WorldWideScience

Sample records for electrical insulation caused

  1. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  2. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  3. Insulation assembly for electric machine

    Science.gov (United States)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  4. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  5. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  6. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  7. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  8. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  9. Electrical breakdown studies with Mycalex insulators

    International Nuclear Information System (INIS)

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-01-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures

  10. Surface electrical resistivity of insulators

    International Nuclear Information System (INIS)

    Senn, B. C.; Liesegang, J.

    1996-01-01

    A method is presented here for measuring surface charge decay, and theory has been developed so as to produce determinations of resistivity in the surface region of insulator films or wafers. This method incorporates the use of a coaxial cylindrical capacitor arrangement and an electrometer interfaced to a PC. The charge transport theory given here is based on Mott-Gurney diffusion, and allows easy interpretation of the experimental data, especially for the initial phase of surface charge decay. Resistivity measurements are presented for glass, mica, perspex and polyethylene, covering a range of 10 9 to 10 18 Ωm, as an illustration of the useful range of the instrument for static and antistatic materials, particularly in film or sheet form. Values for the surface charge diffusion constants of the materials are also presented. The charge transport theory has also been extended to allow the experimental and computational theoretical comparison of surface charge decay not only over the initial phase of charge decay, but also over longer times. The theoretical predictions show excellent agreement with experiment using the values for the diffusion constants referred to above

  11. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  12. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  13. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  14. Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Issouf Fofana

    2016-08-01

    Full Text Available The condition of the internal cellulosic paper and oil insulation are of concern for the performance of power transformers. Over the years, a number of methods have been developed to diagnose and monitor the degradation/aging of the transformer internal insulation system. Some of this degradation/aging can be assessed from electrical responses. Currently there are a variety of electrical-based diagnostic techniques available for insulation condition monitoring of power transformers. In most cases, the electrical signals being monitored are due to mechanical or electric changes caused by physical changes in resistivity, inductance or capacitance, moisture, contamination or aging by-products in the insulation. This paper presents a description of commonly used and modern electrical-based diagnostic techniques along with their interpretation schemes.

  15. Improvements to the electrical insulation resistance of high quality magnesia insulated cables

    International Nuclear Information System (INIS)

    Mauger, R.A.; Goodings, A.

    1984-03-01

    Mineral insulated signal cables for nuclear reactor instrumentation schemes have to meet stringent electrical insulation requirements at high temperatures. This report discusses the factors which influence the attainment of this objective and the way in which it has been reached under industrial manufacturing conditions. It emphasises the importance of moisture and gives details of the improvements achieved as a result of moisture reduction. (author)

  16. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  17. Inducing magneto-electric response in topological insulator

    International Nuclear Information System (INIS)

    Zeng, Lunwu; Song, Runxia; Zeng, Jing

    2013-01-01

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: ► Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. ► Boundary conditions of topological insulator were built. ► Induced monopole charges were worked out.

  18. Inducing magneto-electric response in topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lunwu, E-mail: 163.sin@163.com [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Song, Runxia [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Zeng, Jing [Faculty of Business and Economics, Macquarie University, NSW 2122 (Australia)

    2013-02-15

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: Black-Right-Pointing-Pointer Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. Black-Right-Pointing-Pointer Boundary conditions of topological insulator were built. Black-Right-Pointing-Pointer Induced monopole charges were worked out.

  19. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  20. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  1. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  2. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  3. SAFETY ALERT: Electrical insulation defect on safety helmets

    CERN Multimedia

    HSE Unit

    2013-01-01

    Contrarily to the information provided until 31 May 2013, some “Euro Protection” safety helmets do not respect any of the requirements for electrical insulation.   This alert concerns the safety helmets identified under the following SCEM numbers: 50.43.30.050.4 white 50.43.30.060.2 yellow 50.43.30.070.0 blue This amounts up to several hundreds of helmets on the CERN site. People who need to wear an electrically insulated safety helmet for their activities, must from now on acquire a duly insulated item to be found on the CERN store under the following SCEM numbers: 50.43.30.210.6: Petzl Vertex ST Helmet (without vent) 50.43.30.300.1: IDRA Helmet with a visor for electrical work As for the people who do not need to wear an electrically insulated helmet for their activities, they can continue working with the aforementioned helmets. For your information, please take note of the maximum use limit of each helmet: “Euro Protection” Safety Helme...

  4. Development of electrical insulator coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1995-01-01

    In the design of liquid-metal cooling systems for fusion blanket applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study was to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal-structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys (V-Ti or V-Ti-Cr) are leading candidate materials for structural applications in fusion reactors. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. Various intermetallic films were produced on V, V-5Ti, and V-20Ti, V-5Cr-5Ti, and V-15Cr-5Ti, and Ti, and on types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 3-5at.% dissolved metallic solute (e.g. Al, Be, Mg, Si, Ca, Pt, and Cr) at temperatures of 416-880 C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved N in liquid Li or by air oxidation under controlled conditions at 600-1000 C. These reactions converted the intermetallic layers to electrically insulating oxide-nitride or oxynitride layers. This coating method is applicable to reactor components. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes (e.g. inside or outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. This paper discusses initial results on the nature of the coatings (composition, thickness, adhesion, surface coverage) and their in situ electrical resistivity characteristics in liquid Li at high temperatures. (orig.)

  5. Ageing of insulation and diagnosis of electrical equipment through detection of partial discharge

    International Nuclear Information System (INIS)

    Lopez Vergara, T.; Velasco Bernal, C.

    1994-01-01

    Ageing in electrical equipment affects mainly its insulation system. Such ageing in the insulation system is determined by its organic nature, basically constituted by three families of materials: cellulose, resin and hydrocarbon. All of these are affected by high temperatures, which tend to produce a break in the molecular chains (if the temperatures are not too high) or carbonization and gasification of the material (if they are). The radiation absorbed by the insulating materials also destroys molecular chains, causing degradation of the material. The break of the molecular chains, especially in the polymer-based materials, fragments the material, mainly in areas subjected to mechanical forces and stresses. From the electrical point of view, fissures occurring the insulating material lead to a much lower dielectric strength in certain parts of the materials, which could produce partial discharge conditions. Therefore, the growth of partial discharges in electrical equipment items is frequently the consequences of ageing, and be used to evaluate their residual life. Empresarios Agrupados has developed a system to detect partial discharges which can be used while equipment is still in operation. The measurements taken with this system are sufficiently accurate and repetitive to be used in evaluating the condition of medium-voltage electrical equipment insulation. (Author)

  6. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  7. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  8. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  9. Effects of ionizing radiation of electrical properites of refractory insulators

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Bunch, J.M.

    1975-01-01

    The Los Alamos Reference Theta Pinch Reactor (RTPR) requires on the first wall an electrical insulator which will withstand transient high voltage at high temperature 10 sec after severe neutron and ionizing irradiation. Few measurements of electrical parameters for heavily disordered refractory insulators have been reported; estimates are made as to whether breakdown strength or conductivity will be degraded by the irradiation. The approach treats separately short-term ionization effects (free and trapped electrons and holes) and long-term gross damage effects (transmutation products and various lattice defects). The following processes could produce unacceptable conduction across the first wall insulator: (a) delayed electronic conductivity 10 sec after the prompt ionization by bremsstrahlung; (b) prompt electronic conductivity from delayed ionization; (c) electronic breakdown; (d) electronic or ionic conductivity due to thermal motion in the disordered material, possibly leading to thermal breakdown. Worst-case calculations based on lower limits to recombination coefficients limit process (a) to sigma much less than 5 x 10 -14 mho/cm. Data on ionization-induced conductivity in insulators predict for process (b) sigma much less than 10 -8 mho/cm. Electronic breakdown generally occurs at fields well above the 10 5 V/cm required for RTPR. Thermal breakdown is negligible due to the short voltage pulse. Ionic and electronic conduction must be studied theoretically and experimentally in the type of highly disordered materials that result from neutron irradiation of the first wall

  10. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  11. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  12. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  13. Residual life estimation of electrical insulation system for rotating equipment

    International Nuclear Information System (INIS)

    Vashishtha, Y.D.; Gupta, A.K.; Bhattacharyya, A.K.; Verma, A.K.

    1994-01-01

    Residual life assessment gains significance towards the end of designed life for granting plant life extensions and resource planning for costly equipment replacement. A critical review of all the diagnostic techniques presently used to assess either health of insulation system or to infer qualitatively the remaining life for rotating machines is presented. However more emphasis is required on developing quantitative methods. This paper also formulates the experimental plan for progressively censored ageing tests, measurement of partial discharge parameters, micro-structural study for delamination and electrical tree growth and measurement of electrical breakdown strength. Partial discharge (PD) patterns, electrical tree growth and time to failure data shall be taken as training set for the neural network learning which can be useful to predict residual life with only one candidate parameter i.e. PD patterns. (author). 9 refs

  14. The electrical characteristics of solid insulators for 154 kV class HTS transformer

    International Nuclear Information System (INIS)

    Cheon, H.G.; Choi, J.H.; Pang, M.S.; Kim, W.J.; Kim, S.H.

    2011-01-01

    HTS transformer, without any loss of insulation lifetime due to the reduction in terms of size and weight, can increase the overload capacity, and have some benefits such as the improvement in efficiency, minimization of environmental pollution, and convenient spatial arrangement, which contribute a lot to electric power system operation. However, for practical insulation design of the HTS transformer, it is necessary to establish the research on electrical properties LN 2 as well as solid insulators. These solid insulators have been used as main insulations for HTS transformer. In this paper, we discussed breakdown and V-t characteristics of glass fiber reinforced plastics (GFRP) and pressboard in LN 2 .

  15. Insulation design of cryogenic bushing for superconducting electric power applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.Y., E-mail: koojy@hanyang.ac.kr [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Y.J.; Shin, W.J.; Kim, Y.H. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, J.T. [Department of Electrical Engineering, Daejin University, Pocheon 487-711 (Korea, Republic of); Lee, B.W. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, S.H., E-mail: k720lsh@kins.re.kr [Expert Group Electric and Control Department, Korea Institute of Nuclear Safety, Daejeon 305-600 (Korea, Republic of)

    2013-01-15

    Highlights: ► In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. ► We focused on the comparative study of breakdown characteristics of different electrode materials. ► Puncture and creepage breakdown characteristics were analyzed based on the withstand voltage. ► We obtained the basic design factors of extra high voltage condenser bushing. ► We obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment. -- Abstract: Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN{sub 2}. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic

  16. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  17. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  18. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  19. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  20. Failures in outdoor insulation caused by bird excrement

    Energy Technology Data Exchange (ETDEWEB)

    Montoya Tena, Gerardo; Hernandez C., Ramiro [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, C.P. 62490 Cuernavaca, Mor. (Mexico); Montoya T., Jorge I. [Universidad Politecnica del Valle de Toluca, Toluca Edomex (Mexico)

    2010-06-15

    The bird excrement, combined with humidity, causes line outages in transmission lines. In order to standardize the criteria to solve the problem, a research project was developed in Mexico. The solutions found in worldwide review can be classified into four groups: elimination of birds, devices of dissuasion, physical barriers, and covering devices. The first group includes all bird elimination techniques. These alternatives are forbidden in Mexico, and in most of the countries. The second group has shown to be effective at the beginning of its application; however once the birds are habituated to the device, it loses its effectiveness. The efficiency of the third group, the use of physical barriers, is high, as demonstrated by more than a few review reports informing drastic reductions of flashovers on the transmission lines where they have been installed. The fourth group is conformed by components whose function is to protect or to cover the insulation. According to the experience in Mexico, covering devices have shown to be very effective. The contamination by bird excrement has not a unique solution. The most viable solution is a combination of alternatives. Even though, a solution adopted for a region may not be suitable for another region. Therefore, each case should be approached according to the particular conditions of the region. (author)

  1. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  2. Electric cable insulation pyrolysis and ignition resulting from potential hydrogen burn scenarios for nuclear containment buildings

    International Nuclear Information System (INIS)

    Berlad, A.L.; Jaung, R.; Pratt, W.T.

    1982-01-01

    Electric cable insulation in nuclear containment buildings may participate in pyrolysis and combustion processes engendered by hydrogen burn phenomena. This paper examines these pyrolysis/ignition processes of those polymeric materials present in the electric cable insulation and their possible relation to hydrogen burn scenarios

  3. Converters and electric machines. Solid insulating materials. Electrical characteristics; Convertisseurs et machines electriques. Materiaux isolants solides. Caracteristiques electriques

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A. [Institut National Superieur de Chimie Industrielle, 76 - Rouen (France)

    2003-08-01

    The aim of this article is to allow a preselection of a solid insulating material using the most common electrical characteristics: tangent of the loss angle, relative permittivity, dielectric rigidity, superficial resistivity, transverse resistivity, resistance to high voltage creeping spark currents, index of creeping resistance. The characteristics of the main solid insulating materials are presented in tables for: thermoplastics, thermosetting materials, natural insulating materials, mineral insulating materials, rubber and synthetic elastomers, stratified insulating materials, thermoplastic films, composite synthetic papers. A comparison is made between the different materials using the three properties: tangent of the loss angle, relative permittivity and resistance to HV spark creeping currents. (J.S.)

  4. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  5. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Science.gov (United States)

    Sukhanov, Aleksei A.

    2017-05-01

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  6. NAA of an egyptian ceramic electric insulator sample

    International Nuclear Information System (INIS)

    ASHMAWY, L.S.; EISSA, E.A.; ROFAIL, N.B.; HASSAN, A.M.

    2000-01-01

    In this work a sample of a ceramic electric insulator material used in Egypt in the production of transformers and indoor electric equipment has been elementally analyzed by Neutron Activation Analysis (NAA) technique. The Pneumatic Rabbit Transfer System (PRTS) of the 10 MW Budapest Research Reactor (BRR) was used, for short time irradiation of 120 s. Long time irradiation was performed at the reactor core periphery for 24 hours, The thermal neutron fluxes at full reactor power in both cases were 6 x 1013 n/cm 2.s and 3 x 1013 n/cm 2 .s, respectively. The gamma-ray spectra obtained have been measured for several times by means of the Hyper Pure Germanium Detection System (HPGe). The ko computer programs were used for data analysis. A total of 42 elements have been identified as: Na, Al, Cl, K, Sc, Ti, V, Mn, Fe, Co, Zn, Ga, As, Br, Rb, Sr, Zr, Mo, Ag, Sb, Te, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, Lu, Hf, Ta, W, Ir, Au, Th and U

  7. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  8. Design Improvements on Graded Insulation of Power Transformers Using Transient Electric Field Analysis and Visualization Technique

    OpenAIRE

    Yamashita, Hideo; Nakamae, Eihachiro; Namera, Akihiro; Cingoski, Vlatko; Kitamura, Hideo

    1998-01-01

    This paper deals with design improvements on graded insulation of power transformers using transient electric field analysis and a visualization technique. The calculation method for transient electric field analysis inside a power transformer impressed with impulse voltage is presented: Initially, the concentrated electric network for the power transformer is concentrated by dividing transformer windings into several blocks and by computing the electric circuit parameters.

  9. Parametric and non-parametric models for lifespan modeling of insulation systems in electrical machines

    OpenAIRE

    Salameh , Farah; Picot , Antoine; Chabert , Marie; Maussion , Pascal

    2017-01-01

    International audience; This paper describes an original statistical approach for the lifespan modeling of electric machine insulation materials. The presented models aim to study the effect of three main stress factors (voltage, frequency and temperature) and their interactions on the insulation lifespan. The proposed methodology is applied to two different insulation materials tested in partial discharge regime. Accelerated ageing tests are organized according to experimental optimization m...

  10. Insulated Solar Electric Cooking – Tomorrow's healthy affordable stoves?

    Directory of Open Access Journals (Sweden)

    T. Watkins

    Full Text Available We present a cooking technology consisting of a solar panel directly connected to an electric heater inside of a well-insulated chamber. Assuming continued decrease in solar panel prices, we anticipate that in a few decades Solar Electric Cooking (SEC technologies will be the most common cooking technology for the poor. Appropriate use of insulation reduces the power demand making low-power Insulated Solar Electric Cooking (ISEC systems already cost competitive. We present a $100 prototype and preliminary results of two implementations in Uganda.

  11. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  12. Effect of pollutant gases on electrical insulators deterioration

    Directory of Open Access Journals (Sweden)

    Zamarad, A.

    2000-06-01

    Full Text Available In this work ceramic materials as electrical insulators have been exposed in laboratory-based chambers. Water contact angle and FTIR of the surface before and after pollutant exposures have been studied. The results indicated that the reaction between the policrete and the atmospheric pollutant produce some salts deposits, some hydrolysis over the resin surface, modifying water contact angle.

    En este trabajo se exponen en cámaras atmosféricas de laboratorio materiales cerámicos usados como aislantes eléctricos. Se realiza un estudio de la superficie expuesta a la degradación medioambiental a través del ángulo de contacto de una gota de agua y de las sales depositadas, determinándose éstas últimas por espectroscopia infrarroja. Los resultados revelan el depósito de varias sales sobre la superficie de la muestra, e hidrólisis sobre la superficie de la resina, modificando el ángulo de contacto.

  13. Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid

    International Nuclear Information System (INIS)

    Shen, L.P.; Wang, H.; Dong, M.; Ma, Z.C.; Wang, H.B.

    2012-01-01

    A new kind of nanofluid, ZnO-insulated oil nanofluid was prepared from ZnO nanoparticles synthesized by solvothermal method. Electrical property measurement shows that the electrical conductivity increases by 973 times after adding 0.75% volumetric fraction of ZnO nanoparticles into the insulated oil. A linear dependence of the electrical conductivity on the volumetric fraction has been observed, while the temperature dependence of the electrical conductivity reveals a nonlinear relationship. An electrical conductivity model is established for the nanofluid by considering both the Brownian motion and electrophoresis of the ZnO nanoparticles. -- Highlights: ► Stable ZnO-insulated oil nanofluid was successfully prepared. ► The electrical conductivity of the ZnO nanofluid is investigated. ► A new model is established to explain the electrical properties of the nanofluid.

  14. Methods for the improvement of electrical insulation in vacuum in the presence of transverse magnetic field

    International Nuclear Information System (INIS)

    Hara, Masanori; Suehiro, Junya; Shigematsu, Hidetaka; Yano, Shinsuke

    1989-01-01

    At present in electrical energy field, aiming at the development and operation of new energy sources for the future, the research on nuclear fusion reactors, MHD electricity generation, and electromagnetic energy storage is in progress, and in ordeer to form strong magnetic fields over wide space, large superconducting magnets are expected to be employed. In these magnets, when exciting current changes, voltage is induced internally, therefore, the operation sequence is deeply related to coil insulation, in pulse operation, coil insulation is one of the important factors determining the rating, and the withstand voltage design against the abnormal voltage at the time of quenching is related to the protection of coils. Therefore, the electrical insulation design of large superconducting magnets is an important subject of study. Their electrical insulation system is the compound system of liquid helium, gaseous helium, vacuum and solid insulators. When a cross magnetic field is applied, insulation breakdown characteristics are aggravated. The mechanism of vacuum insulation breakdown and characteristics, the method of improving withstand voltage using spacers or the electrodes for controlling electric field and so on are reported. (K.I.)

  15. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.

    Science.gov (United States)

    Le Bras, David; Strømme, Maria; Mihranyan, Albert

    2015-05-07

    Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.

  16. Determination of the characteristics of an electric arc plasma contaminated by vapors from insulators

    International Nuclear Information System (INIS)

    Abbaoui, M.; Cheminat, B.

    1991-01-01

    An experimental study at atmospheric pressure carried out on plasma penetrated by vapors from different industrial insulators allowed the showing of the influence of the nature of the insulator upon the characteristics of the electric arc plasma; i.e., an increase of the temperature, electron density, electric field, and extinction velocity of the arc. Measurements have been made spectrometrically and by means of probes

  17. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  18. Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging

    International Nuclear Information System (INIS)

    Bao, Jie; Huang, Shirong; Zhang, Yong; Lu, Xiuzhen; Yuan, Zhichao; Jeppson, Kjell; Liu, Johan; Edwards, Michael; Fu, Yifeng

    2016-01-01

    The need for electrically insulating materials with a high in-plane thermal conductivity for lateral heat spreading applications in electronic devices has intensified studies of layered hexagonal boron nitride (h-BN) films. Due to its physicochemical properties, h-BN can be utilised in power dissipating devices such as an electrically insulating heat spreader material for laterally redistributing the heat from hotspots caused by locally excessive heat flux densities. In this study, two types of boron nitride based heat spreader test structures have been assembled and evaluated for heat dissipation. The test structures separately utilised a few-layer h-BN film with and without graphene enhancement drop coated onto the hotspot test structure. The influence of the h-BN heat spreader films on the temperature distribution across the surface of the hotspot test structure was studied at a range of heat flux densities through the hotspot. It was found that the graphene-enhanced h-BN film reduced the hotspot temperature by about 8–10 °C at a 1000 W cm −2 heat flux density, a temperature decrease significantly larger than for h-BN film without graphene enhancement. Finite element simulations of the h-BN film predict that further improvements in heat spreading ability are possible if the thermal contact resistance between the film and test chip are minimised. (paper)

  19. Measurement methods and interpretation algorithms for the determination of the remaining lifetime of the electrical insulation

    Directory of Open Access Journals (Sweden)

    Engster F.

    2005-12-01

    Full Text Available The paper presents a set of on-line and off-line measuring methods for the dielectric parameters of the electric insulation as well as the method of results interpretation aimed to determine the occurence of a damage and to set up the its speed of evolution. These results lead finally to the determination of the life time under certain imposed safety conditions. The interpretation of the measurement results is done based on analytical algorithms allowing also the calculation of the index of correlation between the real results and the mathematical interpolation. It is performed a comparative analysis between different measuring and interpretation methods. There are considered certain events occurred during the measurement performance including their causes. The working-out of the analytical methods has been improved during the during the dielectric measurements performance for about 25 years at a number of 140 turbo and hydro power plants. Finally it is proposed a measurement program to be applied and which will allow the correlation of the on-line and off-line dielectric measurement obtaining thus a reliable technology of high accuracy level for the estimation of the available lifetime of electrical insulation.

  20. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  1. Development of electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  2. Development of electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  3. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  4. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    International Nuclear Information System (INIS)

    Pilan, N.; Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G.; Rosa, S. Dalla; Kraemer, V.; Quirmbach, T.; Chitarin, G.; Gobbo, R.; Pesavento, G.; De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L.

    2015-01-01

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  5. A real-time insulation detection method for battery packs used in electric vehicles

    Science.gov (United States)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  6. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  7. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  8. A Study of the Properties of Electrical Insulation Oils and of the Components of Natural Oils

    Directory of Open Access Journals (Sweden)

    Milan Spohner

    2012-01-01

    Full Text Available This paper presents a study of the electrical and non-electrical properties of insulating oils. For the correct choice of an electrical insulation oil, it is necessary to know its density, dynamic viscosity, dielectric constant, loss number and conductivity, and the effects of various exposure factors. This paper deals with mathematical and physical principles needed for studying and making correct measurements of the dynamic viscosity, density and electrical properties of insulation oils. Rheological properties were measured using an A&D SV-10 vibratory viscometer, and analytical balance with density determination kit, which operates on the principle of Archimedes’ law. Dielectric properties were measured using a LCR meter Agilent 4980A with connected with the Agilent 16452A test fixture for dielectric liquids.

  9. Insulating wall materials for MHD electric power generating channels, 1

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Okubo, Tsutomu; Maeda, Minoru

    1984-01-01

    The various kinds of ceramic specimens were soaked in molten K 2 SO 4 at 1300 0 C for 300 hrs, the changes in porosity, volume and weight before and after the tests (hereafter, referred as the amount of change) were measured and the corrosion resistance was examined from the calculated corrosion velocity. 1) MgO and MgO-Al 2 O 3 System. Reaction products were not found, the amount of change was small, and the electrical resistivity and corrosion resistance were good. 2) MgO-BN, ZrO 2 -BN and MgO-SrZrO 3 -BN System. Of all these systems, BN in the specimens disappeared, and it turned into B 2 O 3 or other boron compounds. This reaction caused the cracking and collapse of the specimens. 3) MgO-Si 3 N 4 and MgAl 2 O 4 -Si 3 N 4 System. The specimens were attacked by molten K 2 SO 4 , resulting in the large amount of change, and the reaction layer was formed on the surface. 4) Al 2 O 3 -AlN-Si 3 N 4 System. Although the specimens were attacked by molten K 2 SO 4 , the dense specimens with about 40 mol % Si 3 N 4 showed a very small amount of change, and the deterioration of electrical resistivity was small. The durability of MHD power generating operation might be improved by further controlling the production process and composition. (author)

  10. Mathematical Model of Lifetime Duration at Insulation of Electrical Machines

    Directory of Open Access Journals (Sweden)

    Mihaela Răduca

    2009-10-01

    Full Text Available Abstract. This paper present a mathematical model of lifetime duration at hydro generator stator winding insulation when at hydro generator can be appear the damage regimes. The estimation to make by take of the programming and non-programming revisions, through the introduction and correlation of the new defined notions.

  11. Design principles for handmade electrical insulation of superconducting joints in W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, K., E-mail: kerstin.rummel@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); John, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Sulek, Z. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Radzikowskiego 152 (Poland)

    2013-10-15

    Highlights: ► In W-7X there are several types of handmade electrical insulation. ► In general insulation based on impregnated glass tapes and special G10 pieces. ► A proper overlapping of glass tapes turned out to be mandatory. ► Detailed qualification and training helps to minimize the failure rate. ► Visual inspection and Paschen tests after every insulation steps are important. -- Abstract: The superconducting magnet system of the Wendelstein 7-X (W7-X) experiment consists of 50 non-planar and 20 planar coils, 121 bus bars and 14 current leads. The connection between bus bars, coils and current leads will be provided by 198 joints. The joints have to be insulated manually during the assembly of the machine in constraint positions and a tight environment. In general the insulation is based on glass tapes impregnated with epoxy resin and special G10 insulating pieces embedded in the glass tape insulation. In critical areas Kapton{sup ®}-foils are embedded in the insulation. All types of insulation were qualified at mock-ups in a 1:1 model of the expected environment in W7-X. The qualification programme comprises thermal cycling between room temperature and 77 K and high voltage tests under air, under vacuum and under reduced pressure (Paschen test). The paper describes the main principles used for different types of handmade Paschen-tight insulations in W7-X and the visual and electrical tests during and after assembly.

  12. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  13. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  14. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  15. Medial subclavicular musculotendinous complex and insulation break: Rare cause of late pacemaker lead malfunction

    Directory of Open Access Journals (Sweden)

    Pranab Jyoti Bhattacharyya

    2015-12-01

    Full Text Available Insulation break in a permanent pacemaker lead is a rare long-term complication. We describe an elderly male with a VVIR pacemaker, who presented with an episode of presyncope more than 3 years after the initial implantation procedure, attributed to insulation break possibly caused by lead entrapment in components of the medial subclavicular musculotendinous complex (MSMC and repeated compressive damage over time during ipsilateral arm movement requiring lead replacement. The differential diagnosis of a clinical presentation when pacing stimuli are present with failure to capture and the role of the MSMC in causing lead damage late after implantation are discussed.

  16. Transfer-free electrical insulation of epitaxial graphene from its metal substrate.

    Science.gov (United States)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo; Dalmiglio, Matteo; Orlando, Fabrizio; Baraldi, Alessandro; Gammelgaard, Lauge; Barreto, Lucas; Bianchi, Marco; Perkins, Edward; Hofmann, Philip

    2012-09-12

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen, and the eventual formation of a SiO(2) layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique.

  17. Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate

    DEFF Research Database (Denmark)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo

    2012-01-01

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen......, and the eventual formation of a SiO2 layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique....

  18. Evaluation of diagnostic technique for degradation of low-voltage electric cables with silicone rubber insulator

    International Nuclear Information System (INIS)

    Mikami, Masao

    2005-01-01

    As a part of countermeasures against ageing problems of nuclear power plants, it is requested to establish non-destructive diagnostic technique for their degradation of low voltage electric cables and assessment standard of their life. Having aimed at investigating the degradation of low-voltage electric cable with silicone rubber insulator, change of its surface hardness at elevated temperature were measured by indenter modules. Moreover, we also measured the elongation at break, which is regarded as general degradation index of electric cables, and the surface hardness with a micro hardness meter. Consequently, it is seen that the indenter modulus measurement is (1) capable to obtain general feature of the thermal degradation of silicone rubber insulator, (2) applicable to diagnose the degree of degradation of the electric cable by converting the result to elongation at break, (3) well correlated with the hardness measurement of the electric cable with the micro hardness meter. (author)

  19. Electrical Performance of Distribution Insulators with Chlorella vulgaris Growth on its Surface

    Directory of Open Access Journals (Sweden)

    Herbert Enrique Rojas Cubides

    2015-06-01

    Full Text Available This paper presents a study about electrical performance of ceramic and polymeric insulators bio-contaminated with alga Chlorella vulgaris. The performed tests involve ANSI 55-2 and ANSI 52-1 ceramic insulators and ANSI DS-15 polymeric insulators, all of them used in distribution systems of Colombia. Biological contamination of insulators is realized using a controlled environment chamber that adjusts the temperature, humidity and light radiation. The laboratory tests include measurements of flashover voltages and leakage currents and they were performed to determine how insulators are affected by biological contamination. After a series of laboratory tests, it was concluded that the presence of Chlorella vulgaris on the contaminated ceramic insulators reduces the wet flashover voltage up to 12% and increases their leakage currents up to 80%. On the other hand, for polymeric insulators the effect of algae growth on flashover voltages was not to strong, although the leakage currents increase up to 60%.

  20. Radiaton-resistant electrical insulation on the base of cement binders

    International Nuclear Information System (INIS)

    Afanas'ev, V.V.; Korenevskij, V.V.; Pisachev, S.Yu.

    1985-01-01

    The problems of designing radiation-resistant electrical insulations on the base of BATs and Talum cements for the UNK magnets operating under constant and pulse modes are discussed. The data characterizing dielectrical ad physico-mechanical properties of 25 various compositions are given. Two variants of manufacturing coils are considered: solid and with the use of asbestos tape impregnated with aluminous cement solution. The data obtained testify to the fact that the advantages of insulation on Talum cement are raised radiation resistance, high strength (particularly compression strength), weak porosity, high elasticity modulus and high thermal conductivity. BATs cement insulation is characterized by high radiation resistance, absence of shrinkage, rather low elasticity modulus and high dielectrical characteristics under normal conditions. The qualities of the solid insulation variant are its high technological effectiveness and posibility to fill up the spaces of complex configuration. In case of using as solid insulation Talum cement, however special measures for moisture removal are required. The advantage of insulation on the base of the asbestos tape is its reliability. For complex configuration magnets, however to realize is such insulation somewhat difficult

  1. Recovery of reactor electrical assemblies using differential de-encapsulation to remove dielectric insulation systems

    International Nuclear Information System (INIS)

    Hubrig, J.G.; Hammerstone, E.B.

    1986-01-01

    State-of-the-art de-encapsulation technologies associated with the conventional dielectric insulation systems employed in the construction of electrical coils and power distribution systems do not allow for accurate fatigue/failure analysis or reliable recovery of costly assembly components. Differential de-encapsulation allows for the selective removal of contemporary thermoset resin based insulation systems to allow non-destructive penetration of insulation wall thicknesses to both examine critical areas and recover high performance metallic and non-metallic inserts for remanufacture; significantly reducing replacement costs and reactor downtime. The authors' analysis describes how the availability of engineering data from the selective and non-destructive removal of insulation materials will aid in the evaluation of original manufacture, materials and procedures; enabling redesign to enhance subsequent on line performance. They also discuss why the ability to recover coil and core assemblies for remanufacture will have a major economic impact on reactor management costs

  2. Radiation Crosslinking of Small Electrical Wire Insulator Fabricated from NR-LDPE Blend

    International Nuclear Information System (INIS)

    Chyagrit, S.

    2006-01-01

    Blending of block natural rubber (STR-5L) and LDPE with phthalic anhydride (PA) as copatibilizer was put to the test for the purpose of a fabrication into small electrical wire insulator. It was found that PA at concentration of 1.0 - 1.5% in NR/PE of 50/50 so fabricated into the insulator, after gamma ray cross-linked at a dose of 180 kGy in limited air, could meet Thai Industrial Standard (TIS) 11-2531 of small eletrical insulator (<300 V). Effect of radiation dose on tensile, hardness, elongation at break, modulus 100%, limiting oxigen index (LOI) were investigated. It was noted that to comply with TIS 11-2531 for vertical flame retardance test, a suitable flame retardance was needed for the insulator

  3. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  4. The effects of fillers on polyurethane resin-based electrical insulators

    Directory of Open Access Journals (Sweden)

    Altafim Ruy Alberto Corrêa

    2003-01-01

    Full Text Available The increasingly widespread use of polymeric insulators in vehicle distributors and transmission systems has led to an ongoing quest for quality and low costs. This quest has, in turn, resulted in improved performance and cost benefits, brought about by the use of new polymeric and composite resins. Occasionally, however, while some properties are improved, others may show a loss of optimal performance. Therefore, to understand the behavior of fillers, such as carbon black, silica and mica added to castor oil-derived polyurethane resins, several thermal, mechanical and electrical tests were conducted on samples and insulators produced specifically for this purpose, using these new materials. The results of these tests clearly demonstrated that this type of resin and its composites can be used to manufacture indoor electrical insulators and that the fillers analyzed in this study improve or maintain the characteristics of the pure resins.

  5. Stressed state of a cement electrical insulation of a pulsed magnet

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Sugak, E.B.; Fedorenko, L.I.

    1985-01-01

    The stresses arising in cement electrical insulation of a pulsed magnet intended for separation and scanning of beam of secondary particles with 5-10 MeV energy are investigated during its switching. The magnet represents a single-turn construction. During its switching repulsion forces arise in copper buses which affect the core consisting of a set of iron plates. In its turn two cores trying to separate transmit impact load onto cement electrical insulation, the mechanical strength of which determines the construction durability on the whole. For selection of calculation technique the method of photoelasticity is used on models of transparent polymeric materials. Epoxy resin served as material for insulation model, duraluminium for the rest of magnet parts. It is concluded that the calculation technique for the magnet under investigation is a hingeless circular arc

  6. Analysis of electrical tree propagation in XLPE power cable insulation

    International Nuclear Information System (INIS)

    Bao Minghui; Yin Xiaogen; He Junjia

    2011-01-01

    Electrical treeing is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stress. In this paper, the characteristics of electrical tree growth in XLPE samples have been investigated. XLPE samples are obtained from a commercial XLPE power cable, in which electrical trees have been grown from pin to plane in the frequency range of 4000-10,000 Hz, voltage range of 4-10 kV, and the distances between electrodes of 1 and 2 mm. Images of trees and their growing processes were taken by a CCD camera. The fractal dimensions of electric trees were obtained by using a simple box-counting technique. The results show that the tree growth rate and fractal dimension was bigger when the frequency or voltage was higher, or the distance between electrodes was smaller. Contrary to our expectation, it has been found that when the distance between electrodes changed from 1 to 2 mm, the required voltage of the similar electrical trees decreased only 1or 2 kV. In order to evaluate the difficulties of electrical tree propagation in different conditions, a simple energy threshold analysis method has been proposed. The threshold energy, which presents the minimum energy that a charge carrier in the well at the top of the tree should have to make the tree grow, has been computed considering the length of electrical tree, the fractal dimension, and the growth time. The computed results indicate that when one of the three parameters of voltage, frequency, and local electric field increase, the trends of energy threshold can be split into 3 regions.

  7. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    Science.gov (United States)

    Deligkaris, Christos

    2018-01-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…

  8. First-principles calculation of electric field gradients in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Zwanziger, J.W. [Dalhousie Univ, Dept Chem, Halifax, NS (Canada); Dalhousie Univ, Inst Res Mat, Halifax, NS (Canada); Torrent, M. [CEA Bruyeres-le-Chatel, Dept Phys Theor and Appl, Bruyeres 91 (France)

    2008-07-01

    A scheme for computing electric field gradients within the projector augmented wave (PAW) formalism of density functional theory is presented. On the basis of earlier work (M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc. 125, 541, 2003) the present implementation handles metallic cases as well as insulators and semiconductors with equal efficiency. Details of the implementation, as well as applications and the discussion of the limitations of the PAW method for computing electric field gradients are presented. (authors)

  9. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  10. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rigit, A.R.H. [University of Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom)

    2009-06-15

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/d{proportional_to}200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested. (orig.)

  11. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  12. Electrical Insulation Of Carbon Nanotube Separation Columns For Microchip Electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Chen, Miaoxiang Max; Mølhave, Kristian

    2011-01-01

    Carbon nanotubes (CNT) have been grown in microfluidic glass channels for chemical analysis based on electrokinetic separations. A limitation of CNTs for this type of application is their high conductivity, which prevent them from being used for electroosmotic pumping with electrical field streng...

  13. Development of high-mechanical strength electrical insulations for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Burke, C.

    1977-01-01

    The electrical insulation for the TF (Toroidal Field) coils is subjected to a high interlaminar shear, tensile and compressive stresses. Two candidate epoxy/glass fiber systems using prepreg and vacuum impregnation techniques were evaluated. Specimens were prepared and processed under controlled conditions to simulate specification manufacturing procedures. The strengths of the insulation were measured in interlaminar shear, tension, compression, and combined shear and compression statically. Shear modulus determinations were also made. Various techniques of surface treatments to increase bond strengths with three resin primers were tested

  14. Electroluminescence and electrical degradation of insulating polymers at electrode interfaces under divergent fields

    Science.gov (United States)

    Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang

    2018-04-01

    Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.

  15. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    International Nuclear Information System (INIS)

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating

  16. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  17. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  18. Impact of steep-front short-duration impulse on electric power system insulation

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, L M; Veverka, E F; Shaw, J H [Cooper Industries, Inc., Franksville, WI (USA). Cooper Power Systems; McConnell, B W [Oak Ridge National Lab., TN (USA)

    1991-04-01

    This research effort required the performance evaluation of three specific insulation systems in common usage by electric power transmission and distribution utilities under stresses imposed by: three characteristic impulse waveforms (two waves representative of steep-front short duration (SFSD) impulses and one representative of lightning), the cumulative effect of multiple shots'' of each pulse, 60 Hz voltage, and, where appropriate, and mechanical load. The insulation systems evaluated are the cellulose-paper/oil combination typical of power transformer and condenser bushing usage, the cellulose-paper/enamel/oil combination used in distribution transformer construction, and the porcelain/air combination representing transmission and distribution line structural insulation. 4 refs., 94 figs., 11 tabs.

  19. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    Science.gov (United States)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  20. Updated Aging Assessment Approach and Use with Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Colaianni, R. Paul

    2003-01-01

    The service life of nuclear power plant equipment may include operation beyond the original design or qualified life. A technical basis is necessary to demonstrate that critical equipment is capable of continued safe operation for any life extension and renewed license term. Such a technical basis is also useful in addressing initial license term aging degradation, age-related failures, and maintenance issues. Early approaches for addressing aging effects developed for environmental qualification programs in the 1980s were incorporated into the Institute of Electrical and Electronic Engineers' (IEEE) IEEE Std. 1205-1993. However, subsequently, a number of events (including promulgation of the Maintenance Renewal Rule, the new License Renewal Rule, and initial plant owner submittals of License Renewal applications) have resulted in improved aging management approaches, which focus on addressing aging effects rather than attempting to identify and mitigate every possible aging mechanism.An example of a major issue facing nuclear power plants as they mature is the general health of the plant electrical cables. This issue came to the forefront as plants began preparing for license renewal, which requires an evaluation of cables to demonstrate that they will perform their function 20 yr beyond the original 40-yr license period. When the two lead plants started preparing for license renewal, there was no generally accepted approach to the bulk evaluation of plant cables, and there were many who thought it not possible to perform a complete plant cable evaluation. The approaches that emerged from the lead plant reviews demonstrated that an assessment of the general health of plant cables could be performed.IEEE's Nuclear Power Engineering Committee recognized the need to capture these improved approaches. A 2 1/2-yr effort of the IEEE Subcommittee-3 Working Group 3.4 culminating in IEEE Std. 1205-2000 is the consensus of representatives from the two lead license renewal

  1. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  2. Investigation of electrophysical properties of electrical insulating materials under neutron irradiation

    International Nuclear Information System (INIS)

    Skornyakov, Yu.A.; Stepanov, A.N.; Lapenas, A.A.

    1978-01-01

    The possibilities of applicaiton of insulating materials on the basis of glass cloths in electric windings for operation under neutron radiation of thermonuclear devices are studied. Changes in the specimen resistance, tangent of the angle of dielectric losses, electric strength according to the value of neutron fluence are determined. The temperature regimes are also studied. The data indicate the irreversible changes in the composition and structure of the polymer material under irradiation. The LSMI 228L-80 glass cloth has the highest radiation resistance. The necessity of forced cooling of large-sized specimens under the neutron radiation the IRT-200 reactor is established. The presence of impurities leading to the long-term induced activity of the insulating materials ( 59 Fe, 60 Co) is determined

  3. Radiation resistance of insulating materials for electric wires

    International Nuclear Information System (INIS)

    Kanemitsuya, Kazuhiko; Okuda, Tomoaki; Tachibana, Tadao; Yagi, Toshiaki; Seguchi, Tadao.

    1990-01-01

    In no halogen incombustible materials, smoke and poisonous gas generation at the time of burning is small, and corrosive gas rarely arises. Since no halogen electric wires and cables which use these material maintain safety for people and equipment in the case of fires, those are used for ships, tunnels, subways and so on. Also in nuclear power stations, the demand for no halogen cables becomes high although the condition of adoption is difficult. In this study, for the purpose of developing the no halogen cables for nuclear power stations, the basic data on the radiation resistance of no halogen incombustible materials were collected, and by using chemical analysis method, the radiation deterioration behavior was examined. The samples were those with base polymers of VLDPE, ULDPE, EEA, EMA and EVA. Gamma ray irradiation, tensile test, chemi-luminescence measurement, and the determination of gel fraction and swelling rate were carried out. The results are reported, In no halogen materials, when ethylene system copolymer is used as the base polymer instead of PE, the composition with good radiation resistance can be obtained, and by combining amine oxidation inhibitor, it is further improved. (K.I.)

  4. Electric properties of semi-insulating crystals CdTe:Cl

    International Nuclear Information System (INIS)

    Arkadyeva, E.N.; Matveev, O.A.

    1977-01-01

    Hall effect and conductivity measurement were carried out on chlorine doped semi-insulating CdTe crystals, of p and n electric type. In p type crystals the depth of the dominating level was determined (+0.7eV) as well as the concentration of associated centres (10 13 -10 14 cm -3 ). The mobility values are limited by a process of diffusion on heterogeneities

  5. Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos; Habibiyan, Hamidreza

    2018-03-01

    In this work, based on the Kubo-Greenwood formalism and the k . p Hamiltonian model, the impact of Rashba spin-orbit coupling on electronic band structure and electrical conductivity of spin-up and spin-down subbands in counterparts of graphene, including silicene, stanene, and germanene nanosheets has been studied. When Rashba coupling is considered, the effective mass of Dirac fermions decreases significantly and no significant change is caused by this coupling for the subband gaps. All these nanosheets are found to be in topological insulator quantum phase at low staggered on-site potentials due to the applied perpendicular external electric field. We point out that the electrical conductivity of germanene increases gradually with Rashab coupling, while silicene and stanene have some fluctuations due to their smaller Fermi velocity. Furthermore, some critical temperatures with the same electrical conductivity values for jumping to the higher energy levels are observed at various Rashba coupling strengths. For all structures, a broad peak appears at low temperatures in electrical conductivity curves corresponding to the large entropy of systems when the thermal energy reaches to the difference between the energy states. Finally, we have reported that silicene has the larger has the larger electrical conductivity than two others.

  6. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  7. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  8. Formation of electrically insulating coatings on aluminided vanadium-base alloys in liquid lithium

    International Nuclear Information System (INIS)

    Park, J.H.; Dragel, G.

    1993-01-01

    Aluminide coatings were produced on vanadium and vanadium-base alloys by exposure of the materials to liquid lithium that contained 3-5 at.% dissolved aluminum in sealed capsules at temperatures between 775 and 880 degrees C. Reaction of the aluminide layer with dissolved nitrogen in liquid lithium provides a means of developing an in-situ electrical insulator coating on the surface of the alloys. The electrical resistivity of A1N coatings on aluminided V and V-20 wt.% Ti was determined in-situ

  9. Improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers

    Science.gov (United States)

    Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao

    2018-05-01

    Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.

  10. Theory of the electric current transmission coefficient in the superconductor-insulator-superconductor geometry

    International Nuclear Information System (INIS)

    Navani, R.

    1974-01-01

    Tunneling in the superconductor-insulator-superconductor (S'-I-S) geometry, where the two superconductors are not necessarily the same, is studied theoretically. Two different models of the S'-I-S geometry - which we call the ''initial model'' and the ''improved model'' are discussed. For the initial model the potential barrier is flat. In the improved model, however, the differing material properties of the three regions - S', I, and S - are taken into account in an approximate fashion. In addition, applied, contact, and image potentials in the insulator are included. The solid state material properties that are taken to be different are the effective electronic masses in the three regions and the Fermi energies in the two superconductors. The quasiparticle wave functions in the S', I, and S regions are determined for both models as solutions to the Bogoliubov-de Gennes equations. The electric current transmission coefficients (also the reflection coefficient for the initial model) are derived and their behavior is extensively analyzed. Their forms in the thick barrier limit - where L greater than or approximately equal to 5 A - are related to the BCS densities of states. The tunneling current density is found to depend strongly on the tunneling angle. A relation between the angular position of the tunneling current peak and the barrier thickness is given. Finally, it is shown that the choice of insulator material effects the tunneling current, and the effect is greater the thicker the insulating film

  11. Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: chyagrit@chula.ac.th; Punnachaiya, Suvit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)

    2007-12-15

    A low voltage, radiation-crosslinked wire insulator has been fabricated from blends of natural rubber block (STR-5L) and LDPE with phthalic anhydride (PA) as a compatibilizer. Physical properties of the NR/LDPE blend ratios of 50/50 and 60/40 with 0.5, 1.0, and 1.5 wt% PA were evaluated. The gel content increased as the radiation dose increased. Tensile at break exhibited a maximum value of 12 MPa at 120 kGy for 1.0 and 1.5 wt% PA of both blend ratios. A higher PA content yielded a higher modulus for the same blend ratio. Blends of 60/40 ratio with 1.0 wt% PA and 0.8 wt% antimony oxide flame retardant gave the highest limiting oxygen index (LOI) of >30% at above 150 kGy. Other electrical properties of the wire insulator were investigated. It was found that an insulator fabricated from a PA content of 1.0 wt% in the NR/LDPE blend ratio of 50/50, after gamma ray cross-linked at a dose of 180 kGy in low vacuum (1 mm Hg), met the Thai Industrial Standard 11-2531 for low voltage wire below 1.0 kV. To comply with the standard for vertical flame test, a more suitable flame retardant was needed for the insulator.

  12. Characterization of ceramic electrical insulators discarded by the electricity distribution networks and compared with similar products without use

    International Nuclear Information System (INIS)

    Franco, C.S.; Mantovani, V.A.; Favero, M.; Morales, J.; Hasegawa, H.L.

    2010-01-01

    The maintenance of distribution networks for electricity generates a large amount of waste. Among these, one of the most representative weights is from porcelain, found in para-rays, braces, insulators. The aim of this study was to evaluate the recycling potential of two models of ceramic insulators, new and used. It had been subjected to comparative tests of scanning electron microscopy, coupled with Energy Dispersive Spectroscopy, x-ray diffraction, contact angle, volatile content and density. In general, samples of new and used ceramic showed no differences that might be associated of material degradation by using. This indicates that the materials discarded and new ones are very close, which may encourage the reuse and recycling. (author)

  13. Ideology of a multiparametric system for estimating the insulation system of electric machines on the basis of absorption testing methods

    Science.gov (United States)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.

  14. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Directory of Open Access Journals (Sweden)

    Carlos A. Ferreira

    2011-01-01

    Full Text Available A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE. Power Utility Polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TG, Dynamic-Mechanic Analysis (DMA, Fourier Transformed Infrared Spectroscopy (FTIR and Scanning Electronic Microscopy (SEM to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weatherometer, 120 °C, salt spray, immersion in water. After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 kA, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrestor are appropriate for use in electricity distribution networks.

  15. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carlos A.; Coser, E. [Laboratorio de Materiais Polimericos, Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)], e-mail: ferreira.carlos@ufrgs.br; Angelini, Joceli M.G. [Departamento de Materiais Eletricos, CPqD, Campinas, SP (Brazil); Rossi, Jose A.D. [Materiais Alta Tensao, CPqD, Campinas, SP (Brazil); Martinez, Manuel L.B. [Departamento de Engenharia Eletrica, UNIFEI, Itajuba, MG (Brazil)

    2011-07-01

    A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE). Power utility polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG), Dynamic-Mechanic Analysis (DMA), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy (SEM) to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weather meter, 120 deg C, salt spray, immersion in water). After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 k A, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrester are appropriate for use in electricity distribution networks. (author)

  16. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mekni, Omar; Arifa, Hakim; Askri, Besma; Yangui, Béchir; Raouadi, Khaled; Damamme, Gilles

    2014-01-01

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε ′ and the dissipation factor Tan(δ). We prove that the evolution of the imaginary part of the complex permittivity against temperature ε ″ =f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q p (T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.

  17. Electrical and mechanical properties of highly elongated high density polyethylene as cryogenic insulation materials

    International Nuclear Information System (INIS)

    Yoshino, Katsumi; Park, Dae-Hee; Miyata, Kiyomi; Yamaoka, Hitoshi; Itoh, Minoru; Ichihara, Syouji.

    1989-01-01

    Electrical and mechanical properties of highly elongated high density polyethylene were investigated in the temperature range between 4.2 K and 400 K from a viewpoint of electrical insulation at low temperature and the following properties have been clarified. (1) The electrical conductivity of samples decreases with increasing draw ratio, and also decreases at cryogenic temperature. (2) Breakdown strength of highly elongated sample is similar to that of non-elongated sample. It is nearby temperature independent below 300 K but at higher temperature it falls steeply. (3) Mechanical breakdown stress and elastic modulus of high density polyethylene increase with increasing draw ratio. Their values at liquid nitrogen temperature are much higher than that at room temperature. On the other hand, strains decreases at liquid nitrogen temperature. (4) Break of the sample develops in the direction of 45deg from the direction of stress both at room temperature and at cryogenic temperature. (5) The characteristic of mechanical breakdown at liquid nitrogen temperature can be explained by a brittleness fracture process. (6) Toughness of high density polyethylene increases with increasing draw ratio until draw ratio of 5, and it decreased, and increase at higher draw ratio. However at extremely high draw ratio of 10 it again increases. These findings clearly indicate that highly elongated high density polyethylene has good electrical and mechanical properties at cryogenic temperature and can be used as the insulating materials at cryogenic temperature. (author)

  18. Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields

    KAUST Repository

    Lim, Seung Jae

    2014-12-30

    An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

  19. Use and benefit summary of General Electric Company thermocase insulated tubulars for steam enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, B.V. Jr.; Hawley, J.R.; Marziani, V.J.; Prevost, W.M.

    1982-01-01

    General Electric Co.'s (GE) first well-bore insulation in 1969 resulted from the industry's need to produce hot oil on Alaska's North Slope without damaging the permafrost. In the past 3 yr, over 500,000 linear ft of GE's Thermocase has been sold. Thermocase tubulars are in use in California, Wyoming, Texas, Canada, Venezuela, and the USSR. Thermocase insulated tubulars are being used in a wide range of reservoirs under a variety of completion designs. This study discusses field experience, thermal completion benefits afforded by Thermocase tubulars, a quantified economic evaluation in a 1000-ft application, as well as GE's product verification, test and rigid quality control program.

  20. Complex studies of mockups of electric insulators of cryoresistive coils of the T-15 device electromagnet system

    International Nuclear Information System (INIS)

    Aksenov, O.E.; Gringof, V.G.; Il'in, G.V.; Lapenas, A.A.; Stepanov, A.N.; Ulmanis, U.A.

    1982-01-01

    The test results are presented for multilayer electrical insulation of coils in the T-15 thermonuclear device electromagnet system. The insulation is made ion the base of polyimide tape with adhesive coating. In the 77-93 K range the tape insulating strength is 35 MV/m, the dielectric loss tangent is less than 10 -5 , dielectric permeability is 2.5, volume resistivity is more than 10 5 Ohmxcm. The insulation has been tested for radiation effects in the IRT-2000 nuclear reactor. Different batches of insulation mockups 0.7 mm thick have been irradiated up to the integral fast neutron flux within the 10 16 -5x10 18 neutr./cm 2 range (E >= 0.1 MeV), (J=10 11 -10 12 neutr./cm 2 xs) at the corresponding temperature between 390 and 420 K. The given data on insulating strength point to a high radiation resistance of the multilayer polyimide insulation. To make sure finally that the developed insulation system meets the requirements of the operating conditions for thermonuclear device electromagnet system coils the device has been tested for operational life. On the basis of the test results a conclusion can be made that at the present development stage the multilayer polyimide insulation based on the adhesive tape meets to the utmost degree the requirements corresponding to the complicated operating conditions of the T-15 thermonuclear devices

  1. Causes of electrical deaths and injuries among construction workers.

    Science.gov (United States)

    McCann, Michael; Hunting, Katherine L; Murawski, Judith; Chowdhury, Risana; Welch, Laura

    2003-04-01

    Contact with electrical current is the fourth leading cause of deaths of construction workers. This study evaluates electrical deaths and injuries to construction workers. Two sources of data were analyzed in detail: (1) 1,019 electrical deaths identified by the Bureau of Labor Statistics, Census of Fatal Occupational Injuries (CFOI) for the years 1992-1998; and (2) 61 electrical injuries identified between November 1, 1990 and December 31, 1998 from a George Washington University Emergency Department injury surveillance database. Contact with "live" electrical wiring, equipment, and light fixtures was the main cause of electrical deaths and injuries among electrical workers, followed by contact with overhead power lines. Among non-electrical workers, contact with overhead power lines was the major cause of death. Other causes included contact with energized metal objects, machinery, power tools, and portable lights. Arc flash or blast caused 31% of electrical injuries among construction workers, but less than 2% of electrical deaths. Adoption of a lockout/tagout standard for construction, and training for non-electrical workers in basic electrical safety would reduce the risk of electrical deaths and injuries in construction. Further research is needed on ways to prevent electrical deaths and injuries while working "live". Copyright 2003 Wiley-Liss, Inc.

  2. A flexible Li-ion battery with design towards electrodes electrical insulation

    Science.gov (United States)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  3. Electricity Breakdown Management for Sarawak Energy: Use of Condition-Based Equipment for Detection of Defective Insulator

    Science.gov (United States)

    Tan, J. K.; Abas, N.

    2017-07-01

    Managing electricity breakdown is vital since an outage causes economic losses for customers and the utility companies. However, electricity breakdown is unavoidable due to some internal or external factors beyond our control. Electricity breakdown on overhead lines tend occur more frequently because it is prone to external disturbances such as animal, overgrown vegetation and defective pole top accessories. In Sarawak Energy Berhad (SEB), majority of the network are composed of overhead lines and hence, is more prone to failure. Conventional method of equipment inspection and fault finding are not effective to quickly identify the root cause of failure. SEB has engaged the use of corona discharge camera as condition-based monitoring equipment to carry out condition based inspection on the line in order to diagnose the condition of the lines prior to failure. Experimental testing has been carried out to determine the correlation between the corona discharge count and the level of defect on line insulator. The result shall be tabulated and will be used as reference for future scanning and diagnostic on any defect on the lines.

  4. Development of electrically insulating self-healing coatings in vanadium alloys for lithium fusion reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Problems on electrically insulating self-healing coatings (SHC) on vanadium alloys for lithium fusion reactor systems are considered. In particular, the SHC stability and radiation resistance in lithium and effect of magnetic field on the efficiency of the TNR lithium systems are studied. New technological methods for application of self-healing coatings and study on their properties are developed. The vanadium-lithium materials testing in pile loops for solution of the above problems under conditions of the lithium TNR is described [ru

  5. Vivitron 1995, transient voltage simulation, high voltage insulator tests, electric field calculation

    International Nuclear Information System (INIS)

    Frick, G.; Osswald, F.; Heusch, B.

    1996-01-01

    Preliminary investigations showed clearly that, because of the discrete electrode structure of the Vivitron, important overvoltage leading to insulator damage can appear in case of a spark. The first high voltage tests showed damage connected with such events. This fact leads to a severe voltage limitation. This work describes, at first, studies made to understand the effects of transients and the associated over-voltage appearing in the Vivitron. Then we present the high voltage tests made with full size Vivitron components using the CN 6 MV machine as a pilot machine. Extensive field calculations were made. These involve simulations of static stresses and transient overvoltages, on insulating boards and electrodes. This work gave us the solutions for arrangements and modifications in the machine. After application, the Vivitron runs now without any sparks and damage at 20 MV. In the same manner, we tested column insulators of a new design and so we will find out how to get to higher voltages. Electric field calculation around the tie bars connecting the discrete electrodes together showed field enhancements when the voltages applied on the discrete electrodes are not equally distributed. This fact is one of the sources of discharges and voltage limitations. A scenario of a spark event is described and indications are given how to proceed towards higher voltages, in the 30 MV range. (orig.)

  6. Electric control of emergent magnonic spin current and dynamic multiferroicity in magnetic insulators at finite temperatures

    Science.gov (United States)

    Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.

    2018-04-01

    Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.

  7. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  8. Morphology and crystalline-phase-dependent electrical insulating properties in tailored polypropylene for HVDC cables

    Science.gov (United States)

    Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2016-11-01

    Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.

  9. Functional Dependence for Calculation of Additional Real-Power Losses in a Double-Wound Supply Transformer Caused by Unbalanced Active Inductive Load in a Star Connection with an Insulated Neutral

    Science.gov (United States)

    Kostinskiy, Sergey S.; Troitskiy, Anatoly I.

    2016-01-01

    This article deals with the problem of calculating the additional real-power losses in double-wound supply transformers with voltage class 6 (10)/0,4 kV, caused by unbalanced active inductive load connected in a star connection with an insulated neutral. When solving the problem, authors used the theory of electric circuits, method of balanced…

  10. Development of electrically insulating coatings for service in a lithium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Wieder, S.

    2000-01-01

    Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in an Li environment. The coatings were developed by vapor phase transport external to Li, and also in-situ in an Li-Ca environment at elevated temperature. In the vapor phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 x 5 x 1 mm. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600 C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500 C for 48--68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700 C before and after exposure to Li

  11. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  12. Production of a nuclear radiation resistant and mechanically tough electrically insulating material

    International Nuclear Information System (INIS)

    Brechna, H.

    1975-01-01

    According to the invention, an electrically insulating material of high mechanical strength and resistance to nuclear radiation may be made of a hardenable plastic material coated on an inorganic supporting tissue. The synthetic resin serving as binder - duroplasts, e.g. epoxide resins, polyester resins or silicon resins - is heated, mixed with a catalyst, a wetting agent and a filler (and, if required, with 0.5-1.5 weight % thixotropic material) and coated, under reduced pressure (o.4 to 0.6 mm Hg), on the supporting tissue whose surface is cleaned before this by heating. It is then hardened. Hardening may also take place directly on the electric conductor to be insulated. One obtains a bubble-free wire coating. The inorganic supporting material is glas fibre tissue, also in combination with mica, while Al 2 O 3 , zirconium, zirconia, magnesium oxide, mica and silica (grain size 10-20 μ). The invention is illustrated by a number of examples. (UWI) [de

  13. Survival of the insulator under the electrical stress condition at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Myeong [Dept. of Fire Protection Engineering, Changwon Moonsung University, Changwon (Korea, Republic of); Kim, Sang Hyun [Dept. of Electrical Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2013-12-15

    We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80% of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

  14. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. (paper)

  15. Assessment of Eco-friendly Gases for Electrical Insulation to Replace the Most Potent Industrial Greenhouse Gas SF6.

    Science.gov (United States)

    Rabie, Mohamed; Franck, Christian M

    2018-01-16

    Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.

  16. Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM

    International Nuclear Information System (INIS)

    Markey, L; Stevens, G C

    2003-01-01

    In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm

  17. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  18. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications

    International Nuclear Information System (INIS)

    Mogensen, K B; Boggild, P; Kutter, J P; Gangloff, L; Teo, K B K; Milne, W I

    2009-01-01

    A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 μM fluorescein and 50 μM 5-carboxyfluorescein in a 25 mm long column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest.

  19. All-electric spin modulator based on a two-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo; Ai, Guoping [School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Liu, Ying; Yang, Shengyuan A., E-mail: shengyuan-yang@sutd.edu.sg [Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372 (Singapore); Liu, Zhengfang [School of Science, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)

    2016-01-18

    We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarization rotator by replacing the drain electrode with a non-magnetic material.

  20. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    Science.gov (United States)

    Deligkaris, Christos

    2018-04-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena. Textbooks may adequately discuss polarization, but there is little material in active learning labs and tutorials on this topic. Since polarization of materials is a microscopic phenomenon, instructors often use diagrams and figures on the classroom board to explain the process in a lecture setting. In this paper I will describe a classroom activity where the students play the role of electrons as an alternative option.

  1. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gangloff, L.; Bøggild, Peter

    2009-01-01

    A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels...... and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 mu M fluorescein and 50 mu M 5-carboxyfluorescein in a 25 mm long...... column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest....

  2. Insulating oil, electrical for transformers and switches : a national standard of Canada

    International Nuclear Information System (INIS)

    Paniri, S.; Burford, G.; Martin, A.; Adragna, M.

    1997-01-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab

  3. Insulating oil, electrical for transformers and switches : a national standard of Canada; 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Paniri, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-09-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab.

  4. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  5. Electrical Detection of Spin-to-Charge Conversion in a Topological Insulator Bi2Te3

    Science.gov (United States)

    Li, Connie H.; van't Erve, Olaf M. J.; Li, Yaoyi; Li, Lian; Jonker, Berry T.

    Spin-momentum locking in topological insulators (TIs) dictates that an unpolarized charge current creates a net spin polarization. We recently demonstrated the first electrical detection of this spontaneous polarization in a transport geometry, using a ferromagnetic (FM) / tunnel barrier contact, where the projection of the TI surface state spin on the magnetization of detector is measured as a voltage [1]. Alternatively, if spins are injected into the TI surface state system, it is distinctively associated with a unique carrier momentum, and hence should generated a charge accumulation, similar to that of inverse spin Hall effect. Here we experimentally demonstrate both effects in the same device fabricated in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface states system. This reverse measurement is an independent confirmation of spin-momentum locking in the TI surface states, and offers additional avenue for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the TI surface state spin system, an important step towards its utilization in TI-based spintronics devices. C.H. Li et al., Nat. Nanotech. 9, 218 (2014). Supported by NRL core funds and Nanoscience Institute.

  6. Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Cho, W.D. [Argonne National Lab., IL (United States)

    1997-04-01

    Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygen in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.

  7. The Dynamics of the Electric Field Distribution in the Surface of Insulating Film Irradiated by Air Ions

    Directory of Open Access Journals (Sweden)

    Julionas KALADE

    2016-05-01

    Full Text Available When deposited on a surface, electric charge usually accumulates near the tips of surface irregularities, from where it can be transferred to nearby objects due to ionization of ambient air. The amount of transferred charge, the rate of charge transfer, the size of the charged spot (e.g., on the surface of an insulator and its tendency to spread will depend on properties of air during electric discharge, on the magnitude of charge accumulated at the tip of an object, on possibilities for replenishing that charge, on the time spent for charge transfer from the tip onto the insulating layer, on properties of the insulating layer, etc. Those properties are discussed in this work by comparing the results of measurements and theoretical analysis.

  8. Radiation tests on selected electrical insulating materials for high-power and high voltage application

    International Nuclear Information System (INIS)

    Liptak, G.; Schuler, R.; Haberthuer, B.; Mueller, H.; Zeier, W.; Maier, P.; Schoenbacher, H.

    1985-01-01

    This report presents a comprehensive set of test results on the irradiation of insulating materials and systems used for the windings of rotating machines, dry-type transformers, and magnet coils. The materials were: Novolac, bisphenol-A, and cycloaliphatic types of epoxy; saturated and unsaturated polyesterimide; silicone, phenolic, and acrylic resins. The reinforcement consisted of glass mat, glass roving, glass cloth, mica paper, polyester mat, polyester roving, polyester cloth, aromatic polyamide paper, or combinations thereof. The materials were irradiated in an 8 MW pool reactor up to integrated doses of 10 8 Gy. On most samples, flexural properties were examined as recommended by IEC Standard 544. For tapes and varnishes, the breakdown voltage was measured. The adhesion of copper bars glued together with an epoxy resin was examined by means of a lap-shear test. A cupping test by means of the Erichsen apparatus was used to measure the flexibility of varnishes. The results are presented in tables and graphs for each of the materials tested. Those from mechanical tests show that the radiation resistance of composite resin-rich insulations depends not only on the base resin combination and the reinforcement material but, to a large degree, also on the adhesion between the two. It appears that better adhesion, and consequently higher radiation resistance, is obtained by special surface treatments of glass fibres. For laminates, higher radiation resistance is obtained with glass mat and resin combinations than with glass cloth as reinforcing materials. The breakdown voltage tests show that the application of mechanical stress to most irradiated samples causes the insulation layer to crack, resulting in lower dielectric strength. For a number of materials, the critical properties of flexural strength and breakdown voltage are above 50% of the initial value at doses between 10 7 and 10 8 Gy, i.e. a radiation index of 7 to 8 at 10 5 Gy/h. (orig.)

  9. Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers

    Directory of Open Access Journals (Sweden)

    Xiaobo Wang

    2018-02-01

    Full Text Available In November 2017, the first ±1100 kV high-voltage direct-current power transformer in the world, which was made by Siemens in Nurnberg, passed its type test. Meanwhile, in early 2017, a ±1000 kV ultra-high voltage (UHV substation was officially put into operation in Tianjin, China. These examples illustrate that the era of UHV power transmission is coming. With the rapid increase in power transmission voltage, the performance requirements for the insulation of power transformers are getting higher and higher. The traditional mineral oils used inside power transformers as insulating and cooling agents are thus facing a serious challenge to meet these requirements. In this review, the basic properties of traditional mineral insulating oil are first introduced. Then, the variation of electrical properties such as breakdown strength, permittivity, and conductivity during transformer operation and aging is summarized. Next, the modification of mineral insulating oil is investigated with a focus on the influence of nanoparticles on the electrical properties of nano-modified insulating oil. Recent studies on the performance of mineral oil at molecular and atomic levels by molecular dynamics simulations are then described. Finally, future research hotspots and notable research topics are discussed.

  10. Effect of surface states on electrical characteristic of metal - insulator - semiconductor (MIS) diodes

    International Nuclear Information System (INIS)

    Altindal, S.; Doekme, I.; Tataroglu, A.; Sahingoez, R.

    2002-01-01

    The current-voltage (I-V) characteristics of Metal-Insulator-Semiconductor (MIS) Schottky barrier diodes which is consider distribution of interface states in equilibrium with semiconductor were determined at two (low and high) temperature. The interface states were responsible for non-ideal behavior of the forward I-V characteristic of diodes. Both diodes (n and p type Si) showed non-ideal behavior with an ideality factor 1.6 and 1.85 respectively at room temperature. The higher values of n-type Si were attributed to an order of magnitude higher density of interface states in the both diodes. The effect of an interfacial insulator layer between the metal and semiconductor are also studied. The high density of interface states also caused a reduction in the barrier height of the MIS diode. It is shown that by using Norde function at low and high temperature, barrier height □ b , series resistance R s and ideality factor n can be determined even in the case 1 s obtained from Norde function strongly depend on temperature, and decrease with increasing temperature. In addition, the potential barrier height increases with increasing temperature. The mean density of interface states N ss decreases with increasing temperature. Particularly at low temperature the I-V characteristics are controlled by interface states density

  11. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  12. Electric controlling of surface metal-insulator transition in the doped BaTiO3 film

    Directory of Open Access Journals (Sweden)

    Wei Xun

    2017-07-01

    Full Text Available Based on first-principles calculations, the BaTiO3(BTO film with local La-doping is studied. For a selected concentration and position of doping, the surface metal-insulator transition occurs under the applied electric field, and the domain appears near the surface for both bipolar states. Furthermore, for the insulated surface state, i.e., the downward polarization state in the doped film, the gradient bandgap structure is achieved, which favors the absorption of solar energy. Our investigation can provide an alternative avenue in modification of surface property and surface screening effect in polar materials.

  13. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  14. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  15. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  16. Accelerated thermal and radiation-oxidation combined degradation of electric cable insulation materials

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Seguchi, Tadao; Yoshida, Kenzo

    1986-03-01

    For the development of accelerated testing methodology to estimate the life time of electric cable, which is installed in radiation field such as a nuclear reactor containment vessel, radiation and thermal combined degradation of cable insulation and jacketing materials was studied. The materials were two types of formulated polyethylene, ethylene-propylene rubber, Hypalon, and Neoprene. With Co-60 γ-rays the materials were irradiated up to 0.5 MGy under vacuum and in oxygen under pressure, then exposed to thermal aging at elevated temperature in oxygen. The degradation was investigated by the tensile test, gelfraction, and swelling measurements. The thermal degradation rate for each sample increases with increase of oxygen concentration, i.e. oxygen pressure, during the aging, and tends to saturate above 0.2 MPa of oxygen pressure. Then, the effects of irradiation and the temperature on the thermal degradation rate were investigated at the oxygen pressure of 0.2 MPa in the temperature range from 110 deg C to 150 deg C. For all of samples irradiated in oxygen, the following thermal degradation rate was accelerated by several times comparing with unirradiated samples, while the rate of thermal degradation for the sample except Neoprene irradiated under vacuum was nearly equal to that of unirradiated one. By the analysis of thermal degradation rate against temperature using Arrhenius equation, it was found that the activation energy tends to decrease for the samples irradiated in oxidation condition. (author)

  17. Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film

    Science.gov (United States)

    Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.

  18. Sizing of the thermal and electrical systems for an FED bundle divertor design with MgO insulation

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The high-order dependence of toroidal ripple from a bundle divertor on the magnet shield thickness increases the desirability of a magnet technology with minimal shielding requirements. A jacketed conductor with MgO powder insulation has been used successfully in highly irradiated environments. Its properties and limitations are described. A thermal and electrical sizing code has been developed for magnet design with this technology. Two design examples for ETF and FED missions show reduced recirculating power from previously reported designs

  19. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    International Nuclear Information System (INIS)

    Liu, Z; Liu, Q; Wang, Z D

    2016-01-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform. (paper)

  20. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  1. Overview and statistical failure analyses of the electrical insulation system for the SSC long dipole magnets from an industrialization point of view

    International Nuclear Information System (INIS)

    Roach, J.F.

    1992-01-01

    The electrical insulation system of the SSC long dipole magnets is reviewed and potential dielectric failure modes discussed. Electrical insulation fabrication and assembly issues with respect to rate production manufacturability are addressed. The automation required for rate assembly of electrical insulation components will require critical online visual and dielectric screening tests to insure production quality. Storage and assembly areas must bc designed to prevent foreign particles from becoming entrapped in the insulation during critical coil winding, molding, and collaring operations. All hand assembly procedures involving dielectrics must be performed with rigorous attention to their impact on insulation integrity. Individual dipole magnets must have a sufficiently low probability of electrical insulation failure under all normal and fault mode voltage conditions such that the series of magnets in the SSC rings have acceptable Mean Time Between Failure (MTBF) with respect to dielectric mode failure events. Statistical models appropriate for large electrical system breakdown failure analysis are applied to the SSC magnet rings. The MTBF of the SSC system is related to failure data base for individual dipole magnet samples

  2. An unusual electrical burn caused by alkaline batteries

    Directory of Open Access Journals (Sweden)

    Tyng-Luen Roan

    2015-02-01

    Full Text Available Electrical burns caused by low-voltage batteries are rarely reported. We recently encountered a male patient who suffered from a superficial second-degree burn over his left elbow and back. The total body surface area of the burn was estimated to be 6%. After interviewing the patient, the cause was suspected to be related to the explosion of a music player on the left-side of his waist, carried on his belt while he was painting a bathroom wall. Elevated creatine kinase levels and hematuria indicated rhabdomyolysis and suggested an electrical burn. Initial treatment was done in the burn intensive care unit with fluid challenge and wound care. The creatine kinase level decreased gradually and the hematuria was gone after 4 days in the intensive care unit. He was then transferred to the general ward for further wound management and discharged from our burn center after a total of 11 days without surgical intervention.

  3. Effect of electric field in the characterization of pultruded GFRP boron-free composite insulator for the extra high voltage by the ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hissae; Silva Junior, Edmilson Jose; Shinohara, Armando Hideki [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Xavier, Gustavo Jose Vasconcelos [CHESF, Recife, PE (Brazil); Costa, Edson Guedes [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lott Neto, Henrique Batista Duffles Teixeira; Britto, Paulo Roberto Ranzan; Fontan, Marcio A.B. [Sistema de Transmissao do Nordeste S.A., Recife, PE (Brazil)

    2016-07-01

    Full text: The pultruded boron-free glass fiber reinforced polymer (GFRP) composite has been widely used material for the electrical insulators in the high, extra and ultra high voltage overhead lines worldwide. In terms of design, the composite insulator has a highly complex geometry and large size. Aging of materials begin as soon as the insulators start their operation due to the strong electric field, mechanical load due to the weight of conductor cables, environment, corona discharge, generation of acids, and as a result, GFRP can fail mechanically by the stress corrosion crack (SCC) and electrical breakdown known as flashover. In order to mitigate the mechanical and electrical failures, the insulators in the field are frequently monitored by visual inspection, infrared thermography, UV detection, variation of measurement of distribution of electric field variation. However, new technologies for characterization and inspection of the composite insulator in the field are required for reliable operation. Imaging characterization using ionizing radiation (X-ray or g-ray) is an interesting technique, however, it can reduce drastically breakdown voltage due to the Townsend discharge, which free electrons are accelerated by an electric field, collide with gas molecules of air, and free additional electrons resulting in an avalanche multiplication that allows an electrical conduction through the air. In this study, in order to evaluate the potential application of ionization radiation for characterization of composite insulator under electric field, testing were conducted in high voltage laboratory by applying voltages up to 640 kV and varying radiation area of the composite insulator. As a result, even though there was an occurrence of flame on Imaging Plate (IP) detector case when it was located near the phase, corona discharge, but no breakdown discharge (flashover) occurred and high quality imaging of radiography could be obtained when X-ray source was employed

  4. Proceedings of the second meeting on electrical insulators for fusion magnets

    International Nuclear Information System (INIS)

    1983-07-01

    To guide the formulation of this program, nineteen speakers generally representing the magnet community - manufacturers, designers, and materials people - met and presented a series of talks in six sessions. Sessions topics included: magnet insulator environment, current testing activities, irradiation sources, failure modes, test parameters, and insulator design. Each presentation was discussed by the meeting, at-large, and the concensus opinions of these discussions were noted. After the conclusion of the talks, the meeting was subdivided into four subcommittees to consider and make recommendations on the following topics: irradiation facilities and dosimetry, insulator compositions and specimen sizes and shapes, test procedures and equipment, and specimen loads, influence of magnet mechanical and thermal cycles on test program, and international cooperation

  5. Influence of LOCA simulating conditions on the variation of electrical characteristics of insulating materials

    International Nuclear Information System (INIS)

    Okada, Sohei; Yoshikawa, Masato; Ito, Masayuki; Kusama, Yasuo; Yagi, Toshiaki

    1982-01-01

    The authors have examined the variation of insulation resistance when the sheets of insulating materials and cables were exposed to various LOCA simulating environment. This report describes the summarized results obtained so far for ethylene propylene rubber (EPR) which is important as an insulating material of cables. The samples used were an EPR sheet of standard compound ratio, 2 kinds of EPR sheets of practical compound ratio, 6 types of PH cables (fire-retardant, EPR insulated, chlorosulphonated polyethylene sheathed cable) produced for trial as reactor use, and 6 kinds of EPR sheets of the same composition as the cable core. To discuss the difference of insulation resistance change, the logarithmic mean of the ratio of 1 min values to initial insulation resistance rho/rhosub(o) was used. PWR LOCA-simulating environment was used, while the thermal aging in the air at 121 deg C for 7 days and 50 Mrad irradiation in the air at room temperature were given as the predeterioration. The effect of LOCA-simulation period in the simultaneous method without air, in which steam and radiation were given in parallel, the difference in the experimental results of cables and sheets, the effect of air, the comparison of the simultaneous method with the sequential method in which LOCA-simulating steam was applied after the irradiation in the air and the reverse sequential method (dielectric property measurements) are described. Under the existence of air, the sequential method seems to be a good simulation condition for the simultaneous method, though many experiments are required further. (Wakatsuki, Y.)

  6. Influence of LOCA simulating conditions on the variation of electrical characteristics of insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Yoshikawa, Masato; Ito, Masayuki; Kusama, Yasuo; Yagi, Toshiaki

    1982-12-01

    The authors have examined the variation of insulation resistance when the sheets of insulating materials and cables were exposed to various LOCA simulating environment. This report describes the summarized results obtained so far for ethylene propylene rubber (EPR) which is important as an insulating material of cables. The samples used were an EPR sheet of standard compound ratio, 2 kinds of EPR sheets of practical compound ratio, 6 types of PH cables (fire-retardant, EPR insulated, chlorosulphonated polyethylene sheathed cable) produced for trial as reactor use, and 6 kinds of EPR sheets of the same composition as the cable core. To discuss the difference of insulation resistance change, the logarithmic mean of the ratio of 1 min values to initial insulation resistance rho/rhosub(o) was used. PWR LOCA-simulating environment was used, while the thermal aging in the air at 121 deg C for 7 days and 50 Mrad irradiation in the air at room temperature were given as the predeterioration. The effect of LOCA-simulation period in the simultaneous method without air, in which steam and radiation were given in parallel, the difference in the experimental results of cables and sheets, the effect of air, the comparison of the simultaneous method with the sequential method in which LOCA-simulating steam was applied after the irradiation in the air and the reverse sequential method (dielectric property measurements) are described. Under the existence of air, the sequential method seems to be a good simulation condition for the simultaneous method, though many experiments are required further.

  7. Spin-related tunneling through a nanostructured electric-magnetic barrier on the surface of a topological insulator.

    Science.gov (United States)

    Wu, Zhenhua; Li, Jun

    2012-01-27

    We investigate quantum tunneling through a single electric and/or magnetic barrier on the surface of a three-dimensional topological insulator. We found that (1) the propagating behavior of electrons in such system exhibits a strong dependence on the direction of the incident electron wavevector and incident energy, giving the possibility to construct a wave vector and/or energy filter; (2) the spin orientation can be tuned by changing the magnetic barrier structure as well as the incident angles and energies.PACS numbers: 72.25.Dc; 73.20.-r; 73.23.-b; 75.70.-i.

  8. An indirect method to measure the electric charge deposited on insulators during PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dinator, M.I.; Cancino, S.A.; Miranda, P.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile); Morales, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile)], E-mail: rmorales@uchile.cl; Seelenfreund, A. [Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago (Chile)

    2007-10-15

    Total charge deposited by a proton beam in an insulator during PIXE analysis has been indirectly determined using a Mylar film coated with cobalt. Elemental concentrations in the samples, pieces of volcanic glass, were obtained and compared to concentrations determined by ICP OES on the same samples. The strong agreement between these results shows the accuracy of the charge determined by this method.

  9. The Effect of Moisture and Fungus on Electrical and Mechanical Properties of Plastic Insulating Materials

    Science.gov (United States)

    1945-10-01

    0110 106 280000 46000 7.6 30000 6.2 27000 4.2 24000 1.2 10000 Samples and eleotrode arrangement were humidity exposure tests« aa...VARIOUS INSULATING MATERIALS TEMPERATURE 25°C.; RELATIVE HUMIDITY 979b; EXCEPT WHERE NOTED OTHERWISE 140 160 ISO 200 220 240 260 270

  10. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    International Nuclear Information System (INIS)

    Shin, Woo-Ju; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook

    2013-01-01

    Highlights: •The optimum design of condenser cone cryogenic bushing was investigated. •Multi-layer aluminum foils in the bushing insulation body was designed and analyzed. •The optimum electric field distribution was selected by simulation. •The 60 kV FRP condenser cone cryogenic bushing was fabricated and tested. •BIL test corresponding to IEC 60137 was successfully performed for the bushing. -- Abstract: A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment

  11. Electrical insulation design and evaluation of 60 kV prototype condenser cone bushing for the superconducting equipment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Ju, E-mail: shinwooju@hanyang.ac.kr; Lee, Jong-Geon; Hwang, Jae-Sang; Seong, Jae-Kyu; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2013-11-15

    Highlights: •The optimum design of condenser cone cryogenic bushing was investigated. •Multi-layer aluminum foils in the bushing insulation body was designed and analyzed. •The optimum electric field distribution was selected by simulation. •The 60 kV FRP condenser cone cryogenic bushing was fabricated and tested. •BIL test corresponding to IEC 60137 was successfully performed for the bushing. -- Abstract: A cryogenic bushing is an essential component to be developed for commercial applications of high voltage (HV) superconducting devices. Due to the steep temperature gradient of the ambient of cryogenic bushing, general gas bushing adopting SF6 gas as an insulating media could not be directly used due to the freezing of SF6 gas. Therefore, condenser type bushing with special material considering cryogenic environment would be better choice for superconducting equipment. Considering these circumstance, we focused on the design of condenser bushing made of fiber reinforced plastic (FRP). In case of the design of the condenser bushing, it is very important to reduce the electric field intensification on the mounted flange part of the cryostat, which is the most vulnerable part of bushings. In this paper, design factors of cryogenic bushing were analyzed, and finally 60 kV condenser bushing was fabricated and tested. In order to achieve optimal electric field configuration, the configuration of condenser cone was determined using 2D electric field simulation results. Based on the experimental and the analytical works, 60 kV FRP condenser bushing was fabricated. Finally, the fabricated condenser bushing has been tested by applying lightning impulse and AC overvoltage test. From the test results, it was possible to get satisfactory results which confirm the design of cryogenic bushing in cryogenic environment.

  12. Electric Field and Current Density Performance Analysis of Sf6, C4f8 and CO2 Gases As An Insulation

    Science.gov (United States)

    Mazli, Ahmad Danial Ahmad; Jamail, Nor Akmal Mohd; Azlin Othman, Nordiana

    2017-08-01

    SF6 gases are not only widely used as an insulating component in electric power industry but also as an arc extinguishing performance in high voltage (HV) gas-insulated circuit breaker (GCB). SF6 gases is generally used in the production of semiconductor materials and devices. Though these gasses is widely used in many application, the presences of temperature hotspot in the insulations may affect the insulation characteristics particularly electric field and current density. Therefore, it is important to determine the relationship between electric field and current density of gasses used in the insulator in the presence of hotspot. In this paper, three types of gases in particular Sulphur Hexafluoride (SF6), Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2) was used in the insulator for gas insulation with the presence of two hotspots. These two hotspost were detected by referring the rising temperature in the insulator which are 1000 and 2000 Kelvin temperature for hotspot 1 and hotspot 2, respectively. From the simulation results, it can be concluded that Sulphur Hexafluoride (SF6) is the best choice for gas insulation since it had the lowest current density and electric field compared to Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2). It is observed that the maximum current density and electric field for SF6 during normal condition are 358.94 × 103 V/m and 0.643 × 109 A/m2, respectively. Meanwhile, during temperature rising at hotspot 1 and hotspot 2, SF6 also had lowest current density and electric field compared to the other gasses where the results for Emax and Jmax at hotspot 1 are 322.34 × 103 V/m and 1.934 × 109 A/m2, respectively; While, Emax and Jmax at hotspot 2 are 259.77× 103 V/m and 2.824 × 109 A/m2. The results of this analysis can be used to find the best choices of gas that can be used in the insulator.

  13. Structural and electrical evaluation for strained Si/SiGe on insulator

    International Nuclear Information System (INIS)

    Wang Dong; Ii, Seiichiro; Ikeda, Ken-ichi; Nakashima, Hideharu; Ninomiya, Masaharu; Nakamae, Masahiko; Nakashima, Hiroshi

    2006-01-01

    Three strained Si/SiGe on insulator wafers having different Ge fractions were evaluated using dual-metal-oxide-semiconductor (dual-MOS) deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM) methods. The interface of SiGe/buried oxide (BOX) shows roughness less than 1 nm by high resolution TEM observation. The interface states densities (D it ) of SiGe/BOX are approximately 1 x 10 12 cm -2 eV -1 , which is approximately one order of magnitude higher than that of Si/BOX in a Si on insulator wafer measured as reference by the same method of dual-MOS DLTS. The high D it of SiGe/BOX is not due to interface roughness but due to Ge atoms. The threading dislocations were also clearly observed by TEM and were analyzed

  14. Effects of Common Cause Failure on Electrical Systems

    International Nuclear Information System (INIS)

    Pepper, Kevin

    2015-01-01

    The essential electrical systems of reactor designs have developed progressively with an increased focus on the use of redundant, segregated and independent safety system equipment 'trains'. In this arrangement, essential safety functions associated with safe shutdown and cooling of the reactor are replicated on near identical electrical systems with each of the trains of safety system equipment supported by a fully rated standby generator. Development in designs has seen the number of trains increased to enable maintenance to be undertaken with reactors at power, improving the economics of the units whilst maintaining nuclear safety. This paper provides a background to common cause failure and provides examples where supporting guidance and international experience is available. It also highlights the regulatory guidance available to UK licensees. Recent examples of common cause failures on plant in the UK are presented together with an issue identified during the recent Generic Design Assessment review of new reactor designs within the UK. It was identified that one design was claiming a very low probability of failure associated with the loss of a single break and no-break voltage level, orders of magnitude below the target figure within ONR's Safety Assessment Principles. On closer scrutiny it was established that a significant safety function provided from identical low voltage switchboards would be lost in the event of a common cause failure affecting these boards. The paper will explain the action that has been taken by the requesting party to improve the resilience of the design and how this impacts on the ONR reliability targets for reactor designs within the UK. (authors)

  15. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  16. [Work accidents and automatic circuit reclosers in the electricity sector: beyond the immediate causes].

    Science.gov (United States)

    Silva, Alessandro Jose Nunes da; Almeida, Ildeberto Muniz de; Vilela, Rodolfo Andrade de Gouveia; Mendes, Renata Wey Berti; Hurtado, Sandra Lorena Beltran

    2018-05-10

    The Brazilian electricity sector has recorded high work-related mortality rates that have been associated with outsourcing, used to cut costs. In order to decrease the power outage time for consumers, the industry adopted the automatic circuit recloser as the technical solution. The device has hazardous implications for maintenance workers. The aim of this study was to analyze the origins and consequences of work accidents in power systems with automatic circuit recloser, using the Accident Analysis and Prevention (AAP) model. The AAP model was used to investigate two work accidents, aimed to explore the events' organizational origins. Case 1 - when changing a deenergized secondary line, a worker received a shock from the energized primary cable (13.8kV). The system reclosed three times, causing severe injury to the worker (amputation of a lower limb). Case 2 - a fatal work accident occurred during installation of a new crosshead on a partially insulated energized line. The tip of a metal cross arm section strap touched the energized secondary line and electrocuted the maintenance operator. The circuit breaker component of the automatic circuit recloser failed. The analyses revealed how business management logic can participate in the root causes of work accidents through failures in maintenance management, outsourced workforce management, and especially safety management in systems with reclosers. Decisions to adopt automation to guarantee power distribution should not overlook the risks to workers in overhead power lines or fail to acknowledge the importance of ensuring safe conditions.

  17. On losses caused in RF cavities by longitudinal electric fields

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-02-01

    Rf modes with large longitudinal electric fields (div E vector unequal to 0) at the cavity wall systematically show worse rf properties than modes with div E vector identical with 0; e.g. enlarged rf residual losses. While magnetic residual losses R sub(res) proportional f 2 are due to uncharged inhomogeneities in the oxide coating the metal, the electric residual losses R sub(orthogonal) occur via charged states in the oxide: the recharging of those states by tunnel exchange causes excitation across the energy gap of the superconductor yielding residual losses at high rf field strengths. The interaction of E sub(orthogonal) with the charges generate (longitudinal) phonons showing up as contribution to R sub(orthogonal). The resulting R sub(orthogonal) increases with E sub(orthogonal) and is nearly independent of frequency f, indicating the importance of R sub(orthogonal) for low frequency sc cavities, especially at high field strengths. In addition R sub(orthogonal) can account for the observed large residual losses of strip line modes in narrow junctions and joints between superconductors. (orig.) [de

  18. A Design Method for Graded Insulation of Transformers by Transient Electric Field Intensity Analysis

    OpenAIRE

    Yamashita, Hideo; Cingoski, Vlatko; Namera, Akihiro; Nakamae, Eihachiro; Kitamura, Hideo

    2000-01-01

    In this paper, a calculation method for transient electric field distribution inside a transformer impressed with voltage is proposed: The concentrated electric network for the transformer is constructed by dividing transformer windings into several blocks, and the transient voltage and electric field intensity distributions inside the transformer are calculated by using the axisymmetrical finite element method. Moreover, an animated display of the distributions is realized: The visualization...

  19. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  20. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  1. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  2. Heat conduction coefficient and coefficient of linear thermal expansion of electric insulation materials for superconducting magnetic system

    International Nuclear Information System (INIS)

    Deev, V.I.; Sobolev, V.P.; Kruglov, A.B.; Pridantsev, A.I.

    1984-01-01

    Results of experimental investigation of heat conduction coefficient and coefficient of linear thermal expansion and thermal shrinkages of the STEF-1 textolite-glass widely used in superconducting magnetic systems as electric insulating and structural material are presented. Samples of two types have been died: sample axisa is perpendicular to a plae of fiberglass layers ad sample axis is parallel to a plane of fiberglass layers. Heat conduction coefficient was decreased almost a five times with temperature decrease from 300 up to 5K and was slightly dependent on a sample type. Temperature variation of linear dimensions in a sample of the first type occurs in twice as fast as compared to the sample of the second type

  3. Localization of Electrical Insulation Failures in Superconducting Collared Coils by Analysis of the Distortion of a Pulsed Magnetic Field

    CERN Document Server

    Komorowski, P A

    2000-01-01

    The localization of possible electrical faults in superconducting accelerator magnets may, in most cases, be a complex, expensive and time-consuming process. In particular, inter-turn short circuits and failures of the ground insulation are well detectable when the magnet is collared, but often disappear after disassembly for repair due to the release of the pre-stress in the coils. The fault localization method presented in this paper is based on the measurement and analysis of the magnetic field generated inside the magnet aperture by a high voltage pulse. The presence of the fault modifies the distribution of the current in the coils and produces a distortion of the magnetic field. The described method aims at locating both the longitudinal and azimuthal position of the fault-affected area. The test method, the transient case FEM models and the implemented experimental set-up are presented and discussed for the LHC dipole models.

  4. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  5. Microwave heating of electric cable insulated wires before their impregnation with a hydrophobic material

    Energy Technology Data Exchange (ETDEWEB)

    Niculae, D; Mihailescu, A [Romanian Electricity Authority (Romania); Indreias, I; Martin, D [Institute of Atomic Physics, Bucharest (Romania); Margaritescu, A [ICPE Electrostatica, Bucharest, (Romania); Zlatonovici, D

    1998-12-31

    Underground insulated telecommunication cables must be impregnated with a hydrophobic material in order to prevent water penetration damage. To do so, the cable wire bundle must be heated to a temperature of 60 to 90 degrees C to ensure proper fluidity of the hydrophobic material that must fill the free spaces between the copper wires of the telephone cable. This paper described the microwave heating method of the wires before their impregnation. A cylindrical applicator was designed to perform a telephone bundle heating test. 800 W of microwave power were used on a telephone cable made up of 800 wires of 0.4 mm in diameter. A uniform heating was obtained throughout the section. Microwave heating was also found to be 53 per cent more energy efficient than hot air heating. 4 refs., 4 figs.

  6. Effects of thermal ageing and gamma radiations on ethylene-propylene based insulator of electric cables

    International Nuclear Information System (INIS)

    Baccaro, S.; D'Atanasio, P.

    1986-01-01

    This paper describes the effects of gamma radiation and thermal aging on cable insulator. The elastic properties degrade rapidly as the absorbed dose increases: the percent elongation at break attains nearly 100% value at 0.5 MGy absorbed dose. The gases evolved during the irradiation are mainly H 2 and CO 2 ; CO, CH 4 and C 2 H 6 are present in much lower concentrations. The damage undergone depends strongly on sequential radiation and thermal aging; the analysis of accelerated life test data by means of the Arrhenius model gave (1.23+-0.25) eV for the activation energy, about 1 eV higher than the values reported in the literature

  7. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Young, Chadwin D.; Bersuker, Gennadi; Hussain, Muhammad Mustafa

    2015-01-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard

  8. Electrical Burn Causing a Unique Pattern of Neurological Injury

    Directory of Open Access Journals (Sweden)

    Nathan R. Schaefer, BExSc, MBBS (Hons

    2015-04-01

    Full Text Available Summary: Neurological involvement is not uncommon in patients who sustain electrical injury. The exact mechanism of nervous system damage following electrical trauma is not fully understood. The gamut of possible neurologic manifestations following electrical injury is diverse. This case report describes a young man with a unique pattern of neurological injury following an electrical burn. The combination of brachial plexopathy, partial Horner’s syndrome, and phrenic nerve palsy secondary to electrical injury has not been previously described in the literature.

  9. Investigating the lubricity and electrical insulation caused by sanding in dry wheel–rail contacts

    NARCIS (Netherlands)

    Arias-Cuevas, O.; Li, Z.; Lewis, R.

    2009-01-01

    The adhesion (or available friction) in the wheel–rail contact is the most important parameter for the braking and traction operation of rail vehicles. Since the beginning of railway transportation, sanding from the locomotive has been a common practice to enhance the wheel–rail adhesion. In recent

  10. Measurement Techniques Used for Study of Electrical Discharge Mechanisms in Insulating Ester Fluids under Lightning Impulse

    Directory of Open Access Journals (Sweden)

    ROZGA, P.

    2014-08-01

    Full Text Available This article describes the measurement techniques used for the study of mechanisms of electrical discharge development in ester fluids under lightning impulse voltage. These techniques were applied in a laboratory experimental system which enabled the acquisition of a wide range of experimental data. An analysis of the data gives the possibility of assessing the processes responsible for electrical discharge propagation in different types of dielectric liquids. The photographic registration system provides photographs of developing discharges. This uses the shadowgraph method with an impulse laser as a flash lamp. The system of light emission registration enables collection of the time courses of light emitted by the developing discharge. Both systems operating together are synchronized using light guide communication. They are also unaffected by external disturbances such as network overvoltages and high electrical field stress. Preliminary results obtained on the basis of the described techniques, in the field of electrical discharge development in synthetic and natural esters, are presented in the article. These results confirm suitability of the methods used and give the possibility to formulate first conclusions.

  11. Degradation of electrical insulation of polyethylene under thermal and radiation environment, (4). [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuhei; Murabayashi, Fumio; Sawa, Goro [Mie Univ., Tsu (Japan); Yamaguchi, Shinji; Ieda, Masayuki

    1982-12-01

    Although the quality assurance guideline for the cables used for the safety and protection systems of nuclear power plants is given by IEEE Standards 323 and 383-1974, in addition, it is important to clarify the aging process under the complex environment of heat and radiation and the equivalence of the accelerated aging test of insulating materials. The authors performed the sequential (H.T-..gamma.. or ..gamma..-HT) and simultaneous (..gamma.., HT) application of respective aging factors of heat and radiation to non-additive low density polyethylene films by changing dose rate as the first stage, to clarify the dose rate dependence of the aging. They mainly investigated the dielectric properties, and forwarded investigation based on the change of carbonyl group by infrared spectrometry and residual free radicals by ESR analysis. In the samples irradiated with ..gamma..-ray only and those irradiated with ..gamma..-ray after thermal treatment for 7 hours at 90 deg C, the absorption coefficient ..cap alpha.. of carbonyl group increased with dose in the range from 3 Mrad to 60 Mrad, and both samples showed approximately the same ..cap alpha.. value. The ..cap alpha.. value of the samples thermally treated after irradiation was larger than that of the samples treated in the reverse order, and the difference between them increased with the increase of dose. The values of dielectric tangent delta at room temperature and 1 kHz for the samples (..gamma..) and (HT-..gamma..) increased with dose, and were almost the same, but those for the samples (..gamma..-HT) and (..gamma.., HT) were larger than the former two.

  12. Water Tree Influence on Space Charge Distribution and on the Residual Electric Field in Polyethylene Insulation

    Directory of Open Access Journals (Sweden)

    Cristina Stancu

    2009-10-01

    Full Text Available A computation method of the electricfield and ionic space charge density in planeinsulations with water trees (using a ComsolMultiphysics software and the thermal step currents(Im(t measured with Thermal Step Method ispresented. A parabolic spatial variation of volumecharge density, an exponential spatial variation ofthe electric permittivity ε and a linear dependency ofε and the temperature coefficient of permittivity αεwith the average water concentration in trees, areconsidered. For a water tree with a known length,different values of charge density are consideredand the electric field and the thermal step currentsIc(t are calculated. The currents Ic(t and Im(t arecompared and the volume of charge density andelectric field for which Ic(t is identical with Im(t arekept.

  13. Causes of project implementation delay in the Ethiopian Electric ...

    African Journals Online (AJOL)

    This study identifies the major sources of delay in the implementation of construction projects in the Ethiopian electric utility enterprise. It also investigates the magnitude of schedule variance and cost overrun experienced by the Universal Electric Access Program (UEAP)due to implementation delay. Primary data were ...

  14. Conductance fluctuations and distribution at metal-insulator transition induced by electric field in disordered chain

    International Nuclear Information System (INIS)

    Senouci, Khaled

    2000-08-01

    A simple Kronig-Penney model for 1D mesoscopic systems with δ peak potentials is used to study numerically the influence of a constant electric field on the conductance fluctuations and distribution at the transition. We found that the conductance probability distribution has a system-size independent form with large fluctuations in good agreement with the previous works in 2D and 3D systems. (author)

  15. Do clinical examination gloves provide adequate electrical insulation for safe hands-on defibrillation? I: Resistive properties of nitrile gloves.

    Science.gov (United States)

    Deakin, Charles D; Lee-Shrewsbury, Victoria; Hogg, Kitwani; Petley, Graham W

    2013-07-01

    Uninterrupted chest compressions are a key factor in determining resuscitation success. Interruptions to chest compression are often associated with defibrillation, particularly the need to stand clear from the patient during defibrillation. It has been suggested that clinical examination gloves may provide adequate electrical resistance to enable safe hands-on defibrillation in order to minimise interruptions. We therefore examined whether commonly used nitrile clinical examination gloves provide adequate resistance to current flow to enable safe hands-on defibrillation. Clinical examination gloves (Kimberly Clark KC300 Sterling nitrile) worn by members of hospital cardiac arrest teams were collected immediately following termination of resuscitation. To determine the level of protection afforded by visually intact gloves, electrical resistance across the glove was measured by applying a DC voltage across the glove and measuring subsequent resistance. Forty new unused gloves (control) were compared with 28 clinical (non-CPR) gloves and 128 clinical (CPR) gloves. One glove in each group had a visible tear and was excluded from analysis. Control gloves had a minimum resistance of 120 kΩ (median 190 kΩ) compared with 60 kΩ in clinical gloves (both CPR (median 140 kΩ) and non-CPR groups (median 160 kΩ)). Nitrile clinical examination gloves do not provide adequate electrical insulation for the rescuer to safely undertake 'hands-on' defibrillation and when exposed to the physical forces of external chest compression, even greater resistive degradation occurs. Further work is required to identify gloves suitable for safe use for 'hands-on' defibrillation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films

    DEFF Research Database (Denmark)

    Liu, Q.M.; Poumellec, B.; Braga, D.

    2005-01-01

    induced electric field and other insulating properties like electron traps population and conductivity in high field. Concerning the change of the contrast at low dose arising from the poling electric field, we show that this field begins to disappear at around 450 degrees C and is erased completely...... at 650 degrees C. Using a larger dose allows measuring the change in conductivity contrast. We find a stability similar to the electric field with a disappearance around 450 similar to 650 degrees C. On the contrary, for intermediate dose, the contrast remains for larger annealing temperature. It allows...

  17. Electrically Insulated Sensing of Respiratory Rate and Heartbeat Using Optical Fibers

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2014-11-01

    Full Text Available Respiratory and heart rates are among the most important physiological parameters used to monitor patients’ health. It is important to design devices that can measure these parameters without risking or altering the subject’s health. In this context, a novel sensing method to monitor simultaneously the heartbeat and respiratory rate signals of patients within an electrically safety environment was developed and tested. An optical fiber-based sensor was used in order to detect two optical phenomena. Photo-plethysmography and the relation between bending radius and attenuation of optical fiber were coupled through a single beam light traveling along this fiber.

  18. Cooling of electrically insulated high voltage electrodes down to 30 mK Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

    CERN Document Server

    Eisel, Thomas; Bremer, J

    2011-01-01

    The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the ther...

  19. The annealing influence onto the electrical and magnetic behavior of magnetoresistive/insulator system

    International Nuclear Information System (INIS)

    Ahmed, A.M.; Mohamed Abd El-Mo'ez A; Mohamed, H.F.; Diab, A.K.; Mohamed Ami M; Mazen, A.E.A.

    2016-01-01

    This investigation is mainly concerned with the effect of annealing temperature (600, 700, 800 and 900 deg C) in air for (La 0. 7Ba 0.3 MnO 3 ) 1-x /(NiO) x with x = 0 and x = 0.10 samples. It was shown that the annealing temperature does not affect the structure and parameters of rhombohedral lattice of the samples. However, it is observed that the annealing treatment has a notable effect on the electrical resistivity and the metal-semiconductor transition temperature Tms. Temperature dependent magnetization measurements showed a decrease in Curie temperature TC with annealing temperature. In the same time, annealing process decreases the magnetoresistance of La 0.7 Ba 0.3 MnO 3 , in contrast to (La 0.7 Ba 0.3 MnO 3 ) 0.9 /(NiO) 0.1 composite.

  20. Radiation Stability of a Connecting Compound of the Electric Insulation of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Cherevatenko, E.

    2006-01-01

    The strength limits of the samples of epoxy containing the fillers and antioxidants have been measured after γ-irradiation at dose rate of 10 - 1 / 10 2 Gy x s - 1. It is shown that different fillers, especially special cement, essentially increase radiation stability of the compound. Using 'Time-dose-temperature superposition' method and on the base of 'Recognition Theory' the limiting doses, corresponding to 25% losses of the yield strength (at electrical parameters conservation) were first determined by means of extrapolation to the dose rate of 10 - 3 Gy x s - 1. It is ractically impossible to receive the value of the limiting dose in experiment for these conditions because it requires a very long time of irradiation of the samples to achieve necessary effect

  1. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  2. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  3. Heat transfer through the flat surface of Rutherford superconducting cable samples with novel pattern of electrical insulation immersed in He II

    Science.gov (United States)

    Strychalski, M.; Chorowski, M.; Polinski, J.

    2014-05-01

    Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.

  4. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  5. Electrical failure analysis for root-cause determination

    International Nuclear Information System (INIS)

    Riddle, J.

    1990-01-01

    This paper outlines a practical failure analysis sequence. Several technical definitions are required. A failure is defined as a component that was operating in a system where the system malfunctioned and the replacement of the device restored system functionality. The failure mode is the malfunctioning behavior of the device. The failure mechanism is the underlying cause or source of the failure mode. The failure mechanism is the root cause of the failure mode. The failure analysis procedure needs to be adequately refined to result in the determination of the cause of failure to the degree that corrective action or design changes will prevent recurrence of the failure mode or mechanism. An example of a root-cause determination analysis performed for a nuclear power industry customer serves to illustrate the analysis methodology

  6. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.Tuğrul, E-mail: atseyhan@anadolu.edu.tr [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Composite Materials Manufacturing Science Laboratory (CMMSL), Research and Application Center of Civil Aviation (RACCA), Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Göncü, Yapıncak; Durukan, Oya; Akay, Atakan; Ay, Nuran [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey)

    2017-05-15

    to make it possible to utilize them as promising filler constituent in manufacturing thermally conductive and electrically insulating polymer nanocomposites that could be considered as whole or a part of a heat-releasing device.

  7. Study of heat transfer in superconducting cable electrical insulation of accelerator magnet cooled by superfluid helium; Etude des transferts de chaleur dans les isolations electriques de cables supraconducteurs d'aimant d'accelerateur refroidi par helium superfluide

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    1996-10-04

    Heat transfer studies of electrical cable insulation in superconducting winding are of major importance for stability studies in superconducting magnets. This work presents an experimental heat transfer study in superconducting cables of Large Hadron Collider dipoles cooled by superfluid helium and submitted to volume heat dissipation due to beam losses. For NbTi magnets cooled by superfluid helium the most severe heat barrier comes from the electrical insulation of the cables. Heat behaviour of a winding is approached through an experimental model in which insulation characteristics can be modified. Different tests on insulation patterns show that heat transfer is influenced by superfluid helium contained in insulation even for small volume of helium (2 % of cable volume). Electrical insulation can be considered as a composite material made of a solid matrix with a helium channels network which cannot be modelled easily. This network is characterised by another experimental apparatus which allows to study transverse and steady-state heat transfer through an elementary insulation pattern. Measurements in Landau regime ({delta}T{approx}10{sup -5} to 10{sup -3} K) and in Gorter-Mellink regime ({delta}T>10{sup -3} K) and using assumptions that helium thermal paths and conduction in the insulation are decoupled allow to determine an equivalent channel area (10{sup -6} m{sup 2}) and an equivalent channel diameter (25 {mu}). (author)

  8. Study of heat transfer in superconducting cable electrical insulation of accelerator magnet cooled by superfluid helium; Etude des transferts de chaleur dans les isolations electriques de cables supraconducteurs d'aimant d'accelerateur refroidi par helium superfluide

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    1996-10-04

    Heat transfer studies of electrical cable insulation in superconducting winding are of major importance for stability studies in superconducting magnets. This work presents an experimental heat transfer study in superconducting cables of Large Hadron Collider dipoles cooled by superfluid helium and submitted to volume heat dissipation due to beam losses. For NbTi magnets cooled by superfluid helium the most severe heat barrier comes from the electrical insulation of the cables. Heat behaviour of a winding is approached through an experimental model in which insulation characteristics can be modified. Different tests on insulation patterns show that heat transfer is influenced by superfluid helium contained in insulation even for small volume of helium (2 % of cable volume). Electrical insulation can be considered as a composite material made of a solid matrix with a helium channels network which cannot be modelled easily. This network is characterised by another experimental apparatus which allows to study transverse and steady-state heat transfer through an elementary insulation pattern. Measurements in Landau regime ({delta}T{approx}10{sup -5} to 10{sup -3} K) and in Gorter-Mellink regime ({delta}T>10{sup -3} K) and using assumptions that helium thermal paths and conduction in the insulation are decoupled allow to determine an equivalent channel area (10{sup -6} m{sup 2}) and an equivalent channel diameter (25 {mu}). (author)

  9. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    Science.gov (United States)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  10. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    Science.gov (United States)

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  11. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

    Science.gov (United States)

    Schubert, Michael; Leupold, Nico; Exner, Jörg; Kita, Jaroslaw; Moos, Ralf

    2018-04-01

    Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10-12 S/cm before annealing up to 5.6 × 10-13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

  12. Estimation of Future Demand for Neutron-Transmutation-Doped Silicon Caused by Development of Hybrid Electric Vehicle

    International Nuclear Information System (INIS)

    Kim, Myong Seop; Park, Sang Jun

    2008-01-01

    By using this doping method, silicon semiconductors with an extremely uniform dopant distribution can be produced. They are usually used for high power devices such as thyristor (SCR), IGBT, IGCT and GTO. Now, the demand for high power semiconductor devices has increased rapidly due to the rapid increase of the green energy technologies. Among them, the productions of hybrid cars or fuel cell engines are excessively increased to reduce the amount of discharged air pollution substances, such as carbon dioxide which causes global warming. It is known that the neutron-transmutation-doped floating-zone (FZ) silicon wafers are used in insulated-gate bipolar transistors (IGBTs) which control the speed of the electric traction motors equipped in hybrid or fuel cell vehicles. Therefore, inevitably, it can be supposed that the demand of the NTD silicon is considerably increased. However, it is considered likely that the irradiation capacity will not be large enough to meet the increasing demand. After all, the large irradiation capacity for NTD such as a reactor dedicated to the silicon irradiation will be constructed depending on the industrial demand for NTD silicon. In this work, we investigated the relationship between the hybrid electric vehicle (HEV) industry and the NTD silicon production. Also, we surveyed the prospect for the production of the HEV. Then, we deduced the worldwide demand for the NTD silicon associated with the HEV production. This work can be utilized as the basic material for the construction of the new irradiation facility such as NTD-dedicated neutron source

  13. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  14. Electrical and proximity-magnetic effects induced quantum Goos–Hänchen shift on the surface of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Jian [School of Physics and Electronics, Yancheng Teachers College, Yancheng, 224002 Jiangsu (China); Da, H.X., E-mail: haixia8779@163.com [Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore)

    2014-03-15

    We use scattering matrix method to theoretically demonstrate that the quantum Goos–Hänchen shift of the surface on three-dimensional topological insulator coated by ferromagnetic strips is sensitive to the magnitude of ferromagnetic magnetization. The dependence of quantum Goos–Hänchen shift on magnetization and gate bias is investigated by performing station phase approach. It is found that quantum Goos–Hänchen shift is positive and large under the magnetic barrier but may be positive as well as negative values under the gate bias. Furthermore, the position of quantum Goos–Hänchen peak can also be modulated by the combination of gate bias and proximity magnetic effects. Our results indicate that topological insulators are another candidates to support quantum Goos–Hänchen shift. - Highlights: • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators is first investigated. • The magnetization affects quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators. • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators can be manipulated by the gate voltages.

  15. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  16. Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2015-01-01

    We show that the majority of electrical crosstalk between integrated Mach-Zehnder modulators can be caused by a shared ground path and demonstrate that in its absence crosstalk and related transmission penalty is greatly reduced.

  17. Management plan for electrical insulation, transformers and bulbs high pressure sodium retired from electrical distribution lines of the Unidad Estrategica de Negocios Servicio al Cliente Electricidad of the Instituto Costarricense de Electricidad

    International Nuclear Information System (INIS)

    Badilla Sanabria, Daniela; Chaves Morales, Angelica; Rodriguez Mendez, Susan

    2012-01-01

    The Unidad Estrategica de Negocios Servicio al Cliente Electricidad of Instituto Costarricense de Electricidad has completed a management plan for electrical insulation, transformers and sodium vapor bulbs high pressure, that are retired from electrical distribution lines. The three residues have been characterized and identified in its physical composition, chemical and hazardous properties, generating selection, analysis and proposals for alternative of recovery, treatment or final disposal, viable from an environmental, technical and economic view. A series of recommendations and procedures have been performed using tabs and instructions for the purpose of unifying management practices appropriate in the Area de Sostenibilidad Ambiental of the ICE. (author) [es

  18. Fabrication and Measurement of Electroluminescence and Electrical Properties of Organic Light-Emitting Diodes Containing Mott Insulator Nanocrystals.

    Science.gov (United States)

    Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki

    2016-04-01

    By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.

  19. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  20. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  1. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb$_{3}$Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9...

  2. A comparative study of Mg and Pt contacts on semi-insulating GaAs: electrical and XPS characterization

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Kindl, Dobroslav; Hubík, Pavel; Mičušík, M.; Dubecký, M.; Boháček, P.; Vanko, G.; Gombia, E.; Nečas, V.; Mudroň, J.

    2017-01-01

    Roč. 395, Feb (2017), s. 131-135 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : semi-insulating GaAs * metal -semiconductor contact * interface * work function * electron transport * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  3. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  4. Influence of the barite tenors of the Jaicos, Piaui, Brazil, clays on the ceramic properties of electric insulator porcelains

    International Nuclear Information System (INIS)

    Correa, W.L.P.; Lima, M.B.; Carvalho, F.M.S.

    2009-01-01

    The clays of the Municipality of Jaicos, Piaui, has been used as raw materials for the manufacture of insulators for company located in the municipality of Pedreira - Sao Paulo. It can be noticed in the clay blocks and consolidated, 'lenses' of barite. The mineralogical composition of clay and the nature of these 'lenses' were studied by chemical analysis, X-ray diffraction for mineralogical characterization. The clays are composed primarily by kaolinite, quartz, and some amount of illite and orthoclase. The presence of orthoclase does believe in a recent deposition of these clays. The 'lenses' were characterized as barite, BaSO 4 . To check the influence of barite in the composition of bodies of porcelain to insulators made up six compositions with different levels of barite, obtained their own clay. It applies, then the tests of ceramic fracture to bending, water absorption, apparent porosity to determine the effect of the introduction of barite in the compositions. (author)

  5. Effect of the Ignition Method on the Extinction Limit for a Flame Spreading over Electric Wire Insulation

    DEFF Research Database (Denmark)

    Mitsui, Fumiya; Nagachi, Masashi; Citerne, Jean-Marie

    . The experimental results show that the LOC of NiCr core wires assume an almost constant value under normal gravity conditions once ignition occurred, whereas under microgravity conditions, the LOC gradually decreases as the ignition power or heating time increases and eventually it reaches an almost constant value......Flame spread experiments with wire insulation were conducted in microgravity (parabolic flights) and in normal gravity to understand the effect of the ignition condition on the Limiting Oxygen Concentration (LOC) for an opposed air flow condition of 100 mm/s (typical flow velocity on ISS). Both...... the ignition power (50-110 W) and the igniter heating time (5-15 s) were varied. Polyethylene-coated Nickel-Chrome or copper wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were used as sample wires, and a 0.50 mm diameter coiled Kanthal wire was used as the igniter...

  6. Study of high field Nb3Sn superconducting dipoles: electrical insulation based made of ceramic and magnetic design

    International Nuclear Information System (INIS)

    Rochepault, E.

    2012-01-01

    In the framework of LHC upgrades, significant efforts are provided to design accelerator magnets using the superconducting alloy Nb 3 Sn, which allows to reach higher magnetic fields (≥12 T). The aim of this thesis is to propose new computation and manufacturing methods for high field Nb 3 Sn dipoles. A ceramic insulation, previously designed at CEA Saclay, has been tested for the first time on cables, in an accelerator magnet environment. Critical current measures, under magnetic field and mechanical stress, have been carried out in particular. With this test campaign, the current ceramic insulation has been shown to be too weak mechanically and the critical current properties are degraded. Then a study has been conducted, with the objective to improve the mechanical strength of the insulation and better distribute the stress inside the cable. Methods of magnetic design have also been proposed, in order to optimize the coils shape, while fulfilling constraints of field homogeneity, operational margins, forces minimization... Consequently, several optimization codes have been set up. They are based on new methods using analytical formulas. A 2D code has first been written for block designs. Then two 3D codes have been realized for the optimization of dipole ends. The former consists in modeling the coil with elementary blocs and the latter is based on a modeling of the superconducting cables with ribbons. These optimization codes allowed to propose magnetic designs for high field accelerator magnets. (author) [fr

  7. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  8. Electrical failure during cardiopulmonary bypass: an evaluation of incidence, causes, management and guidelines for preventative measures.

    LENUS (Irish Health Repository)

    Hargrove, M

    2012-02-03

    The incidence of electrical failure during cardiopulmonary bypass (CPB) has been reported to occur in approximately 1 per 1000 cases. While the resultant morbidity and mortality is low, electrical failure is a life-threatening scenario. We report three major electrical failures during CPB in a patient population of 3500 over a 15-year period. These cases involved mains failure and generator shut down, mains failure and generator power surge, and failure of the uninterruptable power supply (UPS), which caused protected sockets to shut down. Protocols for preventative maintenance, necessary equipment, battery backup and guidelines for the successful management of such accidents during CPB are discussed.

  9. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  10. Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator

    Science.gov (United States)

    Singh Mehta, Niraj; Sahu, Praveen Kumar; Ershad, Md; Saxena, Vipul; Pyare, Ram; Ranjan Majhi, Manas

    2018-01-01

    In the present study, the effect of ZrO2 on the sintering, strength and dielectric behavior of electrical ceramic porcelain insulator with substituting alumina content by zirconia (in weight percentage from 0% to 30%) is investigated. The different composition of samples containing different zirconia (ZrO2) contents of 0, 10, 20, and 30 wt% are prepared using the uniaxial pressure technique applying 160 MPa pressure. Further, the prepared samples are also analyzed for sintering temperatures (1350 °C), and effects are observed on mechanical and electric properties of porcelain insulator. Different characterizations such as Dilatometer, x-ray diffraction, scanning electron microscopy and differential thermal analysis/thermo gravimetric analysis were used to evaluate the thermal, phase detection, micro structural and weight loss changes by increasing concentration of ZrO2 on base porcelain composition. At 1350 °C, for the composition having 20 wt% ZrO2 with 10 wt% alumina, the maximum density was observed 2.81 g cm-3 with a porosity of 2.23%. The highest tensile strength of 41 ± 3 MPa is observed for the same sample composition. The minimum value of thermal expansion coefficient is found to be in the range of 10-6 for the sample with 30 wt% ZrO2 content sintered at 1350 °C compared to other prepared samples. Similarly, the highest dielectric value (5.1-4.4) having dielectric loss (0.08-0.12) is achieved for the sample with 30 wt% ZrO2 content sintered at 1350 °C in the frequency range of 4-20 GHz at room temperature. According to the mechanical properties, the composition having 20 wt% ZrO2 on base ceramic porcelain composition has enormous potential to serve as a high strength refractory material. For dielectric properties, the composition having 30 wt% ZrO2 is more suitable for the electrical application.

  11. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  12. Structural and electrical properties of Ge(111) films grown on Si(111) substrates and application to Ge(111)-on-Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, K., E-mail: sawano@tcu.ac.jp [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Hoshi, Y.; Kubo, S. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Arimoto, K.; Yamanaka, J.; Nakagawa, K. [Center for Crystal Science and Technology, University of Yamanashi, 7 Miyamae-cho, Kofu (Japan); Hamaya, K. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka (Japan); Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka (Japan); Shiraki, Y. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan)

    2016-08-31

    Structural and electrical properties of a Ge(111) layer directly grown on a Si(111) substrate are studied. Via optimized two-step growth manner, we form a high-quality relaxed Ge layer, where strain-relieving dislocations are confined close to a Ge/Si interface. Consequently, a density of holes, which unintentionally come from crystal defects, is highly suppressed below 4 × 10{sup 16} cm{sup −3}, which leads to significantly high hole Hall mobility exceeding 1500 cm{sup 2}/Vs at room temperature. By layer transfer of the grown Ge layer, we also fabricate a Ge(111)-on-Insulator, which is a promising template for high-performance Ge-based electronic and photonic devices. - Highlights: • A high-quality Ge layer is epitaxially grown on a Si(111) by two-step growth manner. • Growth conditions, such as growth temperatures, are optimized. • Very high hole mobility is obtained from Ge(111) grown on Si(111). • High-quality thin Ge-on-Insulator with (111) orientation is obtained.

  13. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  14. "Train surfers": analysis of 23 cases of electrical burns caused by high tension railway overhead cables.

    Science.gov (United States)

    Sternick, I; Gomes, R D; Serra, M C; Radwanski, H N; Pitanguy, I

    2000-08-01

    The term "train surfers" describes a group of adolescents from the outskirts of the city of Rio de Janeiro, who are compelled by the overcrowded railway trains to travel on the roofs of the wagons. Collision with electrical high-tension wires is a relatively frequent occurrence, causing extensive and complex injuries. This study analyzes this clinical and surgical phenomenon which has caused over 100 fatalities in more than 200 registered accidents over the past 10 years.

  15. Electric long-term behaviour of polyethylene insulations for medium-voltage cables cross-linked chemically or by radiation

    International Nuclear Information System (INIS)

    Scharff, C.; Eberhardt, M.

    1989-01-01

    The electric long-term behaviour of cross-linked polyethylene (CLPE) was studied at room temperature by measuring the channel operating time under needling and the total charge before channel operation. It is found that the decomposition products formed in CLPE act as tension stabilizers. They have a dominating influence on the electric long-term behaviour

  16. Modelling and assessment of the electric field strength caused by mobile phone to the human head

    Directory of Open Access Journals (Sweden)

    Buckus Raimondas

    2016-01-01

    Full Text Available Background/Aim. Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. Methods. In this paper the software “COMSOL Multiphysics” was used to establish the electric field strength created by mobile phones around the head. Results. The second generation (2G Global System for Mobile (GSM phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G UMTS smart phones that effectively use high (2,100 MHz radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear, and constitutes 1-12% of the artificial head’s surface. Conclusion. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user ear.

  17. Modelling and assessment of the electric field strength caused by mobile phone to the human head.

    Science.gov (United States)

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas

    2016-06-01

    Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.

  18. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  19. Electric detection of the spin-Seebeck effect in magnetic insulator in the presence of interface barrier

    International Nuclear Information System (INIS)

    Uchida, K; Ota, T; Kajiwara, Y; Saitoh, E; Umezawa, H; Kawai, H

    2011-01-01

    The spin-Seebeck effect (SSE), the spin-voltage generation as a result of a temperature gradient, has recently been observed in ferrimagnetic insulator LaY 2 Fe 5 O 12 films by means of the inverse spin-Hall effect in Pt films. Here we investigate the SSE using LaY 2 Fe 5 O 12 /SiO 2 (Cu)/Pt systems, where the LaY 2 Fe 5 O 12 and Pt layers are separated by SiO 2 (Cu) thin-film barriers. The experimental results show that the SSE signal disappears in the LaY 2 Fe 5 O 12 /SiO 2 /Pt system, but the finite signal appears in the LaY 2 Fe 5 O 12 /Cu/Pt system, indicating that the direct contacts between the LaY 2 Fe 5 O 12 and normal metals is necessary for generating the SSE signal.

  20. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dubecký, F., E-mail: elekfdub@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Kindl, D.; Hubík, P. [Institute of Physics CAS, v.v.i., Cukrovarnická 10, CZ-16200 Prague (Czech Republic); Mičušík, M. [Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, SK-84541 (Slovakia); Dubecký, M. [Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1 (Czech Republic); Boháček, P.; Vanko, G. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Gombia, E. [IMEM-CNR, Parco area delle Scienze 37/A, Parma, I-43010 (Italy); Nečas, V. [Faculty of Electrical Engineering and Information Technology, SUT, Ilkovičova 3, Bratislava, SK-81219 (Slovakia); Mudroň, J. [Department of Electronics, Academy of Armed Forces, Demänová 393, Liptovský Mikuláš, SK-03106 (Slovakia)

    2017-02-15

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  1. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  2. In situ electric fields causing electro-stimulation from conductor contact of charged human

    International Nuclear Information System (INIS)

    Nagai, T.; Hirata, A.

    2010-01-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength- duration curves with parameters used in previous studies. (authors)

  3. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  4. Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3-class of topological insulators

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytic......Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine...... for the effective mass tensor of the Bi2Se3 class of materials as a function of strain and electric field....

  5. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  6. Label-free electrical determination of trypsin activity by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Serr, Andreas; Wunderlich, Bernhard K; Bausch, Andreas R

    2007-10-08

    A silicon-on-insulator (SOI) based thin film resistor is employed for the label-free determination of enzymatic activity. We demonstrate that enzymes, which cleave biological polyelectrolyte substrates, can be detected by the sensor. As an application, we consider the serine endopeptidase trypsin, which cleaves poly-L-lysine (PLL). We show that PLL adsorbs quasi-irreversibly to the sensor and is digested by trypsin directly at the sensor surface. The created PLL fragments are released into the bulk solution due to kinetic reasons. This results in a measurable change of the surface potential allowing for the determination of trypsin concentrations down to 50 ng mL(-1). Chymotrypsin is a similar endopeptidase with a different specificity, which cleaves PLL with a lower efficiency as compared to trypsin. The activity of trypsin is analyzed quantitatively employing a kinetic model for enzyme-catalyzed surface reactions. Moreover, we have demonstrated the specific inactivation of trypsin by a serine protease inhibitor, which covalently binds to the active site of the enzyme.

  7. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan; Feng, Tao; Wang, Ning; Jie, Wanqi [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China)

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance can be explained using the deep trap model.

  8. Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries

    OpenAIRE

    Vieira, E. M. F.; Ribeiro, J. F.; Silva, Maria Manuela; Barradas, N. P.; Alves, E.; Alves, A.; Correia, M. R.; Gonçalves, L. M.

    2016-01-01

    Electrochemical stability, moderate ionic conductivity and low electronic conductivity make the lithium phosphorous oxynitride (LiPON) electrolyte suitable for micro and nanoscale lithium batteries. The electrical and electrochemical properties of thin-film electrolytes can seriously compromise full battery performance. Here, radio-frequency (RF)-sputtered LiPON thin films were fabricated in nitrogen plasma under different working pressure conditions. With a slight decrease in ...

  9. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  10. Investigations of Electrical Trees in the Inner Layer of XLPE Cable Insulation Using Computer-aided Image Recording Monitoring

    OpenAIRE

    Xie, Ansheng; Zheng, Xiaoquan; Li, Shengtao; Chen, George

    2010-01-01

    Using a computer-aided image recording monitoring system, extensive measurements have been performed in the inner layer of 66 kV cross-linked polyethylene (XLPE)cables. It has been found that there are three kinds of electrical trees in the samples,the branch-like tree, the bush-like tree and the mixed tree that is a mixture of the above two kinds. When the applied voltage frequency is less than or equal to 250 Hz, only the mixed tree appears in XLPE samples, when the frequency is greater tha...

  11. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  12. Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3-class of topological insulators

    Science.gov (United States)

    Rosdahl Brems, Mathias; Paaske, Jens; Lunde, Anders Mathias; Willatzen, Morten

    2018-05-01

    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of Bi2Se3. For the most experimentally relevant surface termination we analytically derive the surface state (SS) spectrum, revealing an anisotropic Dirac cone with elliptical constant energy contours giving rise to a direction-dependent group velocity. The spin-momentum locking of strained Bi2Se3 is shown to be modified. Hence, strain control can be used to manipulate the spin degree of freedom via the spin–orbit coupling. We show that for a thin film of Bi2Se3 the SS band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the SS band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions for the effective mass tensor of the Bi2Se3 class of materials as a function of strain and electric field.

  13. Low energy gamma induced radiation damage in YBCO: electrical resistivity and the induced metal - insulator transition behaviors

    International Nuclear Information System (INIS)

    Cruz, Carlos M.; Pinnera, Ibrahin; Leyva, Antonio; Abreu, Yamiel; Sirgado, Nicolas

    2015-01-01

    In the present contribution the superconducting YBCO ρ(T) dependence behavior on the irradiation dose and accumulative time are studied for gamma quanta of E γ = 132 keV ( 57 Co) and 1,25 MeV ( 60 Co) at room temperature. In both cases, possible radiation effects on grain boundary and intragrain zones are evaluated by means of different gamma ray microscopic interaction models. It was conclude that 57 Co gamma quanta (E γ = 132 keV) modules YBCO ρ(T) dependence behavior through enhanced oxygen vacancy diffusion motions which collapse the electron percolative conduction paths in the grain boundary zones, effects which are not observed by irradiation with 60 Co gamma quanta (E γ = 1,25 MeV), in which case main irradiation effects on the electrical conduction mechanisms are limited to the intragrain zones. (Author)

  14. Device for protecting the section of the airline electricity transmission with insulated neutral from incomplete phase modes

    Energy Technology Data Exchange (ETDEWEB)

    Sagutdinov, R.Sh.; Batoyev, D.

    1982-01-01

    The device for USSR certificate of authorship 792439 is improved in order to raise reliability of isolating the damage zone by including into operation an antenna filter for voltage of zero sequence (AFNIP) only during the operating time of the electrical unit in incomplete phase mode. The newly introduced circuit breaker contract of the inlet relay of the voltage filter for reverse sequence is connected between the outlet of the AFNIP and the ground. The device additionally has a time relay which is connected to the outlet of the voltage filter of reverse sequence. The circuit breaker contact of the inlet relay AFNIP is connected in series to the closure contact of the time relay and the winding of the second outlet relay of the actuating mechanism.

  15. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    Science.gov (United States)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  16. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  17. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  18. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  19. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  20. Fabrication, structural and electrical properties of (1 1 0) localized silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Destefanis, V; Huguenin, J L; Samson, M P; Morand, Y; Arvet, C; Monfray, S; Skotnicki, T; Hartmann, J M; Delaye, V; Boulitreau, P; Brianceau, P; Gautier, P

    2010-01-01

    The aim being to fabricate (1 1 0) localized silicon-on-insulator (L-SOI) devices, we have first of all completed the Semicond. Sci. Technol. 23 105018 (2008) study of the differences between (1 1 0) and (1 0 0) surfaces in terms of (i) HCl etch kinetics and (ii) SiGe growth kinetics (with a chlorinated chemistry). The core layers of a L-SOI device are indeed obtained thanks to the in situ HCl etching (on patterned wafers) of the Si active areas followed by the selective epitaxial growth of a Si 0.7 Ge 0.3 /Si stack. Given that SiGe(1 1 0) layers grown at 650 °C in windows of patterned wafers are rough, we have first of all studied the 600 °C growth kinetics of SiGe(1 1 0). As expected, the SiGe growth rate decreases as the growth temperature decreases from 650 °C down to 600 °C (irrespective of the surface orientation). The SiGe(1 0 0) growth rate increases linearly with the germane mass flow. Meanwhile, the SiGe(1 1 0) growth rate increases in a sub-linear fashion and then saturates at much lower values than on (1 0 0). The Ge concentration x dependence on the F(GeH 4 )/F(SiH 2 Cl 2 ) mass flow ratio is parabolic on (1 0 0) and linear on (1 1 0), with lower values on the latter than on the former. We have then used those data to fabricate (1 0 0) and (1 1 0) L-SOI structures. The high HCl partial pressure recessing of the Si(1 1 0) and Si(1 0 0) active areas was performed at 675 °C and 725 °C, respectively. An increase of both the Si(1 1 0) HCl etch rate and the SiGe growth rate (be it at 650 °C on (1 0 0) or at 600 °C on (1 1 0)) was noticed when switching from blanket to patterned wafers (factors of 2.5–3 for HCI and 1.5 for SiGe). Finally, Si(1 1 0) growth times were multiplied by 4/3 compared to the Si(1 0 0) growth time in order to obtain similar thickness Si caps. Subsequent process steps were very similar on (1 0 0) and (1 1 0). Almost the same etch rates were

  1. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  2. Study of the electric Held in HTS tape caused by perpendicular AC magnetic field

    International Nuclear Information System (INIS)

    Roiberg, V; Kopansky, F.

    2004-01-01

    Full Text: In a previous work we studied the influence of AC magnetic fields on voltage-currents (V-I) characteristics of high temperature superconducting (HTS) multi filament BSCC0-2223 tapes. It was found that AC magnetic fields perpendicular to the ab plane (the wide surface of the tape) cause a linear decrease of the critical current (IC) with amplitude of the AC magnetic field. The degradation of IC in .AC field was explained by the geometrical model according to which the transport current floe: is confined to the central zone of the tape where .AC field does not penetrate. For deeper understanding of the observed phenomena we carried out a study of the time dependence of the electric field during the cycle of AC field. At the same time we expanded the frequency range to low frequencies down to 1 Hz. The main results of the work are as following. 1. The time modulation of the electric field E in the HTS tape carrying transport DC current has the double frequency relating to AC magnetic field. 2. In field amplitudes less than 70 G the electric field modulation decreases with increasing frequency in opposite to its well-pronounced increase in higher AC field amplitudes. Alcove 70 G, the electric field increases with increasing the frequency of the external magnetic field. The wave forms of the electric field are different in both amplitudes ranges. 3. E-I curves of the tape in low amplitudes are frequency independent and coincide with E-l curves in AC field with intensity equal to the AC field amplitude. 4. In high AC field amplitudes, a strong dependence of the E-I curves on frequency is observed in the frequency range of 1-40 Hz and no dependence is observed in higher frequencies. Our results suggest that a combination of the geometrical model with flux creep concepts is necessary for a better understanding of the electric field behavior in our measurement conditions

  3. Damages of electrical insulation of cable products used at NPP`s and technique of their detection and operative control; Povrezhdeniya v ehlektricheskoj izolyatsii kabel`nykh izdulij, ehkspluatirue mykh na atomnykh ehlektrostantsiyakh i metody ikh obnaruzheniya i operativnogo kontro lya

    Energy Technology Data Exchange (ETDEWEB)

    Valeev, R S; Filatov, N I

    1994-12-31

    Analysis of possible damages in electrical insulation of cable products under their application at NPP`s is conducted. Basic methods for detecting such damages and rapid control of technical condition of cable products during the operation are considered.

  4. Effects of cryogenic reactor irradiation on organic insulators

    International Nuclear Information System (INIS)

    Kato, Teruo

    1995-01-01

    Insulators for the superconducting magnets of fusion reactor are classified as electrical and thermal insulators for which tough organic materials will be used. When the magnet is exposed by fast neutrons and gamma-rays from plasma in a fusion reactor, the fusion reactor systems will cause fatal damage by the degradation of insulators. Therefore, it is necessary to select materials resistant irradiation damage for use as insulators. Electrical and mechanical tests were carried out at 4.2 K without warmup after the reactor irradiation at 5 K. The effects of reactor irradiation at the dose of 10 7 Gy on epoxy resins (bisphenol-A), G-10 CR, VL-E 200 and G-11 CR caused large decreases in mechanical strength. Polyetheretherketone (PEEK), polyimide and phenol novolac resins, which were used to laminate reinforced plastics with glass-cloth against irradiation, showed good resistance. Effects of cryogenic reactor irradiation on several organic materials and epoxy laminate-reinforced plastics with glass-cloth and Kevlar-cloth were also discussed. (author)

  5. Effect of annealing temperature on the electrical properties of Au/Ta{sub 2}O{sub 5}/n-GaN metal-insulator-semiconductor (MIS) structure

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna Lakshmi, B.; Rajagopal Reddy, V.; Janardhanam, V. [Sri Venkateswara University, Department of Physics, Tirupati (India); Siva Pratap Reddy, M.; Lee, Jung-Hee [Kyungpook National University, School of Electrical Engineering and Computer Science, Daegu (Korea, Republic of)

    2013-11-15

    We report on the effect of an annealing temperature on the electrical properties of Au/Ta{sub 2}O{sub 5}/n-GaN metal-insulator-semiconductor (MIS) structure by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The measured Schottky barrier height ({Phi} {sub bo}) and ideality factor n values of the as-deposited Au/Ta{sub 2}O{sub 5}/n-GaN MIS structure are 0.93 eV (I-V) and 1.19. The barrier height (BH) increases to 1.03 eV and ideality factor decreases to 1.13 upon annealing at 500 {sup circle} C for 1 min under nitrogen ambient. When the contact is annealed at 600 {sup circle} C, the barrier height decreases and the ideality factor increases to 0.99 eV and 1.15. The barrier heights obtained from the C-V measurements are higher than those obtained from I-V measurements, and this indicates the existence of spatial inhomogeneity at the interface. Cheung's functions are also used to calculate the barrier height ({Phi} {sub bo}), ideality factor (n), and series resistance (R{sub s}) of the Au/Ta{sub 2}O{sub 5}/n-GaN MIS structure. Investigations reveal that the Schottky emission is the dominant mechanism and the Poole-Frenkel emission occurs only in the high voltage region. The energy distribution of interface states is determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. It is observed that the density value of interface states for the annealed samples with interfacial layer is lower than that of the density value of interface states of the as-deposited sample. (orig.)

  6. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  7. NRC Information No. 88-98: Electrical relay degradation caused by oxidation of contact surfaces

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The NRC staff was recently informed by Clinton Power Station that a reactor scram on June 24, 1988, was caused by an electrical relay failure from oxide buildup on relay contact surfaces. Other information on relay failure from contact oxidation indicates that this problem may be more prevalent than previously thought. For example, a July 17, 1988, 10 CFR Part 21 report from Palo Verde, Unit 2, reported relay failures from contact oxidation that were due to the low current application of the relays. The relay contact surfaces in both of these examples are silver-nickel alloys, and both applications were for low current (i.e., milli-ampere current). Electrical relay contacts made of silver-nickel or silver-cadmium alloys will oxidize (tarnish) when used in low current applications because of the absence of contact surface sparking from the typical relay contact ''making and breaking'' functions. The sparking in the contact surfaces promotes a self-cleaning mechanism that reduces the tarnish buildup on the silver-nickel or silver-cadmium contacts. Discussions with one relay manufacturer revealed that the normal industry practice for low current circuit applications is either to use a contact surface material that will not oxidize or to compensate for the oxidation by increased maintenance activities to ensure reliability. The applied voltage may also influence contact oxidation

  8. Hypercalcemic crisis and primary hyperparathyroidism: Cause of an unusual electrical storm.

    Science.gov (United States)

    Guimarães, Tatiana; Nobre Menezes, Miguel; Cruz, Diogo; do Vale, Sónia; Bordalo, Armando; Veiga, Arminda; Pinto, Fausto J; Brito, Dulce

    2017-12-01

    Hypercalcemia is a known cause of heart rhythm disorders, however its association with ventricular arrhythmias is rare. The authors present a case of a fifty-three years old male patient with a ischemic and ethanolic dilated cardiomyopathy, and severely reduced ejection fraction, carrier of cardiac resynchronization therapy (CRT) with cardioverter defibrillator (ICD), admitted in the emergency department with an electrical storm, with multiple appropriated ICD shocks, refractory to antiarrhythmic therapy. In the etiological investigation was documented severe hypercalcemia secondary to primary hyperparathyroidism undiagnosed until then. Only after the serum calcium level reduction ventricular tachycardia was stopped. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Effect of moisture on the electrical performance of transition-joints for medium voltage paper-insulated cables; Elektrische Beeintraechtigung durch Feuchtigkeit an oelgetraenkten Isolierpapieren. Mittelspannungsuebergangsmuffen

    Energy Technology Data Exchange (ETDEWEB)

    Cardinaels, Jos [Nexans Network Solution, Erembodegem (Belgium). Produktentwicklung; Baesch, Manfred [Nexans Power Accessories Germany, Dortmund (Germany). Produkt- und Qualitaetsmanagement

    2009-06-15

    Paper-insulated cables are constructed with an impervious metallic outer jacket in order to protect them against ingress of moisture. On 'modern' transition-joints to XLPE-insulated cables, this metal barrier is interrupted, hence, a risk of moisture penetration exists. This text presents measurements of water-vapour permeability of used materials and discusses the results of ageing tests. (orig.)

  10. Influence of damage caused by Kr ions and neutrons on electrical properties of silicon detectors

    International Nuclear Information System (INIS)

    Croitoru, N.; Gubbini, E.; Rancoita, P.G.; Rattaggi, M.; Seidman, A.

    1999-01-01

    In this paper, new measurements of physical properties of high-resistivity silicon, used in high-energy detectors, are presented. The obtained data contribute to the understanding of the causes which damage the 2electronic characteristics of the detection systems under irradiation of neutrons and ionized particles (Kr). The Hall effect coefficient (R H ) and resistivity (ρ) measurements as a function of temperature (T), for non-irradiated and irradiated by neutrons and Kr ions, were performed. The measurements of the Hall coefficient and resistivity of non-irradiated samples and irradiated at neutron fluences (PHI≤9.9x10 10 n/cm 2 ) and Kr (PHI≤7.5x10 8 Kr/cm 2 ), have shown that the obtained characteristics, R H (T) and ρ(T), are of the same shape as those known for a silicon single crystal. A slight difference of the slope of ln ρ∼ln T, for neutron- and a large difference for Kr ion irradiation as compared with that of non-irradiated samples, was observed. On increasing the irradiation to PHI larger than the value indicated above, for neutrons and Kr ions, important changes in the physical properties were observed. The resistivity increases with increasing PHI, up to a value of the same order with intrinsic silicon (ρ∼10 5 Ω cm), for both neutron and Kr ion irradiation. The values of R H increase with increasing PHI up to a fluence, for which a change of sign, from negative to positive, occurs. The variation of values of R H and ρ as a function of PHI, for neutrons and Kr ions, is similar, but the characteristics R H (PHI) and ρ(PHI), are displaced. Therefore, larger values of PHI are needed in order to obtain the same values of ρ as those for Kr ion irradiation. The dependence on T of electrical parameters of samples, irradiated at PHI≥9.9x10 10 n/cm 2 (neutrons) and PHI≥7.5x10 8 Kr/cm 3 (ions), cannot be explained, considering the usual theoretical relations. The results, obtained in these experiments, have shown a change of mechanism of

  11. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach

    Science.gov (United States)

    Akasofu, Syun-Ichi

    2017-10-01

    Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions. (1) The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above 10^{18} erg/s (10^{11} w). (2) The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy. (3) When the power reaches 3-5× 10^{18} erg/s (3-5× 10^{11} w) for about one hour and the stored magnetic energy reaches 3-5×10^{22} ergs (10^{15} J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density {≈}3× 10^{-12} A/cm2 and the total current {≈}106 A at 6 Re). As a result, the plasma sheet current is reduced. (4) The magnetosphere is thus deflated. The current reduction causes partial B/partial t > 0 in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both

  12. Influence of damage caused by Kr ions and neutrons on electrical properties of silicon detectors

    CERN Document Server

    Croitoru, N; Rancoita, P G; Rattaggi, M; Seidman, A

    1999-01-01

    In this paper, new measurements of physical properties of high-resistivity silicon, used in high-energy detectors, are presented. The obtained data contribute to the understanding of the causes which damage the 2electronic characteristics of the detection systems under irradiation of neutrons and ionized particles (Kr). The Hall effect coefficient (R sub H) and resistivity (rho) measurements as a function of temperature (T), for non-irradiated and irradiated by neutrons and Kr ions, were performed. The measurements of the Hall coefficient and resistivity of non-irradiated samples and irradiated at neutron fluences (PHI=9.9x10 sup 1 sup 0 n/cm sup 2 (neutrons) and PHI>=7.5x10 sup 8 Kr/cm sup 3 (ions), cannot be explained, considering the usual theoretical relations. The results, obtained in these experiments, have shown a change of mechanism of conduction due to the damaged regions, where localized levels are created, which are the main cause of the deviation of the electrical characteristics of the detectors ...

  13. Electrically evoked local muscle contractions cause an increase in hippocampal BDNF.

    Science.gov (United States)

    Maekawa, Takahiro; Ogasawara, Riki; Tsutaki, Arata; Lee, Kihyuk; Nakada, Satoshi; Nakazato, Koichi; Ishii, Naokata

    2018-05-01

    High-intensity exercise has recently been shown to cause an increase in brain-derived neurotropic factor (BDNF) in the hippocampus. Some studies have suggested that myokines secreted from contracting skeletal muscle, such as irisin (one of the truncated form of fibronectin type III domain-containing protein 5 (FNDC5)), play important roles in this process. Thus, we hypothesized that locally evoked muscle contractions may cause an increase of BDNF in the hippocampus through some afferent mechanisms. Under anesthesia, Sprague-Dawley rats were fixed on a custom-made dynamometer and their triceps surae muscles were made to maximally contract via delivery of electric stimulations of the sciatic nerve (100 Hz with 1-ms pulse and 3-s duration). Following 50 repeated maximal isometric contractions, the protein expressions of BDNF and activation of its receptor in the hippocampus significantly increased compared with the sham-operated control rats. However, the expression of both BDNF and FNDC5 within stimulated muscles did not significantly increase, nor did their serum concentrations change. These results indicate that local muscular contractions under unconsciousness can induce BDNF expression in the hippocampus. This effect may be mediated by peripheral reception of muscle contraction, but not by systemic factors.

  14. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  15. Technique eliminates high voltage arcing at electrode-insulator contact area

    Science.gov (United States)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  16. THE ELECTROSTATIC CHARACTERISTICS OF LINEAR INSULATORS FOR CONTACT NETWORKS OF RAILWAYS

    Directory of Open Access Journals (Sweden)

    Ye. D. Kim

    2009-03-01

    Full Text Available On the base of numeric investigations on mathematical models of stationary electric field the basic electric performances of insulating suspensions from porcelain and polymeric insulators for contact nets of alternating and direct current are compared.

  17. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  18. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction

    Science.gov (United States)

    Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.

    2014-04-01

    We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon

  19. RESEARCH OF THE INFLUENCE OF VARIOUS FACTORS ON THE ACCURACY OF DETERMINING OF PARAMETERS AND PLACE OF INSULATION DAMAGE IN THE ELECTRIC NETWORKS OF 6 TO 35 KV

    Directory of Open Access Journals (Sweden)

    Naraeva R.R

    2013-12-01

    Full Text Available The present paper is devoted to the research of the method for determining the parameters and plot of insulation damage in the networks of 6 to 35 kV with isolated neutral on the basis of measuring the operating parameters of the network. In the considered three-phase circuit with a symmetric source of EMF and symmetric loading there was a damage of insulation in one of the phases. The calculations are carried out for the transmission line equivalent circuit with a branch line by means of node-potential method. An investigation of the influence of the magnitude of insulation conductivity in the place of damage of different sections of the network upon the accuracy of determining the insulation conductivity is conducted using the data from digital models. The research of this method is performed by advancing hypotheses about the place of damage and by considering the influence of the multiplicity of increasing insulation conductivity of the damaged section and accuracy class of measuring devices.

  20. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  1. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  2. Comparative Investigation of Pollution Accumulation and Natural Cleaning for Different HV Insulators

    Directory of Open Access Journals (Sweden)

    M. Dimitropoulou

    2015-04-01

    Full Text Available High Voltage insulators are scattered throughout any HV network and a single insulator fault may cause an excessive outage. Reliability is a key issue for electric power systems and fault-free performance of insulators greatly reflects on the reliability of the system. Environmental influence is rather important for the optimum selection of outdoor insulators and, therefore, field measurements provide valuable information. Utilities perform such measurements in order to decide upon the location/route of new HV installations (substations, lines etc and also to optimize the selection, maintenance and replacement of already installed insulators. A rather interesting case in Greek territory is the island of Crete, due to the coastal development of the network and the local weather conditions. The Greek utility has employed a variety of remedies to cope with the pollution problem. Following the positive feedback after the installation on certain tower in the past, a large project to replace all ceramic insulators with new polymer ones of hydrophobic surface is now in progress. Polymer coatings have also been extensively applied on substations and also on certain areas/towers of the transmission network in the past. In order to investigate the pollution accumulation and the impact of natural washing on different insulator types, a series of periodical ESDD and NSDD pollution measurements were conducted in HEDNO’s TALOS High Voltage Test Station for a 3-months period. Multiple measurements were performed on each insulator every month in order to collect additional data. Five different insulators were selected based on the types historically used in the Cretan Network. Along with the standard glass disc profile, two strings of glass fog profile (the one coated with RTV and two long-rod composite insulators of different shed profile and material were used. Results are presented and discussed in this paper.

  3. Determination of copper in liquid and solid insulation for large electrical equipment by ICP-OES. Application to copper contamination assessment in power transformers.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Maina, Riccardo; Tumiatti, Vander

    2012-09-15

    Copper is one of the main constituents of the components in power transformers and its presence both in liquid (mineral oil) and in solid (Kraft paper) insulators can lead to enhanced dielectric losses and to the subsequent deterioration of their insulating properties. Recently the latter have been correlated to plant failures which in turn may have severe impact on the environment. This paper describes the direct analysis of copper in insulating mineral oil by ICP-OES and how it was first optimized compared to the official American Society for Testing and Materials (ASTM) D7151 method. Detection and quantification limits of 8.8 μg kg(-1) and 29.3 μg kg(-1) were obtained. Secondly, copper determination was improved by coupling a microwave assisted dissolution procedure of the mineral oil which avoided the problems, in the real samples, due to the presence of solid species of copper which cannot be nebulized following traditional methods described in literature. Sixteen mineral insulating oils sampled from transformers in service were analyzed before and after dissolution. In order to evaluate copper speciation, size fractionation was performed by filtration on PTFE filters (0.45, 1 and 5 μm). This test was performed on all the oil samples. Finally, because of the key role of the solid insulator in failed transformers, the Authors applied the developed method to study the copper deposition tendency onto the insulating Kraft paper tapes exerted by two unused oils (a corrosive and a non-corrosive one) under defined ageing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  5. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  6. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.

    Science.gov (United States)

    Milham, Samuel

    2014-01-01

    The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.

  7. Comparison of electricity and heat production in combined and single-purpose systems against the background of energy saving by means of thermal insulation. Pt. 1. System comparison and general results; Vergleich der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen vor dem Hintergrund der Einsparmoeglichkeiten durch Waermedaemmung. T. 1. Systemvergleich und allgemeine Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Damberger, S.; Guenther, M.; Kluender, M.; Moeller, K.P.; Wenk, N.

    1994-06-01

    The study comprises investigations for the purpose of increasing the generation of electricity and heat in dual-purpose power plants and for promoting thermal insulation of buildings: Methods for comparatiave calculations; economic aspects; separate generation of electric power and heat; cogeneration of electric power and heat; economic efficiency of thermal insulation measures in domestic buildings; comparison of results. (HW) [Deutsch] Die Studie umfasst Untersuchungen zur Erhoehung des Anteils der gekoppelten Erzeugung von Strom und Waerme und zur vermehrten Waermedaemmung von Gebaeuden: - Methoden fuer Vergleichsrechnungen - Ekonomie - getrennte Erzeugung von Strom und Waerme - gekoppelte Erzeugung von Strom und Waerme - Wirtschaftlichkeit von Massnahmen einer Waermedaemmung von Wohngebaeuden - Vergleich der Ergebnisse. (HW)

  8. Does electricity consumption panel Granger cause GDP? A new global evidence

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Paresh Kumar [School of Accounting, Economics and Finance, Faculty of Business and Economics, Deakin University, Melbourne (Australia); Narayan, Seema [School of Economics, Finance, and Marketing, RMIT University, Melbourne (Australia); Popp, Stephan [Department of Economics, University of Duisburg-Essen (Germany)

    2010-10-15

    The goal of this paper is to undertake a panel data investigation of long-run Granger causality between electricity consumption and real GDP for seven panels, which together consist of 93 countries. We use a new panel causality test and find that in the long-run both electricity consumption and real GDP have a bidirectional Granger causality relationship except for the Middle East where causality runs only from GDP to electricity consumption. Finally, for the G6 panel the estimates reveal a negative sign effect, implying that increasing electricity consumption in the six most industrialised nations will reduce GDP. (author)

  9. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  10. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  11. Magnetic and electrical response of Co-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites/insulator system

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, J.C., E-mail: Jyotish.debnath@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Wang, Jianli, E-mail: jcd341@uowmail.edu.au [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2017-01-01

    We present a systematic study of the structural, magnetic and electrical properties of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) and La{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Co{sub 0.05}O{sub 3} (LCMCO0 perovskite manganites. Most of the work is devoted to the electrical properties with a thorough discussion about different models for both the metallic and insulator states. With a view to understand the conduction mechanism in these materials, the resistivity of both materials was measured over a temperature range 5–300 K and in a magnetic field up to 1 T and the data were analysed by using several theoretical models. It has been observed that the metallic part of the temperature dependent resistivity (ρ) curve fits well with ρ=ρ{sub 0} +ρ{sub 2,5}Τ{sup 2,5}, indicating the electron–magnon scattering processes in the conduction of these materials. On the other hand, in the high temperature paramagnetic insulating regime, the adiabatic small polaron and VRH models fit well, thereby indicating that polaron hopping might be responsible for the conduction mechanism.

  12. Losses in electric motors caused by harmonics; Harmoniske overtoners betydning for tabene i elmotorer

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. [Dansk Energi Analyse A/S, Glostrup (Denmark); Kehr, J.M. [ABB A/S, Skovlunde (Denmark); Hoejte Hansen, H. [Balslev A/S, Glostrup (Denmark)

    2012-03-15

    The purpose of the project was to provide evidence of power saving based on measurements in electric installations, in which the harmonics were reduced by active filters. The project has included knowledge building on the basis of literature and discussions with a Swedish and a Belgian producer of active filters. In connection with the project, tests have been made on a production line at the firm of Faerch Plast, where the distortion from the harmonics, measured as THDU, was 6 to 7 %. Measurements during two days with the active filter switched on and off with an interval of 10 minutes showed a very small difference in power input in the two situations. The power was 2.7 kW higher with connected filter than without filter. As the own consumption of the filter was 5.8 kW, the consumption of the installation itself was 3.1 kW lower, equal to 1 % of the load of the directly supplied induction motors. As a consequence of the very small differences, measured at Faerch Plast, it was decided to transfer the further work to a laboratory in order to measure under so controlled circumstances as possible. Measurements have been taken at KME (Copenhagen School of Marine Engineering and Technology Management) and at TI (Danish Technological Institute). The result of measurements on a 5.5 kW induction motor with a distortion from the harmonics (THDU) of 2.65 % shows no significant change in the input power compared to the situation with almost no distortion. Neither, it appears, is there a significant difference in the motor losses in a situation, where the measurement was taken with two rather distorted mains voltages with a THDU of 6.33 % and 7.66 %, respectively. Calculations on the basis of the equivalent diagram of the motor show that the additional motor losses in a 5.5 kW motor as a consequence of 5. harmonics of 5 % of the mains voltage (THDU 5 %) only is 2 W, while an experimentally derived formula results in a difference of approx 9 W or 0.2 % of the rated power of

  13. Insulation system in an integrated motor compressor

    Energy Technology Data Exchange (ETDEWEB)

    Sihvo, V.

    2010-07-01

    A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 - 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 - 120 mum. The chemical aging of the insulation when exposed to raw

  14. Economic costs of electrical system instability and power outages caused by snakes on the Island of Guam

    Science.gov (United States)

    Fritts, T.H.

    2002-01-01

    The Brown Tree Snake, Boiga irregularis, is an introduced species on Guam where it causes frequent electrical power outages. The snake's high abundance, its propensity for climbing, and use of disturbed habitats all contribute to interruption of Guam's electrical service and the activities that depend on electrical power. Snakes have caused more than 1600 power outages in the 20-yr period of 1978–1997 and most recently nearly 200 outages per year. Single outages spanning the entire island and lasting 8 or more hours are estimated to cost in excess of $3,000,000 in lost productivity, but the costs of outages that involve only parts of the island or those of shorter durations are more difficult to quantify. Costs to the island's economy have exceeded $4.5 M $4.5M"> per year over a 7-yr period without considering repair costs, damage to electrical equipment, and lost revenues. Snakes pose the greatest problem on high voltage transmission lines, on transformers, and inside electrical substations.

  15. A market for green certificates may cause less green electricity to be produced

    International Nuclear Information System (INIS)

    Haugneland, Petter

    2004-01-01

    The Norwegian government wants to establish in 2006 a market for trading with green certificates which will be issued to producers of new renewable electricity. These certificates will be sold to the consumers, which will be instructed to by a certain amount of green electricity. In 2005 a market will be established for trading with emission quotas of greenhouse gases; in this market, power producers and other industry that emits greenhouse gases must buy emission permits. Some experts, however, say that a market for trading with green certificates may at worst give less production of green electricity, counter to the intention. But a quota system may indirectly increase the production of green electricity, and at the same time one avoids many of the inconveniences involved in a green certificate market

  16. Assessment of the risk of failure of high voltage substations due to environmental conditions and pollution on insulators.

    Science.gov (United States)

    Castillo Sierra, Rafael; Oviedo-Trespalacios, Oscar; Candelo, John E; Soto, Jose D

    2015-07-01

    Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focuses on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.

  17. Mechanics of a composite structure of GFRP insulators and superconductors with a gap

    International Nuclear Information System (INIS)

    Tamura, H.; Imagawa, S.; Nishimura, A.

    1997-01-01

    Superconducting coils in large scale magnet applications such as the Large Helical Device (LHD) are subjected to large electromagnetic force at the interfaces between conductors and electrical insulators. The insulators do not always contact the superconductor surfaces completely. This may cause a reduction of coil rigidity. Nonlinear behavior was observed in the compressive load-displacement curves in some experiments of coil packs. The nonlinear curves were found to be well fitted by an exponential function. We considered this nonlinearity as a surface contact problem and devised some analytical models to evaluate the rigidity reduction in terms of gap length. The results of this analysis also support the exponential function

  18. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  19. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  20. Insulating materials for cables: state of the technology and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Blechschmidt, H H [Hessische Elektrizitaets-A.G., Darmstadt (Germany, F.R.)

    1977-02-01

    This article gives a summary of old and new insulating materials for electrical cables. The electrical properties of some polymer insulating materials (PVC, polyethelene (PE), polymerised polyethelene (VPE), polypropylene) are compared in a table with the properties of paper insulation. The changeover from oiled paper to plastic insulation is almost complete for low voltage cables. Soft PVC is the dominant insulating material in this field. For medium voltage cables (10 kV and 20 kV supplies) and for high voltage cables (60 kV and 110 kV supplies) there is a trend to plastic PE/VPE, because these insulating materials have better electrical properties than PVC.

  1. Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten, Sverre

    1999-07-01

    frequency domain dielectric response was larger, and found to be more nonlinear than values measured in time domain. This thesis describes a new mechanism for the nonlinear dielectric response. It is assumed that at low or no applied electric stress the water treed region is characterised by spherical micro voids filled with liquid water separated by channels of crazed insulation. The effect of increasing the test voltage is to cause Maxwell mechanical tensile stresses strong enough to open up the crazing zones and elongate the water droplets into the mechanically weak crazing zones. Finite Element Method (FEM) calculations show that the effect of the re-opening of crazing zones by an increased test voltage, strongly increases the dielectric loss of the water treed insulation. This is qualitatively in good agreement with the experimental results obtained on water treed insulation, where increasing the test voltage above a certain value caused the losses to increase. The typical frequency independent dielectric response of water treed insulation can, however, not be explained by this model. Numerical calculations of losses, indicated that the mechanism of voltage assisted ingress of water is more likely in treed regions with rather low contents of water. The micro-FTIR measurements of single vented water trees indicated that such regions were likely to be present 3-400 (my)m within the tree tip, and close to the insulation screen. The process of refilling water into water tree structures is likely to be associated with a hysteresis effect. When removing (or reducing) the electric field, mechanical relaxation causes the channel to collapse and to slowly recover its former structure. Dielectric response measurements showed that a hysteresis was typically present when the response was nonlinear.

  2. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...... to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field " hot spots" in the cortex. However, these maxima were...

  3. Improvement in electrical insulating properties of 10-nm-thick Al2O3 film grown on Al/TiN/Si substrate by remote plasma annealing at low temperatures

    International Nuclear Information System (INIS)

    Kim, Jihoon; Song, Jaewon; Kwon, Ohsung; Kim, Sungkeun; Hwang, Cheol Seong; Park, Sang-Hee'Ko; Yun, Sun Jin; Jeong, Jaehack; Hyun, Kwang Soo

    2002-01-01

    The electrical conduction properties of 10-nm-thick atomic-layer deposited Al 2 O 3 thin films with Al bottom and Pt top electrodes were characterized for use in field emission display. The as-deposited films, grown at 300 deg. C, exhibited such a high electrical leakage that their electrical properties could not be measured. However, post-treatment at 300 deg. C under a remote O 2 or H 2 O plasma for 30 min improved the insulating properties of the Al 2 O 3 films. However, the electrical conduction mechanism, particularly in the high field (>4 MV/cm) was not Fowler-Nordheim (F-N) tunneling but was influenced by space charge limited conduction implying that there were many traps inside the dielectric film or the electrode interfaces. Postannealing of the top electrode at 300 deg. C in an oxygen atmosphere resulted in a F-N conduction mechanism by removing the interfacial traps. The calculated barrier height at the Al/Al 2 O 3 interface from the F-N fitting of the current density versus voltage curves using the electron effective mass (m * ) of 0.5 m 0 was approximately 2.0 eV

  4. A high-temperature silicon-on-insulator stress sensor

    International Nuclear Information System (INIS)

    Wang Zheyao; Tian Kuo; Zhou Youzheng; Pan Liyang; Liu Litian; Hu Chaohong

    2008-01-01

    A piezoresistive stress sensor is developed using silicon-on-insulator (SOI) wafers and calibrated for stress measurement for high-temperature applications. The stress sensor consists of 'silicon-island-like' piezoresistor rosettes that are etched on the SOI layer. This eliminates leakage current and enables excellent electrical insulation at high temperature. To compensate for the measurement errors caused by the misalignment of the piezoresistor rosettes with respect to the crystallographic axes, an anisotropic micromachining technique, tetramethylammonium hydroxide etching, is employed to alleviate the misalignment issue. To realize temperature-compensated stress measurement, a planar diode is fabricated as a temperature sensor to decouple the temperature information from the piezoresistors, which are sensitive to both stress and temperature. Design, fabrication and calibration of the piezoresistors are given. SOI-related characteristics such as piezoresistive coefficients and temperature coefficients as well as the influence of the buried oxide layer are discussed in detail

  5. Local electric stimulation causes conducted calcium response in rat interlobular arteries

    DEFF Research Database (Denmark)

    Salomonsson, Max; Gustafsson, Finn; Andreasen, Ditte

    2002-01-01

    microscope. Local electrical pulse stimulation (200 ms, 100 V) was administered by means of an NaCl-filled microelectrode (0.7-1 M(Omega)) juxtaposed to one end of the vessel. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured with an image system at a site approximately 500 microm from......The purpose of the present study was to investigate the conducted Ca(2+) response to local electrical stimulation in isolated rat interlobular arteries. Interlobular arteries were isolated from young Sprague-Dawley rats, loaded with fura 2, and attached to pipettes in a chamber on an inverted...

  6. Insulator contamination effects; Efectos de la contaminacion en aislamientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Environmental contamination deteriorates the electric insulators, mechanically as well as electrically; the mechanical problems caused by contamination are related basically with materials corrosion and degradation and the electrical problems are related to the deterioration of their dielectric rigidity. From the electrical standpoint, the type of contamination that cause more problems are divided into: marine, desert and industrial. It is not uncommon to find various combinations of these types of contamination. When the electric installations operate in polluted environments, the insulator electric behavior deteriorates, provoking increments in the operation costs for maintenance as well as for replacement. Mexico has large extensions of coasts (marine contamination), where nowadays large cities and productions centers are developed (industrial pollution); also, in some cases for the energy transportation is necessary to go through large land extensions, where no vegetation of any kind exists. For this reason the contamination effect on the electric installations must be considered in order to obtain a reliable and economical energy supply. [Espanol] La contaminacion ambiental deteriora los aisladores electricos tanto mecanica como electricamente; los problemas mecanicos por contaminacion se relacionan en forma basica con la corrosion y degradacion de los materiales, y los electricos se vinculan con el deterioro de su rigidez dielectrica. Desde el punto de vista electrico, los tipos de contaminacion que mas problemas ocasionan se dividen en: marina, desertica e industrial. Es comun encontrar diversas combinaciones de estas. Cuando las instalaciones electricas operan en ambientes contaminados, el comportamiento electrico de los aisladores se deteriora, provocando incrementos en los costos de operacion, tanto por mantenimiento como por reposicion. Mexico cuenta con grandes extensiones de costas (contaminacion marina), donde actualmente se desarrollan ciudades y

  7. Insulator contamination effects; Efectos de la contaminacion en aislamientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    Environmental contamination deteriorates the electric insulators, mechanically as well as electrically; the mechanical problems caused by contamination are related basically with materials corrosion and degradation and the electrical problems are related to the deterioration of their dielectric rigidity. From the electrical standpoint, the type of contamination that cause more problems are divided into: marine, desert and industrial. It is not uncommon to find various combinations of these types of contamination. When the electric installations operate in polluted environments, the insulator electric behavior deteriorates, provoking increments in the operation costs for maintenance as well as for replacement. Mexico has large extensions of coasts (marine contamination), where nowadays large cities and productions centers are developed (industrial pollution); also, in some cases for the energy transportation is necessary to go through large land extensions, where no vegetation of any kind exists. For this reason the contamination effect on the electric installations must be considered in order to obtain a reliable and economical energy supply. [Espanol] La contaminacion ambiental deteriora los aisladores electricos tanto mecanica como electricamente; los problemas mecanicos por contaminacion se relacionan en forma basica con la corrosion y degradacion de los materiales, y los electricos se vinculan con el deterioro de su rigidez dielectrica. Desde el punto de vista electrico, los tipos de contaminacion que mas problemas ocasionan se dividen en: marina, desertica e industrial. Es comun encontrar diversas combinaciones de estas. Cuando las instalaciones electricas operan en ambientes contaminados, el comportamiento electrico de los aisladores se deteriora, provocando incrementos en los costos de operacion, tanto por mantenimiento como por reposicion. Mexico cuenta con grandes extensiones de costas (contaminacion marina), donde actualmente se desarrollan ciudades y

  8. Characterization of silicon-on-insulator wafers

    Science.gov (United States)

    Park, Ki Hoon

    The silicon-on-insulator (SOI) is attracting more interest as it is being used for an advanced complementary-metal-oxide-semiconductor (CMOS) and a base substrate for novel devices to overcome present obstacles in bulk Si scaling. Furthermore, SOI fabrication technology has improved greatly in recent years and industries produce high quality wafers with high yield. This dissertation investigated SOI material properties with simple, yet accurate methods. The electrical properties of as-grown wafers such as electron and hole mobilities, buried oxide (BOX) charges, interface trap densities, and carrier lifetimes were mainly studied. For this, various electrical measurement techniques were utilized such as pseudo-metal-oxide-semiconductor field-effect-transistor (PseudoMOSFET) static current-voltage (I-V) and transient drain current (I-t), Hall effect, and MOS capacitance-voltage/capacitance-time (C-V/C-t). The electrical characterization, however, mainly depends on the pseudo-MOSFET method, which takes advantage of the intrinsic SOI structure. From the static current-voltage and pulsed measurement, carrier mobilities, lifetimes and interface trap densities were extracted. During the course of this study, a pseudo-MOSFET drain current hysteresis regarding different gate voltage sweeping directions was discovered and the cause was revealed through systematic experiments and simulations. In addition to characterization of normal SOI, strain relaxation of strained silicon-on-insulator (sSOI) was also measured. As sSOI takes advantage of wafer bonding in its fabrication process, the tenacity of bonding between the sSOI and the BOX layer was investigated by means of thermal treatment and high dose energetic gamma-ray irradiation. It was found that the strain did not relax with processes more severe than standard CMOS processes, such as anneals at temperature as high as 1350 degree Celsius.

  9. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    . Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...... to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field " hot spots" in the cortex. However, these maxima were......Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...

  10. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.

    2011-01-01

    Complete text of publication follows. The computer simulations based on Monte Carlo method and the ModeCEB software program were carried out in connection with EB radiation set-up for crosslinking of electrical wire and cable insulation, located at the Center for Radiation Research and Technology of the Institute of Nuclear Chemistry and Technology. The theoretical predictions for absorbed dose distribution in irradiated electrical wire and cable insulation caused by scanned EB were compared to the experimental results of irradiation which were carried out in the experimental set-up based on ILU 6 electron accelerator, which is characterized by the following parameters: Electron energy 0.5-2.0 MeV; Average beam current 40-10 mA, pulse duration 400 μs; Width of scanning up to 80 cm; Scan frequency up to 50 Hz. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for different process parameters; electrical wire and cable geometry (thickness of insulation layers and cupper wire diameter), type of polymer isolation, electron energy, energy spread, geometry of electron beam and electrical wire and cable distribution at irradiation zone. The geometry of electron beam distribution in irradiation zone was measured using TVA and PVC foil dosimeters for electron energy range available in ILU 6 accelerator. The temperature rise of irradiated electrical wire and irradiation homogeneity were evaluated for different experimental conditions to optimize process parameters. The obtained results of computer simulation were supported by experimental data of dose distribution based on gel-fraction measurements. Such agreement indicates that computer simulation ModeCEB is correct and sufficient for modelling of absorbed dose distribution in multi-layer circular objects irradiated with scanned electron beams. Acknowledgement: The R and D activities are supported by the European

  11. Causes for torque degradation during deceleration and the effect on the driving range of battery electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, Johannes [BMW PEUGEOT CITROEN ELECTRIFICATION, Muenchen (Germany); Wilde, Andreas [BMW Group, Muenchen (Germany); Baeker, Bernard [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics

    2012-11-01

    The ability to regain considerable amounts of the kinetic energy during deceleration phases is a key aspect to increase the efficiency of battery electric vehicles (BEV). Especially in urban and highly congested areas brake energy recovery (BER) can drastically improve the vehicle's driving range. However, due to the high power peaks that go along even with moderate braking maneuvers, severe requirements are being put on the electric drivetrain. Any limitation of power in one of the components of the powertrain inevitably leads to degradation of the regenerative brake torque, thus limiting the car's energy regeneration capability. Without an integrated brake system that can compensate the torque variations during deceleration, BER may need to be decreased even further to prevent a loss of driving comfort due to dynamic changes in the vehicle's behavior. This paper deals with the causes of these torque restraints within the electric drivetrain and how they affect the energy consumption and therefore the electric driving range. A simulation environment was set up and verified based on an existing BEV to conduct parameter studies and depict the sensitivities towards environmental influences. The calculated efficiencies are based on standard drive cycles and incorporate continuous fading between regenerative braking and the use of friction brakes. Special attention was laid on the battery system since energy storage still poses a particular challenge in the development of electric vehicles. Also through the high mutual dependence of the various parameters of the battery enviromental influences become most evident. (orig.)

  12. Status of surface conduction in topological insulators

    International Nuclear Information System (INIS)

    Barua, Sourabh; Rajeev, K. P.

    2014-01-01

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness

  13. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  14. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    Science.gov (United States)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  15. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  16. Solar causes of the excitation of earth electric currents and of geomagnetic field disturbances

    International Nuclear Information System (INIS)

    Krivsky, L.

    1977-01-01

    A survey is given of the effects of solar activity on geomagnetic and geoelectric disturbances. Indexes are given showing changes in the magnetic field, the occurrence of calm geomagnetic days related to solar activity, proton solar flares and electrical currents in the high layers of the atmosphere in the polar region, powerfull solar activity and electric currents in the polar region, the time rise of shock waves in the development of proton flares and the boundaries of sector structures of the interplanetary magnetic field and its effect on the Earth. It is stated that the geoelectric and geomagnetic fields are affected by the discrete phenomena of solar activity and by the transition of the quasimagnetic sectors of interplanetary fields. (J.P.)

  17. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  18. The second advanced lead lithium blanket concept using ODS steel as structural material and SiCf/SiC flow channel inserts as electrical and thermal insulators (Task PPA 2.5). Final report

    International Nuclear Information System (INIS)

    Norajitra, P.; Buehler, L.; Fischer, U.

    1999-12-01

    Preparatory work on the advanced dual coolant (A-DCL) blanket concept using SiC f /SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2000 within the framework of the EU fusion programme with the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and design characteristics of this A-DCL blanket concept are presented and its potential with regard to performance (neutron wall load, lifetime, availability) is discussed in this report. The results of this study show that the A-DCL blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution. (orig.) [de

  19. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  20. The Development and Application of Simulative Insulation Resistance Tester

    Science.gov (United States)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  1. 5th Duisburg thermal insulation days. Fuenfte Duisburger Waermedaemm-Tage

    Energy Technology Data Exchange (ETDEWEB)

    Agst, J. (ed.)

    1989-01-01

    This volume contains 18 specialist lectures mainly about the problems of thermal insulation in industrial furnaces and facility engineering. Among the subjects are: formed parts, monolithic lining materials and fillers of vermiculite; pyro-block-modular systems for furnaces (of the company DYKO-Morgan Fasertechnik); microporous insulating materials (KAOWOOL); properties of lightweight refractory bricks; thermal insulation in induction furnaces; vacuum moulded parts in electric furnace engineering; high temperature insulating materials with ceramic fibres; microtherm insulating materials. (MM).

  2. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccown, Andrew William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)ory

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  3. Improved DC Gun Insulator Assembly

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Poelker, M.; Surles-Law, K.E.L.

    2010-01-01

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  4. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  5. Effects of the TiO2 high-k insulator material on the electrical characteristics of GaAs based Schottky barrier diodes

    Science.gov (United States)

    Zellag, S.; Dehimi, L.; Asar, T.; Saadoune, A.; Fritah, A.; Özçelik, S.

    2018-01-01

    The effects of the TiO2 high-k insulator material on Au/n-GaAs/Ti/Au Schottky barrier diodes have been studied by means of the numerical simulation and experimental results at room temperature. The Atlas-Silvaco-TCAD numerical simulator has been used to explain the behavior of different physical phenomena of Schottky diode. The experimental values of ideality factor, barrier height, and series resistance have been determined by using the various techniques such as Cheung's method, forward bias ln I- V and reverse capacitance-voltage behaviors. The experimental ideality factor and barrier height values have been found to be 4.14 and 0.585 eV for Au/n-GaAs/Ti/Au Schottky barrier diode and 4.00 and 0.548 eV for that structure with 16 nm thick TiO2 film and 3.92, 0.556 eV with 100 nm thick TiO2 film. The diodes show a non-ideal current-voltage behavior that of the ideality factor so far from unity. The extraction of N ss interface distribution profile as a function of E c -E ss is made using forward-bias I- V measurement by considering the bias dependence of ideality factor, the effective barrier height, and series resistance for Schottky barrier diodes. The N ss calculated values with consideration of the series resistance are lower than the calculated ones without series resistance. The current-voltage results of diodes reveal an abnormal increase in leakage current with an increase in thickness of high-k interfacial insulator layer. However, the simulation agrees in general with the experimental results.

  6. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  7. Insulating fcc YH

    International Nuclear Information System (INIS)

    Molen, S. J. van der; Nagengast, D. G.; Gogh, A. T. M. van; Kalkman, J.; Kooij, E. S.; Rector, J. H.; Griessen, R.

    2001-01-01

    We study the structural, optical, and electrical properties of Mg z Y 1-z switchable mirrors upon hydrogenation. It is found that the alloys disproportionate into essentially pure YH 3-δ and MgH 2 with the crystal structure of YH 3-δ dependent on the Mg concentration z. For 0 3-δ are observed, whereas for z≥0.1 only cubic YH 3-δ is present. Interestingly, cubic YH 3-δ is expanded compared to YH 2 , in disagreement with theoretical predictions. From optical and electrical measurements we conclude that cubic YH 3-δ is a transparent insulator with properties similar to hexagonal YH 3-δ . Our results are inconsistent with calculations predicting fcc YH 3-δ to be metallic, but they are in good agreement with recent GW calculations on both hcp and fcc YH 3 . Finally, we find an increase in the effective band gap of the hydrided Mg z Y 1-z alloys with increasing z. Possibly this is due to quantum confinement effects in the small YH 3 clusters

  8. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  9. Noise impact caused by electrical energy substations in the city of Curitiba, Brazil

    International Nuclear Information System (INIS)

    Diniz, F.B.; Zannin, P.H.T.

    2004-01-01

    This survey is intended to characterize the noise impact due to electrical energy substations in the city of Curitiba over the population living in their vicinity. This impact has been studied with the aid of a computational tool capable of mapping the acoustical field of substations and their vicinity. Several factors have been considered in this survey: (1) sound power of the transformers; (2) vehicle flow on the surrounding roads; (3) positioning of the firewalls, buildings and walls; and (4) terrain topography. Four substations have been analyzed, and an acoustical map has been traced for each of them. With these maps it was possible to visualize what was the incident noise level on the building facades. The predicted noise levels have been compared to the environmental legislation of the noise emissions in effect in the city

  10. Carbon dioxide not suitable for extinguishment of smouldering silo fires: static electricity may cause silo explosion

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2018-01-01

    argues that injection of inert carbon dioxide into the silo headspace is unsafe. Carbon dioxide is generally available as a liquid under high pressure. When discharged, small particles of dry ice are formed. The rapid flow of particles can generate considerable amounts of static electricity, which can...... act as a source of ignition if ignitable pyrolysis gasses are present. This article discusses a serious wood pellet smouldering fire and silo explosion in Norway in 2010, which took place when firefighters discharged portable CO2 fire extinguishers into the headspace. The attempt to suppress the fire...... may have ignited pyrolysis gasses. The article examines selected guidelines, standards, popular wood pellet handbooks and other literature and argues that the electrostatic hazard is widely under-appreciated. In the past, major explosions have been attributed to electrostatic ignition of flammable...

  11. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  12. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  13. Possible fire hazard caused by mismatching electrical chargers with the incorrect device within the operating room.

    LENUS (Irish Health Repository)

    Hargrove, Martin

    2012-02-03

    It has come to our attention that numerous devices that need charging adaptors during cardiopulmonary bypass (CPB) have similar charging sockets but different voltage requirements. This has caused one of our devices in the operating theater to overheat and completely shut down when connected to an incorrect higher-voltage charger. The possibility of fire, device destruction, or patient harm in such circumstances is of serious concern.

  14. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu [Nagoya Institute of Technology, Department of Computer Science and Engineering (Japan); Dovan, Thanh [SP AusNet, Division of Network Strategy and Development (Australia); Kavet, Robert, E-mail: ahirata@nitech.ac.jp [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-07-07

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m{sup -1}. However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m{sup -1}, and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an

  15. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Dovan, Thanh; Kavet, Robert

    2011-01-01

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m -1 . However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m -1 , and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an

  16. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  17. MHD pressure drop of imperfect insulation of liquid metal flow

    International Nuclear Information System (INIS)

    Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.

    2000-01-01

    An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction

  18. Inverse participation ratio and localization in topological insulator phase transitions

    International Nuclear Information System (INIS)

    Calixto, M; Romera, E

    2015-01-01

    Fluctuations of Hamiltonian eigenfunctions, measured by the inverse participation ratio (IPR), turn out to characterize topological-band insulator transitions occurring in 2D Dirac materials like silicene, which is isostructural with graphene but with a strong spin–orbit interaction. Using monotonic properties of the IPR, as a function of a perpendicular electric field (which provides a tunable band gap), we define topological-like quantum numbers that take different values in the topological-insulator and band-insulator phases. (paper)

  19. Design and construction of the mineral insulated magnets

    International Nuclear Information System (INIS)

    Kurokawa, S.; Hirabayashi, H.; Taino, M.; Tsuchiya, K.; Yamamoto, A.

    1978-01-01

    The radiation resistant magnets with mineral insulated coils are designed and constructed. The electrical insulation of the cable is maintained by magnesium oxide in the form of a powder held around the copper hollow conductor by a copper shieth. By the direct water cooling through a hollow conductor the sometimes conflicting requirements of good insulation and high field are fulfilled. The magnets can with stand more than 10 12 rad of absorbed dose. (author)

  20. Unexpected ICD pulse generator failure due to electronic circuit damage caused by electrical overstress.

    Science.gov (United States)

    Hauser, R G; Hayes, D L; Almquist, A K; Epstein, A E; Parsonnet, V; Tyers, G F; Vlay, S C; Schoenfeld, M H

    2001-07-01

    Because it is a lifesaving device, the unexpected failure of an ICD can be catastrophic. We report ICD electronic circuit failure due to electrical overstress damage (EOS) to the high voltage hybird circuit and other electronic components in a series of ICD pulse generator models. Data were obtained from the Multicenter Registry of Pacemaker and ICD Pacemaker and Lead Failures, and from the manufactures' adverse event reports, that were in the FDA's Manufacturer and User Facility Device Experience (MAUDE) database. Of 16 nonbattery Guidant/CPI ICD pulse generator failures reported to the registry, 6 (38%) have been confirmed by the manufacturer to be EOS related, and Guidant/CPI has reported 273 such failures to the FDA as of 12/29/00. The signs of failure included loss of telemetry and inability to deliver therapy, and some patients have experienced serious adverse events. Hybrid circuit damage may have occurred during capacitor charging or reform, and the majority appears to have happened during normal ICD function. While the incidence of this problem is unknown, a management strategy should be adopted that includes routine follow-up every 3 months and device evaluation after a shock or exposure to external defibrillation or electrosurgical devices. This study suggests that additional data are needed to determine the incidence of this problem, and that our present methods for monitoring the performance of ICD's following market release are inadequate.

  1. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  2. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  3. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    Directory of Open Access Journals (Sweden)

    Sena Minjoli

    2017-01-01

    Full Text Available Transcranial magnetic stimulation (TMS and transcranial direct current stimulation (TDCS are two types of non-invasive transcranial brain stimulation (TBS. They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible. Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field “hot spots” in the cortex. However, these maxima were not substantially stronger than those seen in a healthy control. The electric field pattern induced by TMS was not substantially changed by the lesions. However, the average field strength generated by TDCS was substantially decreased. This effect occurred for both head models and even when both electrodes were distant to the lesion, caused by increased current shunting through the lesion and enlarged ventricles. Judging from the similar peak field strengths compared

  4. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.

    Science.gov (United States)

    Minjoli, Sena; Saturnino, Guilherme B; Blicher, Jakob Udby; Stagg, Charlotte J; Siebner, Hartwig R; Antunes, André; Thielscher, Axel

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible. Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field "hot spots" in the cortex. However, these maxima were not substantially stronger than those seen in a healthy control. The electric field pattern induced by TMS was not substantially changed by the lesions. However, the average field strength generated by TDCS was substantially decreased. This effect occurred for both head models and even when both electrodes were distant to the lesion, caused by increased current shunting through the lesion and enlarged ventricles. Judging from the similar peak field strengths compared to the healthy

  5. Fractal analysis of the electrical discharges' surface paths in polymeric insulation considering different pollution levels; Analisis fractal de las trayectorias de descargas electricas superficiales en aislamiento polimerico considerando diferentes niveles de contaminacion

    Energy Technology Data Exchange (ETDEWEB)

    Palacios Lopez, Arturo

    2002-07-01

    In this thesis tree patterns of superficial breakdown in polymeric insulator of Silicon Rubber are generated. Experimental arrangement rod-rod was used on the basis of norm ASTM D 2303-85. Pollution levels on the basis of norm IEC 507 were also used. The experimental values of Fractal Dimension for each case of pollution were reported. A self similar method called Box Counting for the fractal dimension calculus and for the self affine methods an R/S and Variogram were used. According to the results, it was concluded that the tree patterns of superficial electric breakdown in Silicon Rubber is self similar and its value does not depend on the degree of pollution, that is equivalent to the concentration of salt for liter of water or to the Equivalent Salt Deposition (ESDD), in the surface of an insulator. [Spanish] En el presente trabajo se inducen descargas electricas superficiales en un aislamiento polimerico de Hule Silicon, el arreglo experimental que se utilice es punta-punta con base en la norma ASTM D 2303-85 y los niveles de contaminacion con base en la norma IEC 507. Se reportan los valores experimentales de la Dimension Fractal para cada caso de contaminacion, se utilice el metodo auto similar de conteo de cuadros, para el calculo de la Dimension Fractal y para metodos auto afines se utilice analisis R/S y variograma. Con los resultados obtenidos se concluye que la trayectoria de la descarga electrica superficial en un polimero de Hule Silicon es auto similar y su valor no depende del grado de contaminacion, el cual es equivalente a la concentracion de gramos de sal por litro de agua o a la densidad de sal depositada (DESD), en la superficie de un aislador.

  6. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  7. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects

    Directory of Open Access Journals (Sweden)

    Maria Eischen-Loges

    2018-06-01

    Full Text Available Background Electrical stimulation (ES has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES’s demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE. In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Methods Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. Results We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1, Osteopontin, Osterix and Calmodulin. We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days after discontinuing ES exposure. Discussion This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This

  8. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  9. Design of the Yang magnetically-insulated transmission line

    International Nuclear Information System (INIS)

    Gu Yuanchao; Song Shenyi

    2002-01-01

    The authors have designed a new magnetically insulated transmission line (MITL) for the Yang accelerator. The differences between the existing line and the designing one are given. The electric strength of some special regions on the lines and the inductance of the lines have been calculated. The authors have checked the states of magnetic insulation on the designing line

  10. Bonded stacked-ring insulator for the Antares electron gun

    International Nuclear Information System (INIS)

    Stine, R.D.; Allen, G.R.; Eaton, E.; Weinstein, B.

    1982-01-01

    A large diameter insulator utilizing epoxy bonding which has sufficient mechanical strength to support the 3000 kg cathode/grid assembly was developed. Bonding the insulator simplifies the handling and reduces the number of 0-ring seals to a minimum. We have described the material selection, bonding techniques and electrical design approach

  11. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed

  12. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  13. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  14. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    Science.gov (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  15. Concentration-elastic-stress instabilities in the distribution of ions and neutral particles in the insulator layer at the semiconductor surface

    International Nuclear Information System (INIS)

    Gol'dman, E. I.

    2006-01-01

    Mobile impurities in the form of ions and neutral associations are present in the insulator films that isolate the semiconductor from the metal electrode. If temperatures and the polarizing electric field are sufficiently high, impurities concentrate at the insulator-semiconductor interface where they exchange electrons with the semiconductor. It is shown that the pairwise interaction of particles via the field of elastic stresses caused by the concentration-related expansion of the insulator can give rise to an instability in the impurity distribution that is uniform over the contact. The stationary small-scale ordering of the particles over the contact of the insulator with the semiconductor arises in the solution of point defects, which is accompanied by annular flows of the particles

  16. Radiation-resistant plastic insulators

    International Nuclear Information System (INIS)

    Sturm, B.J.; Parkinson, W.W.

    1975-01-01

    A high molecular weight organic composition useful as an electric insulator in radiation fields is provided and comprises normally a solid polymer of an organic compound having a specific resistance greater than 10 19 ohm-cm and containing phenyl groups and 1 to 7.5 weight percent of a high molecular weight organic phosphite. In one embodiment the composition comprises normally solid polystyrene having 7.5 weight percent tris-β-chloroethyl phosphite as an additive; the composition exhibited an increase in the post-irradiation resistivity of over an order of magnitude over the post-irradiation resistivity of pure polystyrene. (Patent Office Record)

  17. Stability Study of Flexible 6,13-Bis(triisopropylsilylethynylpentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol/Yttrium Oxide Nanocomposite Gate Insulator

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kwon

    2016-03-01

    Full Text Available We investigated the electrical and mechanical stability of flexible 6,13-bis(triisopropylsilylehtynylpentacene (TIPS-pentacene thin-film transistors (TFTs that were fabricated on polyimide (PI substrates using cross-linked poly(4-vinylphenol (c-PVP and c-PVP/yttrium oxide (Y2O3 nanocomposite films as gate insulators. Compared with the electrical characteristics of TIPS-pentacene TFTs with c-PVP insulators, the TFTs with c-PVP/Y2O3 nanocomposite insulators exhibited enhancements in the drain current and the threshold voltage due to an increase in the dielectric capacitance. In electrical stability experiments, a gradual decrease in the drain current and a negative shift in the threshold voltage occurred during prolonged bias stress tests, but these characteristic variations were comparable for both types of TFT. On the other hand, the results of mechanical bending tests showed that the characteristic degradation of the TIPS-pentacene TFTs with c-PVP/Y2O3 nanocomposite insulators was more critical than that of the TFTs with c-PVP insulators. In this study, the detrimental effect of the nanocomposite insulator on the mechanical stability of flexible TIPS-pentacene TFTs was found to be caused by physical adhesion of TIPS-pentacene molecules onto the rough surfaces of the c-PVP/Y2O3 nanocomposite insulator. These results indicate that the dielectric and morphological properties of polymeric nanocomposite insulators are significant when considering practical applications of flexible electronics operated at low voltages.

  18. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  19. Hybrid and electric low-noise cars cause an increase in traffic accidents involving vulnerable road users in urban areas.

    Science.gov (United States)

    Brand, Stephan; Petri, Maximilian; Haas, Philipp; Krettek, Christian; Haasper, Carl

    2013-01-01

    Due to resource scarcity, the number of low-noise and electric cars is expected to increase rapidly. The frequent use of these cars will lead to a significant reduction of traffic related noise and pollution. On the other hand, due to the adaption and conditioning of vulnerable road users the number of traffic accidents involving pedestrians and bicyclists is postulated to increase as well. Children, older people with reduced eyesight and the blind are especially reliant on a combination of acoustic and visual warning signals with approaching or accelerating vehicles. This is even more evident in urban areas where the engine sound is the dominating sound up to 30 kph (kilometres per hour). Above this, tyre-road interaction is the main cause of traffic noise. With the missing typical engine sound a new sound design is necessary to prevent traffic accidents in urban areas. Drivers should not be able to switch the sound generator off.

  20. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...... cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...

  1. [Effect of Transcutaneous Acupoint Electrical Stimulation on Hemodynamic Fluctuation Caused by Loosing Tourniquet in Elderly Patients Undergoing Knee Joint Replacement].

    Science.gov (United States)

    Liang, Han-Sheng; Feng, Yi

    2017-12-25

    To observe the effect of transcutaneous acupoint electrical stimulation (TAES) on hemodynamic fluctuation caused by loosing tourniquet in the elderly patients undergoing knee joint replacement. A total of 60 ASA (America Society Anesthesiologist) I or II elderly patients for elective knee joint replacement surgery were randomly divided into control group (30 cases) and TAES group (30 cases). Patients of both groups were treated by intravenous anesthesia, and monitored with bispectral index (BIS, between 45-60) for anesthesia depth, stroke volume variation (SVV) for fluid management, mean arterial pressure (MAP) and cardiac index (CI) for hemodynamic fluctuation evaluation, and with analgesia nociception index (ANI, between 50-70) for remifentanil dosage adjustment. TAES (2 Hz/100 Hz, 8-20 mA) was applied to bilateral Xinshu (BL 15), Feishu (BL 13), Neiguan (PC 6) and Hegu (LI 4) acupoints for 30 min first (followed by anesthesia induction and operation), and given continuously until 15 min after tourniquet loosing. Patients of the control group were only given with electrodes attachment without electrical stimulation. The levels of MAP, CI, and arterial blood pH, PaCO 2 , PaO 2 , base excess (BE) and lactic acid (Lac) 1 min before, and 5 and 15 min after tourniquet loosing, and the dosages of remifentanil and ephedrine after tourniquet loosing were recorded. The changed levels of MAP, CI and blood Lac at 5 min after tourniquet loosing (relevant to the baseline levels), and blood Lac content at 15 min after tourniquet loosing (relevant to 5 min after tourniquet loosing) were significantly lower in the TAES group than in the control group ( P 0.05). TAES has a positive effect on hemodynamics fluctuation caused by loosing tourniquet in the aged patients undergoing knee joint replacement.

  2. ESTIMATION OF INSULATOR CONTAMINATIONS BY MEANS OF REMOTE SENSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    G. Han

    2016-06-01

    Full Text Available The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD, digital elevation model (DEM, land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data. Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  3. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  4. Defect design of insulation systems for photovoltaic modules

    Science.gov (United States)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  5. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  6. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  7. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  8. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  9. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  10. THE TECHNOLOGICAL AND EXPLOITATIVE FACTORS OF LOCAL INCREASE OF ELECTRIC FIELD STRENGTH IN THE POWER CABLE OF COAXIAL DESIGN

    Directory of Open Access Journals (Sweden)

    G. V. Bezprozvannych

    2016-12-01

    different effects on the distribution of the electrical field strength at the conductor and the insulation. The electrical field strength is increased by 50 % in the core and 17 % - on the surface of the insulation at 10 % eccentricity between conductor and insulation. Availability elliptic insulation leads to a redistribution of the electric field: field strength at the surface of the insulation is 2 times higher electric field strength on the surface of the conductor. Water treeing spherical shape filled with water with a dielectric constant of 6.9, lead to a local increase of electric field intensity is 5 - 10 times. Originality. Simulation results show that the presence of water treeing concentrated with individual heterogeneity characteristic impedance causes a change in shape and duration of the probe signal rectangular. Practical value. Time domain reflectometer can be considered as one of the promising methods for diagnosing operational irregularities (ellipticity, eccentricity, water treeing in power cables.

  11. KSI's Cross Insulated Core Transformer Technology

    International Nuclear Information System (INIS)

    Uhmeyer, Uwe

    2009-01-01

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  12. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  13. Conductivity in insulators due to implantation of conducting species

    International Nuclear Information System (INIS)

    Prawer, S.; Kalish, R.

    1993-01-01

    Control of the surface conductivity of insulators can be accomplished by high dose ion implantation of conductive species. The use of C + as the implant species is particularly interesting because C can either form electrically insulating sp 3 bonds or electrically conducting sp 2 bonds. In the present work, fused quartz plates have been irradiated with 100 keV C + ions to doses up to 1 x 10 17 ions/cm 2 at room temperature and at 200 deg C. The ion beam induced conductivity was monitored in-situ and was found to increase by up to 8 orders to magnitude for the ion dose range studied. Xe implantations over a similar range did not induce any changes in the conductivity showing that the increase in conductivity is caused by the presence of the C in the fused quartz matrix and not by damage. The dependence of the conductivity on implantation temperature and on post implantation annealing sheds light on the clustering of the C implants. The temperature dependence of the conductivity for the highest doses employed (1 x 10 17 C + /cm 2 ) can be described very well by lnσ α T. This is considered to be a peculiar dependence which does not comply with any of the standard models for conduction. 9 refs., 1 tab., 6 figs

  14. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  15. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  16. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  17. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  18. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.; Park, Sun H.; Park, Jeong; Fujita, Osamu; Keel, Sang I.; Chung, Suk-Ho

    2017-01-01

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field

  19. Optimisation of Multilayer Insulation an Engineering Approach

    CERN Document Server

    Chorowski, M; Parente, C; Riddone, G

    2001-01-01

    A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.

  20. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  1. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  2. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  3. Thermal insulation. Non-utilized energy need not be generated. Four rules for a successful thermal insulation by means of building insulation; Waermedaemmung. Energie, die nicht gebraucht wird, muss man nicht erzeugen. Vier Regeln fuer erfolgreichen Waermeschutz durch Gebaeudedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Patschke, Markus [3E-Consult, Nordkirchen (Germany); Drewer, Arnold [IpeG-Institut, Paderborn (Germany)

    2011-07-15

    The heat supply of buildings causes nearly one third of the energy consumption of an industrialized country. In 2006, the climate-adjusted heat consumption of private households in Germany amounted nearly 600 billion kWh. This consumption caused more than 167 million tons of CO{sub 2}. Heat insulation measures in buildings are required for all heat-transferring enveloping surface. Under this aspect, the contribution under consideration reports on four fundamental rules for a cost-efficient building insulation: (a) Only heated rooms should be insulated thermally; (b) Location and thermal insulation of cavities; (c) Selection of a suitable insulating material; (d) Consideration of an economic sustainability.

  4. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah

    2015-01-01

    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  5. Application to the system of insulated of diagnosis in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, M.

    2005-01-01

    In order to detect electric insulators degradation of high-voltage electric motors at an early stage, measurements of partial discharge of operating high-voltage electric motors (about 150 units) in the nuclear power plants were conducted from 2001 to 2004 by the use of on-line monitoring systems that could measure partial discharge of electric insulators. Influencing factors for measured values were identified from measured data and evaluation criteria of electric insulators integrity were established based on variations of partial discharge values. (T. Tanaka)

  6. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  7. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  8. The Insulation of Houses against Noise from Aircraft in Flight.

    Science.gov (United States)

    Scholes, W. E.; Parkin, P. H.

    Three groups of traditional houses were insulated against aircraft noise by double glazing and installing sound attenuating ventilator units. For upper floor rooms of two story houses, overall insulations of 35-40 dB were obtainable, providing transmission through the roofs and down flues were also reduced. The noise levels caused by ventilator…

  9. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  10. Descriptive Study of Occupational Accidents and their Causes among Electricity Distribution Company Workers at an Eight-year Period in Iran

    Science.gov (United States)

    Rahmani, Abdolrasoul; Khadem, Monireh; Madreseh, Elham; Aghaei, Habib-Allah; Raei, Mehdi; Karchani, Mohsen

    2013-01-01

    Background Occupational accidents are unplanned events that cause damage. The socio-economic impacts and human costs of accidents are tremendous around the world. Many fatalities happen every year in workplaces such as electricity distribution companies. Some electrical injuries are electrocution, electric shock, and burns. This study was conducted in an electricity distribution company (with rotational 12-hour shift work) in Iran during an 8-year period to survey descriptive factors of injuries. Methods Variables collected included accident time, age of injured worker, employment type, work experience, injury cause, educational background, and other information about accidents. Results Results indicated that most of the accidents occurred in summer, and 51.3% were during shift work. Worker negligence (malpractice) was the cause of 75% of deaths. Type of employment had a significant relationship with type of injuries (p safety was related to job experiences. Temporary workers have no chance to work all year like permanent workers, therefore impressive experiences may be less in them. Because the lack of protective equipment and negligence are main causes of accidents, periodical inspections in workshops are necessary. PMID:24106647

  11. A method of predicting the reliability of CDM coil insulation

    International Nuclear Information System (INIS)

    Kytasty, A.; Ogle, C.; Arrendale, H.

    1992-01-01

    This paper presents a method of predicting the reliability of the Collider Dipole Magnet (CDM) coil insulation design. The method proposes a probabilistic treatment of electrical test data, stress analysis, material properties variability and loading uncertainties to give the reliability estimate. The approach taken to predict reliability of design related failure modes of the CDM is to form analytical models of the various possible failure modes and their related mechanisms or causes, and then statistically assess the contributions of the various contributing variables. The probability of the failure mode occurring is interpreted as the number of times one would expect certain extreme situations to combine and randomly occur. One of the more complex failure modes of the CDM will be used to illustrate this methodology

  12. Particle contamination in gas-insulated systems: new control methods and optimum SF6/N2 mixtures

    International Nuclear Information System (INIS)

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    The feasibilities of two new separate techniques to control particle contamination in practical gas-insulated sytems were tested in a small-scale concentric cylinder geometry. In one technique an insulating coating was first formed on the particles in a contaminated system by low-pressure discharges in appropriate gases such as 1-C 3 F 6 and c-C 4 F 8 . When SF 6 was subsequently introduced into the same system at practical pressure as the operating insulation, the considerable harm ordinarily caused by particles was found to be eliminated. The nature of the coating formed also on the electrodes in this process was studied, with the conclusion that the observed benefits were primarily due to coating on particles, not on electrodes. In the second technique the particles, moved randomly by electrical stress, struck and adhered to the surface of a tacky insulating solid material; they were subsequently encapsulated in a melt-resolidify cycle without electrical stress. This trapping technique was also found to eliminate the harmful effects of particles in SF 6 at practical pressure. A technique for producing a trapping material with temperature characteristics appropriate for practical apparatus was devised. The effect of particle contamination on the dielectric strength of SF 6 /N 2 mixtures was studied as a function of total pressure and percentage of each gas. Optimum total pressure (approx. 6 atm) and optimum percentages (60% SF 6 /40% N 2 ) were observed in breakdown tests in particle-contaminated concentric cylinder geometry

  13. Organic insulator studies at Los Alamos

    International Nuclear Information System (INIS)

    Parkin, D.M.; Clinard, F.W.

    1981-01-01

    The effects of radiation on the structural and electrical properties of organic insulators to be used in superconducting magnets in fusion devices has been identified as a critical materials problem. These materials will be exposed to both γ-ray and neutron radiation. LANL has been asked by the OFE Materials Branch to look at the relationship between the effects of γ-ray and neutron radiation effects. Some thoughts on planning the program are outlined

  14. D.B.S. in disordered insulators

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    These studies were undertaken in order to determine insulator properties for the CTR program. Most of the d.b.s. studies so far have been with various forms of Al 2 O 3 . Some work using fission neutrons and 15-MeV protons along with some high-energy heavy ions is briefly described. Attempts to measure d.b.s. and other electrical properties are mentioned

  15. NDE of ceramic insulator blanks by radiography

    International Nuclear Information System (INIS)

    Sarvanan, S.; Venkatraman, B.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The production of ceramic insulators in electrical industry involves a number of steps, one of which is the green blank. The defects such as voids and crack can be present in the extruded green blank. One of the best non-destructive evaluation (NDE) technique radiography. This paper deals with the development of methodology based on theoretical modeling for the examination of ceramics by high sensitivity radiography. (author)

  16. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  17. Radiation processing of polymer insulators as a method of improving their properties and performance

    International Nuclear Information System (INIS)

    Ivanov, V.S.; Migunova, L.I.; Kalinina, N.A.; Aleksandrov, G.N.

    1995-01-01

    Polymer insulators for electric apparatus and high-voltage overhead lines are promising for replacing porcelain and glass insulators. The possibility of application of radiation-chemical technology was showed by manufacture of rod-shaped polymer insulators. In this work, an ethylene and vinyl acetate copolymer was used as the polymer basis of the composition for insulators. By forming a three-dimensional network in polymer bulk radiation processing improves service properties of polymer insulators: shape and heat stability > 200 degree C and stability to tracking erosion > 200 h

  18. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  19. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  20. Optimize awareness of hazards in underground coal mines caused by electrical ignitions and fires through appropriate training guidelines.

    CSIR Research Space (South Africa)

    Page, TPT

    1998-03-01

    Full Text Available technical requirements and suggestions for appropriate training methodologies for each category of staff that could influence the likelihood of electrical ignitions and fires occurring, are contained....

  1. Acoustic excitation of containment insulation cover plate

    International Nuclear Information System (INIS)

    Fenech, H.; Rao, A.K.

    1978-01-01

    An experimental and theoretical program has been implemented by NRC-BNL since 1975 at the University of California, Santa Barbara to assess the reliability of the PCRV thermal insulation cover plate and the possible safety problem caused by the failure of this plate. A typical large HTGR PCRV unit [1160 MW(e)] and thermal insulation class A were selected. The upper core cavity is estimated to be the most critical volume where the noise pressure levels are expected to reach 110 to 130 dB (rel. to 2 x 10 -4 dynes/cm 2 ). The noise spectrum in that cavity is a composite of circulator noise, vortex shedding boundary layer turbulence, and flow impingement. Some anticipated safety related problems associated with the thermal insulation failure are examined

  2. Investigation of wear of insulation of traction engines of locomotives in operation

    Directory of Open Access Journals (Sweden)

    Nefedov Roman

    2018-01-01

    Full Text Available The article analyzes reliability of traction electric motors in operation. It is shown that the greatest number of failure falls on the winding of the armature. Investigation of the causes of increased wear of the armature winding insulation was carried out using the dynamic thermal model of the electric motor. The model is represented by 150 final elements and takes into account the conditions of thermal conductivity between the nodes and heat transfer to the cooling air. Verification of the model was carried out by comparison with the results of thermal tests of electric motors of the series HБ-406 and ЭД-118. The field of temperatures in the traction motor under various loads was investigated. It is shown that in stationary mode the temperature change along the armature winding can reach 60C. Modeling of thermal dynamic processes in the engine during its operation on the locomotive allowed to identify the most stressed nodes. It is shown that the resource of the electric motor is determined by the wear of the insulation of the frontal part of the armature winding on the side of the traction drive of the locomotive.

  3. The electro-mechanical effect from charge dynamics on polymeric insulation lifetime

    Science.gov (United States)

    Alghamdi, H.; Chen, G.; Vaughan, A. S.

    2015-12-01

    For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surrounding the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.

  4. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  5. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  6. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence-Based...

  7. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  8. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  9. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  10. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    International Nuclear Information System (INIS)

    Chun, C.-Y.

    1991-01-01

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  11. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    Energy Technology Data Exchange (ETDEWEB)

    Chun, C -Y [Wolsong Nuclear Power Plant, Korea Electric Power Corporation, Wolsong (Korea, Republic of)

    1991-04-01

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  12. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  13. A Difference in Using Atomic Layer Deposition or Physical Vapour Deposition TiN as Electrode Material in Metal-Insulator-Metal and Metal-Insulator-Silicon Capacitors

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2011-01-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the

  14. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  15. CERTIFICATION OF THE RADIATION RESISTANCE OF COIL INSULATION MATERIAL

    CERN Document Server

    Polinski, J; Bogdan, P

    2013-01-01

    The goal of the WP 7.2.1 sub-task of the EuCARD program has been to determine the Nb$_{3}$Sn based accelerator magnet coil electrical insulation resistance against irradiation, which will occur in future accelerators. The scope of the certification covers determination of mechanical, electrical and thermal properties changes due to irradiation. The report presents a selection of the insulation material candidates for future accelerator magnets as well as the definition of the radiation certification methodology with respect of radiation type, energy, doses and irradiation conditions. The test methods and results of the electrical and mechanical insulation materials properties degradation due to irradiation are presented. Thermal conductivity and Kapitza resistance at temperature range from 1.5 K to 2.0 K (superfluid helium conditions) are given.

  16. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  17. Preparation and Dielectric Properties of SiC/LSR Nanocomposites for Insulation of High Voltage Direct Current Cable Accessories.

    Science.gov (United States)

    Shang, Nanqiang; Chen, Qingguo; Wei, Xinzhe

    2018-03-08

    The conductivity mismatch in the composite insulation of high voltage direct current (HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown. Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning electron microscopy, and their trap parameters are characterized using thermal stimulated current (TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear conductivity, more than one order of magnitude higher than that of pure LSR with improved temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and electric field distribution within the HVDC cable accessories, thus improving the reliability of the HVDC cable accessories.

  18. Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available Oil-impregnated paper is widely used in power transmission equipment as a reliable insulation. However, copper sulphide deposition on oil-paper insulation can lead to insulation failures in power transformers. This paper presents the influences of copper sulfur corrosion and copper sulphide deposition on copper wires and oil-paper insulation in power transformers. Thermal aging tests of paper-wrapped copper wires and bare copper wires in insulating oil were carried out at 130 °C and 150 °C in laboratory. The corrosive characteristics of paper-wrapped copper wires and bare copper wires were analyzed. Dielectric properties of insulation paper and insulating oil were also analyzed at different stages of the thermal aging tests using a broadband dielectric spectrometer. Experiments and analysis results show that copper sulfide deposition on surfaces of copper wires and insulation paper changes the surface structures of copper wires and insulation paper. Copper sulfur corrosion changes the dielectric properties of oil-paper insulation, and the copper sulfide deposition greatly reduces the electrical breakdown strength of oil-paper insulation. Metal passivator is capable of preventing copper wires from sulfur corrosion. The experimental results are helpful for investigations for fault diagnosis of internal insulation in power transformers.

  19. Topological insulators and superconductors: tenfold way and dimensional hierarchy

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W

    2010-01-01

    It has recently been shown that in every spatial dimension there exist precisely five distinct classes of topological insulators or superconductors. Within a given class, the different topological sectors can be distinguished, depending on the case, by a Z or a Z 2 topological invariant. This is an exhaustive classification. Here we construct representatives of topological insulators and superconductors for all five classes and in arbitrary spatial dimension d, in terms of Dirac Hamiltonians. Using these representatives we demonstrate how topological insulators (superconductors) in different dimensions and different classes can be related via 'dimensional reduction' by compactifying one or more spatial dimensions (in 'Kaluza-Klein'-like fashion). For Z-topological insulators (superconductors) this proceeds by descending by one dimension at a time into a different class. The Z 2 -topological insulators (superconductors), on the other hand, are shown to be lower-dimensional descendants of parent Z-topological insulators in the same class, from which they inherit their topological properties. The eightfold periodicity in dimension d that exists for topological insulators (superconductors) with Hamiltonians satisfying at least one reality condition (arising from time-reversal or charge-conjugation/particle-hole symmetries) is a reflection of the eightfold periodicity of the spinor representations of the orthogonal groups SO(N) (a form of Bott periodicity). Furthermore, we derive for general spatial dimensions a relation between the topological invariant that characterizes topological insulators and superconductors with chiral symmetry (i.e., the winding number) and the Chern-Simons invariant. For lower-dimensional cases, this formula relates the winding number to the electric polarization (d=1 spatial dimensions) or to the magnetoelectric polarizability (d=3 spatial dimensions). Finally, we also discuss topological field theories describing the spacetime theory of

  20. Development mineral insulated cables for nuclear instrumentation of reactors

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Hess Junior, A.; Brito Maciel, R. de

    1990-01-01

    In-core and out-of-core neutron detectors for reactor and safety control systems are usually connected by means of mineral insulated cables. The electrical signal, either a pulse or a current, is transmitted along the cable at high temperature, pressure and radiation and should not be influenced by electromagnetic interfereces from the environment. In this paper it is presented the result of the analysis of the mechanical and electrical properties of several types of mineral insulated cables and also the design, manufacture, sealing, cable ends and their applications to nuclear detectors of various types. (author) [pt

  1. Electrical installations technology

    CERN Document Server

    Whitfield, J F

    1968-01-01

    Electrical Installations Technology covers the syllabus of the City and Guilds of London Institute course No. 51, the "Electricians B Certificate”. This book is composed of 15 chapters that deal with basic electrical science and electrical installations. The introductory chapters discuss the fundamentals and basic electrical principles, including the concept of mechanics, heat, magnetic fields, electric currents, power, and energy. These chapters also explore the atomic theory of electric current and the electric circuit, conductors, and insulators. The subsequent chapter focuses on the chemis

  2. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  3. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  4. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  5. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  6. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Insulating materials for optoelectronics

    International Nuclear Information System (INIS)

    Agullo-Lopez, F.

    1990-01-01

    Optoelectronics is an interdisciplinary field. Basic functions of an optoelectronic system include the generator of the optical signal, its transmission and handling and, finally, its detection, storage and display. A large variety of semiconductor and insulating materials are used or are being considered to perform those functions. The authors focus on insulating materials, mostly oxides. For signal generation, tunable solid state lasers, either vibronic or those based oon colour centres are briefly described, and their main operating parameters summarized. Reference is made to some developments on fiber and waveguide lasers. Relevant physical features of the silica fibres used for low-loss, long-band, optical transmission are reviewed, as well as present efforts to further reduce attenuation in the mid-infrared range. Particular attention is paid to photorefractive materials (LiNbO 3 , BGO, BSO, etc.), which are being investigated

  8. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  9. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  10. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  11. Pourable Foam Insulation

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1989-01-01

    Report describes search for polyisocyanurate/polyurethane foam insulation with superior characteristics. Discusses chemistry of current formulations. Tests of formulations, of individual ingredients and or alternative new formulations described. Search revealed commercially available formulations exhibiting increased thermal stability at temperatures up to 600 degree C, pours readily before curing, presents good appearance after curing, and remains securely bonded to aluminum at cryogenic temperatures. Total of 42 different formulations investigated, 10 found to meet requirements.

  12. Testing of ITER central solenoid coil insulation in an array

    International Nuclear Information System (INIS)

    Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.

    1995-01-01

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete. It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations

  13. Insulation coordination workstation for AC and DC substations

    International Nuclear Information System (INIS)

    Booth, R.R.; Hileman, A.R.

    1990-01-01

    The Insulation Coordination Workstation was designed to aid the substation design engineer in the insulation coordination process. The workstation utilizes state of the art computer technology to present a set of tools necessary for substation insulation coordination, and to support the decision making process for all aspects of insulation coordination. The workstation is currently being developed for personal computers supporting OS/2 Presentation Manager. Modern Computer-Aided Software Engineering (CASE) technology was utilized to create an easily expandable framework which currently consists of four modules, each accessing a central application database. The heart of the workstation is a library of user-friendly application programs for the calculation of important voltage stresses used for the evaluation of insulation coordination. The Oneline Diagram is a graphic interface for data entry into the EPRI distributed EMTP program, which allows the creation of complex systems on the CRT screen using simple mouse clicks and keyboard entries. Station shielding is graphically represented in the Geographic Viewport using a three-dimensional substation model, and the interactive plotting package allows plotting of EPRI EMTP output results on the CRT screen, printer, or pen plotter. The Insulation Coordination Workstation was designed by Advanced Systems Technology (AST), a division of ABB Power Systems, Inc., and sponsored by the Electric Power Research Institute under RP 2323-5, AC/DC Insulation Coordination Workstation

  14. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  15. Edge forward mechanical protection for porcelain insulators

    Energy Technology Data Exchange (ETDEWEB)

    deCasseres, D.K.

    1987-12-01

    Vandal damage to exposed outdoor insulators of all types has become an increasing problem. Porcelain is susceptible to impact fracture, and Area Boards have frequently found it necessary to protect expensive and often highly vulnerable terminating assemblies from the unwelcome attention of hooligans. Various means of physical protection can be used, but many of these are highly demanding in terms of maintenance. This article discusses the 'state of the art' in insulator protection, and describes the design and development of a new concept in the field-the Shed Protector-a number of which are now installed on 132kV sealing ends throughout the Electricity Supply Industry.

  16. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  17. Air insulated cables for medium and low voltage supplies of the EVU

    Energy Technology Data Exchange (ETDEWEB)

    Dienstel, S

    1977-02-01

    Air insulated cables and insulated overhead cables are electrical components, which, by the use of new insulating materials and technology, are particularly suitable for the introduction of systems for overhead power transmission plants. They combine the favorable properties of underground cables, such as compact construction and low inductance, with their high mechanical strength. The present report deals with the construction, accessories and technical properties of these cables. The constructional and operational aspects of such systems and their costs are also discussed.

  18. Low-voltage electrical installations in medical buildings - clinical centres and hospitals

    Directory of Open Access Journals (Sweden)

    Simić Ninoslav

    2015-01-01

    Full Text Available This paper presents the observations collected during the testing of electrical installations in medical buildings. The details of the power supply, wiring systems and the implemented systems of protection against electric shocks are described. The causes of some faults during the exploitation of the facilities are presented through practical examples, and the specific problem caused by water leaking through the insulation of electrical installations is explained in detail. It is pointed out how important maintenance, monitoring and application of the latest standards in this area are, as well as adequate training of professional staff.

  19. DC breakdown characteristics of silicone polymer composites for HVDC insulator applications

    Science.gov (United States)

    Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won

    2015-11-01

    Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.

  20. Linear particle accelerator with seal structure between electrodes and insulators

    Science.gov (United States)

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  1. A single exposure to acrolein causes arrhythmogenesis, cardiac electrical dysfunction and decreased heart rate variability in hypertensive rats

    Science.gov (United States)

    Epidemiological studies demonstrate an association between cardiovascular morbidity, arrhythmias, and exposure to air toxicants such as acrolein. We hypothesized that a single exposure to acrolein would increase arrhythmias and cause changes in the electrocardiogram (ECG) of hype...

  2. Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator

    Directory of Open Access Journals (Sweden)

    Lei Lan

    2017-07-01

    Full Text Available It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.

  3. A quantum molecular similarity analysis of changes in molecular electron density caused by basis set flotation and electric field application

    Science.gov (United States)

    Simon, Sílvia; Duran, Miquel

    1997-08-01

    Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed.

  4. A Seismic Analysis for Reflective Metal Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyuhyung; Kim, Taesoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components.

  5. A Seismic Analysis for Reflective Metal Insulation

    International Nuclear Information System (INIS)

    Kim, Kyuhyung; Kim, Taesoon

    2016-01-01

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components

  6. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  7. Void-free epoxy castings for cryogenic insulators and seals

    International Nuclear Information System (INIS)

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing

  8. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  9. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  10. Design principles for HgTe based topological insulator devices

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard

    2013-07-01

    The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.

  11. Spintronics Based on Topological Insulators

    Science.gov (United States)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  12. Studies on Kondo insulating FeSi

    International Nuclear Information System (INIS)

    Bharathi, A.; Mani, Awadhesh; Ravindran, Nithya; Mathi Jaya, S.; Sundar, C.S.; Hariharan, Y.

    2000-01-01

    Temperature dependent electrical resistivity measurements have been carried out in Fe (1-x) Ru x Si and FeSi (1-x) Ge x to examine the robustness of the Kondo Insulating gap to substitution in the Fe and Si sublattices. The gap is seen to decrease with Ge substitution, while for Ru substitution the gap shows an initial decrease followed by an increase at higher concentration. The results can be understood in terms of the shift in the mobility edge due to disorder and/or pressure effects in combination with changes in band structure

  13. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  14. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical

  15. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  16. Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer

    Directory of Open Access Journals (Sweden)

    Wen Si

    2018-03-01

    Full Text Available The ultra high voltage direct current (UHVDC transmission system has advantages in delivering electrical energy over long distance at high capacity. UHVDC converter transformer is a key apparatus and its insulation state greatly affects the safe operation of the transmission system. Partial discharge (PD characteristics of oil-pressboard insulation under combined AC-DC voltage are the foundation for analyzing the insulation state of UHVDC converter transformers. The defect pattern recognition based on PD characteristics is an important part of the state monitoring of converter transformers. In this paper, PD characteristics are investigated with the established experimental platform of three defect models (needle-plate, surface discharge and air gap under 1:1 combined AC-DC voltage. The different PD behaviors of three defect models are discussed and explained through simulation of electric field strength distribution and discharge mechanism. For the recognition of defect types when multiple types of sources coexist, the Random Forests algorithm is used for recognition. In order to reduce the computational layer and the loss of information caused by the extraction of traditional features, the preprocessed single PD pulses and phase information are chosen to be the features for learning and test. Zero-padding method is discussed for normalizing the features. Based on the experimental data, Random Forests and Least Squares Support Vector Machine are compared in the performance of computing time, recognition accuracy and adaptability. It is proved that Random Forests is more suitable for big data analysis.

  17. Magnetically insulated H- diodes

    International Nuclear Information System (INIS)

    Fisher, A.; Bystritskii, V.; Garate, E.; Prohaska, R.; Rostoker, N.

    1993-01-01

    At the Univ. of California, Irvine, the authors have been studying the production of intense H - beams using pulse power techniques for the past 7 years. Previously, current densities of H - ions for various diode designs at UCI have been a few A/cm 2 . Recently, they have developed diodes similar to the coaxial design of the Lebedev Physical Institute, Moscow, USSR, where current densities of up to 200 A/cm 2 were reported using nuclear activation of a carbon target. In experiments at UCI employing the coaxial diode, current densities of up to 35 A/cm 2 from a passive polyethylene cathode loaded with TiH 2 have been measured using a pinhole camera and CR-39 track recording plastic. The authors have also been working on a self-insulating, annular diode which can generate a directed beam of H - ions. In the annular diode experiments a plasma opening switch was used to provide a prepulse and a current path which self-insulated the diode. These experiments were done on the machine APEX, a 1 MV, 50 ns, 7 Ω pulseline with a unipolar negative prepulse of ∼ 100 kV and 400 ns duration. Currently, the authors are modifying the pulseline to include an external LC circuit which can generate a bipolar, 150 kV, 1 μs duration prepulse (similar prepulse characteristic as in the Lebedev Institute experiments cited above)

  18. Economic Analysis of Installing Fixed and Removable Insulation for Pipe Wall Thinning Management

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyeongmo; Yun, Hun [KEPCO E and C, Gimcheon (Korea, Republic of)

    2016-12-15

    To perform ultrasonic testing (UT) thickness measurement of the secondary side piping installed in nuclear power plants, the insulation for preventing heat loss should be removed. The type of insulation can be divided into fixed and removable insulation. Fixed and removable insulation have their own strengths and weaknesses. Removable insulation has been installed in the components susceptible to wall thinning caused by FAC and erosion from Shin-Kori unit 1, which commenced its commercial operation in 2011. In this paper, the number of repeated inspections of components and the number of replacements of fixed insulation were estimated and a more economical way was identified based on the manufacturing and installation costs for fixed and removable insulation.

  19. Effects of γ-radiation on the properties of insulating oil

    International Nuclear Information System (INIS)

    Abdel Aziz, M.M.; Elshazly-Zaghloul, M.; Zaghloul, A.R.M.; Fikry, L.; Raieh, M.

    1986-01-01

    Electrical Equipment used in an irradiated environment suffer from ionization and other effects. Insulating oil, e.g. of transformers, in a nuclear power station is subjected to γ-radiation. In this communication we provide a detailed experimental study of insulating oil subjected to γ-radiation. Unused oil samples of the type used in Egypt were subjected to γ-radiation for different time periods. The electrical properties of these samples are measured; dielectric constant and breakdown strength

  20. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  1. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  2. Determination of the dew point and the frost point below 0 degrees C making use of the beta-ray backscattering and the electric conductivity on the narrow surface of insulated layer.

    Science.gov (United States)

    Matsumoto, S; Kobayashi, H

    1979-10-15

    It is necessary to distinguish between the dew point and the frost point below 0 degrees C. The freezing of the dew and the melting of the frost are respectively detected by the rapid decrease and the increase of the conduction current on the narrow surface of insulated layer made of epoxy, 0.5 mm in width and 10 mm in length, on which the dew deposits. The dew point -9 degrees C and the frost point -8 degrees C in the humidity 21% at the temperature 13 degrees C are clearly distinguished in this method.

  3. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be

  4. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  5. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  6. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  7. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  8. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    Science.gov (United States)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire

  9. Excitons in insulators

    International Nuclear Information System (INIS)

    Grasser, R.; Scharmann, A.

    1983-01-01

    This chapter investigates absorption, reflectivity, and intrinsic luminescence spectra of free and/or self-trapped (localized) excitons in alkali halides and rare gas solids. Introduces the concepts underlying the Wannier-Mott and Frenkel exciton models, two extreme pictures of an exciton in crystalline materials. Discusses the theoretical and experimental background; excitons in alkali halides; and excitons in rare gas solids. Shows that the intrinsic optical behavior of wide gap insulators in the range of the fundamental absorption edge is controlled by modified Wannier-Mott excitons. Finds that while that alkali halides only show free and relaxed molecular-like exciton emission, in rare gas crystals luminescence due to free, single and double centered localized excitons is observed. Indicates that the simultaneous existence of free and self-trapped excitons in these solid requires an energy barrier for self-trapping

  10. Influence of the barite tenors of the Jaicos, Piaui, Brazil, clays on the ceramic properties of electric insulator porcelains; Influencia dos teores de barita das argilas de Jaicos, Piaui, Brasil nas propriedades ceramicas de porcelana de isoladores eletricos

    Energy Technology Data Exchange (ETDEWEB)

    Correa, W.L.P. [Escola SENAI Mario Amato, Sao Bernardo do Campo, SP (Brazil); Lima, M.B. [Faculdade Sao Bernardo, SP (Brazil); Carvalho, F.M.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias

    2009-07-01

    The clays of the Municipality of Jaicos, Piaui, has been used as raw materials for the manufacture of insulators for company located in the municipality of Pedreira - Sao Paulo. It can be noticed in the clay blocks and consolidated, 'lenses' of barite. The mineralogical composition of clay and the nature of these 'lenses' were studied by chemical analysis, X-ray diffraction for mineralogical characterization. The clays are composed primarily by kaolinite, quartz, and some amount of illite and orthoclase. The presence of orthoclase does believe in a recent deposition of these clays. The 'lenses' were characterized as barite, BaSO{sub 4}. To check the influence of barite in the composition of bodies of porcelain to insulators made up six compositions with different levels of barite, obtained their own clay. It applies, then the tests of ceramic fracture to bending, water absorption, apparent porosity to determine the effect of the introduction of barite in the compositions. (author)

  11. The development of electric-powered vehicles. Does China cause an acceleration?; De ontwikkeling van elektrische auto's. Zorgt China voor een stroomversnelling?

    Energy Technology Data Exchange (ETDEWEB)

    De Kleine, M.

    2010-06-15

    The Chinese government and trade and industry have the ambition to produce battery-electric vehicles on a large scale and to obtain a large market share worldwide. The policy of the Chinese government is characterized by three steps: stimulating R and D, showing the results and incentivising the market. Stimulating R and D has been done by the so-called 863 program over the last 15 years, focusing on battery-electric vehicles and on hybrid and fuel cell vehicles. Many car manufacturers pay attention to the development of electric vehicles, but they all focus mainly on conventional propulsion techniques. Interesting manufacturers are DongFeng, BAIC/Foton and BYD. Battery manufacturers also see opportunities in electric vehicles. Many are involved in the development of large batteries. BAK, BYD and Tianjin Lishen are the most interesting manufacturers. Various initiatives can be seen in the field of standardization, both nationally and internationally. Loading facilities are installed in an increasing number of locations. Despite all ambitions and initiatives it remains to be seen if China will cause a revolution. The available technical knowledge has its limitations. Investments and collaborations are limited. Moreover, the existing electrical infrastructure is preventing large-scale implementation of electric vehicles. China will play a role in the development of electric vehicles, but it will not cause a large acceleration. [Dutch] De Chinese overheid en het bedrijfsleven hebben de ambitie op grote schaal batterij-elektrische auto's te produceren en hiermee wereldwijd een groot marktaandeel te verkrijgen. Het beleid dat de Chinese overheid voert kenmerkt zich door drie stappen: het stimuleren van R en D, het tonen van de resultaten en het stimuleren van de markt. Het stimuleren van R enD is de afgelopen 15 jaar gedaan vanuit het zogenaamde 863-programma, waarbij men zich naast batterij-elektrische voertuigen ook op hybride en brandstofcelvoertuigen heeft

  12. Radiation effects on insulators for superconducting magnets

    International Nuclear Information System (INIS)

    Kernohan, R.H.; Coltman, R.R. Jr.; Long, C.J.

    1978-01-01

    In order to determine the radiation stability of electrical insulation that could be used in a superconducting magnet for containment of the plasma in a fusion energy device, 55 specimens of eight types of organic insulation were irradiated to a dose of about 2 x 10 8 R (2 x 10 6 J/Kg) at a temperature of 4.8 K in the Low-Temperature Irradiation Facility in the Bulk Shielding Reactor at Oak Ridge National Laboratory. Four of the specimens were monitored for changes in electrical resistivity during the irradiation. The initial resistivities, which were of the order of 10 14 Ω cm, decreased to about 10 13 Ω cm under the influence of a weak radiation field. At full-power reactor operation (2 MW), the resistivities dropped to about 10 11 Ω cm, but changed little during the irradiation. After the irradiation the resistivities increased, but not to the initial values, because of residual radioactivity near or in the experiment assembly. Restoration to near the initial resistivity values was later observed upon warming the specimens to room temperature and purging the irradiation chamber. The latter result may be related to outgassing induced by the irradiation

  13. Electricity sequence control

    International Nuclear Information System (INIS)

    Shin, Heung Ryeol

    2010-03-01

    The contents of the book are introduction of control system, like classification and control signal, introduction of electricity power switch, such as push-button and detection switch sensor for induction type and capacitance type machinery for control, solenoid valve, expression of sequence and type of electricity circuit about using diagram, time chart, marking and term, logic circuit like Yes, No, and, or and equivalence logic, basic electricity circuit, electricity sequence control, added condition, special program control about choice and jump of program, motor control, extra circuit on repeat circuit, pause circuit in a conveyer, safety regulations and rule about classification of electricity disaster and protective device for insulation.

  14. Electron beam assisted field evaporation of insulating nanowires/tubes

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  15. Specular Andreev reflection in thin films of topological insulators

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2016-05-01

    We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.

  16. Electrical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, D P

    1960-05-01

    After briefly tracing the history of electricity transmission, trends in high voltage transmission and experiments being conducted on 650 kV are discussed. 5000 miles of the U.K. grid are operated at 132 kV and 1000 at 275 kV, ultimately to provide a super grid at 380 kV. Problems are insulation, radio interference and the cost of underground lines (16 times that of overhead lines). Also considered are the economics of the grid as a means of transporting energy and as a means of spreading the peak load over the power stations in the most efficient manner. Finally, the question of amenities is discussed.

  17. Fate and transport of petroleum hydrocarbons in the environment case study: insulating oil

    International Nuclear Information System (INIS)

    Richards, S. L.

    1997-01-01

    A series of studies were conducted to develop the technical basis for establishing soil cleanup levels for electrical insulating oil that would protect human health and the environment in the State of Washington. Samples of insulating oil and ground water from electric utility sites were analyzed for physical and chemical properties. Oil dissolution and soil leachability tests were conducted to evaluate the mobility of the oil in the aqueous state. Results indicate that insulating oil is relatively immobile in the subsurface. As a result of this study, soil cleanup level for insulating oil at operating electrical substations in the State of Washington was increased from 200 mg/kg to 2000 mg/kg. 6 refs., 3 tabs

  18. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  19. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  20. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  1. Structural and Electrical Characteristics of Metal-Ferroelectric Pb1.1(Zr0.40Ti0.60O3-Insulator (ZnO-Silicon Capacitors for Nonvolatile Applications

    Directory of Open Access Journals (Sweden)

    S. R. Krishnamoorthi

    2013-01-01

    Full Text Available In this work metal-ferroelectric-insulator-semiconductor (MFIS thin-film structures using Pb1.1Zr0.40Ti0.60O3 (PZT as the ferroelectric layer and zinc oxide (ZnO as the insulator layer were fabricated on n-type (100 Si substrate. Pb1.1Zr0.40Ti0.60O3 and ZnO thin films were prepared on Si by the sol-gel route and thermal deposition method, respectively. On the optimized PZT (140 nm and ZnO (40 nm films were examined by scanning electron microscope (SEM. From AFM data the root mean square (r.m.s. roughness of the film surface is 13.11 nm. The leakage current density of ZnO/n-Si (MIS structure was as low as 1.8 × 10−8 A/cm2 at 2.5 V. The capacitance versus voltage (C-V characteristics of the annealed ZnO/Si (MIS diode indicated the good interface properties and no hysteresis was observed. Au/PZT (140 nm/ZnO (40 nm/Si (100 leakage-current density was about 5.7 × 10−8 A/cm2 at positive bias voltage of 3 V. The large memory window width in C-V (capacitance-voltage curve of Au/PZT/ZnO/Si capacitor was about 2.9 V under ±12 V which thus possibly enables nonvolatile applications. The memory window as a function of temperature was also discussed.

  2. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  3. Molecular dewetting on insulators

    International Nuclear Information System (INIS)

    Burke, S A; Topple, J M; Gruetter, P

    2009-01-01

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C 60 on alkali halides, and the technologically important system of pentacene on SiO 2 . These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure. (topical review)

  4. Molecular dewetting on insulators.

    Science.gov (United States)

    Burke, S A; Topple, J M; Grütter, P

    2009-10-21

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.

  5. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  6. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  7. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  8. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  9. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunyu; Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-06-15

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  10. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    International Nuclear Information System (INIS)

    Wang, Chunyu; Huang, Xiongyi; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-01-01

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  11. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  12. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  13. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  14. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  15. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  16. Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Guo Jun-Ji; Liao Wen-Hu

    2014-01-01

    Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n—n junction and n—p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ θ < π/2 and π/2 < θ ≤ π, the transmission probability of the n—n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n—p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs

  17. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  18. Electric transmission technology

    International Nuclear Information System (INIS)

    Shah, K.R.

    1990-01-01

    Electric transmission technology has matured and can transmit bulk power more reliably and economically than the technology 10 years ago.In 1882, Marcel Depres transmitted 15 kW electric power at 2 kV, using a constant direct current; present transmission voltages have risen to ± 600 kV direct current (DC) and 765 kV alternating current (AC), and it is now possible to transmit bulk electric power at voltages as high as ± 1000 kV DC and 1500 kV AC. Affordable computer systems are now available to optimize transmission reliably. New materials have reduced the bulk of insulation for lines and equipment. New conducting materials and configurations have reduced losses in transmission. Advances in line structures and conductor motion, understanding of flashover characteristics of insulators and air-gaps and electrical performance of lines have resulted in more compact urban transmission lines. (author). 15 refs., 7 tabs., 11 figs

  19. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  20. Electricity Bill

    International Nuclear Information System (INIS)

    Blair, A.; Beith, A.J.; Hardy, P.

    1989-01-01

    The first part of the debate, which lasted a total of about 7 hours, a verbatim report of the first five of which are included here, was about energy conservation. Several new clauses and amendments were discussed. One would place a duty on the new Director of the Energy Supply industry to promote the efficiency and conservation of energy, another would appoint a Deputy Director with responsibility for energy conservation, and the third would require targets of energy efficiency and pollution reduction to be achieved. This allowed discussion on energy saving by domestic thermal insulation, improved efficiency of heating and refrigeration units and on renewable energy sources especially world energy. The second part of the debate was about access to information regarding health and safety resulting from any activities of the electricity supply industry. The remainder of the debate concerned regional representation and the economics of the electricity supply industry. (UK)