research is appropriately designed and interpreted. We hope this ‘toolkit’ will also be of use to editorial boards and journal reviewers, as well as those who view, communicate and interpret such research.

  17. Can renewable energy be financed with higher electricity prices? evidence from Spain

    OpenAIRE

    Barreiro Hurlé, Jesús; Gracia Royo, Azucena; Pérez y Pérez, Luis

    2011-01-01

    The aim of this paper is to assess willingness to pay for renewable energy electricity. We used a choice experiment to elicit willingness-to-pay for different electricity service attributes: renewable sources (wind, solar and biomass) and the regional origin of the electricity with data from a survey conducted in Spain in 2010. Findings indicate that a majority of consumers are not willing to pay a premium for increases in the renewable component of their electricity mix. Moreover, they would...

  18. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    Science.gov (United States)

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Neuroimaging of post-traumatic higher brain dysfunction using 123I-Iomazenil (IMZ) SPECT

    International Nuclear Information System (INIS)

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2010-01-01

    In patients with mild traumatic brain injury (MTBI), higher brain dysfunctions which consist of cognitive impairments such as memory, attention, performance and social behavioral disturbances could be rarely apparent. However, higher brain dysfunctions should be identified by neuropsychological tests and supported by a social welfare for handicapped patients. Acknowledgement of higher brain dysfunctions after MTBI without obvious brain damages on morphological neuroimagings could be a social issue under controversy. An imaging of cortical neuron damages in patients with higher brain dysfunctions after MTBI was studied by functional neuroimaging using 123 I-Iomazenil (IMZ) single photon emission computed tomography (SPECT). Statistical imaging analyses using 3 dimensional stereotactic surface projections (3D-SSP) for 123 I-IMZ SPECT and 123 I-IMP SPECT as cerebral blood flow (CBF) studies were performed in 11 patients with higher brain dysfunctions after MTBI. In all patients with higher brain dysfunctions defined by neuropsychological tests, cortical neuron damages were observed in bilateral medial frontal lobes, but reduction of CBF in bilateral medial frontal lobes were less obviously showed in 8 patients (apparent in 3 and little in 5). Group comparison of 3D-SSP of 123 I-IMZ SPECT between 11 patients and 18 normal controls demonstrated significant selective loss of cortical neuron in bilateral medial frontal gyrus (MFG). Extent of abnormal pixels on each cortical gyrus using stereotactic extraction estimation (SEE) for 3D-SSP of 123 I-IMZ SPECT confirmed that 8 patients had abnormal pixel extent >10% in bilateral MFG and 5 patients had abnormal pixel extent >10% in bilateral anterior cingulate gyrus. In patients with MTBI, higher brain dysfunctions seems to correlate with selective loss of cortical neuron within bilateral MFG which could be caused by Wallerian degeneration as secondary phenomena after diffuse axonal injury within corpus callosum. Statistical

  20. Noninvasive Electrical Neuroimaging of the Human Brain during Mobile Tasks including Walking and Running

    Science.gov (United States)

    2012-01-01

    experiment. All procedures were approved by the University of Michigan Internal Review Board and complied with the standards defined in the...subjects performed two experimental blocks. In the first block, subjects were asked to press a button on a wireless Wii controller (Nintendo, Kyoto...evidence of cortical involvement in human locomotion. Dual-task experiments have demonstrated that balance during walking can be negatively affected by

  1. How Shakespeare tempests the brain: neuroimaging insights.

    Science.gov (United States)

    Keidel, James L; Davis, Philip M; Gonzalez-Diaz, Victorina; Martin, Clara D; Thierry, Guillaume

    2013-04-01

    Shakespeare made extensive use of the functional shift (FS), a rhetorical device involving a change in the grammatical status of words, e.g., using nouns as verbs. Previous work using event-related brain potentials showed how FS triggers a surprise effect inviting mental re-evaluation, seemingly independent of semantic processing. Here, we used functional magnetic resonance imaging to investigate brain activation in participants making judgements on the semantic relationship between sentences -some containing a Shakespearean FS- and subsequently presented words. Behavioural performance in the semantic decision task was high and unaffected by sentence type. However, neuroimaging results showed that sentences featuring FS elicited significant activation beyond regions classically activated by typical language tasks, including the left caudate nucleus, the right inferior frontal gyrus and the right inferior temporal gyrus. These findings show how Shakespeare's grammatical exploration forces the listener to take a more active role in integrating the meaning of what is said. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Neuroimaging for drug addiction and related behaviors

    International Nuclear Information System (INIS)

    Parvaz, M.A.; Alia-Klein, N.; Woicik, P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-01-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  3. The experience of art: insights from neuroimaging.

    Science.gov (United States)

    Nadal, Marcos

    2013-01-01

    The experience of art is a complex one. It emerges from the interaction of multiple cognitive and affective processes. Neuropsychological and neuroimaging studies are revealing the broadly distributed network of brain regions upon which it relies. This network can be divided into three functional components: (i) prefrontal, parietal, and temporal cortical regions support evaluative judgment, attentional processing, and memory retrieval; (ii) the reward circuit, including cortical, subcortical regions, and some of its regulators, is involved in the generation of pleasurable feelings and emotions, and the valuation and anticipation of reward; and (iii) attentional modulation of activity in low-, mid-, and high-level cortical sensory regions enhances the perceptual processing of certain features, relations, locations, or objects. Understanding how these regions act in concert to produce unique and moving art experiences and determining the impact of personal and cultural meaning and context on this network the biological foundation of the experience of art--remain future challenges. © 2013 Elsevier B.V. All rights reserved.

  4. Neuroimaging for drug addiction and related behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Parvaz M. A.; Parvaz, M.A.; Alia-Klein, N.; Woicik,P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-10-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  5. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  6. Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China

    International Nuclear Information System (INIS)

    Wang Zhaohua; Zhang Bin; Yin Jianhua; Zhang Yixiang

    2011-01-01

    This research sets out to explore the possibilities for further saving in household electricity consumption through a study of the residents' willingness and behavioural characteristics in electricity saving, as applied within a Chinese context. Based on an extensive literature review, the authors argue that economic benefits, policy and social norms, and past experience may have a positive correlation with household electricity-saving behaviour, while the discomfort caused by electricity-saving activities, may exert a negative effect on it. Through a sample of 816 randomly selected residents in Beijing, the propositions are examined using logit regression analysis. The conclusions support the ideas, concerning both the positive influence of economic benefits, policy and social norms, and past experience as they affect broader electricity-saving behaviour, and the negative influence of the discomfort caused by electricity-saving activities. Finally, some inferences are drawn, and suggestions are offered for policy makers and further studies. - Highlights: → We develop a logistic regression to investigate household electricity saving behaviour. → Determinants for household electricity saving are verified with a questionnaire survey. → Environmental awareness does not impact on household electricity saving directly. → It is prerequisite to focus on both financial subsidy and technology improvement. → Tiered price reform is considered an effective policy for electricity saving.

  7. Mindcontrol: Organize, quality control, annotate, edit, and collaborate on neuroimaging processing results

    Directory of Open Access Journals (Sweden)

    Anisha Keshavan

    2017-02-01

    Full Text Available Mindcontrol is an open-source web-based dashboard to quality control and curate neuroimaging data. At Neurohackweek 2016, a group assembled to add new features to the Mindcontrol interface. Contributors used Python, Javascript, and Git to configure Mindcontrol for the ABIDE and CoRR open datasets, and add new types of plots to the interface. All contributions are freely available online, and the code is being actively maintained at http://www.github.com/akeshavan/mindcontrol.

  8. Acute disseminated encephalomyelitis complicating dengue infection with neuroimaging mimicking multiple sclerosis: A report of two cases.

    Science.gov (United States)

    Viswanathan, S; Botross, N; Rusli, B N; Riad, A

    2016-11-01

    Acute disseminated encephalomyelitis (ADEM) complicating dengue infection is still exceedingly rare even in endemic countries such as Malaysia. Here we report two such cases, the first in an elderly female patient and the second in a young man. Both presented with encephalopathy, brainstem involvement and worsening upper and lower limb weakness. Initial magnetic resonance imaging (MRI) of the brain was normal in the first case. Serum for dengue Ig M and NS-1 was positive in both cases. Cerebrospinal fluid (CSF) showed pleocytosis in both with Dengue IgM and NS-1 positive in the second case but not done in the first. MRI brain showed changes of perpendicular subcortical palisading white matter, callosal and brainstem disease mimicking multiple sclerosis (MS) in both patients though in the former case there was a lag between the onset of clinical symptoms and MRI changes which was only clarified on reimaging. The temporal evolution and duration of the clinical symptoms, CSF changes and neuroimaging were more suggestive of Dengue ADEM rather than an encephalitis though initially the first case began as dengue encephalitis. Furthermore in dengue encephalitis neuroimaging is usually normal or rarely edema, haemorrhage, brainstem, thalamic or focal lesions are seen. Therefore, early recognition of ADEM as a sequelae of dengue infection with neuroimaging mimicking MS and repeat imaging helped in identifying these two cases. Treatment with intravenous steroids followed by maintenance oral steroids produced good outcome in both patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients.

    Science.gov (United States)

    Sjoerds, Z; de Wit, S; van den Brink, W; Robbins, T W; Beekman, A T F; Penninx, B W J H; Veltman, D J

    2013-12-17

    Substance dependence is characterized by compulsive drug-taking despite negative consequences. Animal research suggests an underlying imbalance between goal-directed and habitual action control with chronic drug use. However, this imbalance, and its associated neurophysiological mechanisms, has not yet been experimentally investigated in human drug abusers. The aim of the present study therefore was to assess the balance between goal-directed and habit-based learning and its neural correlates in abstinent alcohol-dependent (AD) patients. A total of 31 AD patients and 19 age, gender and education matched healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during completion of an instrumental learning task designed to study the balance between goal-directed and habit learning. Task performance and task-related blood oxygen level-dependent activations in the brain were compared between AD patients and healthy matched controls. Findings were additionally associated with duration and severity of alcohol dependence. The results of this study provide evidence for an overreliance on stimulus-response habit learning in AD compared with HC, which was accompanied by decreased engagement of brain areas implicated in goal-directed action (ventromedial prefrontal cortex and anterior putamen) and increased recruitment of brain areas implicated in habit learning (posterior putamen) in AD patients. In conclusion, this is the first human study to provide experimental evidence for a disturbed balance between goal-directed and habitual control by use of an instrumental learning task, and to directly implicate cortical dysfunction to overreliance on inflexible habits in AD patients.

  10. Outcome of oligodendroglioma treatment in the era of modern neuroimaging

    International Nuclear Information System (INIS)

    Kleinberg, Lawrence R.; Silverman, Edward; Brem, Henry; Wharam, Moody D.

    1997-01-01

    Purpose/Objective: The benefit of routine postoperative radiotherapy for low grade oligodendroglioma remains controversial. Most published series include many patients treated before the availability of CT or MRI scans which allow early diagnosis, guide surgery, detect residual disease, improve radiotherapy, and detect asymptomatic recurrences. The purpose of this analysis is to determine whether observation rather than radiation continues to be an appropriate option for selected patients with the availability of modern neuroimaging. Materials and Methods: 58 patients (age 2-67 years, 6 pts. =2 poor prognostic factor (p=.04). Results: Two and five year actuarial freedom from local progression was 93 +/- 4% and 75% +/- 8% whereas 2 and 5 year overall survival was 94% +/- 3% and 80% +/- 7%. Despite the imbalance of prognostic factors, there was no significant difference whether or not postoperative RT was given. With RT, 2 and 4 year actuarial freedom from progression was 94% +/- 4% and 78% +/- 8%, whereas without RT it was 94% +/- 6% at 2 and 4 years. Similarly, 2 and 4 year actuarial survival was 94% +/- 4% and 78% +/- 8% with RT and was 91% +/- 8% without RT. (5(10)) recurrences were detected radiologically without new or progressive clinical symptoms. Conclusion: These data support the hypothesis that, in the era of modern neuroimaging, the initial observation of good risk patients and immediate irradiation of poor risk patients is an appropriate treatment approach which results in good medium term control and survival for low grade oligodendroglioma patients. A policy of treatment vs. observation based on selected prognostic factors will be tested prospectively in an intergroup trial for low grade glioma histologies

  11. Neuropsychology 3.0: Evidence-Based Science and Practice

    Science.gov (United States)

    Bilder, Robert M.

    2011-01-01

    Neuropsychology is poised for transformations of its concepts and methods, leveraging advances in neuroimaging, the human genome project, psychometric theory, and information technologies. It is argued that a paradigm shift towards evidence-based science and practice can be enabled by innovations, including: (1) formal definition of neuropsychological concepts and tasks in cognitive ontologies; (2) creation of collaborative neuropsychological knowledgebases; and (3) design of web-based assessment methods that permit free development, large-sample implementation, and dynamic refinement of neuropsychological tests and the constructs these aim to assess. This article considers these opportunities, highlights selected obstacles, and offers suggestions for stepwise progress towards these goals. PMID:21092355

  12. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    International Nuclear Information System (INIS)

    Stippich, Christoph

    2015-01-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  13. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, Christoph (ed.) [Univ. Hospitals Basel (Switzerland). Division of Diagnostic and Inventional Neuroradiology

    2015-06-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  14. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  15. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  16. What do customers want from improved residential electricity services? Evidence from a choice experiment

    International Nuclear Information System (INIS)

    Huh, Sung-Yoon; Woo, JongRoul; Lim, Sesil; Lee, Yong-Gil; Kim, Chang Seob

    2015-01-01

    Improvements in customer satisfaction as well as product/service quality represent a common objective of all businesses, and electricity services are no exception. Using choice experiments and a mixed logit model, this study quantitatively analyzes customers' preferences and their marginal willingness to pay for improved residential electricity services. The study provides an ex ante evaluation of customers' acceptance of hypothetical electricity services. According to the results, customers consider the electricity bill and the electricity mix as the two most important attributes when choosing their electricity services. Customers are willing to pay 2.2% more in the average electricity bill (an additional monthly electricity bill of KRW 1,064; USD 0.96) for a significant increase in the share of renewable energy, which is far less than the actual cost of achieving this renewable target. Therefore, it is better to maintain the current electricity mix in principle, and the renewable share should be gradually expanded instead of making a sudden change in the electricity mix. In addition, customers are willing to pay KRW 6,793 (USD 6.15) more to reduce blackouts once in a year and KRW 64/year (USD 0.06/year) to reduce a minute of each blackout. -- Highlights: •Customers' preferences for improved residential electricity services are analyzed. •Empirical setting is a sample of residents in South Korea. •The electricity bills and electricity mix are important to customers. •Increase in electricity bill of different electricity mix is considered

  17. Cranial neuroimaging in pregnancy and the post-partum period

    International Nuclear Information System (INIS)

    Mortimer, A.M.; Bradley, M.D.; Likeman, M.; Stoodley, N.G.; Renowden, S.A.

    2013-01-01

    Several diverse neurological conditions may be seen during pregnancy and the post partum period. These usually require neuroimaging for definitive diagnosis and range from a predisposition to neurovascular abnormalities, such as acute ischaemic stroke and cerebral venous sinus thrombosis, through to more specific pregnancy-related conditions, such as eclampsia/posterior reversible leukoencephalopathy and post-partum angiopathy. Additionally, the pregnant patient is predisposed to pituitary disease. It is necessary that the radiologist has an awareness of these conditions to allow swift specific diagnoses or suggest the most appropriate diagnosis when imaging findings are non-specific. We describe epidemiological and radiological features to allow the radiologist to guide the clinician in management, and review guidelines for safe cranial imaging of the pregnant patient

  18. Developments in functional neuroimaging techniques

    International Nuclear Information System (INIS)

    Aine, C.J.

    1995-01-01

    A recent review of neuroimaging techniques indicates that new developments have primarily occurred in the area of data acquisition hardware/software technology. For example, new pulse sequences on standard clinical imagers and high-powered, rapidly oscillating magnetic field gradients used in echo planar imaging (EPI) have advanced MRI into the functional imaging arena. Significant developments in tomograph design have also been achieved for monitoring the distribution of positron-emitting radioactive tracers in the body (PET). Detector sizes, which pose a limit on spatial resolution, have become smaller (e.g., 3--5 mm wide) and a new emphasis on volumetric imaging has emerged which affords greater sensitivity for determining locations of positron annihilations and permits smaller doses to be utilized. Electromagnetic techniques have also witnessed growth in the ability to acquire data from the whole head simultaneously. EEG techniques have increased their electrode coverage (e.g., 128 channels rather than 16 or 32) and new whole-head systems are now in use for MEG. But the real challenge now is in the design and implementation of more sophisticated analyses to effectively handle the tremendous amount of physiological/anatomical data that can be acquired. Furthermore, such analyses will be necessary for integrating data across techniques in order to provide a truly comprehensive understanding of the functional organization of the human brain

  19. Evaluating the market splitting determinants: evidence from the Iberian spot electricity prices

    International Nuclear Information System (INIS)

    Figueiredo, Nuno Carvalho; Silva, Patrícia Pereira da; Cerqueira, Pedro A.

    2015-01-01

    This paper aims to assess the main determinants on the market splitting behaviour of the Iberian electricity spot markets. Iberia stands as an ideal case-study, where the high level deployment of wind power is observed, together with the implementation of the market splitting arrangement between the Portuguese and the Spanish spot electricity markets. Logit and non-parametric models are used to express the probability response for market splitting of day-ahead spot electricity prices as a function of the explanatory variables representing the main technologies in the generation mix: wind, hydro, thermal and nuclear power, together with the available transfer capacity and electricity demand. Logit models give preliminary indications about market splitting behaviour, and then, notwithstanding the demanding computational challenge, a non-parametric model is applied in order to overcome the limitations of the former models. Results show an increase of market splitting probability with higher wind power generation or, more generally, with higher availability of low marginal cost electricity such as nuclear power generation. The European interconnection capacity target of 10% of the peak demand of the smallest interconnected market might be insufficient to maintain electricity market integration. Therefore, pro-active coordination policies, governing both interconnections and renewables deployment, should be further developed. -- Highlights: •Assess determinants on market splitting behaviour of Iberian electricity markets. •Logit and non-parametric models to express market splitting probability response. •Explanatory variables: wind, hydro, thermal and nuclear power; ATC and demand. •Results: increase of market splitting probability with higher availability of low marginal cost electricity. •Coordination policies governing both interconnections and renewables deployment

  20. Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer's disease in younger and older age cohorts

    NARCIS (Netherlands)

    Schmand, B.; Eikelenboom, P.; van Gool, W.A.

    2011-01-01

    OBJECTIVES: To examine the influence of age on the value of four techniques for diagnosing Alzheimer's disease (AD). DESIGN: Observational cohort study. SETTING: Alzheimer's Disease Neuroimaging Initiative. PARTICIPANTS: Individuals with mild cognitive impairment (MCI; n=179), individuals with AD

  1. Neuroimaging findings in the at-risk mental state: a review of recent literature.

    Science.gov (United States)

    Wood, Stephen J; Reniers, Renate L E P; Heinze, Kareen

    2013-01-01

    The at-risk mental state (ARMS) has been the subject of much interest during the past 15 years. A great deal of effort has been expended to identify neuroimaging markers that can inform our understanding of the risk state and to help predict who will transition to frank psychotic illness. Recently, there has been an explosion of neuroimaging literature from people with an ARMS, which has meant that reviews and meta-analyses lack currency. Here we review papers published in the past 2 years, and contrast their findings with previous reports. While it is clear that people in the ARMS do show brain alterations when compared with healthy control subjects, there is an overall lack of consistency as to which of these alterations predict the development of psychosis. This problem arises because of variations in methodology (in patient recruitment, region of interest, method of analysis, and functional task employed), but there has also been too little effort put into replicating previous research. Nonetheless, there are areas of promise, notably that activation of the stress system and increased striatal dopamine synthesis seem to mark out patients in the ARMS most at risk for later transition. Future studies should focus on these areas, and on network-level analysis, incorporating graph theoretical approaches and intrinsic connectivity networks.

  2. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    Science.gov (United States)

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.

  3. The same analysis approach: Practical protection against the pitfalls of novel neuroimaging analysis methods.

    Science.gov (United States)

    Görgen, Kai; Hebart, Martin N; Allefeld, Carsten; Haynes, John-Dylan

    2017-12-27

    Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. New evidence on the impact of structural reforms on electricity sector performance

    International Nuclear Information System (INIS)

    Polemis, Michael L.

    2016-01-01

    The evolution of electricity industry over the last decades has shown substantial differences between OECD countries. This paper empirically investigates to what extent different structural forms of regulation, competition and privatisation explain these international differences. It distinguishes three modes of electricity performance: a) net generation per capita, b) installed capacity and c) labour productivity. The empirical model spans the period 1975–2011 and uses panel data econometric techniques. Our analysis reveals that there is a strongly significant interaction impact on the level of electricity performance between regulation and competition. The empirical findings do confirm that a robust independent regulatory scheme must be implemented in order to achieve a competitive electricity market. - Highlights: •We assess the impact of structural reforms on OECD electricity sector performance. •Regulation has stronger impact on performance when interaction terms are present. •Privatisation has unambiguous effect on the elements of performance. •The combined effect of reforms on performance is more aggressive in the long run.

  5. Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging

    OpenAIRE

    Natalia Y Bilenko; Jack L Gallant; Jack L Gallant

    2016-01-01

    In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Py...

  6. Maternal Relationship, Social Skills and Parental Behavior Through Neuroimaging Techniques and Behavioral Studies

    OpenAIRE

    Serra, Mauro

    2015-01-01

    Mother child relationship is the first and the most important social relationship as it has implications on psychological and neural development of the individual. Here we investigated mother child relationship focusing on different aspects and using a combination of behavioural and neuroimaging techniques. In the first study we addressed the association between brain connectivity and interpersonal competences which are at the basis of every social interaction including the ones involved in m...

  7. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.

    Science.gov (United States)

    Milham, Samuel

    2014-01-01

    The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.

  8. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction.

    Science.gov (United States)

    Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark

    2013-01-01

    Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  9. Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer's disease in younger and older age cohorts

    NARCIS (Netherlands)

    Schmand, Ben; Eikelenboom, Piet; van Gool, Willem A.

    2011-01-01

    To examine the influence of age on the value of four techniques for diagnosing Alzheimer's disease (AD). Observational cohort study. Alzheimer's Disease Neuroimaging Initiative. Individuals with mild cognitive impairment (MCI; n = 179), individuals with AD (n = 91), and normal controls (n = 105).

  10. Neuroimaging in status epilepticus secondary to paraneoplastic autoimmune encephalitis

    International Nuclear Information System (INIS)

    Sarria-Estrada, S.; Toledo, M.; Lorenzo-Bosquet, C.; Cuberas-Borrós, G.; Auger, C.; Siurana, S.; Rovira, À.

    2014-01-01

    Aim: To describe the characteristic magnetic resonance imaging (MRI) findings of paraneoplastic autoimmune encephalitis in patients with new-onset status epilepticus. Materials and methods: The neuroimaging and clinical data of five patients with paraneoplastic autoimmune encephalitis debuting as status epilepticus were retrospectively reviewed. All patients met the criteria for definite paraneoplastic syndrome and all underwent brain MRI during the status epilepticus episode or immediately after recovery. Results: All patients showed hyperintense lesions on T2-weighted imaging (WI) involving the limbic structures, specifically the hippocampus. Three of them showed additional extra-limbic areas of signal abnormalities. The areas of T2 hyperintensity were related to the electroclinical onset of the seizures. In three patients, various techniques were used to study cerebral perfusion, such as arterial spin labelling MRI, single photon-emission computed tomography (SPECT) and 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron-emission tomography (PET). Arterial spin labelling showed hyperperfusion overlapping the inflammatory lesions, whereas PET and SPECT disclosed increased perfusion and increased metabolism. The subtraction SPECT co-registered to MRI (SISCOM) demonstrated hypermetabolism outside the areas of encephalitis. After clinical recovery, follow-up MRI revealed the development of atrophy in the initially affected hippocampus. Two patients who had recurrent paraneoplastic autoimmune encephalitis manifesting as status epilepticus showed new T2 lesions involving different structures. Conclusion: The presence of limbic and extra-limbic T2 signal abnormalities in new-onset status epilepticus should suggest the diagnosis of a paraneoplastic syndrome, especially when status epilepticus is refractory to treatment. The lesions are consistently seen as hyperintense on T2WI. - Highlights: • New onset status epilepticus can be caused by paraneoplastic encephalitis.

  11. Neuroimaging in status epilepticus secondary to paraneoplastic autoimmune encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Sarria-Estrada, S., E-mail: ssarria@idi-cat.org [Magnetic Resonance Unit, Radiology Department, Vall d' Hebrón University Hospital, Barcelona (Spain); Toledo, M. [Epilepsy Unit, Neurology Department, Vall d' Hebrón University Hospital, Barcelona (Spain); Lorenzo-Bosquet, C.; Cuberas-Borrós, G. [Nuclear Medicine Department, Vall d' Hebrón University Hospital, Barcelona (Spain); Auger, C.; Siurana, S.; Rovira, À. [Magnetic Resonance Unit, Radiology Department, Vall d' Hebrón University Hospital, Barcelona (Spain)

    2014-08-15

    Aim: To describe the characteristic magnetic resonance imaging (MRI) findings of paraneoplastic autoimmune encephalitis in patients with new-onset status epilepticus. Materials and methods: The neuroimaging and clinical data of five patients with paraneoplastic autoimmune encephalitis debuting as status epilepticus were retrospectively reviewed. All patients met the criteria for definite paraneoplastic syndrome and all underwent brain MRI during the status epilepticus episode or immediately after recovery. Results: All patients showed hyperintense lesions on T2-weighted imaging (WI) involving the limbic structures, specifically the hippocampus. Three of them showed additional extra-limbic areas of signal abnormalities. The areas of T2 hyperintensity were related to the electroclinical onset of the seizures. In three patients, various techniques were used to study cerebral perfusion, such as arterial spin labelling MRI, single photon-emission computed tomography (SPECT) and 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG)-positron-emission tomography (PET). Arterial spin labelling showed hyperperfusion overlapping the inflammatory lesions, whereas PET and SPECT disclosed increased perfusion and increased metabolism. The subtraction SPECT co-registered to MRI (SISCOM) demonstrated hypermetabolism outside the areas of encephalitis. After clinical recovery, follow-up MRI revealed the development of atrophy in the initially affected hippocampus. Two patients who had recurrent paraneoplastic autoimmune encephalitis manifesting as status epilepticus showed new T2 lesions involving different structures. Conclusion: The presence of limbic and extra-limbic T2 signal abnormalities in new-onset status epilepticus should suggest the diagnosis of a paraneoplastic syndrome, especially when status epilepticus is refractory to treatment. The lesions are consistently seen as hyperintense on T2WI. - Highlights: • New onset status epilepticus can be caused by paraneoplastic encephalitis

  12. Brain white matter changes associated with urological chronic pelvic pain syndrome: Multi-site neuroimaging from a MAPP case-control study

    Science.gov (United States)

    Huang, Lejian; Kutch, Jason J.; Ellingson, Benjamin M.; Martucci, Katherine T.; Harris, Richard E.; Clauw, Daniel J.; Mackey, Sean; Mayer, Emeran A.; Schaeffer, Anthony J.; Apkarian, A. Vania; Farmer, Melissa A.

    2016-01-01

    Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPS) in men and women has focused on end-organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multi-site investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared to positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data was collected from participants with UCPPS (n=52), IBS (n=39), and healthy, sex- and age-matched controls (n=61). White matter microstructure, measured as fractional anisotropy (FA), was examined with diffusion tensor imaging (DTI). Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished IBS from UCPPS patients and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development. PMID:27842046

  13. Neuroimaging revolutionizes therapeutic approaches to chronic pain

    Directory of Open Access Journals (Sweden)

    Borsook David

    2007-09-01

    Full Text Available Abstract An understanding of how the brain changes in chronic pain or responds to pharmacological or other therapeutic interventions has been significantly changed as a result of developments in neuroimaging of the CNS. These developments have occurred in 3 domains : (1 Anatomical Imaging which has demonstrated changes in brain volume in chronic pain; (2 Functional Imaging (fMRI that has demonstrated an altered state in the brain in chronic pain conditions including back pain, neuropathic pain, and complex regional pain syndromes. In addition the response of the brain to drugs has provided new insights into how these may modify normal and abnormal circuits (phMRI or pharmacological MRI; (3 Chemical Imaging (Magnetic Resonance Spectroscopy or MRS has helped our understanding of measures of chemical changes in chronic pain. Taken together these three domains have already changed the way in which we think of pain – it should now be considered an altered brain state in which there may be altered functional connections or systems and a state that has components of degenerative aspects of the CNS.

  14. Neuroimaging studies in people with gender incongruence.

    Science.gov (United States)

    Kreukels, Baudewijntje P C; Guillamon, Antonio

    2016-01-01

    The current review gives an overview of brain studies in transgender people. First, we describe studies into the aetiology of feelings of gender incongruence, primarily addressing the sexual differentiation hypothesis: does the brain of transgender individuals resemble that of their natal sex, or that of their experienced gender? Findings from neuroimaging studies focusing on brain structure suggest that the brain phenotypes of trans women (MtF) and trans men (FtM) differ in various ways from control men and women with feminine, masculine, demasculinized and defeminized features. The brain phenotypes of people with feelings of gender incongruence may help us to figure out whether sex differentiation of the brain is atypical in these individuals, and shed light on gender identity development. Task-related imaging studies may show whether brain activation and task performance in transgender people is sex-atypical. Second, we review studies that evaluate the effects of cross-sex hormone treatment on the brain. This type of research provides knowledge on how changes in sex hormone levels may affect brain structure and function.

  15. Neuroimaging of psychopathy and antisocial behavior: a targeted review.

    Science.gov (United States)

    Blair, R J R

    2010-02-01

    The goal of this article is to provide a selective and targeted review of the neuroimaging literature on psychopathic tendencies and antisocial behavior and to explore the extent to which this literature supports recent cognitive neuroscientific models of psychopathy and antisocial behavior. The literature reveals that individuals who present with an increased risk for reactive, but not instrumental, aggression show increased amygdala responses to emotionally evocative stimuli. This is consistent with suggestions that such individuals are primed to respond strongly to an inappropriate extent to threatening or frustrating events. In contrast, individuals with psychopathic tendencies show decreased amygdala and orbitofrontal cortex responses to emotionally provocative stimuli or during emotional learning paradigms. This is consistent with suggestions that such individuals face difficulties with basic forms of emotional learning and decision making.

  16. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies

    NARCIS (Netherlands)

    Sescousse, G.T.; Caldu, X.; Segura, B.; Dreher, J.C.

    2013-01-01

    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human

  17. Economic growth and electricity consumption in Cote d'Ivoire: Evidence from time series analysis

    International Nuclear Information System (INIS)

    Kouakou, Auguste K.

    2011-01-01

    This paper examines the causal relationship between the electric power industry and the economic growth of Cote d'Ivoire. Using the data from 1971 to 2008, a test was conducted for the cointegration and Granger causality within an error correction model. Results from these tests reveal a bidirectional causality between per capita electricity consumption and per capita GDP. A unidirectional causality running from electricity consumption to industry value added appears in the short run. Economic growth is found to have great effects on electricity consumption and a reverse causality from electricity to economic growth may also appear. In the long run, there is a unidirectional causality between electricity and both GDP and industry value added. From these findings, we conclude that the country will be energy dependent in the long run and must therefore secure the production network from shortfalls to ensure a sustainable development path. Accordingly, government should adopt policies aimed at increasing the investment in the sector by stepping up electricity production from existing and new energy sources. - Highlights: → We analyze the electricity-growth nexus for Cote d'Ivoire using causality tests. → Short run bi-directional causality appears between electricity and GDP. → We found a unidirectional causality running from electricity to industry and GDP. → Economic activities are electricity dependent and require appropriate policies.

  18. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  19. Does employee safety influence customer satisfaction? Evidence from the electric utility industry.

    Science.gov (United States)

    Willis, P Geoffrey; Brown, Karen A; Prussia, Gregory E

    2012-12-01

    Research on workplace safety has not examined implications for business performance outcomes such as customer satisfaction. In a U.S. electric utility company, we surveyed 821 employees in 20 work groups, and also had access to archival safety data and the results of a customer satisfaction survey (n=341). In geographically-based work units where there were more employee injuries (based on archival records), customers were less satisfied with the service they received. Safety climate, mediated by safety citizenship behaviors (SCBs), added to the predictive power of the group-level model, but these two constructs exerted their influence independently from actual injuries. In combination, two safety-related predictor paths (injuries and climate/SCB) explained 53% of the variance in customer satisfaction. Results offer preliminary evidence that workplace safety influences customer satisfaction, suggesting that there are likely spillover effects between the safety environment and the service environment. Additional research will be needed to assess the specific mechanisms that convert employee injuries into palpable results for customers. Better safety climate and reductions in employee injuries have the potential to offer payoffs in terms of what customers experience. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  20. The earliest evidence of true lambdoid craniosynostosis: the case of "Benjamina", a Homo heidelbergensis child.

    Science.gov (United States)

    Gracia, Ana; Martínez-Lage, Juan F; Arsuaga, Juan-Luis; Martínez, Ignacio; Lorenzo, Carlos; Pérez-Espejo, Miguel-Angel

    2010-06-01

    The authors report the morphological and neuroimaging findings of an immature human fossil (Cranium 14) diagnosed with left lambdoid synostosis. The skull was recovered at the Sima de los Huesos site in Atapuerca (Burgos, Spain). Since the human fossil remains from this site have been dated to a minimum age of 530,000 years, this skull represents the earliest evidence of craniosynostosis occurring in a hominid. A brief historical review of craniosynostosis and cranial deformation is provided.

  1. Ferro electricity from magnetic order by neutron measurement

    International Nuclear Information System (INIS)

    Kenzelmann, M.

    2009-01-01

    Magnetic insulators with competing exchange interactions can give rise to strong fluctuations and qualitatively new ground states. The proximity of such systems to quantum critical points can lead to strong cross-coupling between magnetic long-range order and the nuclear lattice. Case in point is a new class of multiferroic materials in which the magnetic and ferroelectric order parameters are directly coupled, and a magnetic field can suppress or switch the electric polarization [1]. Our neutron measurements reveal that ferro electricity is induced by magnetic order and emerges only if the magnetic structure creates a polar axis [2-5]. Our measurements provide evidence that commensurate magnetic order can produce ferro electricity with large electric polarization [6]. The spin dynamics and the field-temperature phase diagram of the ordered phases provide evidence that competing ground states are essential for ferro electricity. (author)

  2. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    Science.gov (United States)

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  3. Learning Neuroimaging. 100 essential cases

    International Nuclear Information System (INIS)

    Asis Bravo-Rodriguez, Francisco de; Diaz-Aguilera, Rocio; Hygino da Cruz, Luiz Celso

    2012-01-01

    Neuroradiology is the branch of radiology that comprises both imaging and invasive procedures related to the brain, spine and spinal cord, head, neck, organs of special sense (eyes, ears, nose), cranial and spinal nerves, and cranial, cervical, and spinal vessels. Special training and skills are required to enable the neuroradiologist to function as an expert diagnostic and therapeutic consultant and practitioner. In addition to knowledge of imaging findings, the neuroradiologist is required to learn the fundamentals of structural and functional neuroanatomy, neuropathology, and neuropathophysiology as well as the clinical manifestations of diseases of the brain, spine and spinal cord, head, neck, and organs of special sense. This book is intended as an introduction to neuroradiology and aims to provide the reader with a comprehensive overview of this highly specialized radiological subspecialty. One hundred illustrated cases from clinical practice are presented in a standard way. Each case is supported by representative images and is divided into three parts: a brief summary of the patient's medical history, a discussion of the disease, and a description of the most characteristic imaging features of the disorder. The focus is not only on common neuroradiological entities such as stroke and acute head trauma but also on less frequent disorders that the practitioner should recognize. Learning Neuroimaging: 100 Essential Cases is an ideal resource for neuroradiology and radiology residents, neurology residents, neurosurgery residents, nurses, radiology technicians, and medical students. (orig.)

  4. Learning Neuroimaging. 100 essential cases

    Energy Technology Data Exchange (ETDEWEB)

    Asis Bravo-Rodriguez, Francisco de [Reina Sofia University Hospital, Cordoba (Spain). Diagnostic and Therapeutics Neuroradiology; Diaz-Aguilera, Rocio [Alto Guadalquivir Hospital, Andujar, Jaen (Spain). Dept. of Radiology; Hygino da Cruz, Luiz Celso [Universidade Federal do Rio de Janeiro (Brazil). CDPI and IRM Ressonancia Magnetica

    2012-07-01

    Neuroradiology is the branch of radiology that comprises both imaging and invasive procedures related to the brain, spine and spinal cord, head, neck, organs of special sense (eyes, ears, nose), cranial and spinal nerves, and cranial, cervical, and spinal vessels. Special training and skills are required to enable the neuroradiologist to function as an expert diagnostic and therapeutic consultant and practitioner. In addition to knowledge of imaging findings, the neuroradiologist is required to learn the fundamentals of structural and functional neuroanatomy, neuropathology, and neuropathophysiology as well as the clinical manifestations of diseases of the brain, spine and spinal cord, head, neck, and organs of special sense. This book is intended as an introduction to neuroradiology and aims to provide the reader with a comprehensive overview of this highly specialized radiological subspecialty. One hundred illustrated cases from clinical practice are presented in a standard way. Each case is supported by representative images and is divided into three parts: a brief summary of the patient's medical history, a discussion of the disease, and a description of the most characteristic imaging features of the disorder. The focus is not only on common neuroradiological entities such as stroke and acute head trauma but also on less frequent disorders that the practitioner should recognize. Learning Neuroimaging: 100 Essential Cases is an ideal resource for neuroradiology and radiology residents, neurology residents, neurosurgery residents, nurses, radiology technicians, and medical students. (orig.)

  5. Effect of Spatial Alignment Transformations in PCA and ICA of Functional Neuroimages

    DEFF Research Database (Denmark)

    Lukic, Ana S.; Wernick, Miles N.; Yang, Yongui

    2007-01-01

    this observation is true, not only for spatial ICA, but also for temporal ICA and for principal component analysis (PCA). In each case we find conditions that the spatial alignment operator must satisfy to ensure invariance of the results. We illustrate our findings using functional magnetic-resonance imaging (f......It has been previously observed that spatial independent component analysis (ICA), if applied to data pooled in a particular way, may lessen the need for spatial alignment of scans in a functional neuroimaging study. In this paper we seek to determine analytically the conditions under which...

  6. Emerging Global Initiatives in Neurogenetics: The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium.

    Science.gov (United States)

    Bearden, Carrie E; Thompson, Paul M

    2017-04-19

    The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium is a global team science effort, now including over 800 scientists spread across 340 institutions in 35 countries, with the shared goal of understanding disease and genetic influences on the brain. This "crowdsourcing" approach to team neuroscience has unprecedented power for advancing our understanding of both typical and atypical human brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electricity prices and generator behaviour in gross pool electricity markets

    International Nuclear Information System (INIS)

    O'Mahoney, Amy; Denny, Eleanor

    2013-01-01

    Electricity market liberalisation has become common practice internationally. The justification for this process has been to enhance competition in a market traditionally characterised by statutory monopolies in an attempt to reduce costs to end-users. This paper endeavours to see whether a pool market achieves this goal of increasing competition and reducing electricity prices. Here the electricity market is set up as a sealed bid second price auction. Theory predicts that such markets should result with firms bidding their marginal cost, thereby resulting in an efficient outcome and lower costs to consumers. The Irish electricity system with a gross pool market experiences among the highest electricity prices in Europe. Thus, we analyse the Irish pool system econometrically in order to test if the high electricity prices seen there are due to participants bidding outside of market rules or out of line with theory. Overall we do not find any evidence that the interaction between generator and the pool in the Irish electricity market is not efficient. Thus, the pool element of the market structure does not explain the high electricity prices experienced in Ireland. - Highlights: • We consider whether a gross pool achieves competitive behaviour. • We analyse the Irish pool system econometrically. • Results indicate the Irish pool system appears to work efficiently. • Generators appear to be bidding appropriately

  8. The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Sawamoto, Nobukatsu; Okada, Tomohisa; Yonekura, Yoshiharu; Fukuyama, Hidena; Shibasaki, Hiroshi

    2002-11-01

    Recent evidence indicates that classical 'motor' areas may also have cognitive functions. We performed three neuroimaging experiments to investigate the functional neuroanatomy underlying three types of nonmotor mental-operation tasks: numerical, verbal, and spatial. (i) Positron emission tomography showed that parts of the posterior frontal cortex, which are consistent with the pre-supplementary motor area (pre-SMA) and the rostral part of the dorsolateral premotor cortex (PMdr), were active during all three tasks. We also observed activity in the posterior parietal cortex and cerebellar hemispheres during all three tasks. Electrophysiological monitoring confirmed that there were no skeletomotor, oculomotor or articulatory movements during task performance. (ii) Functional magnetic resonance imaging (fMRI) showed that PMdr activity during the mental-operation tasks was localized in the depths of the superior precentral sulcus, which substantially overlapped the region active during complex finger movements and was located dorsomedial to the presumptive frontal eye fields. (iii) Single-trial fMRI showed a transient increase in activity time-locked to the performance of mental operations in the pre-SMA and PMdr. The results of the present study suggest that the PMdr is important in the rule-based association of symbolic cues and responses in both motor and nonmotor behaviors.

  9. The effect of image enhancement on the statistical analysis of functional neuroimages : Wavelet-based denoising and Gaussian smoothing

    NARCIS (Netherlands)

    Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM

    2003-01-01

    The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising

  10. [Neuroimaging and the neurobiology of obsessive-compulsive disorder].

    Science.gov (United States)

    Schiepek, Günter; Tominschek, Igor; Karch, Susanne; Mulert, Christoph; Pogarell, Oliver

    2007-01-01

    The following review is focusing on results of functional neuroimaging. After some introductory remarks on the phenomenology, epidemiology, and psychotherapy approaches of obsessive-compulsive disorders (OCD) the most important OCD-related brain regions are presented. Obviously, not only the prominent cortico-striato-thalamo-cortical feedback loops are involved, as functional brain imaging studies tell us, but also other regions as the inferior parietal lobe, the anterior and posterior cingulate gyrus, insula, amygdala, cerebellum, and others. Subclassifications using factor-analysis methods support the hypothesis, that most important subtypes ("washing/contamination fear", "obsessions/checking", "symmetry/ordering", "hoarding") involve different, but partially overlapping brain areas. Stimulation paradigms in fMRI-research are commonly based on symptom provocation by visual or tactile stimuli, or on action-monitoring and error-monitoring tasks. Deficits in action-monitoring and planning are discussed to be one of the basic dysfunctions of OCD. Finally, results of psychotherapeutic induced variations of brain activations in OCD are presented.

  11. Measuring and testing natural gas and electricity markets volatility : evidence from Alberta's deregulated markets

    International Nuclear Information System (INIS)

    Serletis, A.; Shahmoradi, A.

    2005-01-01

    A number of innovative methods for modelling spot wholesale electricity prices have recently been developed. However, these models have primarily used a univariate time series approach to the analysis of electricity prices. This paper specified and estimated a multivariate GARCH-M model of natural gas and electricity price changes and their volatilities, using data over the deregulated period between January 1996 to November 2004 from Alberta's spot power and natural gas markets. The primary objective of the model was to investigate the relationship between electricity and natural gas prices. It was noted that the model allows for the possibilities of spillovers and asymmetries in the variance-covariance structure for natural gas and electricity price changes, and also for the separate examination of the effects of the volatility of anticipated and unanticipated changes in natural gas and electricity prices. Section 2 of the paper provided a description of the model used to test for causality between natural gas and electricity price changes, while section 3 discussed the data and presented the empirical results. It was concluded that there is a bidirectional causality between natural gas and electricity price changes. However, neither anticipated nor unanticipated natural gas price volatility causes electricity price changes. Anticipated electricity price volatility has a causal effect on natural gas. 10 refs., 2 tabs., 3 figs

  12. Prediction of Driving Safety in Individuals with Homonymous Hemianopia and Quadrantanopia from Clinical Neuroimaging

    Directory of Open Access Journals (Sweden)

    Michael S. Vaphiades

    2014-01-01

    Full Text Available Background. This study aimed to determine whether it is possible to predict driving safety of individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuroimages that are routinely available in clinical practice. Methods. Two experienced neuroophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which indicated the site and extent of the lesion and they made predictions regarding whether participants would be safe/unsafe to drive. Driving safety was independently defined at the time of the study using state-recorded motor vehicle crashes (all crashes and at-fault for the previous 5 years and ratings of driving safety determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. Results. The ability to predict driving safety was highly variable regardless of the driving safety measure, ranging from 31% to 63% (kappa levels ranged from −0.29 to 0.04. The level of agreement between the neuroophthalmologists was only fair (kappa = 0.28. Conclusions. Clinical evaluation of summary reports of currently available neuroimages by neuroophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.

  13. Prediction of driving safety in individuals with homonymous hemianopia and quadrantanopia from clinical neuroimaging.

    Science.gov (United States)

    Vaphiades, Michael S; Kline, Lanning B; McGwin, Gerald; Owsley, Cynthia; Shah, Ritu; Wood, Joanne M

    2014-01-01

    Background. This study aimed to determine whether it is possible to predict driving safety of individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuroimages that are routinely available in clinical practice. Methods. Two experienced neuroophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which indicated the site and extent of the lesion and they made predictions regarding whether participants would be safe/unsafe to drive. Driving safety was independently defined at the time of the study using state-recorded motor vehicle crashes (all crashes and at-fault) for the previous 5 years and ratings of driving safety determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. Results. The ability to predict driving safety was highly variable regardless of the driving safety measure, ranging from 31% to 63% (kappa levels ranged from -0.29 to 0.04). The level of agreement between the neuroophthalmologists was only fair (kappa = 0.28). Conclusions. Clinical evaluation of summary reports of currently available neuroimages by neuroophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.

  14. Is green energy expensive? Empirical evidence from the Spanish electricity market

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Espinosa, Maria Paz; Pizarro-Irizar, Cristina

    2014-01-01

    Renewable energy promotion and its cost are at the heart of the energy policy debate in many countries. The question from an economic perspective is how expensive the promotion of renewable sources through price-based incentive schemes is. This paper addresses this issue empirically. We analyze the Spanish electricity market during the period 2008–2012, where renewable energy production rose by 57%. To determine how expensive it was, we first measure the savings due to the spot price reduction driven by the merit order effect and, second, we compute the amount paid as incentives to green energy by the electricity system; the difference between the two is the net cost of green energy to the electricity markets. We present aggregate results for renewable sources as a whole, as well as individual results for each technology. We show that at the initial stages, when renewable capacity was low, green energy promotion paid for itself (2008–2009); however, from 2010 on, when renewable production reached a relatively high level, it started to impose a positive net cost on the system. Finally, we found substantial differences among technologies: wind energy implied the lowest net cost, while solar photovoltaic was the most expensive. - Highlights: • The combination of feed-in tariffs and premiums has been an effective instrument in the promotion of renewable electricity in Spain. • Significant reduction of the daily market price due to RES-E. • Considering the subsidies to RES-E this energy might seem rather expensive for the Spanish electricity system since 2010. • Substantial differences among technologies: wind energy implied the lowest net cost, while solar photovoltaic was the most expensive

  15. A systemic literature review of neuroimaging studies in women with breast cancer treated with adjuvant chemotherapy

    Directory of Open Access Journals (Sweden)

    Paulina Andryszak

    2017-03-01

    Full Text Available Chemotherapy-induced cognitive deficits in patients with breast cancer, predominantly in attention and verbal memory, have been observed in numerous studies. These neuropsychological findings are corroborated by the results of neuroimaging studies. The aim of this paper was to survey the reports on cerebral structural and functional alterations in women with breast cancer treated with chemotherapy (CTx. First, we discuss the host-related and disease-related mechanisms underlying cognitive impairment after CTx. We point out the direct and indirect neurotoxic effect of cytostatics, which may cause: a damage to neurons or glial cells, changes in neurotransmitter levels, deregulation of the immune system and/or cytokine release. Second, we focus on the results of neuroimaging studies on brain structure and function that revealed decreased: density of grey matter, integrity of white matter and volume of multiple brain regions, as well as their lower activation during cognitive task performance. Finally, we concentrate on compensatory mechanisms, which activate additional brain areas or neural connection to reach the premorbid cognitive efficiency.

  16. The clinical value of large neuroimaging data sets in Alzheimer's disease.

    Science.gov (United States)

    Toga, Arthur W

    2012-02-01

    Rapid advances in neuroimaging and cyberinfrastructure technologies have brought explosive growth in the Web-based warehousing, availability, and accessibility of imaging data on a variety of neurodegenerative and neuropsychiatric disorders and conditions. There has been a prolific development and emergence of complex computational infrastructures that serve as repositories of databases and provide critical functionalities such as sophisticated image analysis algorithm pipelines and powerful three-dimensional visualization and statistical tools. The statistical and operational advantages of collaborative, distributed team science in the form of multisite consortia push this approach in a diverse range of population-based investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Static electricity: A literature review

    Science.gov (United States)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  18. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    Science.gov (United States)

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers

  19. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    Science.gov (United States)

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5

  20. Electricity and the Technology–Skill Complementarity: Evidence from the Swedish Industrial Census of 1931

    Directory of Open Access Journals (Sweden)

    Svante Prado

    2017-04-01

    Full Text Available Notwithstanding the popularity among economists of attributing the surging inequality of recent decades to technology–skill complementarity, researchers with a keen eye on history have been reluctant to pick up this thread. This paper joins Claudia Goldin and Lawrence Katz’s attempt to examine the role of electrification as an example of a technology that is complementary to workers’ rising skill levels. Sweden electrified manufacturing processes rapidly in the first quarter of the twentieth century, while the supply of skills through secondary education only increased significantly in the 1950s. We use industry-specific information from the Swedish Industrial Census of 1931 to establish whether electricity and the use of white-collar workers correlated positively. The results indicate that the correlation was positive, but the estimated effect was rather small. Moreover, the available evidence for skill ratios does not suggest that inequality, thus measured, increased. We conclude that labor market institutions prevented—and also overturned—the inequality push emanating from technology.

  1. Antecedents and neuroimaging patterns in cerebral palsy with epilepsy and cognitive impairment: a population-based study in children born at term.

    Science.gov (United States)

    Ahlin, Kristina; Jacobsson, Bo; Nilsson, Staffan; Himmelmann, Kate

    2017-07-01

    Antecedents of accompanying impairments in cerebral palsy and their relation to neuroimaging patterns need to be explored. A population-based study of 309 children with cerebral palsy born at term between 1983 and 1994. Prepartum, intrapartum, and postpartum variables previously studied as antecedents of cerebral palsy type and motor severity were analyzed in children with cerebral palsy and cognitive impairment and/or epilepsy, and in children with cerebral palsy without these accompanying impairments. Neuroimaging patterns and their relation to identified antecedents were analyzed. Data were retrieved from the cerebral palsy register of western Sweden, and from obstetric and neonatal records. Children with cerebral palsy and accompanying impairments more often had low birthweight (kg) (odds ratio 0.5, 95% confidence interval 0.3-0.8), brain maldevelopment known at birth (p = 0.007, odds ratio ∞) and neonatal infection (odds ratio 5.4, 95% confidence interval 1.04-28.4). Moreover, neuroimaging patterns of maldevelopment (odds ratio 7.2, 95% confidence interval 2.9-17.2), cortical/subcortical lesions (odds ratio 5.3, 95% confidence interval 2.3-12.2) and basal ganglia lesions (odds ratio 7.6, 95% confidence interval 1.4-41.3) were more common, wheras white matter injury was found significantly less often (odds ratio 0.2, 95% confidence interval 0.1-0.5). In most children with maldevelopment, the intrapartum and postpartum periods were uneventful (p Cerebral maldevelopment was associated with prepartum antecedents, whereas subcortical/cortical and basal ganglia lesions were associated with intrapartum and postpartum antecedents. No additional factor other than those related to motor impairment was associated with epilepsy and cognitive impairment in cerebral palsy. Timing of antecedents deemed important for the development of cerebral palsy with accompanying impairments were supported by neuroimaging patterns. © 2017 Nordic Federation of Societies of Obstetrics

  2. Face and gaze perception in borderline personality disorder: An electrical neuroimaging study.

    Science.gov (United States)

    Berchio, Cristina; Piguet, Camille; Gentsch, Kornelia; Küng, Anne-Lise; Rihs, Tonia A; Hasler, Roland; Aubry, Jean-Michel; Dayer, Alexandre; Michel, Christoph M; Perroud, Nader

    2017-11-30

    Humans are sensitive to gaze direction from early life, and gaze has social and affective values. Borderline personality disorder (BPD) is a clinical condition characterized by emotional dysregulation and enhanced sensitivity to affective and social cues. In this study we wanted to investigate the temporal-spatial dynamics of spontaneous gaze processing in BPD. We used a 2-back-working-memory task, in which neutral faces with direct and averted gaze were presented. Gaze was used as an emotional modulator of event-related-potentials to faces. High density EEG data were acquired in 19 females with BPD and 19 healthy women, and analyzed with a spatio-temporal microstates analysis approach. Independently of gaze direction, BPD patients showed altered N170 and P200 topographies for neutral faces. Source localization revealed that the anterior cingulate and other prefrontal regions were abnormally activated during the N170 component related to face encoding, while middle temporal deactivations were observed during the P200 component. Post-task affective ratings showed that BPD patients had difficulty to disambiguate neutral gaze. This study provides first evidence for an early neural bias toward neutral faces in BPD independent of gaze direction and also suggests the importance of considering basic aspects of social cognition in identifying biological risk factors of BPD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Emotion and Cognition Interactions in PTSD: A Review of Neurocognitive and Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Jasmeet P Hayes

    2012-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a psychiatric syndrome that develops after exposure to terrifying and life-threatening events including warfare, motor-vehicle accidents, and physical and sexual assault. The emotional experience of psychological trauma can have long-term cognitive effects. The hallmark symptoms of PTSD involve alterations to cognitive processes such as memory, attention, planning and problem solving, underscoring the detrimental impact that negative emotionality has on cognitive functioning. As such, an important challenge for PTSD researchers and treatment providers is to understand the dynamic interplay between emotion and cognition. Contemporary cognitive models of PTSD theorize that a preponderance of information processing resources are allocated towards threat detection and interpretation of innocuous stimuli as threatening, narrowing one’s attentional focus at the expense of other cognitive operations. Decades of research have shown support for these cognitive models of PTSD using a variety of tasks and methodological approaches. The primary goal of this review is to summarize the latest neurocognitive and neuroimaging research of emotion-cognition interactions in PTSD. To directly assess the influence of emotion on cognition and vice versa, the studies reviewed employed challenge tasks that included both cognitive and emotional components. The findings provide evidence for memory and attention deficits in PTSD that are often associated with changes in functional brain activity. The results are reviewed to provide future directions for research that may direct better and more effective treatments for PTSD.

  4. Using neural networks and extreme value distributions to model electricity pool prices: Evidence from the Australian National Electricity Market 1998–2013

    International Nuclear Information System (INIS)

    Dev, Priya; Martin, Michael A.

    2014-01-01

    Highlights: • Neural nets are unable to properly capture spiky price behavior found in the electricity market. • We modeled electricity price data from the Australian National Electricity Market over 15 years. • Neural nets need to be augmented with other modeling techniques to capture price spikes. • We fit a Generalized Pareto Distribution to price spikes using a peaks-over-thresholds approach. - Abstract: Competitors in the electricity supply industry desire accurate predictions of electricity spot prices to hedge against financial risks. Neural networks are commonly used for forecasting such prices, but certain features of spot price series, such as extreme price spikes, present critical challenges for such modeling. We investigate the predictive capacity of neural networks for electricity spot prices using Australian National Electricity Market data. Following neural net modeling of the data, we explore extreme price spikes through extreme value modeling, fitting a Generalized Pareto Distribution to price peaks over an estimated threshold. While neural nets capture the smoother aspects of spot price data, they are unable to capture local, volatile features that characterize electricity spot price data. Price spikes can be modeled successfully through extreme value modeling

  5. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users.

    Science.gov (United States)

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; den Heeten, Gerard J; van den Brink, Wim

    2008-11-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained effects of ecstasy use on the brain in novel ecstasy users using repeated measurements with a combination of different neuroimaging parameters of neurotoxicity. At baseline, 188 ecstasy-naive volunteers with high probability of first ecstasy use were examined. After a mean period of 17 months follow-up, neuroimaging was repeated in 59 incident ecstasy users and 56 matched persistent ecstasy-naives and their outcomes were compared. Neuroimaging included [(123)I]beta-carbomethoxy-3beta-(4-iodophenyl)tropane (CIT) SPECT to measure serotonin transporter densities as indicators of serotonergic function; (1)H-MR spectroscopy ((1)H-MRS) to measure brain metabolites as indicators of neuronal damage; diffusion tensor imaging (DTI) to measure the apparent diffusion coefficient and fractional anisotropy (FA) of the diffusional motion of water molecules in the brain as indicators of axonal integrity; and perfusion weighted imaging (PWI) to measure regional relative cerebral blood volume (rrCBV) which indicates brain perfusion. With this approach, both structural ((1)H-MRS and DTI) and functional ([(123)I]beta-CIT SPECT and PWI) aspects of neurotoxicity were combined. Compared to persistent ecstasy-naives, novel low-dose ecstasy users (mean 6.0, median 2.0 tablets) showed decreased rrCBV in the globus pallidus and putamen; decreased FA in thalamus and frontoparietal white matter; increased FA in globus pallidus; and increased apparent diffusion coefficient in the thalamus. No changes in serotonin transporter densities and brain metabolites were observed. These findings suggest sustained effects of ecstasy on brain microvasculature, white

  6. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    Science.gov (United States)

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of

  7. Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests

    International Nuclear Information System (INIS)

    Narayan, P.K.; Smyth, Russell

    2005-01-01

    This paper examines the relationship between electricity consumption, employment and real income in Australia within a cointegration and causality framework. We find that electricity consumption, employment and real income are cointegrated and that in the long-run employment and real income Granger cause electricity consumption, while in the short run there is weak unidirectional Granger causality running from income to electricity consumption and from income to employment

  8. Wat onhoudt een consument van een tv-commercial? Een kijkje in het brein met neuro-imaging technieken

    NARCIS (Netherlands)

    A. Smidts (Ale)

    2002-01-01

    textabstractMet een nieuwe neuro-imaging techniek om de activiteit in de hersenen te meten, de zogenaamde steady-state probe topography (SSPT), kan opgespoord worden welke scènes uit een tv-commercial door consumenten goed herinnerd worden. Uit een experiment blijkt dat scènes die langer dan 1,5

  9. A graphite oxide (GO)-based remote readable tamper evident seal

    International Nuclear Information System (INIS)

    Cattaneo, A; Marchi, A N; Farrar, C R; Mascareñas, D D L; Bossert, J A; Gupta, G; Mohite, A; Dumont, J H; Purdy, G M; Guzman, C; Haaker, A; Miller, K A

    2015-01-01

    This paper presents a prototype of a remotely readable graphite oxide (GO) paper-based tamper evident seal. The proposed device combines the tunable electrical properties offered by reduced graphite oxide (RGO) with a compressive sampling scheme. The benefit of using RGO as a tamper evident seal material is the sensitivity of its electrical properties to the common mechanisms adopted to defeat tamper-evident seals. RGO’s electrical properties vary upon local stress or cracks induced by mechanical action (e.g., produced by shimming or lifting attacks). Further, modification of the seal’s electrical properties can result from the incidence of other defeat mechanisms, such as temperature changes, solvent treatment and steam application. The electrical tunability of RGO enables the engraving of a circuit on the area of the tamper evident seal intended to be exposed to malicious attacks. The operation of the tamper evident seal, as well as its remote communication functionality, is supervised by a microcontroller unit (MCU). The MCU uses the RGO-engraved circuitry to physically implement a compressive sampling acquisition procedure. The compressive sampling scheme provides the seal with self-authentication and self-state-of-health awareness capabilities. The prototype shows potential for use in low-power, embedded, remote-operation non-proliferation security related applications. (paper)

  10. Electricity theft: a comparative analysis

    International Nuclear Information System (INIS)

    Smith, T.B.

    2004-01-01

    Electricity theft can be in the form of fraud (meter tampering), stealing (illegal connections), billing irregularities, and unpaid bills. Estimates of the extent of electricity theft in a sample of 102 countries for 1980 and 2000 are undertaken. The evidence shows that theft is increasing in most regions of the world. The financial impacts of theft are reduced income from the sale of electricity and the necessity to charge more to consumers. Electricity theft is closely related to governance indicators, with higher levels of theft in countries without effective accountability, political instability, low government effectiveness and high levels of corruption. Electricity theft can be reduced by applying technical solutions such as tamper-proof meters, managerial methods such as inspection and monitoring, and in some cases restructuring power systems ownership and regulation

  11. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Furtado, Andre [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Lepore, Natasha [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Center for Fetal and Neonatal Medicine, Los Angeles, CA (United States); Bluml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Department of Biomedical Engineering, Los Angeles, CA (United States)

    2012-01-15

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long

  12. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2012-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental

  13. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation

    Science.gov (United States)

    Janssen, A. M.; Rampersad, S. M.; Lucka, F.; Lanfer, B.; Lew, S.; Aydin, Ü.; Wolters, C. H.; Stegeman, D. F.; Oostendorp, T. F.

    2013-07-01

    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location.

  14. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Toledo Eduardo

    2007-10-01

    Full Text Available Abstract Background The presence of antiphospholipid antibodies (APLA in multiple sclerosis (MS patients has been reported frequently but no clear relationship between APLA and the clinical and neuroimaging features of MS have heretofore been shown. We assessed the clinical and neuroimaging features of MS patients with plasma APLA. Methods A consecutive cohort of 24 subjects with relapsing-remitting (RR MS were studied of whom 7 were in remission (Rem and 17 in exacerbation (Exc. All subjects were examined and underwent MRI of brain. Patients' plasma was tested by standard ELISA for the presence of both IgM and IgG antibodies using a panel of 6 targets: cardiolipin (CL, β2 glycoprotein I (β2GPI, Factor VII/VIIa (FVIIa, phosphatidylcholine (PC, phosphatidylserine (PS and phosphatidylethanolamine (PE. Results In exacerbation up to 80% of MS subjects had elevated titers of IgM antibodies directed against the above antigens. However, in remission, less than half of MS patients had elevated titers of IgM antibodies against one or more of the above antigens. This difference was significant, p Conclusion The findings of this preliminary study show that increased APLA IgM is associated with exacerbations of MS. Currently, the significance of this association in pathogenesis of MS remains unknown. However, systematic longitudinal studies to measure APLA in larger cohorts of patients with relapsing-remitting MS, particularly before and after treatment with immunomodulatory agents, are needed to confirm these preliminary findings.

  15. Electricity consumption and economic growth in Burkina Faso: A cointegration analysis

    International Nuclear Information System (INIS)

    Ouedraogo, Idrissa M.

    2010-01-01

    This study empirically establishes the direction of causality between electricity consumption and economic growth in Burkina Faso for the period 1968-2003. The bounds test yields evidence of cointegration between electricity consumption, GDP, and capital formation when electricity consumption and GDP are used as dependent variable. Causality results indicate that there is no significant causal relationship between electricity consumption and investment. Estimates, however, detect in the long-run a bidirectional causal relationship between electricity use and real GDP. There is also evidence of a positive feedback causal relationship between GDP and capital formation. Burkina Faso is therefore an energy dependent country. It is also a country in which electricity consumption is growing with the level of income. All of this shows that electricity is a significant factor in socio-economic development in Burkina Faso; as such, energy policy must be implemented to ensure that electricity generates fewer potential negative impacts.

  16. The segmentation of the human brain; a message to the neuroimaging community from an adjacent domain of the neurosciences

    NARCIS (Netherlands)

    Nieuwenhuys, R.

    2018-01-01

    Morphological and genoarchitectonic studies have conclusively shown that the human brain (and that of all vertebrates) is segmented i. e. is fundamentally composed of a number of rostrocaudally arranged brain segments or neuromeres. However in the current neuroimaging literature the term

  17. Self-reflection and the brain : A theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia

    NARCIS (Netherlands)

    van der Meer, Lisette; Costafreda, Sergi; Aleman, Andre; David, Anthony S.

    Several studies have investigated the neural correlates of self-reflection. In the paradigm most commonly used to address this concept, a subject is presented with trait adjectives or sentences and asked whether they describe him or her. Functional neuroimaging research has revealed a set of regions

  18. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly.

    Science.gov (United States)

    Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F

    2018-02-12

    The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.

  19. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective

    OpenAIRE

    Brumback, T.; Castro, N.; Jacobus, J.; Tapert, S.

    2016-01-01

    Marijuana, behind only tobacco and alcohol, is the most popular recreational drug in America with prevalence rates of use rising over the past decade. A wide range of research has highlighted neurocognitive deficits associated with marijuana use, particularly when initiated during childhood or adolescence. Neuroimaging, describing alterations to brain structure and function, has begun to provide a picture of possible mechanisms associated with the deleterious effects of marijuana use. This ch...

  20. [Leigh's encephalopathy (subacute necrotizing encephalopathy). Documentation of its evolution through neuroimaging].

    Science.gov (United States)

    Pena, J A; González-Ferrer, S; Martínez, C; Prieto-Carrasquero, M; Delgado, W; Mora La Cruz, E

    1996-09-01

    A 30 months-old boy developed bilateral nistagmus, tremor, gait disturbance, hypotonia and disartria. The diagnose of Leigh encephalopathy was suggested on the basis of clinical, neuroimaging and laboratory findings. Computed tomography and magnetic resonance imaging (MRI) at an early stage revealed bilateral and symmetric lesions in the putamen, appearing as hyperintense signal on T2-weighted images. Twelve months later a relatively large hypertense area in the posterior brainstem was observed. At this stage, the patient exhibited marked deterioration, dystonic manifestations, rigidity and respiratory disturbances. He died 6 months later for respiratory arrest during bronconeumonic infection. We believe MRI is a valuable means to allow assessment of the evolution of the disease.

  1. The pilot European Alzheimer's Disease Neuroimaging Initiative of the European Alzheimer's Disease Consortium

    DEFF Research Database (Denmark)

    Frisoni, G.B.; Henneman, W.J.; Weiner, M.W.

    2008-01-01

    BACKGROUND: In North America, the Alzheimer's Disease Neuroimaging Initiative (ADNI) has established a platform to track the brain changes of Alzheimer's disease. A pilot study has been carried out in Europe to test the feasibility of the adoption of the ADNI platform (pilot E-ADNI). METHODS: Seven...... academic sites of the European Alzheimer's Disease Consortium (EADC) enrolled 19 patients with mild cognitive impairment (MCI), 22 with AD, and 18 older healthy persons by using the ADNI clinical and neuropsychological battery. ADNI compliant magnetic resonance imaging (MRI) scans, cerebrospinal fluid...

  2. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    Results from functional neuroimaging such as positron emission tomography and functional magnetic resonance are often reported as sets of 3-dimensional coordinates in Talairach stereotactic space. By utilizing data collected in the BrainMap database and from our own small XML database we can...... data matrix. By conditioning on elements in the databases other than the coordinate data, e.g., anatomical labels associated with many coordinates we can make conditional novelty detection identifying outliers in the database that might be errorneous entries or seldom occuring patterns. In the Brain......Map database we found errors, e.g., stemming from confusion of centimeters and millimeters during entering and errors in the original article. Conditional probability density modeling also enables generation of probabilistic atlases and automatic probabilistic anatomical labeling of new coordinates...

  3. The crucial relationship among energy commodity prices: Evidence from the Spanish electricity market

    International Nuclear Information System (INIS)

    Moutinho, Victor; Vieira, Joel; Carrizo Moreira, Antonio

    2011-01-01

    The main purpose of this article is twofold to analyze: (a) the long-term relation among the commodities prices and between spot electricity market price and commodity prices, and (b) the short-term dynamics among commodity prices and between electricity prices and commodity prices. Data between 2002 and 2005 from the Spanish electricity market was used. Econometric methods were used in the analysis of the commodity spot price, namely the vector autoregression model, the vector error correction model and the granger causality test. The co-integration approach was used to analyze the long-term relationship between the common stochastic trends of four fossil fuel prices. One of the findings in the long-term relation is that the prices of fuel and the prices of Brent are intertwined, though the prices of Brent ten to 'move' to reestablish the price equilibrium. Another finding is that the price of electricity is explained by the evolution of the natural gas series. - Highlights: → We model energy commodity prices in the Spanish electricity market. → We examine the short and long-term relationships among commodities prices. → We examine short and long-term relationships using co-integration techniques. → We found that in the long run the prices of fuel and Brent are intertwined. → The evolution of price of electricity is explained by the evolution of price of gas.

  4. A Functional Neuroimaging Analysis of the Trail Making Test-B: Implications for Clinical Application

    Directory of Open Access Journals (Sweden)

    Mark D. Allen

    2011-01-01

    Full Text Available Recent progress has been made using fMRI as a clinical assessment tool, often employing analogues of traditional “paper and pencil” tests. The Trail Making Test (TMT, popular for years as a neuropsychological exam, has been largely ignored in the realm of neuroimaging, most likely because its physical format and administration does not lend itself to straightforward adaptation as an fMRI paradigm. Likewise, there is relatively more ambiguity about the neural systems associated with this test than many other tests of comparable clinical use. In this study, we describe an fMRI version of Trail Making Test-B (TMTB that maintains the core functionality of the TMT while optimizing its use for both research and clinical settings. Subjects (N = 32 were administered the Functional Trail Making Test-B (f-TMTB. Brain region activations elicited by the f-TMTB were consistent with expectations given by prior TMT neurophysiological studies, including significant activations in the ventral and dorsal visual pathways and the medial pre-supplementary motor area. The f-TMTB was further evaluated for concurrent validity with the traditional TMTB using an additional sample of control subjects (N = 100. Together, these results support the f-TMTB as a viable neuroimaging adaptation of the TMT that is optimized to evoke maximally robust fMRI activation with minimal time and equipment requirements.

  5. Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation.

    Science.gov (United States)

    Sarwate, Anand D; Plis, Sergey M; Turner, Jessica A; Arbabshirani, Mohammad R; Calhoun, Vince D

    2014-01-01

    The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the "small N" problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in the function of the brain. When it is possible, open data sharing provides the most benefits. However, some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs) which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries-the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy.

  6. Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation

    Directory of Open Access Journals (Sweden)

    Anand D. Sarwate

    2014-04-01

    Full Text Available The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the ``small $N$'' problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in in the function of the brain. When it is possible, open data sharing provides the most benefits. However some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries -- the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy.

  7. Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation

    Science.gov (United States)

    Sarwate, Anand D.; Plis, Sergey M.; Turner, Jessica A.; Arbabshirani, Mohammad R.; Calhoun, Vince D.

    2014-01-01

    The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the “small N” problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in the function of the brain. When it is possible, open data sharing provides the most benefits. However, some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs) which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries—the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy. PMID:24778614

  8. The Effects of Tai Chi Intervention on Healthy Elderly by Means of Neuroimaging and EEG: A Systematic Review.

    Science.gov (United States)

    Pan, Zhujun; Su, Xiwen; Fang, Qun; Hou, Lijuan; Lee, Younghan; Chen, Chih C; Lamberth, John; Kim, Mi-Lyang

    2018-01-01

    Aging is a process associated with a decline in cognitive and motor functions, which can be attributed to neurological changes in the brain. Tai Chi, a multimodal mind-body exercise, can be practiced by people across all ages. Previous research identified effects of Tai Chi practice on delaying cognitive and motor degeneration. Benefits in behavioral performance included improved fine and gross motor skills, postural control, muscle strength, and so forth. Neural plasticity remained in the aging brain implies that Tai Chi-associated benefits may not be limited to the behavioral level. Instead, neurological changes in the human brain play a significant role in corresponding to the behavioral improvement. However, previous studies mainly focused on the effects of behavioral performance, leaving neurological changes largely unknown. This systematic review summarized extant studies that used brain imaging techniques and EEG to examine the effects of Tai Chi on older adults. Eleven articles were eligible for the final review. Three neuroimaging techniques including fMRI ( N = 6), EEG ( N = 4), and MRI ( N = 1), were employed for different study interests. Significant changes were reported on subjects' cortical thickness, functional connectivity and homogeneity of the brain, and executive network neural function after Tai Chi intervention. The findings suggested that Tai Chi intervention give rise to beneficial neurological changes in the human brain. Future research should develop valid and convincing study design by applying neuroimaging techniques to detect effects of Tai Chi intervention on the central nervous system of older adults. By integrating neuroimaging techniques into randomized controlled trials involved with Tai Chi intervention, researchers can extend the current research focus from behavioral domain to neurological level.

  9. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.

    Science.gov (United States)

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-06-06

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.

  10. Evaluation of the contribution of the importance of neuroimaging for the diagnostics of dementias - comparison to the psychological diagnostics

    International Nuclear Information System (INIS)

    Hentschel, F.; Kreis, M.; Damian, M.; Syren, M.; Krumm, B.

    2003-01-01

    Objective: While psychology is accepted as a necessary component of the dementia diagnostics, the extended clinical diagnostics with neuroimaging is differently estimated. The goal of the study is the quantification of the individual contribution of the two different methods. Methods: Of 100 patient the diagnosis of entrance, the neurological, the psychological, and the final clinical diagnosis were documented. For both imaging and psychology the sensitivity, specificity, and the positive predictive value were computed. The diagnostic of each method was determined from the change of the final in relation to the initial clinical diagnosis. The neuroradiological investigation took place with MRI, the psychological examination used both usual power and special speed tests. Results: The extended clinical diagnostics led for 26% of the patients to the change of the clinical diagnosis. Imaging and psychology supplied different own but supplementing contributions. In the case of annihilation imaging contributed with 73.3%, psychology with 54.1% to the diagnosis of a neurodegenerative dementia, whereas the contributions to the diagnosis of a vascular dementia were 83.3% and 70.8%, respectively. However psychology diagnosed and quantified the dementia. The contribution of neuroimaging consisted in the differential diagnosis of the dementias organic causes of symptomatic clementias and vascular encephalopathy without dementia but with consequences for a secondary prophylaxis were additional information also. Conclusion: Psychology improves the diagnostic accuracy of dementias. Neuroimaging improves the differential diagnosis of dementias and supplies additional clinically relevant findings. In the qualified diagnostics and differential diagnostics of the dementias both methods are indispensable. (orig.) [de

  11. What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland

    International Nuclear Information System (INIS)

    Bertsch, Valentin; Hyland, Marie; Mahony, Michael

    2017-01-01

    Across the EU, significant infrastructure investment is needed in both generation from renewable energy sources (RES) and the electricity grid to meet the European targets on emission reduction and RES expansion. Experiences show, however, that citizens may object to new energy infrastructure in their localities which may cause delays in achieving the targets. To avoid delays, it is crucial to understand what drives people's opinions. To explore people's opinions of different electricity generation and transmission technologies in Ireland, we conducted a nationally-representative survey. Concerning the drivers, we distinguish between socio-demographics, technology-specific perceptions, and energy policy preferences. Our results show that people generally have positive views of RES technologies. While this indicates that Irish citizens agree to move towards cleaner electricity sources, we find reluctance amongst people to have these technologies located close to their places of residence. We find that, across most technologies, the tradeoff people make between economic and environmental policy objectives drives their opinions of, and their tendencies to oppose, technology developments. The significance of most socio-demographic variables, however, is largely technology-dependent. This highlights that policy makers need to understand how people make tradeoffs between policy objectives and how these tradeoffs relate to their opinions of different technologies. - Highlights: • Conducted a survey to understand drivers of opinions of electricity infrastructure. • Considered socio-demographic, policy-related and technology-specific drivers. • Irish citizens generally have positive opinions of renewable technologies. • Positive opinions don't rule out local opposition. • Tradeoffs on policy objectives shape opinions most consistently across technologies.

  12. Linear and non-linear impact of Internet usage and financial deepening on electricity consumption for Turkey: empirical evidence from asymmetric causality.

    Science.gov (United States)

    Faisal, Faisal; Tursoy, Turgut; Berk, Niyazi

    2018-04-01

    This study investigates the relationship between Internet usage, financial development, economic growth, capital and electricity consumption using quarterly data from 1993Q1 to 2014Q4. The integration order of the series is analysed using the structural break unit root test. The ARDL bounds test for cointegration in addition to the Bayer-Hanck (2013) combined cointegration test is applied to analyse the existence of cointegration among the variables. The study found strong evidence of a long-run relationship between the variables. The long-run results under the ARDL framework confirm the existence of an inverted U-shaped relationship between financial development and electricity consumption, not only in the long-run, but also in the short-run. The study also confirms the existence of a U-shaped relationship between Internet usage and electricity consumption; however, the effect is insignificant. Additionally, the influence of trade, capital and economic growth is examined in both the long run and short run (ARDL-ECM). Finally, the results of asymmetric causality suggest a positive shock in electricity consumption that has a positive causal impact on Internet usage. The authors recommend that the Turkish Government should direct financial institutions to moderate the investment in the ICT sector by advancing credits at lower cost for purchasing energy-efficient technologies. In doing so, the Turkish Government can increase productivity in order to achieve sustainable growth, while simultaneously reducing emissions to improve environmental quality.

  13. The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence.

    Science.gov (United States)

    Bressan, Rodrigo A; Quarantini, Lucas C; Andreoli, Sérgio B; Araújo, Celia; Breen, Gerome; Guindalini, Camila; Hoexter, Marcelo; Jackowski, Andrea P; Jorge, Miguel R; Lacerda, Acioly L T; Lara, Diogo R; Malta, Stella; Moriyama, Tais S; Quintana, Maria I; Ribeiro, Wagner S; Ruiz, Juliana; Schoedl, Aline F; Shih, Ming C; Figueira, Ivan; Koenen, Karestan C; Mello, Marcelo F; Mari, Jair J

    2009-06-01

    Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies. Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases) will be compared to resilient victims of traumatic life experiences without PTSD (controls) aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured Clinical Interview for DSM-IV and the Clinician

  14. The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence

    Directory of Open Access Journals (Sweden)

    Bressan Rodrigo A

    2009-06-01

    Full Text Available Abstract Background Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies. Methods and design Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases will be compared to resilient victims of traumatic life experiences without PTSD (controls aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured

  15. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    OpenAIRE

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary

    2016-01-01

    International audience; The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment....

  16. Molecular neuroimaging in degenerative dementias.

    Science.gov (United States)

    Jiménez Bonilla, J F; Carril Carril, J M

    2013-01-01

    In the context of the limitations of structural imaging, brain perfusion and metabolism using SPECT and PET have provided relevant information for the study of cognitive decline. The introduction of the radiotracers for cerebral amyloid imaging has changed the diagnostic strategy regarding Alzheimer's disease, which is currently considered to be a "continuum." According to this new paradigm, the increasing amyloid load would be associated to the preclinical phase and mild cognitive impairment. It has been possible to observe "in vivo" images using 11C-PIB and PET scans. The characteristics of the 11C-PIB image include specific high brain cortical area retention in the positive cases with typical distribution pattern and no retention in the negative cases. This, in combination with 18F-FDG PET, is the basis of molecular neuroimaging as a biomarker. At present, its prognostic value is being evaluated in longitudinal studies. 11C-PIB-PET has become the reference radiotracer to evaluate the presence of cerebral amyloid. However, its availability is limited due to the need for a nearby cyclotron. Therefore, 18F labeled radiotracers are being introduced. Our experience in the last two years with 11C-PIB, first in the research phase and then as being clinically applied, has shown the utility of the technique in the clinical field, either alone or in combination with FDG. Thus, amyloid image is a useful tool for the differential diagnosis of dementia and it is a potentially useful method for early diagnosis and evaluation of future treatments. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  17. A novel machine learning approach for estimation of electricity demand: An empirical evidence from Thailand

    International Nuclear Information System (INIS)

    Mostafavi, Elham Sadat; Mostafavi, Seyyed Iman; Jaafari, Arefeh; Hosseinpour, Fariba

    2013-01-01

    Highlights: • A hybrid approach is presented for the estimation of the electricity demand. • The proposed method integrates the capabilities of GP and SA. • The GSA model makes accurate predictions of the electricity demand. - Abstract: This study proposes an innovative hybrid approach for the estimation of the long-term electricity demand. A new prediction equation was developed for the electricity demand using an integrated search method of genetic programming and simulated annealing, called GSA. The annual electricity demand was formulated in terms of population, gross domestic product (GDP), stock index, and total revenue from exporting industrial products of the same year. A comprehensive database containing total electricity demand in Thailand from 1986 to 2009 was used to develop the model. The generalization of the model was verified using a separate testing data. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the electricity demand. The GSA model provides accurate predictions of the electricity demand. Furthermore, the proposed model outperforms a regression and artificial neural network-based models

  18. EU Emission Allowances and the stock market Evidence from the electricity industry

    International Nuclear Information System (INIS)

    Oberndorfer, Ulrich

    2009-01-01

    This paper constitutes - to our best knowledge - the first econometric analysis on stock market effects of the EU Emission Trading Scheme (EU ETS). Our results suggest that EU Emission Allowance (EUA) price developments matter to the stock performance of electricity firms: EUA price changes and stock returns of the most important European electricity corporations are shown to be positively related. This effect does not work asymmetrically, so that stock markets do not seem to react differently to EUA appreciations in comparison to depreciations. The carbon market effect is shown to be both time- and country-specific: It is particularly strong for the period of EUA market shock in early 2006, and differs with respect to the countries where the electricity corporations analysed are headquartered. Stock market reactions to EUA volatility could not be shown. (author)

  19. Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies

    Science.gov (United States)

    Fusar-Poli, Paolo; Howes, Oliver; Bechdolf, Andreas; Borgwardt, Stefan

    2012-01-01

    Background Although early interventions in individuals with bipolar disorder may reduce the associated personal and economic burden, the neurobiologic markers of enhanced risk are unknown. Methods Neuroimaging studies involving individuals at enhanced genetic risk for bipolar disorder (HR) were included in a systematic review. We then performed a region of interest (ROI) analysis and a whole-brain meta-analysis combined with a formal effect-sizes meta-analysis in a subset of studies. Results There were 37 studies included in our systematic review. The overall sample for the systematic review included 1258 controls and 996 HR individuals. No significant differences were detected between HR individuals and controls in the selected ROIs: striatum, amygdala, hippocampus, pituitary and frontal lobe. The HR group showed increased grey matter volume compared with patients with established bipolar disorder. The HR individuals showed increased neural response in the left superior frontal gyrus, medial frontal gyrus and left insula compared with controls, independent from the functional magnetic resonance imaging task used. There were no publication biases. Sensitivity analysis confirmed the robustness of these results. Limitations As the included studies were cross-sectional, it remains to be determined whether the observed neurofunctional and structural alterations represent risk factors that can be clinically used in preventive interventions for prodromal bipolar disorder. Conclusion Accumulating structural and functional imaging evidence supports the existence of neurobiologic trait abnormalities in individuals at genetic risk for bipolar disorder at various scales of investigation. PMID:22297067

  20. Re-investigating the electricity consumption and economic growth nexus in Portugal

    International Nuclear Information System (INIS)

    Tang, Chor Foon; Shahbaz, Muhammad; Arouri, Mohamed

    2013-01-01

    In the previous decades, a number of studies have been conducted to analyse the causal relationship between electricity consumption and economic growth in the Portuguese economy. However, the evidence remains controversial because the previous studies do not provide clear causality evidence. This might be attributed to the omitted variables bias because most previous studies only focus on the relationship between electricity consumption and economic growth in a bi-variate model. This paper attempts to re-investigate the relationship between electricity consumption and economic growth in Portugal using a multivariate model. Based on the bounds testing approach to cointegration and the Granger causality test within the vector error-correction model (VECM), our empirical results confirm the presence of cointegration among the variables. Moreover, there is evidence of bi-directional causality between electricity consumption and economic growth in the short- and long-run. This suggests that energy is an important source of economic growth in Portugal. Therefore, energy conservation policies should not be implemented because it would deteriorate the process of economic growth and development of the Portuguese economy. - Highlights: • Electricity consumption and economic growth series in Portugal are cointegrated. • There is evidence of feedback effects between the two variables. • Energy is an important source of economic growth in Portugal

  1. Neuroimaging in refractory epilepsy. Current practice and evolving trends

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, N. [Department of Biomedical Imaging, University Malaya Research Imaging Centre (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya Research Imaging Centre (Malaysia); Lim, K.S.; Tan, C.T. [Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Neuroimaging is imperative in diagnostic work up and therapeutic assessment of refractory epilepsy. • Identification of epileptogenic zone on EEG, MRI and functional imaging improves the success of surgery. • High performance MRI greatly enhanced metabolic information and elucidate brain functions. • Optimisation of epilepsy protocols in structural and functional MRI are presented in this article. - Abstract: Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.

  2. Neuroimaging in refractory epilepsy. Current practice and evolving trends

    International Nuclear Information System (INIS)

    Ramli, N.; Rahmat, K.; Lim, K.S.; Tan, C.T.

    2015-01-01

    Highlights: • Neuroimaging is imperative in diagnostic work up and therapeutic assessment of refractory epilepsy. • Identification of epileptogenic zone on EEG, MRI and functional imaging improves the success of surgery. • High performance MRI greatly enhanced metabolic information and elucidate brain functions. • Optimisation of epilepsy protocols in structural and functional MRI are presented in this article. - Abstract: Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed

  3. Estimating short and long-term residential demand for electricity. New evidence from Sri Lanka

    International Nuclear Information System (INIS)

    Athukorala, P.P.A Wasantha; Wilson, Clevo

    2010-01-01

    This study investigates the short-run dynamics and long-run equilibrium relationship between residential electricity demand and factors influencing demand - per capita income, price of electricity, price of kerosene oil and price of liquefied petroleum gas - using annual data for Sri Lanka for the period, 1960-2007. The study uses unit root, cointegration and error-correction models. The long-run demand elasticities of income, own price and price of kerosene oil (substitute) were estimated to be 0.78, - 0.62, and 0.14 respectively. The short-run elasticities for the same variables were estimated to be 0.32, - 0.16 and 0.10 respectively. Liquefied petroleum (LP) gas is a substitute for electricity only in the short-run with an elasticity of 0.09. The main findings of the paper support the following (1) increasing the price of electricity is not the most effective tool to reduce electricity consumption (2) existing subsidies on electricity consumption can be removed without reducing government revenue (3) the long-run income elasticity of demand shows that any future increase in household incomes is likely to significantly increase the demand for electricity and (4) any power generation plans which consider only current per capita consumption and population growth should be revised taking into account the potential future income increases in order to avoid power shortages in the country. (author)

  4. Estimating short and long-term residential demand for electricity. New evidence from Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Athukorala, P.P.A Wasantha; Wilson, Clevo [School of Economics and Finance, Queensland University of Technology, Brisbane (Australia)

    2010-09-15

    This study investigates the short-run dynamics and long-run equilibrium relationship between residential electricity demand and factors influencing demand - per capita income, price of electricity, price of kerosene oil and price of liquefied petroleum gas - using annual data for Sri Lanka for the period, 1960-2007. The study uses unit root, cointegration and error-correction models. The long-run demand elasticities of income, own price and price of kerosene oil (substitute) were estimated to be 0.78, - 0.62, and 0.14 respectively. The short-run elasticities for the same variables were estimated to be 0.32, - 0.16 and 0.10 respectively. Liquefied petroleum (LP) gas is a substitute for electricity only in the short-run with an elasticity of 0.09. The main findings of the paper support the following (1) increasing the price of electricity is not the most effective tool to reduce electricity consumption (2) existing subsidies on electricity consumption can be removed without reducing government revenue (3) the long-run income elasticity of demand shows that any future increase in household incomes is likely to significantly increase the demand for electricity and (4) any power generation plans which consider only current per capita consumption and population growth should be revised taking into account the potential future income increases in order to avoid power shortages in the country. (author)

  5. Electricity supply, employment and real GDP in India: evidence from cointegration and Granger-causality tests

    International Nuclear Information System (INIS)

    Ghosh, Sajal

    2009-01-01

    This study probes nexus between electricity supply, employment and real GDP for India within a multivariate framework using autoregressive distributed lag (ARDL) bounds testing approach of cointegration. Long-run equilibrium relationship has been established among these variables for the time span 1970-71 to 2005-06. The study further establishes long- and short-run Granger causality running from real GDP and electricity supply to employment without any feedback effect. Thus, growth in real GDP and electricity supply are responsible for the high level of employment in India. The absence of causality running from electricity supply to real GDP implies that electricity demand and supply side measures can be adopted to reduce the wastage of electricity, which would not affect future economic growth of India.

  6. Neuroimaging for spine and spinal cord surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi [Hokkaido Neurosurgical Memorial Hospital (Japan); Iwasaki, Yoshinobu; Hida, Kazutoshi

    2001-01-01

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  7. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  8. Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches.

    Science.gov (United States)

    Wang, Jiaojian; Yang, Yong; Fan, Lingzhong; Xu, Jinping; Li, Changhai; Liu, Yong; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2015-01-01

    The superior parietal lobule (SPL) plays a pivotal role in many cognitive, perceptive, and motor-related processes. This implies that a mosaic of distinct functional and structural subregions may exist in this area. Recent studies have demonstrated that the ongoing spontaneous fluctuations in the brain at rest are highly structured and, like coactivation patterns, reflect the integration of cortical locations into long-distance networks. This suggests that the internal differentiation of a complex brain region may be revealed by interaction patterns that are reflected in different neuroimaging modalities. On the basis of this perspective, we aimed to identify a convergent functional organization of the SPL using multimodal neuroimaging approaches. The SPL was first parcellated based on its structural connections as well as on its resting-state connectivity and coactivation patterns. Then, post hoc functional characterizations and connectivity analyses were performed for each subregion. The three types of connectivity-based parcellations consistently identified five subregions in the SPL of each hemisphere. The two anterior subregions were found to be primarily involved in action processes and in visually guided visuomotor functions, whereas the three posterior subregions were primarily associated with visual perception, spatial cognition, reasoning, working memory, and attention. This parcellation scheme for the SPL was further supported by revealing distinct connectivity patterns for each subregion in all the used modalities. These results thus indicate a convergent functional architecture of the SPL that can be revealed based on different types of connectivity and is reflected by different functions and interactions. © 2014 Wiley Periodicals, Inc.

  9. Long-term memory in electricity prices: Czech market evidence

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Luňáčková, P.

    2013-01-01

    Roč. 63, č. 5 (2013), s. 407-424 ISSN 0015-1920 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : electricity * long-term memory Subject RIV: AH - Economics Impact factor: 0.358, year: 2013 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0427660.pdf

  10. Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Royal, Jason M; Peterson, Bradley S

    2007-01-01

    BACKGROUND: Tourette syndrome (TS) and Attention-Deficit/Hyperactivity Disorder (ADHD) are common and debilitating neuropsychiatric illnesses that typically onset in the preschool years. Recently, both conditions have been subject to neuroimaging studies, with the aim of understanding...... contrast these findings with those in ADHD without comorbid tic disorders. RESULTS: The frequent comorbidity of TS and ADHD may reflect a common underlying neurobiological substrate, and studies confirm the hypothesized involvement of fronto-striatal circuits in both TS and ADHD. However, poor inhibitory...... their underlying neurobiological correlates. OBJECTIVE: The relation of TS and ADHD is discussed against the background of findings from previous Magnetic Resonance Imaging (MRI) studies. METHODS: We review the designs and major findings of previous studies that have examined TS with comorbid ADHD, and we briefly...

  11. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  12. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi; Audenaert, Kurt

    2004-01-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  13. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  14. Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices

    NARCIS (Netherlands)

    M. Kilic (Mehtap); R. Huisman (Ronald)

    2010-01-01

    textabstractElectricity is not storable. As a consequence, electricity demand and supply need to be in balance at any moment in time as a shortage in production volume cannot be compensated with supply from inventories. However, if the installed power supply capacity is very flexible, variation in

  15. Dissociable genetic contributions to error processing: a multimodal neuroimaging study.

    Directory of Open Access Journals (Sweden)

    Yigal Agam

    Full Text Available Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN, an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC. While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation.We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4 C-521T (rs1800955, which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR C677T (rs1801133, which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response.We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant.DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation, these findings suggest that

  16. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet.

    Science.gov (United States)

    Nowinski, Wieslaw L; Belov, Dmitry

    2003-09-01

    The article introduces an atlas-assisted method and a tool called the Cerefy Neuroradiology Atlas (CNA), available over the Internet for neuroradiology and human brain mapping. The CNA contains an enhanced, extended, and fully segmented and labeled electronic version of the Talairach-Tournoux brain atlas, including parcelated gyri and Brodmann's areas. To our best knowledge, this is the first online, publicly available application with the Talairach-Tournoux atlas. The process of atlas-assisted neuroimage analysis is done in five steps: image data loading, Talairach landmark setting, atlas normalization, image data exploration and analysis, and result saving. Neuroimage analysis is supported by a near-real-time, atlas-to-data warping based on the Talairach transformation. The CNA runs on multiple platforms; is able to process simultaneously multiple anatomical and functional data sets; and provides functions for a rapid atlas-to-data registration, interactive structure labeling and annotating, and mensuration. It is also empowered with several unique features, including interactive atlas warping facilitating fine tuning of atlas-to-data fit, navigation on the triplanar formed by the image data and the atlas, multiple-images-in-one display with interactive atlas-anatomy-function blending, multiple label display, and saving of labeled and annotated image data. The CNA is useful for fast atlas-assisted analysis of neuroimage data sets. It increases accuracy and reduces time in localization analysis of activation regions; facilitates to communicate the information on the interpreted scans from the neuroradiologist to other clinicians and medical students; increases the neuroradiologist's confidence in terms of anatomy and spatial relationships; and serves as a user-friendly, public domain tool for neuroeducation. At present, more than 700 users from five continents have subscribed to the CNA.

  17. Essays on pricing electricity and electricity derivatives in deregulated markets

    Science.gov (United States)

    Popova, Julia

    2008-10-01

    This dissertation is composed of four essays on the behavior of wholesale electricity prices and their derivatives. The first essay provides an empirical model that takes into account the spatial features of a transmission network on the electricity market. The spatial structure of the transmission grid plays a key role in determining electricity prices, but it has not been incorporated into previous empirical models. The econometric model in this essay incorporates a simple representation of the transmission system into a spatial panel data model of electricity prices, and also accounts for the effect of dynamic transmission system constraints on electricity market integration. Empirical results using PJM data confirm the existence of spatial patterns in electricity prices and show that spatial correlation diminishes as transmission lines become more congested. The second essay develops and empirically tests a model of the influence of natural gas storage inventories on the electricity forward premium. I link a model of the effect of gas storage constraints on the higher moments of the distribution of electricity prices to a model of the effect of those moments on the forward premium. Empirical results using PJM data support the model's predictions that gas storage inventories sharply reduce the electricity forward premium when demand for electricity is high and space-heating demand for gas is low. The third essay examines the efficiency of PJM electricity markets. A market is efficient if prices reflect all relevant information, so that prices follow a random walk. The hypothesis of random walk is examined using empirical tests, including the Portmanteau, Augmented Dickey-Fuller, KPSS, and multiple variance ratio tests. The results are mixed though evidence of some level of market efficiency is found. The last essay investigates the possibility that previous researchers have drawn spurious conclusions based on classical unit root tests incorrectly applied to

  18. Search for a neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)

    1984-03-01

    To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.

  19. Theory for electric dipole superconductivity with an application for bilayer excitons.

    Science.gov (United States)

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C

    2015-07-08

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

  20. Neuroimaging the neural correlates of increased risk for substance use disorders in attention-deficit/hyperactivity disorder-A systematic review.

    Science.gov (United States)

    Adisetiyo, Vitria; Gray, Kevin M

    2017-03-01

    Children with attention-deficit/hyperactivity disorder (ADHD) are nearly three times more likely to develop substance use disorders (SUD) than their typically developing peers. Our objective was to review the existing neuroimaging research on high-risk ADHD (ie, ADHD with disruptive behavior disorders, familial SUD and/or early substance use), focusing on impulsivity as one possible mechanism underlying SUD risk. A PubMed literature search was conducted using combinations of the keywords "ADHD," "substance use," "substance use disorder," "SUD," "addiction," "dependence," "abuse," "risk," "brain" "MRI," "imaging" and "neuroimaging." Studies had to include cohorts that met diagnostic criteria for ADHD; studies of individuals with ADHD who all met criteria for SUD were excluded. Eight studies met the search criteria. Individuals with high-risk ADHD have hyperactivation in the motivation-reward processing brain network during tasks of impulsive choice, emotion processing, and risky decision-making. During response inhibition tasks, they have hypoactivation in the inhibitory control brain network. However, studies focusing on this latter circuit found hypoactivation during inhibitory control tasks, decreased white matter microstructure coherence and reduced cortical thickness in ADHD independent of substance use history. An exaggerated imbalance between the inhibitory control network and the motivation-reward processing network is theorized to distinguish individuals with high-risk ADHD. Preliminary findings suggest that an exaggerated aberrant reward processing network may be the driving neural correlate of increased SUD risk in ADHD. Neural biomarkers of increased SUD risk in ADHD could help clinicians identify which patients may benefit most from SUD prevention. Thus, more neuroimaging research on this vulnerable population is needed. (Am J Addict 2017;26:99-111). © 2017 American Academy of Addiction Psychiatry.