WorldWideScience

Sample records for electrical impedance

  1. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    International Nuclear Information System (INIS)

    Grasland-Mongrain, Pol; Destrempes, François; Cloutier, Guy; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging. (paper)

  2. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Science.gov (United States)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  3. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  4. Electrical Impedance Tomography Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal for the Electrical Impedance Tomography Technology (EITT) project is to develop a reliable portable, lightweight device providing two-dimensional...

  5. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  6. Electrical impedance tomography

    Science.gov (United States)

    Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana

    2018-01-01

    Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443

  7. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti; Nagaraju, J.; Lubineau, Gilles

    2016-01-01

    . In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity

  8. Laboratory scale tests of electrical impedence tomography

    International Nuclear Information System (INIS)

    Binley, A; Daily, W; LaBredcque, D; Ramirez, A.

    1998-01-01

    Electrical impedance tomographs (magnitude and phase) of known, laboratory-scale targets are reported. Three methods are used to invert electrical impedance data and their tomographs compared. The first method uses an electrical resistance tomography (ERT) algonthm (designed for DC resistivity inversion) to perform impedance magnitude inversion and a linearized perturbation approach (PA) to invert the imaginary part. The second approximate method compares ERT magnitude inversions at two frequencies and uses the frequency effect (FE) to compute phase tomographs. The third approach, electrrcal impedance tomography (EIT), employs fully complex algebra to account for the real and imaginary components of electrical impedance data. The EIT approach provided useful magnitude and phase images for the frequency range of 0.0625 to 64 Hz; images for higher frequencies were not reliable. Comparisons of the ERT and EIT magnitude images show that both methods provided equivalent results for the water blank, copper rod and PVC rod targets. The EIT magnitude images showed better spatial resolutron for a sand-lead mixture target. Phase images located anomalies of both high and low contrast IP and provided better spatial resolution than the magnitude images. When IP was absent from the data, the EIT algorithm reconstructed phase values consistent with the data noise levels

  9. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    Science.gov (United States)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  10. Electrical impedance tomography: topology optimization

    International Nuclear Information System (INIS)

    Miranda, Lenine Campos

    2013-01-01

    The Electrical Impedance Tomography (EIT) is a study of body parts who use electric current. Is studied through computers resistance or conductivity of these parts, producing an image used for medical diagnosis. A body is wrapped in a blanket placed with small electrodes and receivers of electric current, potential difference. Based on data obtained from a series of measurements at the electrodes, one by one, sending and receiving, you can perform a numerical phantom, where each 'voxel' of the image formed computationally represents the impedance of biological tissue. In Brazil, studies on electrical impedance tomography (EIT) has not yet started. Such equipment are measured tensions - potential difference - between each electrode / sensor one by one, as a way to Simple Combinatorial Analysis. The sequence and the way it is measured strains are in the final image quality. Finite Element Method Interactive, whose algorithm is based on Dialectical Method. We use an initial function with the objective of maximizing the data quantitatively, for better qualitative analysis. Topology Optimization methods are used to improve the image reconstruction. Currently the study is quite primitive related to the theory that shows how to power the new science studied. The high quality images requires a difficulty in obtaining. This work is not intended for detailed for analysis in any tissue or organ specific, but in general terms. And the formation of the 2D image. 3D need a reconstructor to part. (author)

  11. Possibilities of electrical impedance tomography in gynecology

    International Nuclear Information System (INIS)

    Trokhanova O V; Chijova Y A; Okhapkin M B; Korjenevsky A V; Tuykin T S

    2013-01-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  12. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanlin [Department of Thermal Energy Engineering, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, 102249 (China); Wang, Mi [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (China); Yao, Jun [School of Energy Research, Xiamen University, Xiamen 361005 (China)

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  13. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-06-01

    Full Text Available When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS. We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.

  14. Fuzzy modeling of electrical impedance tomography images of the lungs

    International Nuclear Information System (INIS)

    Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, Joao Batista; Amato, Marcelo Britto Passos

    2008-01-01

    Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)

  15. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  16. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled

    2017-02-16

    Techniques that monitor the change in the electrical properties of materials are promising for both non-destructive testing and structural health monitoring of carbon-fiber-reinforced polymers (CFRPs). However, achieving reliable monitoring using these techniques requires an in-depth understanding of the impedance response of these materials when subjected to an alternating electrical excitation, information that is only partially available in the literature. In this work, we investigate the electrical impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface ply and the probing depth for different CFRP configurations for more efficient electrical signal-based inspections. We also investigate the effect of the amplitude of the input signal.

  17. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  18. Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.

    Science.gov (United States)

    Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta

    2017-01-01

    Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the

  19. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  20. Electrical impedance along connective tissue planes associated with acupuncture meridians

    Directory of Open Access Journals (Sweden)

    Hammerschlag Richard

    2005-05-01

    Full Text Available Abstract Background Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone visible by ultrasound have greater electrical conductance (less electrical impedance than non-meridian, parallel control segments. Methods We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity. Results At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω compared with control segments (75.0 ± 5.9 Ω (p = 0.0003. At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω and control segments (68.5 ± 7.5 Ω were not significantly different (p = 0.70. Conclusion Tissue impedance was on average lower along the Pericardium meridian, but not

  1. Electrical impedance tomography of the 1995 OGI gasoline release

    International Nuclear Information System (INIS)

    Daily, W.; Ramirez, A.

    1996-01-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline

  2. Improved system for identifying biological tissue temperature using electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Korolyuk Evgeniy

    2018-01-01

    Full Text Available This paper proposes a cheap and compact medical system that determines the temperature of an object using broadband impedance tomography. This system can be used in medicine to visualize ice structure in tissue during cryosurgical operations, as well as for fault diagnosis and location in studied industrial objects. These effects are achieved by measuring electrical impedance between electrode pairs in the measuring chamber. The assembled prototype is compact, consumes little power, and allows to non-invasively determine the impedance of a target object in real time. The research included experimental studies to determine the dependence of the impedance spectrum of saline water and muscle tissue on temperature in broad band spectrum, which allowed to obtain the dependence of total electrical impedance of target objects on temperature.

  3. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  4. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    Science.gov (United States)

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  5. Impedance-Source Networks for Electric Power Conversion Part II

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance......-source-network-based power converters has been covered in a previous paper and main topologies were discussed from an application point of view. Now Part II provides a comprehensive review of the most popular control and modulation strategies for impedance-source network-based power converters/inverters. These methods...

  6. Extraction of electrical characteristics from pixels of multifrequency electrical impedance tomographs

    International Nuclear Information System (INIS)

    Fitzgerald, A.J.; Thomas, B.J.; Cornish, B.H.; Michael, G.J.

    1996-01-01

    Full text: Multi-frequency electrical impedance tomography (MFEIT) is a modality that provides images of the change in the electrical response of tissue at a number of discrete frequencies relative to the response at a selected reference frequency (H Griffiths and A Ahmed, Clin. Phys. Physiol. Meas. 8A:103-107, 1987). This method overcomes the need, when forming in vivo static images, to measure or calculate the voltage profiles of a resistive, homogeneous reference medium and therefore avoids the errors introduced due to boundary shape and electrode location inaccuracies. Information on the spectral response of the tissue is contained within the pixel values, hence characteristics of the tissues and the state of health can be obtained by extracting this information from in vivo MFEIT images. Griffith and Jossinet (Physiol Meas. 15A: 59-63, 1994) used computer modelling to demonstrate that the Cole-Cole plot (variations of resistance and reactance with frequency) can be extracted from pixel values of MFEIT images provided the reference set was obtained from a purely resistive and homogeneous medium. To date it has not been possible to extract true Cole-Cole plots from in vivo MFEIT images because tissue contains a reactive component of impedance which introduces an unknown phase angle into the reference data set. Instead, an impedance spectrum, equivalent to a Cole-Cole plot rotated about the origin by the unknown phase angle, may be extracted. A correction for this rotation of the Cole-Cole plot is necessary since parameters derived from the impedance spectrum do not accurately reflect the electrical response of the imaged tissue. We have developed two distinct methods to determine this unknown phase angle and hence enable the extraction of parameters that more accurately reflect the true electrical response of tissue from in vivo MFEIT images. The first method is an empirical method based on observation of the distribution of frequency data around the Cole

  7. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.

    Science.gov (United States)

    Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon

    2015-05-01

    The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  8. Biological Cell Identification by Integrating Micro-Fluidics, Electrical Impedance Spectroscopy and Stochastic Estimation

    Science.gov (United States)

    2007-03-01

    Karolinska Institutet in Stockholm entitled "Skin Cancer as Seen by Electrical Impedance" [1]. The thesis describes Åberg�s experiments to detect skin cancer...ska Institutet , 2004. 2. Ayli¤e, H. Edward, et al. �Electric Impedance Spectroscopy Using Microchannels with Integrated Metal Electrodes

  9. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    International Nuclear Information System (INIS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed

  10. Non-foster impedance matching sensitivity of electrically small electric and magnetic spherical dipole antennas

    DEFF Research Database (Denmark)

    Yoon, Ick-Jae; Christensen, S.; Zhurbenko, Vitaliy

    2016-01-01

    The impedance bandwidth (BW) improvement property of a self-resonant folded spherical helix electric dipole and a spherical split ring (SSR) magnetic dipole is compared when a negative reactance element is loaded on the parasitic resonator of the antennas. They have the same electrical size of ka...

  11. Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease

    International Nuclear Information System (INIS)

    Trokhanova, O V; Okhapkin, M B; Korjenevsky, A V

    2008-01-01

    Electrical impedance tomography (EIT) enables one to determine and visualize non-invasively the spatial distribution of the electrical properties of the tissues inside the body, thus providing valuable diagnostic information. The electrical impedance mammography (EIM) system is a specialized EIT system for diagnostics and imaging of the breast. While breast cancer is the main target for any investigation conducted in this area, the diagnosis of non-cancerous diseases is also very important because it opens the way to improve the quality of life for many women and it may also reduce the incidence of breast cancer through effective treatment of mastopathy. This paper presents the main results of a comprehensive examination of 166 women using four methods: multifrequency electrical impedance mammography, ultrasonic investigation, x-ray mammography and puncture biopsy. The objective of the investigation is to estimate the usefulness of multifrequency electrical impedance mammography for diagnosing dyshormonal mammary gland diseases. The results demonstrate the advantages of the multifrequency EIM method. In particular, dual-frequency electrical impedance mammography in contrast with the single-frequency variant enables one not only to diagnose mastopathy, but also allows accurate detection of its cystless form based on observation of the absence of any difference between average conductivity in both phases of the menstrual cycle. Because the cystless form of mastopathy is associated with a higher risk of cancer development, this method allows identification of a higher risk group of patients for more frequent investigations

  12. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

    Directory of Open Access Journals (Sweden)

    Pil-Jong Kim

    2015-05-01

    Full Text Available Objectives The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL. Materials and Methods The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  13. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  14. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  15. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled; Bera, Tushar Kanti; Lubineau, Gilles

    2017-01-01

    impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface

  16. Design of current source for multi-frequency simultaneous electrical impedance tomography

    Science.gov (United States)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  17. Electrical impedance spectroscopy and diagnosis of tendinitis

    International Nuclear Information System (INIS)

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Lee, Jong Hwa; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook

    2010-01-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment

  18. Electrical impedance studies of uranium oxide

    International Nuclear Information System (INIS)

    Hampton, R.N.

    1986-11-01

    The thesis presents data on the electrical properties of uranium oxide at temperatures from 1700K to 4.2K, and pressures between 25 K bar and 70 K bar. The impedance data were analysed using the technique of complex plane representation to establish the conductivity and dielectric constant of uranium dioxide. The thermophysical data were compared with previously reported experimental and theoretical work on uranium dioxide and other fluorite structured oxides. (U.K.)

  19. A bio-electromechanical imaging technique with combined electrical impedance and ultrasound tomography

    International Nuclear Information System (INIS)

    Steiner, G; Watzenig, D; Soleimani, M

    2008-01-01

    Electrical impedance tomography (EIT) seeks to image the electrical conductivity of an object using electrical impedance measurement data at its periphery. Ultrasound reflection tomography (URT) is an imaging modality that is able to generate images of mechanical properties of the object in terms of acoustic impedance changes. Both URT and EIT have the potential to be used in various medical applications. In this paper we focus on breast tumour detection. Both URT and EIT belong to soft field tomography and suffer from the small amounts of available data and the inherently ill-posed nature of the inverse problems. These facts result in limited achievable reconstruction accuracy and resolution. A dual bio-electromechanical tomography system using ultrasound and electrical tomography is proposed in this paper to improve the detection of the small-size tumour. Data fusion techniques are implemented to combine the EIT/URT data. Based on simulations, we demonstrate the improvement of detection of small size anomalies and improved depth detection compared to single modality soft field tomography

  20. Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation

    International Nuclear Information System (INIS)

    Kranjc, Matej; Miklavcic, Damijan; Bajd, Franci; Serša, Igor

    2013-01-01

    Electroporation is a phenomenon caused by externally applied electric field to cells that results in an increase of cell membrane permeability to various molecules. Accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful membrane permeabilization. Applications based on electroporation would greatly benefit with a method for monitoring the electric field, especially if it could be done in situ. As the membrane electroporation is a consequence of an induced transmembrane potential, which is directly proportional to the local electric field, we have been investigating current density imaging and magnetic resonance electrical impedance tomography techniques to determine the electric field distribution during electroporation. In this paper, we present comparison of current density and electric field distribution in an agar phantom and in a liver tissue exposed to electroporation pulses. As expected, a region of increased electrical conductivity was observed in the liver tissue exposed to sufficiently high electric field but not in agar phantom.

  1. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yair Granot

    2007-01-01

    Full Text Available Electrical impedance tomography (EIT produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM. At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system.

  2. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  3. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor

    International Nuclear Information System (INIS)

    Kim, Chon-ung; Jong, Hakchol; Ro, Cholwu; Pak, Gilhung; Im, Songil; Li, Guofeng; Li, Jie; Song, Yunho

    2013-01-01

    Interdigital (finger-like) electrodes are widely used for electrical impedance and capacitance tomography of composite dielectric materials and complex insulating structures. Because of their advantages, they are now effectively introduced as capacitance sensors into a variety of industrial branches, agriculture, medical science, biological engineering, military branches, etc. In order to effectively apply the so-called interdigital impedance sensors in practice, of great importance is to optimize the sensor design parameters such as the electric field penetration depth, signal strength and so on. The general design principles of the interdigital capacitance sensor have been discussed for a long time by many researchers. However, there is no consensus on the definition of the effective electric field penetration depth of interdigital electrode. This paper discusses how to determine the effective electric field penetration depth of interdigital sensor on the basis of the refractive principle of electric field intensity and the FEM analyses of electric field distribution and capacitance for the sensor model.

  4. Electrical impedance of layered atherosclerotic plaques on human aortas

    NARCIS (Netherlands)

    C.J. Slager (Cornelis); A.C. Phaff; C.E. Essed; N. Bom (Klaas); J.C.H. Schuurbiers (Johan); P.W.J.C. Serruys (Patrick)

    1992-01-01

    textabstractElectrical impedance measurements were performed on 13 atherosclerotic human aortic segments at 67 measuring spots in order to determine whether or not on the basis of these data a distinction can be made between atherosclerotic lesions and normal tissue. Stenosis localization and

  5. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Skands, Gustav Erik; Bertelsen, Christian Vinther

    2015-01-01

    This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested...... and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 mu m beads from 1 mu m as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes...... of the new electrode layout. Good agreement was observed between the model and the obtained experimental results....

  6. Variational constraints for electrical-impedance tomography

    International Nuclear Information System (INIS)

    Berryman, J.G.; Kohn, R.V.

    1990-01-01

    The task of electrical-impedance tomography is to invert boundary measurements for the conductivity distribution of a body. This inverse problem can be formulated so the primary data are the measured powers dissipated across injection electrodes. Then, since these powers are minima of the pertinent (dual) variational principles, feasibility constraints can be found for the nonlinear inversion problem. When power may be measured accurately, the existence of these dual variational principles implies that any exact solution must lie at a point of intersection of the two feasibility boundaries

  7. Cervical cancer detection by electrical impedance in a Colombian setting

    International Nuclear Information System (INIS)

    A Miranda, David; P Corzo, Sandra; Correa, C A González

    2013-01-01

    Electrical properties of normal and neoplastic cervical tissues in a heterogeneous group of 56 Colombian women were studied by electrical impedance spectroscopy and a model based on the Generalized Effective-Medium Theory of Induced Polarization (GEMTIP). Differences between the electrical bioimpedance spectra were correlated with cellular and tissue parameters. The analysis performed by the proposed model suggest that the number of different types of cellular layers that form the biological tissue, the intracellular and extracellular conductivity could be used to explain the differences between electrical bioimpedance spectra in normal and neoplastic tissues.

  8. A Harmonic Impedance Measurement System for Reduction of Harmonics in the Electricity Grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  9. A harmonic impedance measurement system for reduction of harmonics in the electricity grid

    NARCIS (Netherlands)

    Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    This paper describes the development of a Complex Harmonic Impedance Measurement system, called the CHIME-system. This system performs on-line impedance measurements in the electricity grid and will be designed for implementation in Digital Signal Processor (DSP) control systems of grid-connected

  10. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Casper Hyttel Clausen

    2014-12-01

    Full Text Available This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 μm beads from 1 μm as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes of the new electrode layout. Good agreement was observed between the model and the obtained experimental results.

  11. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  12. Relationship between moisture content and electrical impedance of carrot slices during drying

    Science.gov (United States)

    Kertész, Ákos; Hlaváčová, Zuzana; Vozáry, Eszter; Staroňová, Lenka

    2015-01-01

    Electrical properties of food materials can give information about the inner structure and physiological state of biological tissues. Generally, the process of drying of fruits and vegetables is followed by weight loss. The aim of this study was to measure the impedance spectra of carrot slices during drying and to correlate impedance parameters to moisture content in different drying periods. Cylindrical slices were cut out from the carrot root along the axis. The slices were dried in a Venticell 111 air oven at 50°C. The weight of the slices was measured with a Denver SI-603 electronic analytical and precision balance. The weighing of the samples was performed every 30 min at the beginning of drying and every 60 min after the process. The moisture content of the samples was calculated on wet basis. The magnitude and phase angle of electrical impedance of the slices were measured with HP 4284A and 4285A precision LCR meters in the frequency range from 30 Hz to 1 MHz and from 75 kHz to 30 MHz, respectively, at voltage 1 V. The impedance measurement was performed after weighting. The change in the magnitude of impedance during drying showed a good correlation with the change in the moisture content.

  13. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    Science.gov (United States)

    Xia, Rongmin; Li, Xu; He, Bin

    2007-08-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, the authors have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, they demonstrated a three-dimensional MAT-MI imaging approach in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and the ability of MAT-MI in imaging electrical conductivity properties of biological tissue.

  14. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Julie Kirkegaard

    2014-08-01

    Full Text Available This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  15. Assessing regional lung mechanics by combining electrical impedance tomography and forced oscillation technique.

    Science.gov (United States)

    Ngo, Chuong; Spagnesi, Sarah; Munoz, Carlos; Lehmann, Sylvia; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2017-08-29

    There is a lack of noninvasive pulmonary function tests which can assess regional information of the lungs. Electrical impedance tomography (EIT) is a radiation-free, non-invasive real-time imaging that provides regional information of ventilation volume regarding the measurement of electrical impedance distribution. Forced oscillation technique (FOT) is a pulmonary function test which is based on the measurement of respiratory mechanical impedance over a frequency range. In this article, we introduce a new measurement approach by combining FOT and EIT, named the oscillatory electrical impedance tomography (oEIT). Our oEIT measurement system consists of a valve-based FOT device, an EIT device, pressure and flow sensors, and a computer fusing the data streams. Measurements were performed on five healthy volunteers at the frequencies 3, 4, 5, 6, 7, 8, 10, 15, and 20 Hz. The measurements suggest that the combination of FOT and EIT is a promising approach. High frequency responses are visible in the derivative of the global impedance index ΔZeit(t,fos). $\\Delta {Z_{{\\text{eit}}}}(t,{f_{{\\text{os}}}}).$ The oEIT signals consist of three main components: forced oscillation, spontaneous breathing, and heart activity. The amplitude of the oscillation component decreases with increasing frequency. The band-pass filtered oEIT signal might be a new tool in regional lung function diagnostics, since local responses to high frequency perturbation could be distinguished between different lung regions.

  16. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    Directory of Open Access Journals (Sweden)

    Jung-Joon Cha

    2016-01-01

    Full Text Available Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells.

  17. Determination of salt content in various depth of pork chop by electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Kaltenecker, P; Szöllösi, D; Vozáry, E; Friedrich, L

    2013-01-01

    The salt concentration was determined inside of pork chop both by electrical impedance spectroscopy and by a conventional chemical method (according to Mohr). The pork chop in various depths (4 mm, 10 mm, 20 mm and 25 mm) was punctured with two stainless steel electrodes. The length of electrodes was 60 mm, and they were insulated along the length except 1 cm section on the end, so the measurement of impedance was realized in various depths. The magnitude and phase angle of impedance were measured with a HP 4284A and a HP 4285A LCR meters from 30 Hz up to 1 MHz and from 75 kHz up to 30 MHz frequency range, respectively at 1 V voltage. The distance between the electrodes was 1 cm. The impedance magnitude decreased as the salt concentration increased. The magnitude of open-short corrected impedance values at various frequencies (10 kHz, 100 kHz, 125 kHz, 1.1 MHz and 8 MHz) showed a good correlation with salt content determined by chemical procedure. The electrical impedance spectroscopy seems a prospective method for determination the salt concentration inside the meat in various depths during the curing procedure.

  18. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation

    International Nuclear Information System (INIS)

    Kranjc, M; Miklavčič, D; Bajd, F; Serša, I

    2014-01-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage–current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage–current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes. (paper)

  19. Automated AC Electrical Impedance Measurement of Ceramic Oxides by means of a Lock-in Amplifier

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Al-Sous, M. B.; Nasrallah, F.

    2009-06-01

    In this study, the electrical impedance of some ceramic oxides has been investigated employing the Perkin Elmer DSP 7280 Lock-in amplifier, while recording the electric response versus frequency and temperature at constant amplitude. Via integral automation of this lock-in with other delicate electrical measuring devices, a control program has been developed to accurately and swiftly acquire the frequency response of the sample, in order to lately infer the resulting samples' impedance in volt and ampere. Two maxima peaks characterising the impedance, in the curve of the doped molybdenum oxide have been observed discerning two phases in the sample (doped with 40% of niobium oxide), which shows a remarkable relaxation related to improvement in its ionic conductivity within the solid phase, with respect to increasing frequency. (author)

  20. A cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    are represented in terms of spherical wave expansions (SWEs), and the propagation is accounted for by a transmission formula. In this paper the measurement results by the proposed technique will be presented for several AUTs, including a standard gain horn antenna, a monopole antenna, and an electrically small......Impedance and gain measurements for electrically small antennas represent a great challenge due to influences of the feeding cable. The leaking current along the cable and scattering effects are two main issues caused by the feed line. In this paper, a novel cable-free antenna impedance and gain...... measurement technique for electrically small antennas is proposed. The antenna properties are extracted by measuring the signal scattered by the antenna under test (AUT), when it is loaded with three known loads. The technique is based on a rigorous electromagnetic model where the probe and AUT...

  1. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  2. Electrical impedance tomography of electrolysis.

    Directory of Open Access Journals (Sweden)

    Arie Meir

    Full Text Available The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT. The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  3. Electrical biopsy of irradiated intestinal tissue with a simple electrical impedance spectroscopy system for radiation enteropathy in rats—a pilot study

    International Nuclear Information System (INIS)

    Huang, Yu-Jie; Lu, Yi-Yu; Chen, Cheng-Yu; Cheng, Kuo-Sheng; Huang, Eng-Yen

    2011-01-01

    Electrical impedance is one of the most often used parameters for characterizing material properties, especially in biomedical applications. Electrical impedance spectroscopy (EIS), used for revealing both resistive and capacitive characteristics, is good for use in tissue characterization. In this study, a portable and simple EIS system based on a commercially available chip was used to assess rat intestinal tissues following irradiation. The EIS results were fitted to a resistor and capacitor electrical circuit model to solve the electrical properties of the tissue. The variation in the tissue's electrical characteristics was compared to the morphological and histological findings. From the experimental results, it was clear that the electrical properties, based on receiver operation curve analysis, demonstrated good detection performance relative to the histological changes. The electrical parameters of the tissues could be used to distinguish the tissue's status for investigation, which introduced a concept of 'electrical biopsy', and this 'electrical biopsy' approach may be used to complement histological examinations

  4. A comparison study of electrodes for neonate electrical impedance tomography

    International Nuclear Information System (INIS)

    Rahal, Mohamad; Demosthenous, Andreas; Khor, Joo Moy; Tizzard, Andrew; Bayford, Richard

    2009-01-01

    Electrical impedance tomography (EIT) is an imaging technique that has the potential to be used for studying neonate lung function. The properties of the electrodes are very important in multi-frequency EIT (MFEIT) systems, particularly for neonates, as the skin cannot be abraded to reduce contact impedance. In this work, the impedance of various clinical electrodes as a function of frequency is investigated to identify the optimum electrode type for this application. Six different types of self-adhesive electrodes commonly used in general and neonatal cardiology have been investigated. These electrodes are Ag/AgCl electrodes from the Ambu® Cardiology Blue sensors range (BR, NF and BRS), Kendall (KittyCat(TM) and ARBO®) and Philips 13953D electrodes. In addition, a textile electrode without gel from Textronics was tested on two subjects to allow comparison with the hydrogel-based electrodes. Two- and four-electrode measurements were made to determine the electrode-interface and tissue impedances, respectively. The measurements were made on the back of the forearm of six healthy adult volunteers without skin preparation with 2.5 cm electrode spacing. Impedance measurements were carried out using a Solartron SI 1260 impedance/gain-phase analyser with a frequency range from 10 Hz to 1 MHz. For the electrode-interface impedance, the average magnitude decreased with frequency, with an average value of 5 kΩ at 10 kHz and 337 Ω at 1 MHz; for the tissue impedance, the respective values were 987 Ω and 29 Ω. Overall, the Ambu BRS, Kendall ARBO® and Textronics textile electrodes gave the lowest electrode contact impedance at 1 MHz. Based on the results of the two-electrode measurements, simple RC models for the Ambu BRS and Kendall-ARBO and Textronics textile electrodes have been derived for MFEIT applications

  5. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  6. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti

    2016-12-05

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  7. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti; Jampana, Nagaraju; Lubineau, Gilles

    2016-01-01

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  8. Correlation between muscle electrical impedance data and standard neurophysiologic parameters after experimental neurogenic injury

    International Nuclear Information System (INIS)

    Ahad, M; Rutkove, S B

    2010-01-01

    Previous work has shown that electrical impedance measurements of muscle can assist in quantifying the degree of muscle atrophy resulting from neuronal injury, with impedance values correlating strongly with standard clinical parameters. However, the relationship between such data and neurophysiologic measurements is unexplored. In this study, 24 Wistar rats underwent sciatic crush, with measurement of the 2–1000 kHz impedance spectrum, standard electrophysiological measures, including nerve conduction studies, needle electromyography, and motor unit number estimation (MUNE) before and after sciatic crush, with animals assessed weekly for 4 weeks post-injury. All electrical impedance values, including a group of 'collapsed' variables, in which the spectral characteristics were reduced to single values, showed reductions as high as 47.2% after sciatic crush, paralleling and correlating with changes in compound motor action potential amplitude, conduction velocity and most closely to MUNE, but not to the presence of fibrillation potentials observed on needle electromyography. These results support the concept that localized impedance measurements can serve as surrogate makers of nerve injury; these measurements may be especially useful in assessing nerve injury impacting proximal or axial muscles where standard quantitative neurophysiologic methods such as nerve conduction or MUNE cannot be readily performed

  9. Impedance and electrically evoked compound action potential (ECAP drop within 24 hours after cochlear implantation.

    Directory of Open Access Journals (Sweden)

    Joshua Kuang-Chao Chen

    Full Text Available Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001. There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes

  10. Electrical impedance measured changes in thoracic fluid content during thoracentesis

    DEFF Research Database (Denmark)

    Petersen, J R; Jensen, B V; Drabaek, H

    1994-01-01

    In patients (seven females and 11 males) with pleural effusion due to pulmonary (n = 13) or cardiac disease (n = 5) the change in baseline transthoracic impedance (Z0) was measured by electrical impedance (BoMed's NCCOM-3, 70 kHz) during thoracentesis. Data were obtained before and after withdrawal...... of each 500 ml, and at the end of the thoracentesis. We found a close linear correlation (r = 0.97) between changes in Z0 and the volume of aspirated pleural effusion (y = 0.415.x+0.093). The variability of the estimated thoracic fluid volumes was analysed with a plot of the residuals from the regression...... line, and we found that changes in thoracic fluid volume estimated by impedance technique would be within +/- 302 ml (= 2 SD). However, the absolute value of Z0 before thoracentesis could not differentiate the group of patients with pleural effusion from normal subjects (n = 28)....

  11. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    OpenAIRE

    Xia, Rongmin; Li, Xu; He, Bin

    2007-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, we have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, we demonstrated 3-dimensional MAT-MI imaging in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and ...

  12. on the electrical properties of ZnO by impedance spectroscopy

    Indian Academy of Sciences (India)

    The electrical properties of Zn 1 − x Ca x O ( x = 0 , 0.01 , 0.02 and 0.03) nanoceramics synthesized by solidstate reactionmethod were investigated by complex impedance spectroscopy (CIS) from room temperature to 500 ∘ C. Structural analysis of the synthesized material using the X-ray diffraction technique suggests that ...

  13. The study of human bodies' impedance networks in testing leakage currents of electrical equipments

    Science.gov (United States)

    Zhang, Zhaohui; Wang, Xiaofei

    2006-11-01

    In the testing of electrical equipments' leakage currents, impedance networks of human bodies are used to simulate the current's effect on human bodies, and they are key to the preciseness of the testing result. This paper analyses and calculates three human bodies' impedance networks of measuring electric burn current, perception or reaction current, let-go current in IEC60990, by using Matlab, compares the research result of current effect thresholds' change with sine wave's frequency published in IEC479-2, and amends parameters of measuring networks. It also analyses the change of perception or reaction current with waveform by Multisim.

  14. Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury

    NARCIS (Netherlands)

    Kunst, P. W.; Böhm, S. H.; Vazquez de Anda, G.; Amato, M. B.; Lachmann, B.; Postmus, P. E.; de Vries, P. M.

    2000-01-01

    OBJECTIVE: A new noninvasive method, electrical impedance tomography (EIT), was used to make pressure-impedance (PI) curves in a lung lavage model of acute lung injury in pigs. The lower inflection point (LIP) and the upper deflection point (UDP) were determined from these curves and from the

  15. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Boyang, E-mail: bs506@cam.ac.uk; Fu, Lin, E-mail: lf359@cam.ac.uk; Geng, Jianzhao, E-mail: jg717@cam.ac.uk; Zhang, Xiuchang, E-mail: xz326@cam.ac.uk; Zhang, Heng, E-mail: hz301@cam.ac.uk; Dong, Qihuan, E-mail: qd210@cam.ac.uk; Li, Chao, E-mail: cl644@cam.ac.uk; Li, Jing, E-mail: jl908@cam.ac.uk; Coombs, T.A., E-mail: tac1000@cam.ac.uk

    2016-05-15

    Highlights: • Design of superconducting magnets using Halbach Array configuration. • Combination of superconducting magnets together with Lorentz Force Electrical Impedance Tomography (LFEIT) system. • Simulation of superconducting LFEIT system based on the theory of magneto-acoustic effect. - Abstract: Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  16. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    Directory of Open Access Journals (Sweden)

    Elin Ericsson

    Full Text Available Ventilator-induced or ventilator-associated lung injury (VILI/VALI is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.

  17. Exploratory study on the methodology of fast imaging of unilateral stroke lesions by electrical impedance asymmetry in human heads.

    Science.gov (United States)

    Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.

  18. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography

    International Nuclear Information System (INIS)

    Dowrick, T; Blochet, C; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5–10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0–3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. (paper)

  19. Multiple biopsy probe sampling enabled minimally invasive electrical impedance tomography

    International Nuclear Information System (INIS)

    Shini, Mohanad; Rubinsky, Boris

    2008-01-01

    Biopsies are a reliable method for examining tissues and organs inside the body, in particular for detection of tumors. However, a single biopsy produces only limited information on the site from which it is taken. Therefore, tumor detection now employs multiple biopsy samplings to examine larger volumes of tissue. Nevertheless, even with multiple biopsies, the information remains discrete, while the costs of biopsy increase. Here we propose and evaluate the feasibility of using minimally invasive medical imaging as a means to overcome the limitations of discrete biopsy sampling. The minimally invasive medical imaging technique employs the biopsy probe as electrodes for measurements of electrical impedance tomography relevant data during each biopsy sampling. The data from multiple samplings are combined and used to produce an EIT image of the tissue. Two- and three-dimensional mathematical simulations confirm that the minimally invasive medical imaging technique can produce electrical impedance tomography images of the tissues between the biopsy probe insertion sites. We show that these images can detect tumors that would be missed with multiple biopsy samplings only, and that the technique may facilitate the detection of tumors with fewer biopsies, thereby reducing the cost of cancer detection

  20. Weighted least-squares criteria for electrical impedance tomography

    International Nuclear Information System (INIS)

    Kallman, J.S.; Berryman, J.G.

    1992-01-01

    Methods are developed for design of electrical impedance tomographic reconstruction algorithms with specified properties. Assuming a starting model with constant conductivity or some other specified background distribution, an algorithm with the following properties is found: (1) the optimum constant for the starting model is determined automatically; (2) the weighted least-squares error between the predicted and measured power dissipation data is as small as possible; (3) the variance of the reconstructed conductivity from the starting model is minimized; (4) potential distributions with the largest volume integral of gradient squared have the least influence on the reconstructed conductivity, and therefore distributions most likely to be corrupted by contact impedance effects are deemphasized; (5) cells that dissipate the most power during the current injection tests tend to deviate least from the background value. The resulting algorithm maps the reconstruction problem into a vector space where the contribution to the inversion from the background conductivity remains invariant, while the optimum contributions in orthogonal directions are found. For a starting model with nonconstant conductivity, the reconstruction algorithm has analogous properties

  1. Simultaneous reconstruction of outer boundary shape and conductivity distribution in electrical impedance tomography

    KAUST Repository

    Hyvö nen, Nuutti

    2016-01-01

    The simultaneous retrieval of the exterior boundary shape and the interior admittivity distribution of an examined body in electrical impedance tomography is considered. The reconstruction method is built for the complete electrode model

  2. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    Science.gov (United States)

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  3. Epigastric electrical impedance for the quantitative determination of the gastric acidity

    International Nuclear Information System (INIS)

    Giouvanoudi, A C; Spyrou, N M

    2008-01-01

    Electrical impedance measurements have been used by scientists since the 1980s to investigate the gastric function. In this work, these measurements were carried out using the epigastrograph, a device generating alternating current of 32 kHz and injecting it in the gastric area of the human body with surface electrodes, located around the abdominal area. Although the method has been used for about three decades the physiological interpretation of these measurements is still under research. This work states that the electrical impedance measurements from the gastric area depend on the conductivity of the gastric lumen, due mainly to gastric acid secretions and to the conductivity and chemical form of the ingested meal. By choosing the proper test meal the gastric acidity in the empty, healthy stomach was also estimated. The estimated value is in accordance with the literature. The method is non-invasive, relatively inexpensive, simple to medical technologists and subjects, and involves no radiation risk. The method may form the basis for the development of a non-invasive gastric pH meter

  4. Electrical characterization and impedance response of lanthanum doped barium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Mančić D.

    2008-01-01

    Full Text Available The dielectric permittivity and dissipation factor of La-doped and undoped BaTiO3 were investigated as a function of frequency and temperature. The impedance response was used to study the electrical properties of La-doped BaTiO3 over the temperature range from room temperature (RT to 350°C. La-doped and undoped BaTiO3, obtained by a modified Pechini method, were sintered in air at 1300°C for 2 and 16 hours. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE. The most suitable electrical circuit for the interpretation of experimental results is found to be the equivalent circuit consisting of resistors and CPE elements which replace the capacitor elements. The contribution of grain boundary resistance to the total resistance of a system is remarkable at low temperature. Dielectric permittivity of doped BaTiO3 was in the range of 8000 to 12000 at 1 kHz and the dissipation factor was less than 1%.

  5. Monotonicity-based electrical impedance tomography for lung imaging

    Science.gov (United States)

    Zhou, Liangdong; Harrach, Bastian; Seo, Jin Keun

    2018-04-01

    This paper presents a monotonicity-based spatiotemporal conductivity imaging method for continuous regional lung monitoring using electrical impedance tomography (EIT). The EIT data (i.e. the boundary current-voltage data) can be decomposed into pulmonary, cardiac and other parts using their different periodic natures. The time-differential current-voltage operator corresponding to the lung ventilation can be viewed as either semi-positive or semi-negative definite owing to monotonic conductivity changes within the lung regions. We used these monotonicity constraints to improve the quality of lung EIT imaging. We tested the proposed methods in numerical simulations, phantom experiments and human experiments.

  6. Intraesophageal impedance monitoring: clinical studies

    NARCIS (Netherlands)

    Conchillo Armendáriz, J.M.

    2007-01-01

    Electrical impedance (Z) between two electrodes is the ratio between applied voltage (U) and resulting current (I). In electrical impedance monitoring the resistance to electrical flow in an alternating current circuit is measured. Multichannel esophageal monitoring can be measured by using an

  7. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Youngmi; Yun, Yeoheung, E-mail: yyun@ncat.edu

    2016-12-01

    Polydeoxyribonucleotides (PDRN) have been explored as an effective treatment for tissue repair in peripheral artery occlusive disease, diabetic foot ulcers, and eye lotion. We report on the effect of polydeoxyribonucleotides (PDRN) on wound healing by using the electric cell-substrate impedance sensing (ECIS) system and viability testing. Human osteoblasts (U2OS) and primary human dermal fibroblasts (HDF) were used to study the effect of PDRN on migration and proliferation. ECIS allowed the creation of a wound by applying high current, and then monitoring the healing process by measuring impedance in real time. The traditional culture-insert gap-closure migration assay was performed and compared with the ECIS wound assay. PDRN-treated U2OS and HDF cells affected cell motilities to wounding site. Viability test results show that HDF and U2OS proliferation depended on PDRN concentration. Based on the results, a PDRN compound can be useful in wound healing associated with bone and skin. - Highlights: • Wound-healing study by the electric cell-substrate impedance sensing (ECIS). • Effect of polydeoxyribonucleotides (PDRN) on migration and proliferation of U2OS and HDF. • Effect of PDRN concentration on viability of U2OS and HDF.

  8. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS)

    International Nuclear Information System (INIS)

    Koo, Youngmi; Yun, Yeoheung

    2016-01-01

    Polydeoxyribonucleotides (PDRN) have been explored as an effective treatment for tissue repair in peripheral artery occlusive disease, diabetic foot ulcers, and eye lotion. We report on the effect of polydeoxyribonucleotides (PDRN) on wound healing by using the electric cell-substrate impedance sensing (ECIS) system and viability testing. Human osteoblasts (U2OS) and primary human dermal fibroblasts (HDF) were used to study the effect of PDRN on migration and proliferation. ECIS allowed the creation of a wound by applying high current, and then monitoring the healing process by measuring impedance in real time. The traditional culture-insert gap-closure migration assay was performed and compared with the ECIS wound assay. PDRN-treated U2OS and HDF cells affected cell motilities to wounding site. Viability test results show that HDF and U2OS proliferation depended on PDRN concentration. Based on the results, a PDRN compound can be useful in wound healing associated with bone and skin. - Highlights: • Wound-healing study by the electric cell-substrate impedance sensing (ECIS). • Effect of polydeoxyribonucleotides (PDRN) on migration and proliferation of U2OS and HDF. • Effect of PDRN concentration on viability of U2OS and HDF.

  9. Polynomial Collocation for Handling an Inaccurately Known Measurement Configuration in Electrical Impedance Tomography

    DEFF Research Database (Denmark)

    Hyvönen, Niina; Kaarnioja, V.; Mustonen, L.

    2017-01-01

    The objective of electrical impedance tomography is to reconstruct the internal conductivity of a physical body based on measurements of current and potential at a finite number of electrodes attached to its boundary. Although the conductivity is the quantity of main interest in impedance...... tomography, a real-world measurement configuration includes other unknown parameters as well: The information on the contact resistances, electrode positions, and body shape is almost always incomplete. In this work, the dependence of the electrode measurements on all aforementioned model properties...

  10. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...... on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy....

  11. Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

    DEFF Research Database (Denmark)

    Hyvönen, N.; Majander, H.; Staboulis, Stratos

    2017-01-01

    Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties...

  12. Cross-sectional evaluation of electrical impedance myography and quantitative ultrasound for the assessment of Duchenne muscular dystrophy in a clinical trial setting.

    Science.gov (United States)

    Rutkove, Seward B; Geisbush, Tom R; Mijailovic, Aleksandar; Shklyar, Irina; Pasternak, Amy; Visyak, Nicole; Wu, Jim S; Zaidman, Craig; Darras, Basil T

    2014-07-01

    Electrical impedance myography and quantitative ultrasound are two noninvasive, painless, and effort-independent approaches for assessing neuromuscular disease. Both techniques have potential to serve as useful biomarkers in clinical trials in Duchenne muscular dystrophy. However, their comparative sensitivity to disease status and how they relate to one another are unknown. We performed a cross-sectional analysis of electrical impedance myography and quantitative ultrasound in 24 healthy boys and 24 with Duchenne muscular dystrophy, aged 2 to 14 years with trained research assistants performing all measurements. Three upper and three lower extremity muscles were studied unilaterally in each child, and the data averaged for each individual. Both electrical impedance myography and quantitative ultrasound differentiated healthy boys from those with Duchenne muscular dystrophy (P Duchenne muscular dystrophy boys (rho = 0.45; P = 0.029), whereas electrical impedance myography did not (rho = -0.31; P = 0.14). However, electrical impedance myography phase correlated with age in healthy boys (rho = 0.51; P = 0.012), whereas quantitative ultrasound did not (rho = -0.021; P = 0.92). In Duchenne muscular dystrophy boys, electrical impedance myography phase correlated with the North Star Ambulatory Assessment (rho = 0.65; P = 0.022); quantitative ultrasound revealed a near-significant association (rho = -0.56; P = 0.060). The two technologies trended toward a moderate correlation with one another in the Duchenne muscular dystrophy cohort but not in the healthy group (rho = -0.40; P = 0.054 and rho = -0.32; P = 0.13, respectively). Electrical impedance myography and quantitative ultrasound are complementary modalities for the assessment of boys with Duchenne muscular dystrophy; further study and application of these two modalities alone or in combination in a longitudinal fashion are warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Non-invasive assessment of radiation injury with electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Osterman, K Sunshine; Hoopes, P Jack; De Lorenzo, Christine; Gladstone, David J; Paulsen, Keith D

    2004-01-01

    A detailed understanding of non-targeted normal tissue response is necessary for the optimization of radiation treatment plans in cancer therapy. In this study, we evaluate the ability of electrical impedance spectroscopy (EIS) to non-invasively determine and quantify the injury response in soft tissue after high dose rate (HDR) irradiation, which is characterized by large localized dose distributions possessing steep spatial gradients. The HDR after-loading technique was employed to irradiate small volumes of muscle tissue with single doses (26-52 Gy targeted 5 mm away from the source). Impedance measurements were performed on 29 rats at 1, 2 and 3 month post-irradiation, employing 31 frequencies in the 1 kHz to 1 MHz range. Over the first 3 months, conductivity increased by 48% and 26% following target doses of 52 Gy and 26 Gy 5 mm from the HDR source, respectively. Injury, assessed independently through a grid-based scoring method showed a quadratic dependence on distance from source. A significant injury (50% of cells atrophied, necrotic or degenerating) in 1.2% of the volume, accompanied by more diffuse injury (25% of cells atrophied, necrotic or degenerating) in 9% of the tissue produced a conductivity increase of 0.02 S m -1 (8% over a baseline of 0.24 S m -1 ). This was not statistically significant at p 0.01. Among treatment groups, injury differences in 22% of the volume led to statistically significant differences in conductivity of 0.07 S m -1 (23% difference in conductivity). Despite limitations, the success of EIS in detecting responses in a fraction of the tissue probed, during these early post-irradiation time-points, is encouraging. Electrical impedance spectroscopy may provide a useful metric of atrophy and the development of fibrosis secondary to radiation that could be further developed into a low-cost imaging method for radiotherapy monitoring and assessment

  14. Design and development of electrical impedance tomography system with 32 electrodes and microcontroller

    Science.gov (United States)

    Ansory, Achmad; Prajitno, Prawito; Wijaya, Sastra Kusuma

    2018-02-01

    Electrical Impedance Tomography (EIT) is an imaging method that is able to estimate electrical impedance distribution inside an object. This EIT system is developed by using 32 electrodes and microcontroller based module. From a pair of electrodes, sinusoidal current of 3 mA is injected and the voltage differences between other pairs of electrodes are measured. Voltage measurement data are then sent to MATLAB and EIDORS software; the data are used to reconstruct two dimensions image. The system can detect and determine the position of a phantom in the tank. The object's position is accurately reconstructed and determined with the average shifting of 0.69 cm but object's area cannot be accurately reconstructed. The object's image is more accurately reconstructed when the object is located near to electrodes, has a larger size, and when the current injected to the system has a frequency of 100 kHz or 200kHz.

  15. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  16. Pneumothorax in a Preterm Infant Monitored by Electrical Impedance Tomography: A Case Report

    NARCIS (Netherlands)

    Miedema, M.; Frerichs, I.; de Jongh, F. H. C.; van Veenendaal, M. B.; van Kaam, A. H.

    2011-01-01

    Electrical impedance tomography (EIT) is a noninvasive bedside tool for monitoring regional changes in ventilation. We report, for the first time, the EIT images of a ventilated preterm infant with a unilateral pneumothorax, showing a loss of regional ventilation in the affected lung during both

  17. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch

    International Nuclear Information System (INIS)

    Bogónez-Franco, P; Nescolarde, L; Bragós, R; Rosell-Ferrer, J; Yandiola, I

    2009-01-01

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground

  18. Bubble boundary estimation in an annulus two-phase flow using electrical impedance tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong

    2008-02-01

    For the visualization of the phase boundary in an annulus two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with EIT in an annulus two-phase flows. And in many industrial cases there are a priori known internal structures inside the vessels which could be used as internal electrodes in tomographical imaging. In this paper internal electrodes were considered in electrical impedance tomography. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. The UKF algorithm was formulated to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  19. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning

    NARCIS (Netherlands)

    Kunst, P. W.; Vonk Noordegraaf, A.; Hoekstra, O. S.; Postmus, P. E.; de Vries, P. M.

    1998-01-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of

  20. Moisture distribution computed from electrical impedance tomographic data of a bentonite clay/sand material

    International Nuclear Information System (INIS)

    Strobel, G.S.

    1995-11-01

    Moisture contents values were calculated from electrical impedance-computed tomography measurements and compared with thermocouple psychrometer moisture values. The measurements were taken, in situ and under isothermal conditions, in a bentonite clay/sand packed borehole at the Underground Research Laboratory. Two sets of impedances moisture contents were calculated from the impedance valves--independent of each other. For one set, impedance measurements were fitted to the psychrometer moisture values in a least-squares fit to a generalized calibration curve and, for the second set, an impedance-moisture relationship from laboratory calibrations was applied. The impedance-computed moisture content data showed low scatter and the trends were consistent between the three sets of values. However, the moisture content data computed from the calibration curve were more consistent with those expected from physical arguments. The moisture values from the psychrometer readings were offset and, consequently, so were those produced after applying the fitting strategy. Internal redistribution of moisture appears to have had a more significant effect on the system than did inflow at the boundary. Inflow did cause a significant change but this was localized, during this period, to the outer ∼ 0.05 m of the test hole. No comment was made as to what internal processes caused these responses. (author) 9 refs., 2 tabs., 5 figs

  1. Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography

    International Nuclear Information System (INIS)

    Leinonen, Matti; Hakula, Harri; Hyvönen, Nuutti

    2014-01-01

    The aim of electrical impedance tomography is to determine the internal conductivity distribution of some physical body from boundary measurements of current and voltage. The most accurate forward model for impedance tomography is the complete electrode model, which consists of the conductivity equation coupled with boundary conditions that take into account the electrode shapes and the contact resistances at the corresponding interfaces. If the reconstruction task of impedance tomography is recast as a Bayesian inference problem, it is essential to be able to solve the complete electrode model forward problem with the conductivity and the contact resistances treated as a random field and random variables, respectively. In this work, we apply a stochastic Galerkin finite element method to the ensuing elliptic stochastic boundary value problem and compare the results with Monte Carlo simulations

  2. Theoretical and experimental studies on the electric impedance of active piezoelectric sensors bonded on cracked beams

    International Nuclear Information System (INIS)

    Kuang, Y D; Chen, C Y; Shi, S Q; Chan, P K L; He, X Q

    2010-01-01

    The electric impedance of symmetrically surface-bonded piezoelectric sensors on a cracked beam is studied. To investigate the effect of the crack on the electric impedance in a convenient fashion, an analytical expression is derived that is correlated to the physical parameters of the crack and the host beam. The beam segment covered with piezoelectric patches and the cracked region are regarded as a bimorph segment and an equivalent spring, respectively, and the entire beam system is then represented by three elastic beam segments and a bimorph segment together with the spring. Electric impedance experiments are also conducted for uncracked beams and for cracked beams with single-edge or double-edge cracks. The experimental results agree with those generated by the analytical expression. The crack depth has little effect on the corresponding mode frequency for cracks located at the mode node of a beam. For cracks located away from the mode node, the corresponding mode frequency decreases as the crack depth increases. Moreover, the closer the crack to the anti-node of the mode, the greater the decrease in the corresponding mode frequency. The mechanism of these changes is discussed. The findings should prove helpful for structural health monitoring using active piezoelectric sensors

  3. Scaling and the frequency dependence of Nyquist plot maxima of the electrical impedance of the human thigh.

    Science.gov (United States)

    Shiffman, Carl

    2017-11-30

    To define and elucidate the properties of reduced-variable Nyquist plots. Non-invasive measurements of the electrical impedance of the human thigh. A retrospective analysis of the electrical impedances of 154 normal subjects measured over the past decade shows that 'scaling' of the Nyquist plots for human thigh muscles is a property shared by healthy thigh musculature, irrespective of subject and the length of muscle segment. Here the term scaling signifies the near and sometimes 'perfect' coalescence of the separate X versus R plots into one 'reduced' Nyquist plot by the simple expedient of dividing R and X by X m , the value of X at the reactance maximum. To the extent allowed by noise levels one can say that there is one 'universal' reduced Nyquist plot for the thigh musculature of healthy subjects. There is one feature of the Nyquist curves which is not 'universal', however, namely the frequency f m at which the maximum in X is observed. That is found to vary from 10 to 100 kHz. depending on subject and segment length. Analysis shows, however, that the mean value of 1/f m is an accurately linear function of segment length, though there is a small subject-to-subject random element as well. Also, following the recovery of an otherwise healthy victim of ankle fracture demonstrates the clear superiority of measurements above about 800 kHz, where scaling is not observed, in contrast to measurements below about 400 kHz, where scaling is accurately obeyed. The ubiquity of 'scaling' casts new light on the interpretation of impedance results as they are used in electrical impedance myography and bioelectric impedance analysis.

  4. Real-time imaging of cerebral infarction in rabbits using electrical impedance tomography.

    Science.gov (United States)

    Yang, Bin; Shi, Xuetao; Dai, Meng; Xu, Canhua; You, Fushen; Fu, Feng; Liu, Ruigang; Dong, Xiuzhen

    2014-02-01

    To investigate the possible use of electrical impedance tomography (EIT) in monitoring focal cerebral infarction in a rabbit model. A model of focal cerebral infarction was established in eight New Zealand rabbits using a photochemical method without craniectomy. Focal cerebral infarction was confirmed by histopathological examination. Intracranial impedance variation was measured using 16 electrodes placed in a circle on the scalp. EIT images were obtained using a damped least-squares reconstruction algorithm. The average resistivity value (ARV) of the infarct region on EIT images was calculated to quantify relative resistivity changes. A symmetry index was calculated to evaluate the relative difference in resistivity between the two sides of the cerebrum. EIT images and ARV curves showed that impedance changes caused by cerebral infarction increased linearly with irradiation time. A difference in ARV was found between measurements taken before and after infarct induction. Focal cerebral infarction can be monitored by EIT in the proposed animal model. The results are sufficiently encouraging that the authors plan to extend this study to humans, after further technical improvements.

  5. Recent Progress on the Factorization Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Bastian Harrach

    2013-01-01

    method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT by Brühl and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular, we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs.

  6. Calculation of Voltages in Electric Power Transmission Lines During Historic Geomagnetic Storms: An Investigation Using Realistic Earth Impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-02-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  7. 基于直接寻找法的电阻抗断层成像%Electrical Impedance Tomography Based on Direct Search Method

    Institute of Scientific and Technical Information of China (English)

    蔡畅; 严壮志

    2005-01-01

    Solution to impedance distribution in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. It is especially difficult to reconstruct an EIT image in the center area of a measured object. Tikhonov regularization with some prior information is a sound regularization method for static electrical impedance tomography under the condition that some true impedance distribution information is known a priori. This paper presents a direct search method (DSM) as pretreatment of image reconstruction through which one not only can construct a regularization matrix which maylocate in areas of impedance change, but also can obtain an initial impedance distribution more similar to the true impedance distribution, as well as better current modes which can better distinguish the initial distribution and the true distribution. Simulation results indicate that, by using DSM, resolution in the center area of the measured object can be improved significantly.

  8. Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2017-02-01

    Full Text Available In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fabrication process. Furthermore, reuse of the fabricated electrode also requires an intensive and tedious cleaning process. Due to that, we present a microfluidic device with integrated microneedles. The two microneedles are placed at the half height of the microchannel for cell detection and electrical measurement. A commercially-available Tungsten needle was utilized for the microneedles. The microneedles are easily removed from the disposable PDMS (Polydimethylsiloxane microchannel and can be reused with a simple cleaning process, such as washing by ultrasonic cleaning. Although this device was low cost, it preserves the core functionality of the sensor, which is capable of detecting passing cells at the sensing area. Therefore, this device is suitable for low-cost medical and food safety screening and testing process in developing countries.

  9. Electrical Impedance Spectroscopic Studies on Broiler Chicken Tissue Suitable for the Development of Practical Phantoms in Multifrequency EIT

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-06-01

    Full Text Available Phantoms are essential for assessing the system performance in Electrical Impedance Tomography (EIT. Saline phantoms with insulator inhomogeneity fail to mimic the physiological structure of real body tissue in several aspects. Saline or any other salt solutions are purely resistive and hence studying multifrequency EIT systems cannot be assessed with saline phantoms because the response of the purely resistive materials do not change over frequency. Animal tissues show a variable response over a wide band of signal frequency due to their complex physiological and physiochemical structures and hence they can suitably be used as bathing medium and inhomogeneity in the phantoms of multifrequency EIT system. An efficient assessment of a multifrequency EIT system with real tissue phantom needs a prior knowledge of the impedance profile of the bathing medium as well as the inhomogeneity. In this direction Electrical Impedance Spectroscopy (EIS of broiler chicken muscle tissue paste and broiler chicken fat tissue is conducted from 10 Hz to 2 MHz using an impedance analyzer and their impedance profiles are thoroughly studied. Results show that the broiler chicken muscle tissue paste is less resistive than the fat tissue and hence it can be successfully used as the bathing medium of the phantoms for resistivity imaging in multifrequency EIT. Fat tissue is found more resistive than the muscle tissue which makes it more suitable for the inhomogeneity in phantoms of resistivity imaging study. doi:10.5617/jeb.174 J Electr Bioimp, vol. 2, pp. 48-63, 2011

  10. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    Science.gov (United States)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  11. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT

    International Nuclear Information System (INIS)

    Xiao Chunyan; Lei Yinzhao

    2005-01-01

    A model of a multilayered spherical volume conductor with four electrodes is built. In this model, a time-harmonic electric current is injected into the sphere through a pair of drive electrodes, and electric potential is measured by the other pair of measurement electrodes. By solving the boundary value problem of the electromagnetic field, the analytical solutions of electric potential and impedance in the whole conduction region are derived. The theoretical values of electric potential on the surface of the sphere are in good accordance with the experimental results. The analytical solutions are then applied to the simulation of the forward problem of brain electrical impedance tomography (EIT). The results show that, for a real human head, the imaginary part of the electric potential is not small enough to be ignored at above 20 kHz, and there exists an approximate linear relationship between the real and imaginary parts of the electric potential when the electromagnetic parameters of the innermost layer keep unchanged. Increase in the conductivity of the innermost layer leads to a decrease of the magnitude of both real and imaginary parts of the electric potential on the scalp. However, the increase of permittivity makes the magnitude of the imaginary part of the electric potential increase while that of the real part decreases, and vice versa

  12. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    Directory of Open Access Journals (Sweden)

    Antoine Dupré

    2018-03-01

    Full Text Available This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode. This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc..

  13. Gravity-dependent ventilation distribution in rats measured with electrical impedance tomography

    International Nuclear Information System (INIS)

    Rooney, Daniel; Fraser, John F; R Dunster, Kimble; Schibler, Andreas; Friese, Marlies

    2009-01-01

    Ventilation in larger animals and humans is gravity dependent and mainly distributed to the dependent lung. Little is known of the effect of gravity on ventilation distribution in small animals such as rodents. The aim of this study was to investigate gravity-dependent ventilation distribution and regional filling characteristics in rats. Ventilation distribution and regional lung filling were measured in six rats using electrical impedance tomography (EIT). Measurements were performed in four body positions (supine, prone, left and right lateral), and all animals were ventilated with increasing tidal volumes from 3 to 8 mL kg −1 . The effect of gravity on regional ventilation distribution was assessed with profiles of relative impedance change and calculation of the geometric centre. Regional filling was measured by calculating the slope of the plot of regional versus global relative impedance change on a breath-by-breath basis. Ventilation was significantly distributed to the non-dependent lung regardless of body position and tidal volume used. The geometric centre was located in the dependent lung in all but prone position. The regional filling characteristics followed an anatomical pattern with the posterior and the right lung generally filling faster. Gravity had little impact on regional filling. Ventilation distribution in rats is gravity dependent, whereas regional filling characteristics are dependent on anatomy

  14. Impedance analysis of subwoofer systems

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    The electrical impedance of four low-frequency loudspeaker systems is analyzed. The expression for this impedance is obtained directly from the acoustical analogous circuit. Formulas are derived for calculating the small-signal parameters from the frequencies of impedance minima and maxima of two

  15. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.

    Science.gov (United States)

    Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris

    2012-06-01

    In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.

  16. Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure

    NARCIS (Netherlands)

    Kunst, P. W.; Vonk Noordegraaf, A.; Raaijmakers, E.; Bakker, J.; Groeneveld, A. B.; Postmus, P. E.; de Vries, P. M.

    1999-01-01

    STUDY OBJECTIVES: To establish the value of electrical impedance tomography (EIT) in assessing pulmonary edema in noncardiogenic acute respiratory failure (ARF), as compared to the thermal dye double indicator dilution technique (TDD). DESIGN: Prospective clinical study. SETTING: ICU of a general

  17. Calculation of voltages in electric power transmission lines during historic geomagnetic storms: An investigation using realistic earth impedances

    Science.gov (United States)

    Lucas, Greg M.; Love, Jeffrey J.; Kelbert, Anna

    2018-01-01

    Commonly, one-dimensional (1-D) Earth impedances have been used to calculate the voltages induced across electric power transmission lines during geomagnetic storms under the assumption that much of the three-dimensional structure of the Earth gets smoothed when integrating along power transmission lines. We calculate the voltage across power transmission lines in the mid-Atlantic region with both regional 1-D impedances and 64 empirical 3-D impedances obtained from a magnetotelluric survey. The use of 3-D impedances produces substantially more spatial variance in the calculated voltages, with the voltages being more than an order of magnitude different, both higher and lower, than the voltages calculated utilizing regional 1-D impedances. During the March 1989 geomagnetic storm 62 transmission lines exceed 100 V when utilizing empirical 3-D impedances, whereas 16 transmission lines exceed 100 V when utilizing regional 1-D impedances. This demonstrates the importance of using realistic impedances to understand and quantify the impact that a geomagnetic storm has on power grids.

  18. Assessment of breast tumor size in electrical impedance scanning

    International Nuclear Information System (INIS)

    Kim, Sungwhan

    2012-01-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility. (paper)

  19. a Study of the Electrical Impedance of Erythrocyte Membranes the Effects of Temperature and Radiation.

    Science.gov (United States)

    Gerig, Lee Harvey

    The purpose of this work was to investigate the electrical impedance properties of Human Erythrocytes suspended in normal saline and specifically how radiation and temperature affected these properties. The cells were obtained by venepuncture from normal adult volunteers, washed three times and resuspended in phosphate buffered saline. The cells were irradiated by ('60)Co gamma rays to doses varying from 500 to 20,000 rads. The electrical impedance was measured using a computerized measurement and data acquisition system developed in the Biophysics Laboratory, School of Physics, University of New South Wales. The measurements were performed employing a four terminal technique and a digitally synthesized sine wave. The measurements revealed that nonirradiated blood from any specific individual had reproducible electrical properties from day to day and that there were only small differences in the electrical properties of blood from the various individuals sampled. This data displayed complex structure in both the capacitance versus frequency and conductance versus frequency curves. Of great interest was the dependence on the time post venesection, indicating a continual change in the state of the cells after removal from their natural environment. The experiments also revealed a non linear temperature dependence and a significant change in the suspension impedance as a function of absorbed dose. A model of the system was introduced which was able to emulate most of the measured phenomena. Studies of how the model can be adapted to fit the measured data for various cases (eg. time, temperature, radiation dose) suggested various physiological processes occurring within the membrane. The results were indicative of effects such as radiation induced changes in the lipid hydrocarbon region, the presence of a complex protein structure, the dissociation of charge within the protein, the presence of electrogenic pumps, and the destruction of the lipid matrix by radiation

  20. Age- and gender-associated differences in electrical impedance values of skeletal muscle

    International Nuclear Information System (INIS)

    Kortman, Hans G J; Wilder, Sarah C; Geisbush, Tom R; Narayanaswami, Pushpa; Rutkove, Seward B

    2013-01-01

    Electrical impedance measurements of skeletal muscle may be sensitive to age-associated declines in muscle health. In an effort to evaluate this concept further, we performed electrical impedance myography (EIM) using a handheld array on 38 individuals aged 19–50 years and 41 individuals aged 60–85 years. Individuals either had seven upper extremity or seven lower extremity muscles measured. The 50 kHz reactance, resistance and phase were used as the major outcome variables. Although the phase values were similar in both groups, both reactance and resistance values were lower in the lower extremities of the older individuals as compared to the younger (−23 ± 6%, p = 0.001 for reactance and −27 ± 7%, p = 0.005 for resistance), whereas changes in upper extremity values were not significantly different (−9 ± 5%, p = 0.096 for reactance and +5 ± 9%, p = 0.55 for resistance). When analyzing the genders separately, it became clear that this reduction in lower extremity values was most pronounced in men and less consistently present in women. These findings suggest that age- and gender-associated differences in muscle condition are detectable using EIM. The relationship of these easily obtained parameters to standard functional, imaging, and pathological markers of sarcopenia deserves further study. (paper)

  1. Utilisation of electrical impedance tomography in breast cancer diagnosis.

    Science.gov (United States)

    Raneta, O; Ondruš, D; Bella, V

    2012-01-01

    Breast cancer presents a serious medical and social problem worldwide. Early detection is key to effective breast cancer treatment. Therefore, scientists are consistently looking for new diagnostic techniques that would be more efficient, easy to use and safe for the patient. The main task of this study was to evaluate the feasibility of a novel low-cost non-invasive technique called electrical impedance tomography (EIT) and to determine whether EIT can qualitatively supplement the existing traditional imaging techniques in the process of breast cancer diagnostics. Randomly selected patients with mammographic and/or sonographic abnormalities were involved into the study. In total, 808 patients aged 18-94 (mean 54) years participated in the survey. Exclusion criteria involved previous breast surgery, breast core biopsy or fine needle aspiration within the last 1 and 3 months, respectively. Furthermore, patients with implanted electrically powered devices (cardioverter, pacemaker) and patients previously treated by chemo-radiotherapy were also excluded. The EIT examination was performed using the electrical impedance computer mammograph MEIK developed by the Institute of Radio Engineering and Electronics, Russian Academy of Sciences. The following results were obtained: sensitivity of EIT was 87%, X-ray mammography (MMG) 89% and ultrasonography (USG) 91%; specificity of EIT was 85%, MMG 91% and USG 84%. Negative predictive value (NPV) of all three modalities showed nearly equal values, with slight advantage of the USG. MMG had the highest positive predictive (PPV) value (83%), EIT had the lowest (63%). Sensitivity increased to 96% and 98%, respectively, when combinations EIT+MMG and EIT+USG were used. The specificity increased to 79% for EIT+MMG and 71% for EIT+USG. EIT+MMG and EIT+USG NPV remained the same. PPV was 65% and 58%, respectively for the EIT+MMG and EIT+USG combination. Our study findings are comparable to those of other similar studies. Although the EIT

  2. Electrical impedance tomography imaging using a priori ultrasound data

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-02-01

    Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.

  3. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach

    International Nuclear Information System (INIS)

    Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris

    2012-01-01

    In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications. (paper)

  4. Electrical impedance tomography with compensation for electrode positioning variations

    International Nuclear Information System (INIS)

    Blott, B.H.; Daniell, G.J.; Meeson, S.

    1998-01-01

    Ideally electrical impedance tomography (EIT) should not be oversensitive to electrode positions, but this conflicts with efforts to produce high-resolution images. Two procedures are presented that balance reducing the sensitivity to electrode position errors with generating practicable EIT images. The first provides a criterion based on electrode sensitivity for regularizing the reconstruction through spectral expansion. The main consequences of this are that smoother images are produced and the number of artefacts and their magnitude are generally reduced. The second modification uses the recorded data to compensate for electrode movements that have occurred after the reference data were measured. Image smoothness is used as the criterion for the readjustment. Computer simulation tests have shown that this modification produces improved image fidelity. (author)

  5. Applications of Electrical Impedance Tomography (EIT): A Short Review

    Science.gov (United States)

    Kanti Bera, Tushar

    2018-03-01

    Electrical Impedance Tomography (EIT) is a tomographic imaging method which solves an ill posed inverse problem using the boundary voltage-current data collected from the surface of the object under test. Though the spatial resolution is comparatively low compared to conventional tomographic imaging modalities, due to several advantages EIT has been studied for a number of applications such as medical imaging, material engineering, civil engineering, biotechnology, chemical engineering, MEMS and other fields of engineering and applied sciences. In this paper, the applications of EIT have been reviewed and presented as a short summary. The working principal, instrumentation and advantages are briefly discussed followed by a detail discussion on the applications of EIT technology in different areas of engineering, technology and applied sciences.

  6. Real-time imaging and detection of intracranial haemorrhage by electrical impedance tomography in a piglet model.

    Science.gov (United States)

    Xu, C H; Wang, L; Shi, X T; You, F S; Fu, F; Liu, R G; Dai, M; Zhao, Z W; Gao, G D; Dong, X Z

    2010-01-01

    The aim of this study was to use electrical impedance tomography (EIT) to detect and image acute intracranial haemorrhage (ICH) in an animal model. Blood was infused into the frontal lobe of the brains of anaesthetized piglets and impedance was measured using 16 electrodes placed in a circle on the scalp. The EIT images were constructed using a filtered back-projection algorithm. The mean of all the pixel intensities within a region of interest--the mean resistivity value (MRV)--was used to evaluate the relative impedance changes in the target region. A symmetrical index (SI), reflecting the relative impedance on both sides of the brain, was also calculated. Changes in MRV and SI were associated with the injection of blood, demonstrating that EIT can successfully detect ICH in this animal model. The unique features of EIT may be beneficial for diagnosing ICH early in patients after cranial surgery, thereby reducing the risk of complications and mortality.

  7. Patterns of gas and liquid reflux during transient lower oesophageal sphincter relaxation: a study using intraluminal electrical impedance

    OpenAIRE

    Sifrim, D; Silny, J; Holloway, R; Janssens, J

    1999-01-01

    Background—Belching has been proposed as a major mechanism underlying acid gastro-oesophageal reflux in normal subjects. However, the presence of oesophageal gas has not been measured directly but only inferred from manometry. 
Aims—To investigate, using intraluminal electrical impedance, the patterns of gas and liquid reflux during transient lower oesophageal sphincter (LOS) relaxations, the main mechanism of acid reflux in normal subjects. 
Methods—Impedance changes ass...

  8. Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging

    Directory of Open Access Journals (Sweden)

    Parvind Kaur Grewal

    2014-04-01

    Full Text Available Phantoms are widely used in medical imaging to predict image quality prior to clinical imaging. This paper discusses the possible use of bolus material, as a conductivity phantom, for validation and interpretation of electrical impedance tomography (EIT images. Bolus is commonly used in radiation therapy to mimic tissue. When irradiated, it has radiological characteristics similar to tissue. With increased research interest in CT/EIT fusion imaging there is a need to find a material which has both the absorption coefficient and electrical conductivity similar to biological tissues. In the present study the electrical properties, specifically resistivity, of various commercially available bolus materials were characterized by comparing their frequency response with that of in-vivo connective adipose tissue. It was determined that the resistivity of Gelatin Bolus is similar to in-vivo tissue in the frequency range 10 kHz to 1MHz and therefore has potential to be used in EIT/CT fusion imaging studies.

  9. Classification of breast tumour using electrical impedance and machine learning techniques.

    Science.gov (United States)

    Al Amin, Abdullah; Parvin, Shahnaj; Kadir, M A; Tahmid, Tasmia; Alam, S Kaisar; Siddique-e Rabbani, K

    2014-06-01

    When a breast lump is detected through palpation, mammography or ultrasonography, the final test for characterization of the tumour, whether it is malignant or benign, is biopsy. This is invasive and carries hazards associated with any surgical procedures. The present work was undertaken to study the feasibility for such characterization using non-invasive electrical impedance measurements and machine learning techniques. Because of changes in cell morphology of malignant and benign tumours, changes are expected in impedance at a fixed frequency, and versus frequency of measurement. Tetrapolar impedance measurement (TPIM) using four electrodes at the corners of a square region of sides 4 cm was used for zone localization. Data of impedance in two orthogonal directions, measured at 5 and 200 kHz from 19 subjects, and their respective slopes with frequency were subjected to machine learning procedures through the use of feature plots. These patients had single or multiple tumours of various types in one or both breasts, and four of them had malignant tumours, as diagnosed by core biopsy. Although size and depth of the tumours are expected to affect the measurements, this preliminary work ignored these effects. Selecting 12 features from the above measurements, feature plots were drawn for the 19 patients, which displayed considerable overlap between malignant and benign cases. However, based on observed qualitative trend of the measured values, when all the feature values were divided by respective ages, the two types of tumours separated out reasonably well. Using K-NN classification method the results obtained are, positive prediction value: 60%, negative prediction value: 93%, sensitivity: 75%, specificity: 87% and efficacy: 84%, which are very good for such a test on a small sample size. Study on a larger sample is expected to give confidence in this technique, and further improvement of the technique may have the ability to replace biopsy.

  10. Classification of breast tumour using electrical impedance and machine learning techniques

    International Nuclear Information System (INIS)

    Amin, Abdullah Al; Parvin, Shahnaj; Kadir, M A; Tahmid, Tasmia; Alam, S Kaisar; Siddique-e Rabbani, K

    2014-01-01

    When a breast lump is detected through palpation, mammography or ultrasonography, the final test for characterization of the tumour, whether it is malignant or benign, is biopsy. This is invasive and carries hazards associated with any surgical procedures. The present work was undertaken to study the feasibility for such characterization using non-invasive electrical impedance measurements and machine learning techniques. Because of changes in cell morphology of malignant and benign tumours, changes are expected in impedance at a fixed frequency, and versus frequency of measurement. Tetrapolar impedance measurement (TPIM) using four electrodes at the corners of a square region of sides 4 cm was used for zone localization. Data of impedance in two orthogonal directions, measured at 5 and 200 kHz from 19 subjects, and their respective slopes with frequency were subjected to machine learning procedures through the use of feature plots. These patients had single or multiple tumours of various types in one or both breasts, and four of them had malignant tumours, as diagnosed by core biopsy. Although size and depth of the tumours are expected to affect the measurements, this preliminary work ignored these effects. Selecting 12 features from the above measurements, feature plots were drawn for the 19 patients, which displayed considerable overlap between malignant and benign cases. However, based on observed qualitative trend of the measured values, when all the feature values were divided by respective ages, the two types of tumours separated out reasonably well. Using K-NN classification method the results obtained are, positive prediction value: 60%, negative prediction value: 93%, sensitivity: 75%, specificity: 87% and efficacy: 84%, which are very good for such a test on a small sample size. Study on a larger sample is expected to give confidence in this technique, and further improvement of the technique may have the ability to replace biopsy. (paper)

  11. Influence of heart motion on cardiac output estimation by means of electrical impedance tomography: a case study

    International Nuclear Information System (INIS)

    Proença, Martin; Braun, Fabian; Rapin, Michael; Solà, Josep; Lemay, Mathieu; Adler, Andy; Grychtol, Bartłomiej; Bohm, Stephan H; Thiran, Jean-Philippe

    2015-01-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets. (paper)

  12. Rf Discharge Impedance Measurements Using a New Method to Determine the Stray Impedances

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, de F.J.

    1999-01-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine

  13. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  14. Development of an electrical impedance computed tomographic two-phase flows analyzer. Annual technical report for program renewal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O.C.

    1993-05-01

    This progress report details the theoretical development, numerical results, experimental design (mechanical), experimental design (electronic), and experimental results for the research program for the development of an electrical impedance computed tomographic two-phase flow analyzer.

  15. Transcephalic electrical impedance in the study of cerebral circulation in a juvenile pig model.

    Science.gov (United States)

    Grönlund, J; Bartocci, M; Kääpä, P; Jahnukainen, T; Rautanen, M; Halkola, L; Välimäki, I

    1997-11-01

    Transcephalic electrical impedance offers a technique for non-invasive, cot-side monitoring of neonatal cerebral circulation but the exact nature of the signal is somewhat ambiguous. The impedance signal is examined in an animal project where the ventilator settings are adjusted (20 min-1-10 min-1-40 min-1 for 10 min periods each) to produce circulatory changes. Six juvenile pigs are intubated, and ECG, arterial blood pressure, carotid flow (CF) by electromagnetic flowmeter and impedance are continuously monitored and stored on analogue tape. Cardiac output by thermodilution, blood oxygen (pO2) and carbon dioxide (pCO2) tensions are measured. ECG is converted to heart rate, mean blood pressure is integrated, and the high-frequency (1.50-4.00 Hz) component of the impedance signal delta Z is computed using autoregressive spectral estimation. Stroke volume, peripheral vascular resistance (PVR) and cerebral vascular resistance (CVR) are calculated. pCO2 and CF increase and pO2 decreases during hypoventilation. CF correlates positively with cardiac output, stroke volume, delta Z and pCO2, and negatively with pO2 and CVR. delta Z correlates positively with heart rate and cardiac output, and negatively with PVR and CVR. It is concluded that the impedance signal is related to the amount of blood transmitted to the brain by every beat of the heart, depending on the changes in both the systemic circulation and the cerebral vascular compliance.

  16. Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment.

    Directory of Open Access Journals (Sweden)

    Feng Fu

    Full Text Available OBJECTIVE: Variations of conductive fluid content in brain tissue (e.g. cerebral edema change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT, an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content. DESIGN: a prospective study. SETTING: In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank. PATIENTS: 23 patients with brain edema. INTERVENTIONS: The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes. MEASUREMENT AND MAIN RESULTS: Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027. Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment. CONCLUSIONS: EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients.

  17. Impedance of a nanoantenna

    International Nuclear Information System (INIS)

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-01-01

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  18. Duality reconstruction algorithm for use in electrical impedance tomography

    International Nuclear Information System (INIS)

    Abdullah, M.Z.; Dickin, F.J.

    1996-01-01

    A duality reconstruction algorithm for solving the inverse problem in electrical impedance tomography (EIT) is described. In this method, an algorithm based on the Geselowitz compensation (GC) theorem is used first to reconstruct an approximate version of the image. It is then fed as a first guessed data to the modified Newton-Raphson (MNR) algorithm which iteratively correct the image until a final acceptable solution is reached. The implementation of the GC and MNR based algorithms using the finite element method will be discussed. Reconstructed images produced by the algorithm will also be presented. Consideration is also given to the most computationally intensive aspects of the algorithm, namely the inversion of the large and sparse matrices. The methods taken to approximately compute the inverse ot those matrices will be outlined. (author)

  19. An analysis of electrical impedance tomography with applications to Tikhonov regularization

    KAUST Repository

    Jin, Bangti

    2012-01-16

    This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.

  20. An analysis of electrical impedance tomography with applications to Tikhonov regularization

    KAUST Repository

    Jin, Bangti; Maass, Peter

    2012-01-01

    This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.

  1. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    Science.gov (United States)

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  2. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    International Nuclear Information System (INIS)

    Bellotti, Mariela I; Giana, Fabián E; Bonetto, Fabián J

    2015-01-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities. (paper)

  3. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    Directory of Open Access Journals (Sweden)

    James Avery

    2017-01-01

    Full Text Available A highly versatile Electrical Impedance Tomography (EIT system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication.

  4. Fractional calculus model of electrical impedance applied to human skin.

    Science.gov (United States)

    Vosika, Zoran B; Lazovic, Goran M; Misevic, Gradimir N; Simic-Krstic, Jovana B

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects.

  5. Fractional calculus model of electrical impedance applied to human skin.

    Directory of Open Access Journals (Sweden)

    Zoran B Vosika

    Full Text Available Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1 Weyl fractional derivative operator, 2 Cole equation, and 3 Constant Phase Element (CPE. These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects.

  6. Electrical Impedance Tomography Reconstruction Through Simulated Annealing using a New Outside-in Heuristic and GPU Parallelization

    International Nuclear Information System (INIS)

    Tavares, R S; Tsuzuki, M S G; Martins, T C

    2012-01-01

    Electrical Impedance Tomography (EIT) is an imaging technique that attempts to reconstruct the conductivity distribution inside an object from electrical currents and potentials applied and measured at its surface. The EIT reconstruction problem is approached as an optimization problem, where the difference between the simulated and measured distributions must be minimized. This optimization problem can be solved using Simulated Annealing (SA), but at a high computational cost. To reduce the computational load, it is possible to use an incomplete evaluation of the objective function. This algorithm showed to present an outside-in behavior, determining the impedance of the external elements first, similar to a layer striping algorithm. A new outside-in heuristic to make use of this property is proposed. It also presents the impact of using GPU for parallelizing matrix-vector multiplication and triangular solvers. Results with experimental data are presented. The outside-in heuristic showed to be faster when compared to the conventional SA algorithm.

  7. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Schullcke Benjamin

    2016-09-01

    Full Text Available Electrical impedance tomography (EIT is used to monitor the regional distribution of ventilation in a transversal plane of the thorax. In this manuscript we evaluate the impact of different quantities of electrodes used for current injection and voltage measurement on the reconstructed shape of the lungs. Results indicate that the shape of reconstructed impedance changes in the body depends on the number of electrodes. In this manuscript, we demonstrate that a higher number of electrodes do not necessarily increase the image quality. For the used stimulation pattern, utilizing neighboring electrodes for current injection and voltage measurement, we conclude that the shape of the lungs is best reconstructed if 16 electrodes are used.

  8. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.

    Science.gov (United States)

    Cha, Youngsu; Porfiri, Maurizio

    2013-02-01

    In this paper, we analyze the charge dynamics of ionic polymer-metal composites (IPMCs) in response to voltage inputs composed of a large dc bias and a small superimposed time-varying voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-Planck framework, in which steric effects are taken into consideration. The physics of charge build-up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from the metal electrodes by two composite layers. The method of matched asymptotic expansions is used to derive a semianalytical solution for the concentration of mobile counterions and the electric potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC electrical response. The circuit model consists of the series connection of a resistor and two complex elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The resistor is associated with ion transport in the ionomeric membrane and is independent of the dc bias. The capacitors and the Warburg impedance idealize charge build-up and mass transfer in the vicinity of the electrodes and their value is controlled by the dc bias. The proposed approach is validated against experimental results on in-house fabricated IPMCs and the accuracy of the equivalent circuit is assessed through comparison with finite element results.

  9. Improvements in the image quality of ventilatory tomograms by electrical impedance tomography

    International Nuclear Information System (INIS)

    Hahn, G; Dittmar, J; Just, A; Hellige, G

    2008-01-01

    We present an improved approach to image ventilation in functional electrical impedance tomography (f-EIT). It combines the advantages of the two established procedures of calculating standard deviation as a functional parameter of ventilation (SD method) and the so-called filling capacity (FC method). The SD method quantifies the local impedance variation over a series of tomograms for each pixel; the FC method is based on the slope of a linear fit of regional versus the global impedance change. Tidal volume V T is displayed linearly by the SD method in f-EIT; it is, however, sensitive to noisy data. The FC method is much more robust with respect to noise but does not display the tidal volume V T . We combined the advantages of both techniques in a new VT method which is based on raw data. It saves computing time and is suitable for both f-EIT and absolute EIT (a-EIT). We separated the raw data into two representative sets: end expiratory and end inspiratory. This was accomplished by calculating the global time course of the relative impedance changes from the raw data. In this time course, we determined all frame numbers (indices) of end expiration and end inspiration. These frame numbers were used to calculate one mean expiratory and one mean inspiratory raw data frame. Reconstruction by difference imaging directly reflects the mean tidal volume V T during the acquired frame series. The effect of the improvement by the VT method was investigated at different noise levels by adding artificial noise from 0 to 100 µV rms to a real raw dataset. The robustness with regard to noise of the VT method was similar to that of the FC method. The practical value of suppression of non-ventilatory impedance changes, artefacts and noise was tested by studying ten healthy subjects (four females, six males) during normal breathing. We found a highly significant improvement in the image quality (p < 0.001) of ventilation for this group of volunteers

  10. An electrical impedance tomography (EIT) multi-electrode needle-probe device for local assessment of heterogeneous tissue impeditivity.

    Science.gov (United States)

    Meroni, Davide; Maglioli, Camilla Carpano; Bovio, Dario; Greco, Francesco G; Aliverti, Andrea

    2017-07-01

    Electrical Impedance Tomography (EIT) is an image reconstruction technique applied in medicine for the electrical imaging of living tissues. In literature there is the evidence that a large resistivity variation related to the differences of the human tissues exists. As a result of this interest for the electrical characterization of the biological samples, recently the attention is also focused on the identification and characterization of the human tissue, by studying the homogeneity of its structure. An 8 electrodes needle-probe device has been developed with the intent of identifying the structural inhomogeneities under the surface layers. Ex-vivo impeditivity measurements, by placing the needle-probe in 5 different patterns of fat and lean porcine tissue, were performed, and impeditivity maps were obtained by EIDORS open source software for image reconstruction in electrical impedance. The values composing the maps have been analyzed, pointing out a good tissue discrimination, and the conformity with the real images. We conclude that this device is able to perform impeditivity maps matching to reality for position and orientation. In all the five patterns presented is possible to identify and replicate correctly the heterogeneous tissue under test. This new procedure can be helpful to the medical staff to completely characterize the biological sample, in different unclear situations.

  11. QUANTIFICATION OF RESPIRATORY SINUS ARRHYTHMIA WITH HIGH-FRAMERATE ELECTRICAL IMPEDANCE TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    Christoph Hoog Antink

    2013-12-01

    Full Text Available Respiratory Sinus Arrhythmia, the variation in the heart rate synchronized with the breathing cycle, forms an interconnection between cardiac-related and respiratory-related signals. It can be used by itself for diagnostic purposes, or by exploiting the redundancies it creates, for example by extracting respiratory rate from an electrocardiogram (ECG. To perform quantitative analysis and patient specific modeling, however, simultaneous information about ventilation as well as cardiac activity needs to be recorded and analyzed. The recent advent of medically approved Electrical Impedance Tomography (EIT devices capable of recording up to 50 frames per second facilitates the application of this technology. This paper presents the automated selection of a cardiac-related signal from EIT data and quantitative analysis of this signal. It is demonstrated that beat-to-beat intervals can be extracted with a median absolute error below 20 ms. A comparison between ECG and EIT data shows a variation in peak delay time that requires further analysis. Finally, the known coupling of heart rate variability and tidal volume can be shown and quantified using global impedance as a surrogate for tidal volume.

  12. Electrical impedance tomography system: an open access circuit design

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-05-01

    Full Text Available Abstract Background This paper reports a simple 2-D system for electrical impedance tomography EIT, which works efficiently and is low cost. The system has been developed in the Sharif University of Technology Tehran-Iran (for the author's MSc Project. Methods The EIT system consists of a PC in which an I/O card is installed with an external current generator, a multiplexer, a power supply and a phantom with an array of electrodes. The measurement system provides 12-bit accuracy and hence, suitable data acquisition software has been prepared accordingly. The synchronous phase detection method has been implemented for voltage measurement. Different methods of image reconstruction have been used with this instrument to generate electrical conductivity images. Results The results of simulation and real measurement of the system are presented. The reconstruction programs were written in MATLAB and the data acquisition software in C++. The system has been tested with both static and dynamic mode in a 2-D domain. Better results have been produced in the dynamic mode of operation, due to the cancellation of errors. Conclusion In the spirit of open access publication the design details of this simple EIT system are made available here.

  13. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    International Nuclear Information System (INIS)

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-01-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  14. Electrical and Dielectric Properties of Polyaniline and Polyaniline/Montmorillonite Nanocomposite Prepared by Solid Reaction Using Spectroscopy Impedance

    Directory of Open Access Journals (Sweden)

    Imene Bekri-Abbes

    2015-01-01

    Full Text Available The combination of two components with uniform distribution in nanoscale is expected to facilitate wider applications of the material. In this study, polyaniline (PAn and polyaniline/montmorillonite (Mt nanocomposite were prepared by solid reaction using persulfate of ammonium as oxidant. The phase composition and morphology of the nanocomposite were characterized by FTIR, UV-visible spectroscopy, X-ray diffractometer, thermal gravimetric analysis, and scanning electron microscopy. The electrical and dielectric properties were determined using spectroscopy impedance. The analysis of UV-visible and FTIR spectroscopy demonstrated that aniline chloride has been polymerized into PAn in its conducting emeraldine form. Thermogravimetric analysis suggested that PAn chains intercalated in the clay host are more thermally stable than those of free PAn prepared by solid-solid reaction. Electrical measurements were carried out using the complex impedance technique in the frequency range of 10−2 to 104 Hz at different temperatures. The ac conductivity data of different nanocomposites were analyzed as a function of frequency and temperature. It has been found that the incorporation of inorganic clay phase into polyaniline matrix has an effect on the electrical and dielectric properties of the nanomaterial.

  15. Progress in electrical impedance imaging of binary media: 1: Analytical and numerical methods

    International Nuclear Information System (INIS)

    Ovacik, Levent; Lin Jentai; Jones, Owen C.

    1998-01-01

    This is the first of two papers summarizing the use of electrical impedance excitation/measurement for producing cross sectional images of the distribution of insulating media imbedded in conducting media. This computed tomographic approach finds the distribution of electrical properties of an electric field which minimizes in the least squares sense the difference between measured and computed boundary response to excitation. In this paper we briefly review the basic analytical methods developed for this system. We then extend these methods to three dimensions, add a method for preconditioning voltages for error correction, describe methods for optimizing the resolution of a target by providing optimal excitation patterns and then describe the overall numerical sensitivity. The second paper then demonstrates the ability of this system to image multiple, separate, differently-sized two-dimensional or three-dimensional targets with demonstrated linear sensitivity of over 30:1 with maximum possible linear sensitivity of one part in 1300 based on our ability to distinguish variations from a homogeneous background. (author)

  16. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

  17. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  18. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impedance recordings

    NARCIS (Netherlands)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment

  19. Elimination of the Respiratory Effect on the Thoracic Impedance Signal with Whole-body Impedance Cardiography

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Viščor, Ivo; Lipoldová, J.; Plachý, M.

    2010-01-01

    Roč. 37, - (2010), s. 1051-1054 ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801 Institutional research plan: CEZ:AV0Z20650511 Keywords : respiratory effect * thoracic impedance signal * impedance cardiography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://cinc.mit.edu/archives/2010/pdf/1051.pdf

  20. Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien-Yie Tsay

    2016-05-01

    Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  1. A neural network image reconstruction technique for electrical impedance tomography

    International Nuclear Information System (INIS)

    Adler, A.; Guardo, R.

    1994-01-01

    Reconstruction of Images in Electrical Impedance Tomography requires the solution of a nonlinear inverse problem on noisy data. This problem is typically ill-conditioned and requires either simplifying assumptions or regularization based on a priori knowledge. This paper presents a reconstruction algorithm using neural network techniques which calculates a linear approximation of the inverse problem directly from finite element simulations of the forward problem. This inverse is adapted to the geometry of the medium and the signal-to-noise ratio (SNR) used during network training. Results show good conductivity reconstruction where measurement SNR is similar to the training conditions. The advantages of this method are its conceptual simplicity and ease of implementation, and the ability to control the compromise between the noise performance and resolution of the image reconstruction

  2. Evaluation method for corrosion level of rebar in RC with electrical impedance measurement

    Science.gov (United States)

    Sasamoto, Akira

    2018-04-01

    The author reported that the impedance measurement using the 4-terminal method on the RC surface for diagnosing corrosion of internal rebar. The difference between the maximum value at 0.01 Hz and the minimum value around 10 Hz indicates the corrosion level of rebar in that report. This is successive report on a signal processing method for estimating the corrosion level by the measured impedance data to obtain more high accuracy. In the dielectric, a graph of frequency and dielectric constant (Cole-Cole plot diagram by KS Cole and RH Cole article of 1941) draws a shape of circle if the dielectric is independent of frequency but it draws a shape of ellipse in reality due to frequency dependency. Havriliak and Negami have also presented Havriliak-Negami model which introduced parameter into dielectric constant equation which deforms Cole-Cole plot diagram and showed that acquired dielectric data of polymer materials fit to this model with proper parameters. In this report, we first consider electric model connected with resistance and capacitance as a rough model of RC concrete. If the capacitance in this model circuit has some loss of dielectric, it is stated that graph in impedance plot is expected to take as similar deformation in the dielectric Cole-Cole plot. Then a numerical optimization computer code for obtaining parameters in the Cole-Cole plot diagram and Havriliak-Negami model is constructed, and the correlation between the deformation parameter of each model and corrosion is shown by this code. These results are feasibility study for diagnosis of corrosion level of rebar by associated parameters to a shape of impedance graph.

  3. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    Directory of Open Access Journals (Sweden)

    Benjamin Sanchez

    Full Text Available Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx. Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters.Eight wild-type (wt and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed.As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p 70 Hz, but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01. Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively.Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  4. A motion-compensated cone-beam CT using electrical impedance tomography imaging

    International Nuclear Information System (INIS)

    Pengpan, T; Smith, N D; Qiu, W; Yao, A; Mitchell, C N; Soleimani, M

    2011-01-01

    Cone-beam CT (CBCT) is an imaging technique used in conjunction with radiation therapy. For example CBCT is used to verify the position of lung cancer tumours just prior to radiation treatment. The accuracy of the radiation treatment of thoracic and upper abdominal structures is heavily affected by respiratory movement. Such movement typically blurs the CBCT reconstruction and ideally should be removed. Hence motion-compensated CBCT has recently been researched for correcting image artefacts due to breathing motion. This paper presents a new dual-modality approach where CBCT is aided by using electrical impedance tomography (EIT) for motion compensation. EIT can generate images of contrasts in electrical properties. The main advantage of using EIT is its high temporal resolution. In this paper motion information is extracted from EIT images and incorporated directly in the CBCT reconstruction. In this study synthetic moving data are generated using simulated and experimental phantoms. The paper demonstrates that image blur, created as a result of motion, can be reduced through motion compensation with EIT

  5. Dynamic Phase Boundary Estimation in Two-phase Flows Based on Electrical Impedance Tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Muhammada, Nauman Malik; Kim, Kyung Youn; Kim, Sin

    2008-01-01

    For the dynamic visualization of the phase boundary in two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected through the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrodes. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm where the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers phase boundary estimation with EIT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. For the present problem, the formulation of UKF algorithm involved its incorporation in the adopted image reconstruction algorithm. Also, phantom experiments have been conducted to evaluate the improvement reported by UKF

  6. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp

    2017-01-01

    Purpose: Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (DBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo...... (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods: Considering T1, T2, and T 2 relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence...

  7. Simultaneous reconstruction of outer boundary shape and conductivity distribution in electrical impedance tomography

    KAUST Repository

    Hyvönen, Nuutti

    2016-01-05

    The simultaneous retrieval of the exterior boundary shape and the interior admittivity distribution of an examined body in electrical impedance tomography is considered. The reconstruction method is built for the complete electrode model and it is based on the Frechet derivative of the corresponding current-to-voltage map with respect to the body shape. The reconstruction problem is cast into the Bayesian framework, and maximum a posteriori estimates for the admittivity and the boundary geometry are computed. The feasibility of the approach is evaluated by experimental data from water tank measurements.

  8. Sparsity reconstruction in electrical impedance tomography: An experimental evaluation

    KAUST Repository

    Gehre, Matthias

    2012-02-01

    We investigate the potential of sparsity constraints in the electrical impedance tomography (EIT) inverse problem of inferring the distributed conductivity based on boundary potential measurements. In sparsity reconstruction, inhomogeneities of the conductivity are a priori assumed to be sparse with respect to a certain basis. This prior information is incorporated into a Tikhonov-type functional by including a sparsity-promoting ℓ1-penalty term. The functional is minimized with an iterative soft shrinkage-type algorithm. In this paper, the feasibility of the sparsity reconstruction approach is evaluated by experimental data from water tank measurements. The reconstructions are computed both with sparsity constraints and with a more conventional smoothness regularization approach. The results verify that the adoption of ℓ1-type constraints can enhance the quality of EIT reconstructions: in most of the test cases the reconstructions with sparsity constraints are both qualitatively and quantitatively more feasible than that with the smoothness constraint. © 2011 Elsevier B.V. All rights reserved.

  9. Electrical Impedance Tomography Technology (EITT) Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  10. Lactate threshold by muscle electrical impedance in professional rowers

    Science.gov (United States)

    Jotta, B.; Coutinho, A. B. B.; Pino, A. V.; Souza, M. N.

    2017-04-01

    Lactate threshold (LT) is one of the physiological parameters usually used in rowing sport training prescription because it indicates the transitions from aerobic to anaerobic metabolism. Assessment of LT is classically based on a series of values of blood lactate concentrations obtained during progressive exercise tests and thus has an invasive aspect. The feasibility of noninvasive LT estimative through bioelectrical impedance spectroscopy (BIS) data collected in thigh muscles during rowing ergometer exercise tests was investigated. Nineteen professional rowers, age 19 (mean) ± 4.8 (standard deviation) yr, height 187.3 ± 6.6 cm, body mass 83 ± 7.7 kg, and training experience of 7 ± 4 yr, were evaluated in a rowing ergometer progressive test with paired measures of blood lactate concentration and BIS in thigh muscles. Bioelectrical impedance data were obtained by using a bipolar method of spectroscopy based on the current response to a voltage step. An electrical model was used to interpret BIS data and to derive parameters that were investigated to estimate LT noninvasively. From the serial blood lactate measurements, LT was also determined through Dmax method (LTDmax). The zero crossing of the second derivative of kinetic of the capacitance electrode (Ce), one of the BIS parameters, was used to estimate LT. The agreement between the LT estimates through BIS (LTBIS) and through Dmax method (LTDmax) was evaluated using Bland-Altman plots, leading to a mean difference between the estimates of just 0.07 W and a Pearson correlation coefficient r = 0.85. This result supports the utilization of the proposed method based on BIS parameters for estimating noninvasively the lactate threshold in rowing.

  11. Impedance-Source Networks for Electric Power Conversion Part I

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper...... is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance...

  12. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization

    KAUST Repository

    Jin, Bangti

    2011-08-24

    This paper develops a novel sparse reconstruction algorithm for the electrical impedance tomography problem of determining a conductivity parameter from boundary measurements. The sparsity of the \\'inhomogeneity\\' with respect to a certain basis is a priori assumed. The proposed approach is motivated by a Tikhonov functional incorporating a sparsity-promoting ℓ 1-penalty term, and it allows us to obtain quantitative results when the assumption is valid. A novel iterative algorithm of soft shrinkage type was proposed. Numerical results for several two-dimensional problems with both single and multiple convex and nonconvex inclusions were presented to illustrate the features of the proposed algorithm and were compared with one conventional approach based on smoothness regularization. © 2011 John Wiley & Sons, Ltd.

  13. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  14. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity

    Directory of Open Access Journals (Sweden)

    Alfredo García-Arribas

    2014-04-01

    Full Text Available The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.

  15. Development of the algorithm of measurement data and tomographic section reconstruction results processing for evaluating the respiratory activity of the lungs using the multi-angle electric impedance tomography

    Science.gov (United States)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    Continuous monitoring of the patient's breathing by the method of multi-angle electric impedance tomography allows to obtain images of conduction change in the chest cavity during the monitoring. Direct analysis of images is difficult due to the large amount of information and low resolution images obtained by multi-angle electrical impedance tomography. This work presents a method for obtaining a graph of respiratory activity of the lungs based on the results of continuous lung monitoring using the multi-angle electrical impedance tomography method. The method makes it possible to obtain a graph of the respiratory activity of the left and right lungs separately, as well as a summary graph, to which it is possible to apply methods of processing the results of spirography.

  16. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    International Nuclear Information System (INIS)

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-01-01

    Graphical abstract: DC conductivity variation of CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn 2+ and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn 2+ ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy

  17. Impedance-matched Marx generators

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2017-04-01

    Full Text Available We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs. The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with LC time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22-Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19-Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

  18. Impedance-matched Marx generators

    Science.gov (United States)

    Stygar, W. A.; LeChien, K. R.; Mazarakis, M. G.; Savage, M. E.; Stoltzfus, B. S.; Austin, K. N.; Breden, E. W.; Cuneo, M. E.; Hutsel, B. T.; Lewis, S. A.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Reisman, D. B.; Sceiford, M. E.; Wisher, M. L.

    2017-04-01

    We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with L C time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22 -Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19 -Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

  19. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  20. Identification of irradiated potatoes by impedance

    International Nuclear Information System (INIS)

    Singh, Rita; Singh, Antaryami; Wadhawan, A.K.

    1997-01-01

    The electrical impedance of potatoes irradiated at 60, 90, 150 and 1000 Gy was measured using various frequencies of alternating current. The impedance of the irradiated potatoes was higher than the unirradiated potatoes particularly in the frequency range of 100 Hz to 10 kHz. The ratio of the impedance at 5 kHz to that at 50 Hz (Z5k/Z50) was found to be the best indicator for detection of radiation treatment. (author). 4 refs., 2 figs

  1. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  2. Analysis of electrical and thermal stress effects on PCBM:P3HT solar cells by photocurrent and impedance spectroscopy modeling

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Rizzo, Antonio; Cester, Andrea

    2017-01-01

    We investigated the effects of electrical stress and thermal storage by means of photocurrent, Impedance Spectroscopy and Open Circuit Voltage Decay models. The electrical stress damages only the active layer, by reducing the generation rate, the polaron separation probability and the carrier...... lifetime. The thermal stress also degrades the anode interface. This reflects on the appearance of an inflection in the I-V photocurrent shape close to the operative region....

  3. Electrical impedance spectroscopy as a potential tool for recovering bone porosity

    International Nuclear Information System (INIS)

    Bonifasi-Lista, C; Cherkaev, E

    2009-01-01

    This paper deals with the recovery of porosity of bone from measurements of its effective electrical properties. The microstructural information is contained in the spectral measure in the Stieltjes representation of the bone effective complex permittivity or complex conductivity and can be recovered from the measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed and requires the use of regularization techniques. We apply the method to the effective electrical properties of cancellous bone numerically calculated using micro-CT images of human vertebrae. The presented method is based on an analytical approach and does not rely on correlation analysis nor on any a priori model of the bone micro-architecture. However the method requires a priori knowledge of the properties of the bone constituents (trabecular tissue and bone marrow). These properties vary from patient to patient. To address this issue, a sensitivity analysis of the technique was performed. Normally distributed random noise was added to the data to simulate uncertainty in the properties of the constituents and possible experimental errors in measurements of the effective properties. The values of porosity calculated from effective complex conductivity are in good agreement with the true values of bone porosity even assuming high level errors in the estimation of the bone components. These results prove the future potential of electrical impedance spectroscopy for in vivo monitoring of level and treatment of osteoporosis.

  4. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    Directory of Open Access Journals (Sweden)

    Liu Shuyi

    2016-01-01

    Full Text Available The hardware design of tuber electrical resistance tomography (TERT system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the design of sensitive array sensor subsystem and signals processing circuits. In the paper, the soil impedance test experimental is described and the results are analysed. The data acquisition hardware system is designed based on the result of soil medium impedance test and analysis. In the hardware design, the switch control chip ADG508, the instrumentation amplifier AD620 and programmable amplifier AD526 are employed. In the meantime, the phase locked loop technique for signal demodulation is introduced. The initial data collection is given and discussed under the conditions of existing plant tuber and no existing plant tuber. Conclusions of the hardware design of TERT system are presented.

  5. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  6. Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances

    Science.gov (United States)

    Electrical impedance spectroscopy (EIS), as an effective analytical technique for electrochemical system, has shown a wide application for food quality and safety assessment recently. Individual differences of livestock cause high variation in quality of raw meat and fish and their commercialized pr...

  7. High temperature impedance spectroscopy of barium stannate

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  8. Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available The image reconstruction for electrical impedance tomography (EIT mathematically is a typed nonlinear ill-posed inverse problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the numerical instability and is robust to data noise in the EIT image reconstruction. Moreover, compared with the classical Landweber iteration method, our approach improves the convergence rate. The results are promising.

  9. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  10. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy

    Science.gov (United States)

    Elhatimi, Wafaa; Bouragba, Fatima Zahra; Lahkale, Redouane; Sadik, Rachid; Lebbar, Nacira; Siniti, Mostapha; Sabbar, Elmouloudi

    2018-05-01

    The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.

  11. Circuit modeling of the electrical impedance: part III. Disuse following bone fracture

    International Nuclear Information System (INIS)

    Shiffman, C A

    2013-01-01

    Multifrequency measurements of the electrical impedance of muscle have been extended to the study of disuse following bone fracture, and analyzed using the five-element circuit model used earlier in the study of the effects of disease. Eighteen subjects recovering from simple fractures on upper or lower limbs were examined (ten males, eight females, aged 18–66). Muscles on uninjured contralateral limbs were used as comparison standards, and results are presented in terms of the ratios p(injured)/p(uninjured), where p stands for the circuit parameter r 1 , r 2 , r 3 , 1/c 1 or 1/c 2 . These are strikingly similar to the diseased-to-healthy ratios for patients with neuromuscular disease, reported in part I of this series. In particular, r 1 is virtually unaffected and the ratios for r 2 , r 3 , 1/c 1 and 1/c 2 can be as large as in serious disease. Furthermore, the same pattern of relationships between the parameters is found, suggesting that there is a common underlying mechanism for the impedance changes. Atrophy and fibrosis are examined as candidates for that mechanism, but it is argued that their effects are too small to explain the observed changes. Fundamental considerations aside, the sensitivity, reproducibility and technical simplicity of the technique recommend its use for in-flight assessments of muscles during orbital or interplanetary missions. (paper)

  12. Monitoring of lobectomy in cystic fibrosis with electrical impedance tomography - a new diagnostic tool.

    Science.gov (United States)

    Lehmann, Sylvia; Tenbrock, Klaus; Schrading, Simone; Pikkemaat, Robert; Antink, Christoph Hoog; Santos, Susana; Spillner, Jan Wilhelm; Wagner, Norbert; Leonhardt, Steffen

    2014-12-01

    Electrical impedance tomography (EIT) is a radiation-free technique generating cross-sectional images of the lung. EIT visualizes global and regional ventilation by illustrating the distribution of electrical bioimpedance. With an electrode belt around the patient's thorax, rotating injection-couples of a harmless alternating current allow voltage measurement of the remaining electrodes. This enables the reconstruction of a tomogram with highly dynamic changes within ventilation. We report on a female six-year-old patient with cystic fibrosis and complete destruction of the upper and middle lobe of the right lung. Lobectomy, a rare therapeutic option in patients with cystic fibrosis that needs to be considered in cases of severe localized destruction, was performed. We show a pre- and postoperative documentation of static (radiology) and dynamic investigation tools (spirometry) in correlation with EIT as a new non-invasive and radiation-free diagnostic tool for this patient group.

  13. Practical human abdominal fat imaging utilizing electrical impedance tomography.

    Science.gov (United States)

    Yamaguchi, T; Maki, K; Katashima, M

    2010-07-01

    The fundamental cause of metabolic syndrome is thought to be abdominal obesity. Accurate diagnosis of abdominal obesity can be done by an x-ray computed tomography (CT) scan. But CT is expensive, bulky and entails the risks involved with radiation. To overcome such disadvantages, we attempted to develop a measuring device that could apply electrical impedance tomography to abdominal fat imaging. The device has 32 electrodes that can be attached to a subject's abdomen by a pneumatic mechanism. That way, electrode position data can be acquired simultaneously. An applied alternating current of 1.0 mArms was used at a frequency of 500 kHz. Sensed voltage data were carefully filtered to remove noise and processed to satisfy the reciprocal theorem. The image reconstruction software was developed concurrently, applying standard finite element methods and the Marquardt method to solve the mathematical inverse problem. The results of preliminary experiments showed that abdominal subcutaneous fat and the muscle surrounding the viscera could be imaged in humans. While our imaging of visceral fat was not of sufficient quality, it was suggested that we will be able to develop a safe and practical abdominal fat scanner through future improvements.

  14. Practical human abdominal fat imaging utilizing electrical impedance tomography

    International Nuclear Information System (INIS)

    Yamaguchi, T; Katashima, M; Maki, K

    2010-01-01

    The fundamental cause of metabolic syndrome is thought to be abdominal obesity. Accurate diagnosis of abdominal obesity can be done by an x-ray computed tomography (CT) scan. But CT is expensive, bulky and entails the risks involved with radiation. To overcome such disadvantages, we attempted to develop a measuring device that could apply electrical impedance tomography to abdominal fat imaging. The device has 32 electrodes that can be attached to a subject's abdomen by a pneumatic mechanism. That way, electrode position data can be acquired simultaneously. An applied alternating current of 1.0 mArms was used at a frequency of 500 kHz. Sensed voltage data were carefully filtered to remove noise and processed to satisfy the reciprocal theorem. The image reconstruction software was developed concurrently, applying standard finite element methods and the Marquardt method to solve the mathematical inverse problem. The results of preliminary experiments showed that abdominal subcutaneous fat and the muscle surrounding the viscera could be imaged in humans. While our imaging of visceral fat was not of sufficient quality, it was suggested that we will be able to develop a safe and practical abdominal fat scanner through future improvements

  15. Detection of thoracic vascular structures by electrical impedance tomography: a systematic assessment of prominence peak analysis of impedance changes.

    Science.gov (United States)

    Wodack, K H; Buehler, S; Nishimoto, S A; Graessler, M F; Behem, C R; Waldmann, A D; Mueller, B; Böhm, S H; Kaniusas, E; Thürk, F; Maerz, A; Trepte, C J C; Reuter, D A

    2018-02-28

    Electrical impedance tomography (EIT) is a non-invasive and radiation-free bedside monitoring technology, primarily used to monitor lung function. First experimental data shows that the descending aorta can be detected at different thoracic heights and might allow the assessment of central hemodynamics, i.e. stroke volume and pulse transit time. First, the feasibility of localizing small non-conductive objects within a saline phantom model was evaluated. Second, this result was utilized for the detection of the aorta by EIT in ten anesthetized pigs with comparison to thoracic computer tomography (CT). Two EIT belts were placed at different thoracic positions and a bolus of hypertonic saline (10 ml, 20%) was administered into the ascending aorta while EIT data were recorded. EIT images were reconstructed using the GREIT model, based on the individual's thoracic contours. The resulting EIT images were analyzed pixel by pixel to identify the aortic pixel, in which the bolus caused the highest transient impedance peak in time. In the phantom, small objects could be located at each position with a maximal deviation of 0.71 cm. In vivo, no significant differences between the aorta position measured by EIT and the anatomical aorta location were obtained for both measurement planes if the search was restricted to the dorsal thoracic region of interest (ROIs). It is possible to detect the descending aorta at different thoracic levels by EIT using an intra-aortic bolus of hypertonic saline. No significant differences in the position of the descending aorta on EIT images compared to CT images were obtained for both EIT belts.

  16. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...

  17. Small Signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2014-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterized by the mechanical resonance between the mass of the diaphragm and the compliance of its suspension which vary...... from driver to driver. Therefore, a loudspeaker emulator capable of adjusting its impedance to that of a given driver is desired for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible...... to emulate the loudspeaker impedance with an electric circuit and that its resonance frequency can be changed by tuning two resistors....

  18. Small-signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Knott, Arnold; Iversen, Niels Elkjær

    2014-01-01

    Specifying the performance of audio ampliers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterised by the mechanical resonance between the mass of the diaphragm and the compliance of its' suspension which vary from...... driver to driver. Therefore a loudspeaker emulator capable of adjusting its' impedance to a given driver is in need for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible to emulate...... the loudspeaker impedance with an electric circuit and that its' resonance frequency can be changed by tuning two resistors....

  19. Comportamento da impedância elétrica dos tecidos biológicos durante estimulação elétrica transcutânea Electrical impedance behavior of biological tissues during transcutaneous electrical stimulation

    Directory of Open Access Journals (Sweden)

    VJ Bolfe

    2007-04-01

    Full Text Available OBJETIVO: Analisar a impedância elétrica dos tecidos biológicos durante estimulação elétrica em diferentes segmentos, faces e freqüências da corrente, aumentando-se a distância intereletrodos. MÉTODO: 20 voluntárias, idade média 23 ± 2,25anos e índice de massa corporal 20,65 ± 1,44kg/m², permaneceram em decúbito, sendo um eletrodo posicionado proximalmente às interlinhas articulares do punho e tornozelo, anterior e posteriormente, ou à espinha ilíaca póstero-superior, e outro eletrodo distanciado seqüencialmente em 10, 20, 30 e 40cm. Foram aplicadas duas correntes (100us e 10mA, uma de 100Hz (BF e outra de 2000Hz modulada em 100% da amplitude para 100Hz (MF, com intervalo mínimo de 7 dias. A impedância foi calculada, indiretamente, pela Lei de Ohm, a partir da intensidade aplicada e da tensão elétrica captada em sistema composto por osciloscópio digital (TDS 210, Tektronix® e gerador de corrente constante (Dualpex 961, Quark®. Para análise estatística, aplicou-se Anova-F e Kruskal-Wallis com post hoc (SNK, teste de Friedman e coeficiente de correlação de Spearman, considerando pOBJECTIVE: To analyze the electrical impedance of biological tissues during electrical stimulation in relation to different segments, surfaces and current frequencies, with increasing distance between electrodes. METHOD: 20 female volunteers of mean age 23 ± 2.25 years and mean body mass index 20.65 ± 1.44 kg/m² were positioned in decubitus with one electrode placed proximally to the wrist and ankle joint lines, anteriorly and posteriorly, or on the posterosuperior iliac spine, and the other electrode was placed at distance of 10, 20, 30 and 40 cm, sequentially. Two currents (100 us and 10 mA were applied: one at 100 Hz (LF and the other at 2000 Hz modulated at 100% of the amplitude for 100 Hz (MF, with a minimum interval of seven days. The impedance was calculated indirectly using Ohm's Law, from the applied intensity and the

  20. Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete

    International Nuclear Information System (INIS)

    Hallaji, Milad; Pour-Ghaz, Mohammad; Seppänen, Aku

    2014-01-01

    This paper outlines the development of a large-area sensing skin for damage detection in concrete structures. The developed sensing skin consists of a thin layer of electrically conductive copper paint that is applied to the surface of the concrete. Cracking of the concrete substrate results in the rupture of the sensing skin, decreasing its electrical conductivity locally. The decrease in conductivity is detected with electrical impedance tomography (EIT) imaging. In previous works, electrically based sensing skins have provided only qualitative information on the damage on the substrate surface. In this paper, we study whether quantitative imaging of the damage is possible. We utilize application-specific models and computational methods in the image reconstruction, including a total variation (TV) prior model for the damage and an approximate correction of the modeling errors caused by the inhomogeneity of the painted sensing skin. The developed damage detection method is tested experimentally by applying the sensing skin to polymeric substrates and a reinforced concrete beam under four-point bending. In all test cases, the EIT-based sensing skin provides quantitative information on cracks and/or other damages on the substrate surface: featuring a very low conductivity in the damage locations, and a reliable indication of the lengths and shapes of the cracks. The results strongly support the applicability of the painted EIT-based sensing skin for damage detection in reinforced concrete elements and other substrates. (paper)

  1. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  2. Evaluation of impedance on biological Tissues using automatic control measurement system

    International Nuclear Information System (INIS)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  3. Transcranial extracellular impedance control (tEIC modulates behavioral performances.

    Directory of Open Access Journals (Sweden)

    Ayumu Matani

    Full Text Available Electric brain stimulations such as transcranial direct current stimulation (tDCS, transcranial random noise stimulation (tRNS, and transcranial alternating current stimulation (tACS electrophysiologically modulate brain activity and as a result sometimes modulate behavioral performances. These stimulations can be viewed from an engineering standpoint as involving an artificial electric source (DC, noise, or AC attached to an impedance branch of a distributed parameter circuit. The distributed parameter circuit is an approximation of the brain and includes electric sources (neurons and impedances (volume conductors. Such a brain model is linear, as is often the case with the electroencephalogram (EEG forward model. Thus, the above-mentioned current stimulations change the current distribution in the brain depending on the locations of the electric sources in the brain. Now, if the attached artificial electric source were to be replaced with a resistor, or even a negative resistor, the resistor would also change the current distribution in the brain. In light of the superposition theorem, which holds for any linear electric circuit, attaching an electric source is different from attaching a resistor; the resistor affects each active electric source in the brain so as to increase (or decrease in some cases of a negative resistor the current flowing out from each source. From an electrophysiological standpoint, the attached resistor can only control the extracellular impedance and never causes forced stimulation; we call this technique transcranial extracellular impedance control (tEIC. We conducted a behavioral experiment to evaluate tEIC and found evidence that it had real-time enhancement and depression effects on EEGs and a real-time facilitation effect on reaction times. Thus, tEIC could be another technique to modulate behavioral performance.

  4. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.

    Science.gov (United States)

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-12-21

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output.

  5. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    Directory of Open Access Journals (Sweden)

    Joho Yun

    2016-12-01

    Full Text Available A micro electrical impedance spectroscopy (EIS-on-a-needle for depth profiling (μEoN-DP with a selective passivation layer (SPL on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL, were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output.

  6. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    OpenAIRE

    Liu Shuyi; Deng Xiang; Jiang Zili; Tang Yu

    2016-01-01

    The hardware design of tuber electrical resistance tomography (TERT) system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the desi...

  7. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    Science.gov (United States)

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  8. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

    Science.gov (United States)

    Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun

    2002-06-01

    Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

  9. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants

    NARCIS (Netherlands)

    van der Burg, Pauline S.; Miedema, Martijn; de Jongh, Franciscus H.C.; Frerichs, Inez; van Kaam, Anton H.

    2014-01-01

    Objective: Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and

  10. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants

    NARCIS (Netherlands)

    van der Burg, Pauline S.; Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Kaam, Anton H.

    2014-01-01

    Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung

  11. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Chenglong Yu

    2014-01-01

    Full Text Available As an advanced process detection technology, electrical impedance tomography (EIT has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.

  12. Microfluidic device for cell capture and impedance measurement.

    Science.gov (United States)

    Jang, Ling-Sheng; Wang, Min-How

    2007-10-01

    This work presents a microfluidic device to capture physically single cells within microstructures inside a channel and to measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) using impedance spectroscopy. The device includes a glass substrate with electrodes and a PDMS channel with micro pillars. The commercial software CFD-ACE+ is used to study the flow of the microstructures in the channel. According to simulation results, the probability of cell capture by three micro pillars is about 10%. An equivalent circuit model of the device is established and fits closely to the experimental results. The circuit can be modeled electrically as cell impedance in parallel with dielectric capacitance and in series with a pair of electrode resistors. The system is operated at low frequency between 1 and 100 kHz. In this study, experiments show that the HeLa cell is successfully captured by the micro pillars and its impedance is measured by impedance spectroscopy. The magnitude of the HeLa cell impedance declines at all operation voltages with frequency because the HeLa cell is capacitive. Additionally, increasing the operation voltage reduces the magnitude of the HeLa cell because a strong electric field may promote the exchange of ions between the cytoplasm and the isotonic solution. Below an operating voltage of 0.9 V, the system impedance response is characteristic of a parallel circuit at under 30 kHz and of a series circuit at between 30 and 100 kHz. The phase of the HeLa cell impedance is characteristic of a series circuit when the operation voltage exceeds 0.8 V because the cell impedance becomes significant.

  13. Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury.

    Science.gov (United States)

    Lehmann, Sylvia; Leonhardt, Steffen; Ngo, Chuong; Bergmann, Lukas; Schrading, Simone; Heimann, Konrad; Wagner, Norbert; Tenbrock, Klaus

    2018-01-01

    Electrical Impedance Tomography (EIT) is a tomographic, radiation-free technique based on the injection of a harmless alternating current. As electrical impedance strictly correlates with the variation of air content, EIT delivers highly dynamic information about global and regional ventilation. We want to demonstrate the potential of EIT individualizing ventilation by positioning. Gravity-dependent EIT findings were analyzed retrospectively in a critically ill mechanically ventilated pediatric patient with cystic fibrosis and coincident lung diseases. To further evaluate gravity-dependent changes in ventilation, six adult healthy and spontaneously breathing volunteers were investigated during simultaneous detection of EIT, breathing patterns, tidal volume (VT) and breathing frequency (BF). EIT findings in healthy lungs in five positions showed gravity-dependent effects of ventilation with overall ventilation of predominantly the right lung (except during left-side positioning) and with the ventral lung in supine, prone and upright position. These EIT-derived observations are in line with pathophysiological mechanisms and earlier EIT studies. Unexpectedly, the patient with cystic fibrosis and lobectomy of the right upper and middle lobe one year earlier, showed improvement of global and regional ventilation in the right position despite reduced lung volume and overinflation of this side. This resulted in individualized positioning and improvement of ventilation. Although therapeutic recommendations are available for gravitational influences of lung ventilation, they can be contradictory depending on the underlying lung disease. EIT has the potential to guide therapists in the positioning of patients according to their individual condition and disease, especially in case of multiple lung injury. © 2016 John Wiley & Sons Ltd.

  14. Suitability of a PXI platform for an electrical impedance tomography system

    International Nuclear Information System (INIS)

    Kourunen, J; Savolainen, T; Lehikoinen, A; Vauhkonen, M; Heikkinen, L M

    2009-01-01

    There are many different electrical impedance tomography (EIT) systems which are either non-commercial (in-house products) or commercial products. However, these systems are usually designed for specific applications and therefore the functionality of the systems might be limited. Nowadays there are commercially available many low-cost, efficient and accurate multifunctional components for data acquisition and signal processing. Therefore, it should be possible to construct an EIT system which is mainly built from commercially available components. The main goal of this work was to study the performance of a PXI-based EIT system . In this work, a PXI-based EIT system with 16 independent current injection channels and 80 independent measurement channels was constructed and tested. The results indicate that an EIT system can be constructed using a PXI platform which decreases the construction time of the system. Moreover, the system is efficient, accurate, modular, and it is not limited to any predetermined measurement protocols

  15. Video rate electrical impedance tomography of vascular changes: preclinical development

    International Nuclear Information System (INIS)

    Halter, Ryan; Hartov, Alex; Paulsen, Keith

    2008-01-01

    Peripheral vasculature disease is strongly correlated with cardiovascular-associated mortality. Monitoring circulation health, especially in the peripheral limbs, is vital to detecting clinically significant disease at a stage when it can still be addressed through medical intervention. Electrical impedance tomography (EIT) maps the electrical properties of tissues within the body and has been used to image dynamically varying physiology, including blood flow. Here, we suggest that peripheral vasculature health can be monitored with EIT by imaging the hemodynamics of peripheral vessels and the surrounding tissues during reactive hyperemia testing. An analysis based on distinguishability theory is presented that indicates that an EIT system capable of making measurements with a precision of 50 µV may be able to detect small changes in vessel size associated with variations in blood flow. An EIT system with these precision capabilities is presented that is able to collect data at frame rates exceeding 30 fps over a broad frequency range up to 10 MHz. The system's high speed imaging performance is verified through high contrast phantom experiments and through physiological imaging of induced ischemia with a human forearm. Region of interest analysis of the induced ischemia images shows a marked decrease in conductivity over time, changing at a rate of approximately −3 × 10 −7 S m −1 s −1 , which is the same order of magnitude as reported in the literature. The distinguishability analysis suggests that a system such as the one developed here may provide a means to characterize the hemodynamics associated with blood flow through the peripheral vasculature

  16. [Research on respiration course of human at different postures by electrical impedance tomography].

    Science.gov (United States)

    Chen, Xiaoyan; Wu, Jun; Wang, Huaxiang; Li, Da

    2010-10-01

    In this paper, the respiration courses of human at different postures are reconstructed by electrical impedance tomography (EIT). Conjugate gradient least squares (CGLS) algorithm is applied to reconstruct the resistivity distribution during respiration courses, and the EIT images taken from human at flat lying, left lying, right lying, sitting and prone postures are reconstructed and compared. The relative changes of the resistivity in region of interest (ROI) are analyzed to evidence the influences caused by different postures. Results show that the changes in postures are the most influential factors for the reconstructions, and the EIT images vary with the postures. In human at flat-lying posture, the left and right lungs have larger pulmonary ventilation volume simultaneously, and the EIT-measured data are of lower variability.

  17. Dielectric and impedance spectroscopic studies of neodymium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  18. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: Consensus statement of the TRanslational EIT developmeNt stuDy group

    NARCIS (Netherlands)

    Frerichs, I. (Inéz); M.B.P. Amato (Marcelo); A.H. van Kaam (Anton); Tingay, D.G. (David G.); Zhao, Z. (Zhanqi); Grychtol, B. (Bartlomiej); Bodenstein, M. (Marc); Gagnon, H. (Hervé); S.H. Bohm; Teschner, E. (Eckhard); O. Stenqvist (Ola); Mauri, T. (Tommaso); Torsani, V. (Vinicius); Camporota, L. (Luigi); Schibler, A. (Andreas); Wolf, G.K. (Gerhard K.); D.A.M.P.J. Gommers (Diederik); S. Leonhardt (Steffen); Adler, A. (Andy); Fan, E. (Eddy); Lionheart, W.R.B. (William R.B.); Riedel, T. (Thomas); Rimensberger, P.C. (Peter C.); Suarez, F. (Fernando); Weiler, S.N. (Sipmann Norbert); H. Wrigge (Hermann)

    2017-01-01

    textabstractElectrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function

  19. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: Consensus statement of the TRanslational EIT developmeNt stuDy group

    NARCIS (Netherlands)

    Frerichs, I. (Inéz); M.B.P. Amato (Marcelo); A.H. van Kaam (Anton); Tingay, D.G. (David G.); Zhao, Z. (Zhanqi); Grychtol, B. (Bartlomiej); Bodenstein, M. (Marc); Gagnon, H. (Hervé); S.H. Bohm; Teschner, E. (Eckhard); O. Stenqvist (Ola); Mauri, T. (Tommaso); Torsani, V. (Vinicius); Camporota, L. (Luigi); Schibler, A. (Andreas); Wolf, G.K. (Gerhard K.); D.A.M.P.J. Gommers (Diederik); S. Leonhardt (Steffen); Adler, A. (Andy); Fan, E. (Eddy); Lionheart, W.R.B. (William R.B.); Riedel, T. (Thomas); Rimensberger, P.C. (Peter C.); Sipmann, F.S. (Fernando Suarez); Weiler, N. (Norbert); H. Wrigge (Hermann)

    2016-01-01

    textabstractElectrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function

  20. Dynamic imaging in electrical impedance tomography of the human chest with online transition matrix identification.

    Science.gov (United States)

    Moura, Fernando Silva; Aya, Julio Cesar Ceballos; Fleury, Agenor Toledo; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez

    2010-02-01

    One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.

  1. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging

    International Nuclear Information System (INIS)

    Oh, Tong In; Koo, Hwan; Lee, Kyung Heon; Kim, Sang Min; Woo, Eung Je; Lee, Jeehyun; Kim, Sung Wan; Seo, Jin Keun

    2008-01-01

    Validation and interpretation of reconstructed images using a multi-frequency electrical impedance tomography (mfEIT) requires a conductivity phantom including imaging objects with known complex conductivity (σ + iωε) spectra. We describe imaging experiments using the recently developed mfEIT system called the KHU Mark1 with the frequency range of 10 Hz to 500 kHz. Using a bio-impedance spectroscopy (BIS) system, we first measured complex conductivity spectra of different imaging objects including saline, agar, polyacrylamide, TX151, animal hide gelatin, banana and cucumber. Based on an analysis of how conductivity and permittivity affect measured complex boundary voltages, we suggested a new complex version of a multi-frequency time-difference image reconstruction algorithm. Imaging experiments were conducted to produce time-difference images of the objects at multiple frequencies using the proposed algorithm. Images of a conductor (stainless steel) and an insulator (acrylic plastic) were used to set a common scale bar to display all images. Comparing reconstructed time-difference images at multiple frequencies with measured complex conductivity spectra, we found that they showed an overall similarity in terms of changes in complex conductivity values with respect to frequency. However, primarily due to the limitation of the difference imaging algorithm, we suggest that multi-frequency time-difference images must be interpreted in terms of relative contrast changes with respect to frequency. We propose further imaging studies using biological tissues of known complex conductivity spectra and using human subjects to find clinical applications of the mfEIT system

  2. Optical breast shape capture and finite-element mesh generation for electrical impedance tomography

    International Nuclear Information System (INIS)

    Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D

    2011-01-01

    X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis

  3. SU-E-I-52: Validation of Multi-Frequency Electrical Impedance Tomography Using Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, K; Liu, F; Krishnan, K [BC Cancer Agency, Surrey, BC (United Kingdom)

    2014-06-01

    Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experiment was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues.

  4. SU-E-I-52: Validation of Multi-Frequency Electrical Impedance Tomography Using Computed Tomography

    International Nuclear Information System (INIS)

    Kohli, K; Liu, F; Krishnan, K

    2014-01-01

    Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experiment was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues

  5. Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance

    NARCIS (Netherlands)

    Raaijmakers, E.; Faes, T. J.; Meijer, J. M.; Kunst, P. W.; Bakker, J.; Goovaerts, H. G.; Heethaar, R. M.

    1998-01-01

    The study investigates the effects of non-cardiogenic oedema, especially the accumulation of protein in extracellular fluid, on thoracic impedance and proposes a new method of oedema measurement based on an impedance ratio from a dual-frequency measurement. In vitro measurements in a cell containing

  6. Textrode-enabled transthoracic electrical bioimpedance measurements - towards wearable applications of impedance cardiography

    Directory of Open Access Journals (Sweden)

    Juan Carlos Márquez Ruiz

    2013-10-01

    Full Text Available During the last decades the use of Electrical Bioimpedance (EBI in the medical field has been subject of extensive research, especially since it is an affordable, harmless and non-invasive technology. In some specific applications such as body composition assessment where EBI has proven a good degree of effectiveness and reliability, the use of textile electrodes and measurement garments have shown a good performance and reproducible results. Impedance Cardiography (ICG is another modality of EBI that can benefit from the implementation and use of wearable sensors. ICG technique is based on continuous impedance measurements of a longitudinal segment across the thorax taken at a single frequency. The need for specific electrode placement on the thorax and neck can be easily ensured with the use of a garment with embedded textile electrodes, textrodes. The first step towards the implementation of ICG technology into a garment is to find out if ICG measurements with textile sensors give a good enough quality of the signal to allow the estimation of the fundamental ICG parameters. In this work, the measurement performance of a 2-belt set with incorporated textrodes for thorax and neck was compared against ICG measurements obtained with Ag/AgCl electrodes. The analysis was based on the quality of the fundamental ICG signals (∆Z, dZ/dt and ECG, systolic time intervals and other ICG parameters. The obtained results indicate the feasibility of using textrodes for ICG measurements with consistent measurements and relatively low data dispersion. Thus, enabling the development of measuring garments for ICG measurements.

  7. A partially reflecting random walk on spheres algorithm for electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maire, Sylvain, E-mail: maire@univ-tln.fr [Laboratoire LSIS Equipe Signal et Image, Université du Sud Toulon-Var, Av. Georges Pompidou, BP 56, 83162 La Valette du Var Cedex (France); Simon, Martin, E-mail: simon@math.uni-mainz.de [Institute of Mathematics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2015-12-15

    In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance of the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.

  8. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  9. Wearable sensors for patient-specific boundary shape estimation to improve the forward model for electrical impedance tomography (EIT) of neonatal lung function.

    Science.gov (United States)

    Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard

    2014-06-01

    Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.

  10. Patient examinations using electrical impedance tomography—sources of interference in the intensive care unit

    International Nuclear Information System (INIS)

    Frerichs, Inéz; Pulletz, Sven; Elke, Gunnar; Gawelczyk, Barbara; Frerichs, Alexander; Weiler, Norbert

    2011-01-01

    Electrical impedance tomography (EIT) is expected to become a valuable tool for monitoring mechanically ventilated patients due to its ability to continuously assess regional lung ventilation and aeration. Several sources of interference with EIT examinations exist in intensive care units (ICU). Our objectives are to demonstrate how some medical nursing and monitoring devices interfere with EIT measurements and modify the EIT scans and waveforms, which approaches can be applied to minimize these effects and how possible misinterpretation can be avoided. We present four cases of EIT examinations of adult ICU patients. Two of the patients were subjected to pulsation therapy using a pulsating air suspension mattress while being ventilated by high-frequency oscillatory or conventional pressure-controlled ventilation, respectively. The EIT signal modulation synchronous with the occurrence of the pulsating wave was 2.3 times larger than the periodic modulation synchronous with heart rate and high-frequency oscillations. During conventional ventilation, the pulsating mattress induced an EIT signal fluctuation with a magnitude corresponding to about 20% of the patient's tidal volume. In the third patient, interference with EIT examination was caused by continuous cardiac output monitoring. The last patient's examination was disturbed by impedance pneumography when excitation currents of similar frequency to EIT were used. In all subjects, the generation of functional EIT scans was compromised and interpretation of regional ventilation impossible. Discontinuation of pulsation therapy and of continuous cardiac output and impedance respiration monitoring immediately improved the EIT signal and scan quality. Offline processing of the disturbed data using frequency filtering enabled partial retrieval of relevant information. We conclude that thoracic EIT examinations in the ICU require cautious interpretation because of possible mechanical and electromagnetic

  11. Loudspeaker impedance emulator for multi resonant systems

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2015-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterised by its electrical, mechanical and acoustical properties. Therefore a loudspeaker emulator capable of adjusting...... its impedance to that of a given loudspeaker is desired for measurement purposes. An adjustable RLC based emulator is implemented with switch controlled capacitors, air gap controlled inductors and potentiometers. Calculations and experimental results are compared and show that it is possible...... to emulate the loudspeaker impedance infinite baffle-, closed box- and the multi resonant vented box-loudspeaker by tuning the component values in the proposed circuit. Future work is outlined and encourage that the proposed impedance emulator is used as part of a control circuit in a switch-mode based...

  12. Determination of the distribution of air and water in porous media by electrical impedance tomography and magneto-electrical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haegel, Franz-Hubert, E-mail: f.h.haegel@fz-juelich.de [Forschungszentrum Juelich GmbH, Institut fuer Chemie und Dynamik der Geosphaere, ICG-4 Agrosphaere, 52425 Juelich (Germany); Zimmermann, Egon [Forschungszentrum Juelich GmbH, Zentralinstitut fuer Elektronik, 52425 Juelich (Germany); Esser, Odilia; Breede, Katrin; Huisman, Johan Alexander [Forschungszentrum Juelich GmbH, Institut fuer Chemie und Dynamik der Geosphaere, ICG-4 Agrosphaere, 52425 Juelich (Germany); Glaas, Walter; Berwix, Joachim [Forschungszentrum Juelich GmbH, Zentralinstitut fuer Elektronik, 52425 Juelich (Germany); Vereecken, Harry [Forschungszentrum Juelich GmbH, Institut fuer Chemie und Dynamik der Geosphaere, ICG-4 Agrosphaere, 52425 Juelich (Germany)

    2011-06-15

    Monitoring the distribution of water content is essential for understanding hydrological processes in the lithosphere and the pedosphere. The movement of water in unsaturated rock formations and in the vadose zone is influenced by different processes (mainly infiltration, evaporation, percolation and capillary flow) which may be rate determining depending on the actual conditions. The interdependence of these processes also strongly influences the transport and distribution of solutes in the pore space. In order to gain a better understanding of the movement and distribution of water in unsaturated media, systematic investigations with non-invasive or minimal invasive methods appear to be most suitable. Studies on the distribution of electrical conductivity can improve risk analysis concerning waste disposals in general and nuclear waste repositories in particular. Induced polarization and magnetic flux density determined with two highly sensitive accessories yield additional information and may allow for better discrimination of coupled flow processes. Electrical impedance tomography (EIT) with 20 current injection and 48 voltage electrodes was used here to monitor the evaporation of tap water from a container filled with sand under laboratory conditions at 20 deg. C. The results are compared with data obtained by determining spectral induced polarization (SIP) of sand during desaturation in a multi-step outflow equipment. Infiltration processes and evaporation from sand saturated with 0.01 M CaCl{sub 2} were determined by magneto-electrical resistivity imaging technique (MERIT). The results were obtained from a long-term experiment under controlled conditions.

  13. Organic electrochemical transistors for cell-based impedance sensing

    International Nuclear Information System (INIS)

    Rivnay, Jonathan; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M.; Leleux, Pierre

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal

  14. A Novel Method for Monitoring Data Quality in Electrical Impedance Tomography

    International Nuclear Information System (INIS)

    Adler, Andy; Mamatjan, Yasin; Grychtol, Bartłomiej; Gaggero, Pascal; Justiz, Jörn; Koch, Volker

    2013-01-01

    Electrical impedance tomography (EIT) has the promise to help improve care for patients undergoing ventilation therapy by providing real-time bed-side information on the distribution of ventilation in their lungs. To realise this potential, it is important for an EIT system to provide a reliable and meaningful signal at all times, or alert clinicians when this is not possible. Because the reconstructed images in EIT are sensitive to system instabilities (including electrode connection problems) and artifacts caused by e.g. movement or sweat, there is a need for EIT systems to continuously monitor, recognize and, if possible, correct for such errors. Motivated by this requirement, our paper describes a novel approach to quantitatively measure EIT data quality suitable for online and offline applications. We used a publicly available data set of ventilation data from two pediatric patients with lung disease to evaluate the data quality on clinical data. Results suggest that the developed data quality could be a useful tool for real-time assessment of the quality of EIT data and, hence, to indicate the reliability of any derived physiological information.

  15. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    Science.gov (United States)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  16. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells

    Science.gov (United States)

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  17. Regional distribution of ventilation in patients with obstructive sleep apnea: the role of thoracic electrical impedance tomography (EIT) monitoring.

    Science.gov (United States)

    Bongiovanni, Filippo; Mura, Benedetta; Tagliaferri, Chiara; Bisanti, Alessandra; Testani, Elisa; Maviglia, Riccardo; Della Marca, Giacomo

    2016-12-01

    The aim of our study was to apply the electrical impedance tomography (EIT) technique to the study of ventilation during wake and NREM and REM sleep in patients with obstructive sleep apneas (OSA). This is a prospective, observational, monocentric, pilot study in a neurology department with a sleep disorder center. Inclusion criteria were age ≥18 years, both gender, and diagnosis of OSA. Exclusion criteria were the contraindications to the thoracic EIT. All patients underwent laboratory-based polysomnography (PSG) alongside thoracic EIT. Primary endpoint was to compare the global impedance (GI) among the conditions: "Wake" vs "Sleep," "NREM" vs "REM," and "OSA" vs "Non-OSA." Secondary endpoint was to measure the regional distribution of impedance in the four regions of interest (ROIs), in each condition. Of the 17 consecutive patients enrolled, two were excluded because of poor-quality EIT tracings. Fifteen were analyzed, 10 men and 5 women, mean age 51.6 ± 14.4 years. GI was higher in Wake vs Sleep (Wake 13.24 ± 11.23; Sleep 12.56 ± 13.36; p EIT can prove a valuable additional strategy for the evaluation of OSA patients.

  18. Online transition matrix identification of the state evolution model for the extended Kalman filter in electrical impedance tomography

    International Nuclear Information System (INIS)

    Moura, Fernando S; Aya, Julio C C; Lima, Raul G; Fleury, Agenor T

    2008-01-01

    One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on contour electrical potential measurements caused by an imposed electrical current distribution into the boundary. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, it is observed poor tracking ability of the Extended Kalman Filter (EKF). An analytically developed evolution model is not feasible at this moment. The present work investigates the possibility of identifying the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model is identified using the history of resistivity distribution obtained by a sensitivity matrix based algorithm. To numerically identify the linear evolution model, it is used the Ibrahim Time Domain Method, normally used to identify the transition matrix on structural dynamics. The investigation was performed by numerical simulations of a time varying domain with the addition of noise. Numerical dificulties to compute the transition matrix were solved using a Tikhonov regularization. The EKF numerical simulations suggest that the tracking ability is significantly improved.

  19. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography

    International Nuclear Information System (INIS)

    Lee, Byung Il; Oh, Suk Hoon; Kim, Tae-Seong; Woo, Eung Je; Lee, Soo Yeol; Kwon, Ohin; Seo, Jin Keun

    2006-01-01

    We present a new medical imaging technique for breast imaging, breast MREIT, in which magnetic resonance electrical impedance tomography (MREIT) is utilized to get high-resolution conductivity and current density images of the breast. In this work, we introduce the basic imaging setup of the breast MREIT technique with an investigation of four different imaging configurations of current-injection electrode positions and pathways through computer simulation studies. Utilizing the preliminary findings of a best breast MREIT configuration, additional numerical simulation studies have been carried out to validate breast MREIT at different levels of SNR. Finally, we have performed an experimental validation with a breast phantom on a 3.0 T MREIT system. The presented results strongly suggest that breast MREIT with careful imaging setups could be a potential imaging technique for human breast which may lead to early detection of breast cancer via improved differentiation of cancerous tissues in high-resolution conductivity images

  20. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems

    Science.gov (United States)

    Weigand, Maximilian; Kemna, Andreas

    2017-02-01

    A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi

  1. Impedance adaptation methods of the piezoelectric energy harvesting

    Science.gov (United States)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  2. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    Directory of Open Access Journals (Sweden)

    Yangkyu Park

    2016-01-01

    Full Text Available Purpose. To distinguish between normal (SV-HUC-1 and cancerous (TCCSUP human urothelial cell lines using microelectrical impedance spectroscopy (μEIS. Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p<0.001, was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p<0.001. Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF.

  3. Real-time management of faulty electrodes in electrical impedance tomography.

    Science.gov (United States)

    Hartinger, Alzbeta E; Guardo, Robert; Adler, Andy; Gagnon, Hervé

    2009-02-01

    Completely or partially disconnected electrodes are a fairly common occurrence in many electrical impedance tomography (EIT) clinical applications. Several factors can contribute to electrode disconnection: patient movement, perspiration, manipulations by clinical staff, and defective electrode leads or electronics. By corrupting several measurements, faulty electrodes introduce significant image artifacts. In order to properly manage faulty electrodes, it is necessary to: 1) account for invalid data in image reconstruction algorithms and 2) automatically detect faulty electrodes. This paper presents a two-part approach for real-time management of faulty electrodes based on the principle of voltage-current reciprocity. The first part allows accounting for faulty electrodes in EIT image reconstruction without a priori knowledge of which electrodes are at fault. The method properly weights each measurement according to its compliance with the principle of voltage-current reciprocity. Results show that the algorithm is able to automatically determine the valid portion of the data and use it to calculate high-quality images. The second part of the approach allows automatic real-time detection of at least one faulty electrode with 100% sensitivity and two faulty electrodes with 80% sensitivity enabling the clinical staff to fix the problem as soon as possible to minimize data loss.

  4. Radial-pulse propagation and impedance characteristics of optically shuttered channel intensifier tubes

    International Nuclear Information System (INIS)

    Detch, J.L. Jr.; Noel, B.W.

    1981-01-01

    Electrically gated proximity-focused channel intensifier tubes are often used as optical shutters. Optimum nanosecond shuttering requires both understanding the electrical pulse propagation across the device structure and proper impedance matching. A distributed-transmission-line model is developed that describes analytically the voltage- and current-wave propagation characteristics as functions of time for any point on the surface. The optical gain's spatial uniformity and shutter-open times are shown to depend on the electrical pulse width and amplitude, and on the applied bias. The driving-point impedance is derived from the model and is expressed as a function of an infinite sum of terms in the complex frequency. The synthesis in terms of lumped-constant network elements is realized in first- and second-Foster equivalent circuits. Experimental impedance data are compared with the model's predictions and deviations from the ideal model are discussed

  5. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  6. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    Science.gov (United States)

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  7. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography

    International Nuclear Information System (INIS)

    Bläser, D; Becher, T; Schädler, D; Elke, G; Weiler, N; Frerichs, I; Pulletz, S

    2014-01-01

    Several studies have shown the ability of electrical impedance tomography (EIT) to assess regional ventilation distribution in human lungs. Fluid accumulation in the pleural space as in empyema, typically occurring on one chest side, may influence the distribution of ventilation and the corresponding EIT findings. The aim of our study was to examine this effect on the assessment of regional ventilation by EIT. Six patients suffering from unilateral empyema and intubated with a double-lumen endotracheal tube were studied. EIT data were acquired during volume-controlled ventilation with bilateral (tidal volume (V T ): 800 ml) and unilateral ventilation (V T : 400 ml) of the right and left lungs. Mean tidal amplitudes of the EIT signal were calculated in all image pixels. The sums of these values, expressed as relative impedance change (rel. ΔZ), were then determined in whole images and functionally defined regions-of-interest (ROI). The sums of rel. ΔZ calculated during the two cases of one-lung ventilation either on the affected or unaffected side were significantly smaller than during bilateral ventilation. However, in contrast to previous findings in patients with no pleural pathology, very low values of rel. ΔZ were found when the lung on the affected side was ventilated. ROI-based analysis rendered higher values than the whole-image analysis in this case, nonetheless, the values were significantly smaller than when the unaffected side was ventilated in spite of identical V T . In conclusion, our results indicate that the presence of empyema may affect the quantitative evaluation of regional lung ventilation by EIT. (paper)

  8. A dielectrophoresis-impedance method for protein detection and analysis

    Directory of Open Access Journals (Sweden)

    Ahmad Sabry Mohamad

    2017-01-01

    Full Text Available Dielectrophoresis (DEP has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA. By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.

  9. A dielectrophoresis-impedance method for protein detection and analysis

    Science.gov (United States)

    Mohamad, Ahmad Sabry; Hamzah, Roszymah; Hoettges, Kai F.; Hughes, Michael Pycraft

    2017-01-01

    Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.

  10. Single-Lung Transplant Results in Position Dependent Changes in Regional Ventilation: An Observational Case Series Using Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Kollengode Ramanathan

    2016-01-01

    Full Text Available Background. Lung transplantation is the optimal treatment for end stage lung disease. Donor shortage necessitates single-lung transplants (SLT, yet minimal data exists regarding regional ventilation in diseased versus transplanted lung measured by Electrical Impedance Tomography (EIT. Method. We aimed to determine regional ventilation in six SLT outpatients using EIT. We assessed end expiratory volume and tidal volumes. End expiratory lung impedance (EELI and Global Tidal Variation of Impedance were assessed in supine, right lateral, left lateral, sitting, and standing positions in transplanted and diseased lungs. A mixed model with random intercept per subject was used for statistical analysis. Results. EELI was significantly altered between diseased and transplanted lungs whilst lying on right and left side. One patient demonstrated pendelluft between lungs and was therefore excluded for further comparison of tidal variation. Tidal variation was significantly higher in the transplanted lung for the remaining five patients in all positions, except when lying on the right side. Conclusion. Ventilation to transplanted lung is better than diseased lung, especially in lateral positions. Positioning in patients with active unilateral lung pathologies will be implicated. This is the first study demonstrating changes in regional ventilation, associated with changes of position between transplanted and diseased lung.

  11. Study of Body Composition by Impedance Analysis

    Science.gov (United States)

    González-Solís, J. L.; Vargas-Luna, M.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Sanchis-Sabater, A.

    2002-08-01

    This work presents a set of impedance measurements and preliminary results on the analysis of body composition using impedance spectroscopy. This study is made using a pork meat sample and spectra from fat and flesh region were independently obtained using the same electrodes array. From these measurements, and theoretical considerations, it is possible to explain the behavior of the composite sample flesh-fat-flesh and, fitting the electrical parameters of the model, it shows the plausibility of a physical and quantitative application to human corporal composition.

  12. Energy storage cell impedance measuring apparatus, methods and related systems

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  13. Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction

    Science.gov (United States)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2017-07-01

    The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg-Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited.

  14. Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction

    International Nuclear Information System (INIS)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2017-01-01

    The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg–Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited. (paper)

  15. Improving image quality in Electrical Impedance Tomography (EIT using Projection Error Propagation-based Regularization (PEPR technique: A simulation study

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-03-01

    Full Text Available A Projection Error Propagation-based Regularization (PEPR method is proposed and the reconstructed image quality is improved in Electrical Impedance Tomography (EIT. A projection error is produced due to the misfit of the calculated and measured data in the reconstruction process. The variation of the projection error is integrated with response matrix in each iterations and the reconstruction is carried out in EIDORS. The PEPR method is studied with the simulated boundary data for different inhomogeneity geometries. Simulated results demonstrate that the PEPR technique improves image reconstruction precision in EIDORS and hence it can be successfully implemented to increase the reconstruction accuracy in EIT.>doi:10.5617/jeb.158 J Electr Bioimp, vol. 2, pp. 2-12, 2011

  16. An electrochemical impedance model for integrated bacterial biofilms

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Freeman, Amihay; Sternheim, Marek; Shacham-Diamand, Yosi

    2011-01-01

    Bacterial cells attachment onto solid surfaces and the following growth into mature microbial biofilms may result in highly antibiotic resistant biofilms. Such biofilms may be incidentally formed on tissues or implanted devices, or intentionally formed by directed deposition of microbial sensors on whole-cell bio-chip surface. A new method for electrical characterization of the later on-chip microbial biofilm buildup is presented in this paper. Measurement of impedance vs. frequency in the range of 100 mHz to 400 kHz of Escherichia coli cells attachment to indium-tin-oxide-coated electrodes was carried out while using optical microscopy estimating the electrode area coverage. We show that impedance spectroscopy measurements can be interpreted by a simple electrical equivalent model characterizing both attachment and growth of the biofilm. The correlation of extracted equivalent electrical lumped components with the visual biofilm parameters and their dependence on the attachment and growth phases is confirmed.

  17. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  18. Impedance Scaling and Impedance Control

    International Nuclear Information System (INIS)

    Chou, W.; Griffin, J.

    1997-06-01

    When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ''normal'' way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane

  19. Detection of irradiated potatoes by impedance measurement

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Otobe, K.; Sugiyama, J.

    1996-01-01

    Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)

  20. Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

    International Nuclear Information System (INIS)

    Hyvönen, N; Majander, H; Staboulis, S

    2017-01-01

    Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that render reconstructing the internal conductivity impossible if they are not taken into account. This work numerically demonstrates that one can compensate for inaccurate modeling of the object boundary in two spatial dimensions by finding compatible locations and sizes for the electrodes as a part of a reconstruction algorithm. The numerical studies, which are based on both simulated and experimental data, are complemented by proving that the employed complete electrode model is approximately conformally invariant, which suggests that the obtained reconstructions in mismodeled domains reflect conformal images of the true targets. The numerical experiments also confirm that a similar approach does not, in general, lead to a functional algorithm in three dimensions. (paper)

  1. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  2. Biomedical engineering meets acupuncture - development of a miniaturized 48-channel skin impedance measurement system for needle and laser acupuncture

    Science.gov (United States)

    2010-01-01

    Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296

  3. Biomedical engineering meets acupuncture - development of a miniaturized 48-channel skin impedance measurement system for needle and laser acupuncture

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2010-11-01

    Full Text Available Abstract Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm acupuncture at the acupoint Kongzui (LU6. The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser at an acupoint causes direct electrical biosignal changes.

  4. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  5. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions

    International Nuclear Information System (INIS)

    Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.

    2002-01-01

    Electrical impedance spectroscopy (EIS) was applied in order to investigate electrochemical nanocrystalline TiO 2 dye solar cells (DSC). Typically, three characteristic frequency peaks were observed in the spectra. These frequency peaks could be explained by variations of cell parameters and by comparison with intensity-modulated photovoltage spectroscopy (IMVS). It was shown that the low-frequency peak (in the mHz range) corresponds to the Nernstian diffusion within the electrolyte, while the middle-frequency peak (in the 10-100 Hz range) reflects the properties of the photoinjected electrons within the TiO 2 . The high-frequency peak (in the kHz range) corresponds to the charge-transfer at the platinum counter electrode. For a detailed analysis of the spectra, a model was developed which allows the evaluation of EIS spectra, measured under bias illumination and under open-circuit conditions. The influence of cell parameters such as the TiO 2 layer thickness, cell thickness, charge-transfer resistance of the platinum counter electrode, and the lifetime of the photoinjected electrons, on the impedance spectra was studied both experimentally and theoretically. Finally, it is shown that EIS is a measurement method suited well for the investigation of the long-term stability of DSC, as changes of the inner cell parameters can be revealed

  6. A Review of Galvanically Isolated Impedance-Source DC–DC Converters

    DEFF Research Database (Denmark)

    Chub, Andrii; Vinnikov, Dmitri; Blaabjerg, Frede

    2016-01-01

    Impedance-source converters, an emerging technology in electric energy conversion, overcome limitations of conventional solutions by the use of specific impedance-source networks. Focus of this paper is on the topologies of galvanically isolated impedance-source dc-dc converters. These converters...... isolated dc-dc converters according to the element that transfers energy from the input to the output: a transformer, a coupled inductor, or their combination. This classification reveals advantages and disadvantages, as well as a wide space for further research. This paper also outlines the most promising...

  7. Oxide impedance characteristics of the Zr-xNb alloys

    International Nuclear Information System (INIS)

    Park, S. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2002-01-01

    To elucidate the correlation between the oxide impedance and corrosion characteristics of the Zr-xNb alloys, the long term corrosion test in high temperature / high pressure aqueous solution and the impedance test in the room temperature sulfate solution were performed. β-quenched plate specimens were heat-treated at 570 .deg. C for 500 hours to get the α+β Nb phase and the at 640 .deg. C for 10 hours to get the α+β Zr phase. The impedance test was conducted in sulfate solution for the initial corrosion test specimen (WG = 30 mg/dm 2 ). To evaluate the impedance date, 4 types of equivalent circuits were constructed by 5 parallel and serial RC elements. By using the equivalent circuits, the thickness of the inner and outer layers were calculated and the electric resistance of each layers were estimated. The corrosion behaviour of Zr-xNb alloys were quite different depending of the annealing condition and Nb-content. The corrosion resistance of the β Nb phase contained high Nb alloys were excellent rather than β Zr phase contained high Nb alloys. The electric resistance of the outer layer of β Zr phase contained high Nb alloy was twice larger than that of β Zr phase contained high Nb alloy, and in the case of outer layer 30% larger. So, the long term corrosion behaviors in high temperature could be estimated well by using the impedance test results

  8. Impedance Changes Indicate Proximal Ventriculoperitoneal Shunt Obstruction In Vitro.

    Science.gov (United States)

    Basati, Sukhraaj; Tangen, Kevin; Hsu, Ying; Lin, Hanna; Frim, David; Linninger, Andreas

    2015-12-01

    Extracranial cerebrospinal fluid (CSF) shunt obstruction is one of the most important problems in hydrocephalus patient management. Despite ongoing research into better shunt design, robust and reliable detection of shunt malfunction remains elusive. The authors present a novel method of correlating degree of tissue ingrowth into ventricular CSF drainage catheters with internal electrical impedance. The impedance based sensor is able to continuously monitor shunt patency using intraluminal electrodes. Prototype obstruction sensors were fabricated for in-vitro analysis of cellular ingrowth into a shunt under static and dynamic flow conditions. Primary astrocyte cell lines and C6 glioma cells were allowed to proliferate up to 7 days within a shunt catheter and the impedance waveform was observed. During cell ingrowth a significant change in the peak-to-peak voltage signal as well as the root-mean-square voltage level was observed, allowing the impedance sensor to potentially anticipate shunt malfunction long before it affects fluid drainage. Finite element modeling was employed to demonstrate that the electrical signal used to monitor tissue ingrowth is contained inside the catheter lumen and does not endanger tissue surrounding the shunt. These results may herald the development of "next generation" shunt technology that allows prediction of malfunction before it affects patient outcome.

  9. Gamma-variate modeling of indicator dilution curves in electrical impedance tomography.

    Science.gov (United States)

    Hentze, Benjamin; Muders, Thomas; Luepschen, Henning; Leonhardt, Steffen; Putensen, Christian; Walter, Marian

    2017-07-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique, that can be used to monitor regional lung ventilation (V̇) in intensive care units (ICU) at bedside. This work introduces a method to extract regional lung perfusion (Q̇) from EIT image streams in order to quantify regional gas exchange in the lungs. EIT data from a single porcine animal trial, recorded during injection of a contrast agent (NaCl 10%) into a central venous catheter (CVC), are used for evaluation. Using semi-negative matrix factorization (Semi-NMF) a set of source signals is extracted from the data. A subsequent non-linear fit of a gamma-variate model to the source signals results in model signals, describing contrast agent flow through the cardio-pulmonary system. A linear fit of the model signals to the EIT image stream then yields functional images ofQ̇. Additionally, a pulmonary transit function (PTF) and parameters, such as mean transit time (MTT), time to peak (TTP) and area under curve (AUC) are derived. In result, EIT was used to track changes of regional lung ventilation to perfusion ratio (V̇/Q̇) during changes of positive end-expiratory pressure (PEEP). Furthermore, correlations of MTT and AUC with cardiac output (CO) indicate that CO measurement by EIT might be possible.

  10. Compressed sampling for boundary measurements in three-dimensional electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Soleimani, Manuchehr

    2013-01-01

    Electrical impedance tomography (EIT) utilizes electrodes on a medium's surface to produce measured data from which the conductivity distribution inside the medium is estimated. For the cases that relocation of electrodes is impractical or no a priori assumptions can be made to optimize the electrodes placement, a large number of electrodes may be needed to cover all possible imaging volume. This may occur in dynamically varying conductivity distribution in 3D EIT. Three-dimensional EIT then requires inverting very large linear systems to calculate the conductivity field, which causes significant problems regarding storage space and reconstruction time in addition to that data acquisition for a large number of electrodes will reduce the achievable frame rate, which is considered as major advantage of EIT imaging. This study proposes an idea to reduce the reconstruction complexity based on the well-known compressed sampling theory. By applying the so-called model-based CoSaMP algorithm to large size data collected by a 256 channel system, the size of forward operator and data acquisition time is reduced to those of a 32 channel system, while accuracy of reconstruction is significantly improved. The results demonstrate great capability of compressed sampling for overriding the challenges arising in 3D EIT. (paper)

  11. Impedance analysis on organic ultrathin layers

    Energy Technology Data Exchange (ETDEWEB)

    Bom, Sidhant; Wagner, Veit [Jacobs University Bremen, School of Engineering and Science, Campus Ring 8, 28759 Bremen (Germany)

    2008-07-01

    Impedance spectroscopy is a standard technique for thin film analysis to obtain important information as thicknesses, diffusion properties of mobile ions and leakage currents. The measured electrical impedance of a sample is modeled by a physical equivalent circuit of resistors and capacitors. In the present work this information is obtained as a function of frequency also for ultrathin organic layers in the monolayer regime. A series of semiconducting and insulating polymers (regioregular poly-3-hexylthiophene (rr-P3HT), polymethylmethacrylate (PMMA)) and self assembled monolayers (octadecyltrichlorosilane (OTS), hexamethyldisilazane (HMDS), thiolated phospholipids) were deposited either on highly n-doped silicon wafers or on gold surfaces. E.g. ultrathin layers were obtained by dip coating a silicon wafer in rr-P3HT solution in chloroform. The thickness of 2 nm determined for this system by impedance measurement agrees well with the atomic force microscopy analysis and corresponds to a single layer of polymer chains. The leakage current is seen as an ohmic contribution at low frequencies and allows a systematic optimization of process parameters. In summary, impedance spectroscopy allows very fast and convenient analysis of thin organic layers even down to the monolayer regime.

  12. Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: a simulation study.

    Science.gov (United States)

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Jörres, R A; Mueller-Lisse, U; Moeller, K

    2017-10-10

    Electrical impedance tomography (EIT) has mostly been used in the Intensive Care Unit (ICU) to monitor ventilation distribution but is also promising for the diagnosis in spontaneously breathing patients with obstructive lung diseases. Beside tomographic images, several numerical measures have been proposed to quantitatively assess the lung state. In this study two common measures, the 'Global Inhomogeneity Index' and the 'Coefficient of Variation' were compared regarding their capability to reflect the severity of lung obstruction. A three-dimensional simulation model was used to simulate obstructed lungs, whereby images were reconstructed on a two-dimensional domain. Simulations revealed that minor obstructions are not adequately recognized in the reconstructed images and that obstruction above and below the electrode plane may result in misleading values of inhomogeneity measures. EIT measurements on several electrode planes are necessary to apply these measures in patients with obstructive lung diseases in a promising manner.

  13. Early Detection of Cervical Intraepitelial Neoplasia in a Heterogeneos Group of Colombian Women Using Electrical Impedance Spectroscopy and the Miranda-López Algorithm

    International Nuclear Information System (INIS)

    Miranda, David A; Corzo, Sandra P; González-Correa, Carlos-A

    2012-01-01

    Electrical Impedance Spectroscopy (EIS) allows the study of the electrical properties of materials and structures such as biological tissues. EIS can be used as a diagnostic tool for the identification of pathological conditions such as cervical cancer. We used EIS in combination with genetic algorithms to characterize cervical epithelial squamous tissue in a heterogeneous sample of 56 Colombian women. All volunteers had a cytology taken for Papanicolau test and biopsy taken for histopathological analysis from those with a positive result (9 subjects). ROC analysis of the results suggest a sensitivity and specificity in the order of 0.73 and 0.86, respectively.

  14. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  15. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr; Woo, Eung Je, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Seoul 02447 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 06974 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 05029 (Korea, Republic of)

    2016-06-15

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  16. Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography.

    Science.gov (United States)

    Dai, Meng; Wang, Liang; Xu, Canhua; Li, Lianfeng; Gao, Guodong; Dong, Xiuzhen

    2010-09-01

    Subarachnoid hemorrhage (SAH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients. Although the present medical imaging techniques generally have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring SAH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography (EIT) was applied to detect the onset of SAH modeled on eight piglets in real time, with the subsequent process being monitored continuously. The experimental SAH model was introduced by one-time injection of 5 ml fresh autologous arterial blood into the cisterna magna. Results showed that resistivity variations within the brain caused by the added blood could be detected using the EIT method and may be associated not only with the resistivity difference among brain tissues, but also with variations of cerebrospinal fluid dynamics. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for SAH after the improvement of electrode design, anisotropic realistic modeling and instrumentation.

  17. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.

    Science.gov (United States)

    Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji

    2016-11-16

    In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.

  18. Lung pathologies analyzed with multi-frequency electrical impedance tomography: Pilot animal study.

    Science.gov (United States)

    Aguiar Santos, Susana; Czaplik, Michael; Orschulik, Jakob; Hochhausen, Nadine; Leonhardt, Steffen

    2018-03-31

    In critically ill patients, correct diagnosis of lung disease is essential for successful therapy. Therefore, this study investigated whether new multi-frequency electrical impedance tomography (mfEIT) can detect, monitor and differentiate between pathologies associated with the acute respiratory distress syndrome (ARDS). For this pilot study, 12 pigs were randomized into an ARDS (bronchoalveolar lavage) group (n = 7) and a healthy control group (n = 5). Animals were monitored by means of mfEIT. In addition to functional images, a new impaired-ventilation (rImpVent) index was developed and frequency-difference images were computed and analyzed. Amplitude functional images revealed only small differences between the groups. However, phase functional images were of greater importance in distinguishing between lung pathologies. Correlation images showed substantial differences between the two groups. The new rImpVent index achieved high sensitivity (91%) and specificity (92%) in detecting PaO 2 /FiO 2  ≤ 200 mmHg. mfEIT was able to detect lung edema, differentiate this from atelectasis, and also monitor their progress over time in terms of global and regional differences. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Bioelectrical impedance analysis for bovine milk: Preliminary results

    Science.gov (United States)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  20. Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography.

    Science.gov (United States)

    Hao, Zhenhua; Yue, Shihong; Sun, Benyuan; Wang, Huaxiang

    2017-12-01

    Electrical impedance tomography (EIT) is a visual imaging technique for obtaining the conductivity and permittivity distributions in the domain of interest. As an advanced technique, EIT has the potential to be a valuable tool for continuously bedside monitoring of pulmonary function. The EIT applications in any three-dimensional (3 D) field are very limited to the 3 D effects, i.e. the distribution of electric field spreads far beyond the electrode plane. The 3 D effects can result in measurement errors and image distortion. An important way to overcome the 3 D effect is to use the multiple groups of sensors. The aim of this paper is to find the best space resolution of EIT image over various electrode planes and select an optimal plane spacing in a 3 D EIT sensor, and provide guidance for 3 D EIT electrodes placement in monitoring lung function. In simulation and experiment, several typical conductivity distribution models, such as one rod (central, midway and edge), two rods and three rods, are set at different plane spacings between the two electrode planes. A Tikhonov regularization algorithm is utilized for reconstructing the images; the relative error and the correlation coefficient are utilized for evaluating the image quality. Based on numerical simulation and experimental results, the image performance at different spacing conditions is evaluated. The results demonstrate that there exists an optimal plane spacing between the two electrode planes for 3 D EIT sensor. And then the selection of the optimal plane spacing between the electrode planes is suggested for the electrodes placement of multi-plane EIT sensor.

  1. Is 2D impedance tomography a reliable technique for two-phase flow?

    International Nuclear Information System (INIS)

    Lemonnier, H.; Peytraud, J.F.

    1998-01-01

    Impedance tomography consists in reconstructing the conductivity distribution from electrical data which characterize the electrical response of a medium to arbitrary excitations. Impedance tomography is an ill-conditioned problem and designing a tomograph therefore requires the quantitative knowledge of the sensitivity of the reconstruction to the measurements noise. The numerical conditioning of an original and accurate algorithm has been studied. This algorithm does not suffer from the shortcomings already identified in the literature. It is shown that for media encompassing inclusions which is a typical situation in two-phase flows, the necessary accuracy for the measurements if far beyond any technological reach. Moreover, within these high requirements for accuracy, some side effects must be carefully controlled or compensated and relevant procedures arc provided. Furthermore. reconstruction artifacts are shown and they are found to derive from the unavoidable tridimensional nature of the electric field. For all these reasons, it is concluded that impedance tomography has very low potentialities as an accurate phase fraction distribution measuring technique in any arbitrary two-phase flows. (author)

  2. Evolution of impedance field telemetry after one day of activation in cochlear implant recipients.

    Directory of Open Access Journals (Sweden)

    Hao-Chun Hu

    Full Text Available Changes in impedance between 24 hours and one month after cochlear implantation have never been explored due to the inability to switch on within one day. This study examined the effect of early activation (within 24 hours on the evolution of electrode impedance with the aim of providing information on the tissue-to-electrode interface when electrical stimulation was commenced one day post implantation.We performed a retrospective review at a single institution. Patients who received a Nucleus 24RECA implant system (Cochlear, Sydney, Australia and underwent initial switch-on within 24 hours postoperatively were included. Impedance measurements were obtained intraoperatively and postoperatively at 1 day, 1 week, 4 weeks, and 8 weeks.A significant drop in impedance was noted 1 day after an initial activation within 24 hours followed by a significant rise in impedance in all channels until 1 week, after which the impedance behaved differently in different segments. Basal and mid-portion electrodes revealed a slight increase while apical electrodes showed a slight decrease in impedance from 1 week to 8 weeks postoperatively. Impedance was relatively stable 4 weeks after surgery.This is the first study to report the evolution of impedance in all channels between initial mapping 1 day and 1 month after cochlear implantation. The underlying mechanism for the differences in behavior between different segments of the electrode may be associated with the combined effect of dynamics among the interplay of cell cover formation, electrical stimulation, and fibrotic reaction.

  3. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography

    OpenAIRE

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-01-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10?) mode up to 60?. EIT images [arbitrary units (AU)] were generated and scanned ...

  4. A model-based prognostic approach to predict interconnect failure using impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Il; Yoon, Jeong Ah [Dept. of System Design and Control Engineering. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    The reliability of electronic assemblies is largely affected by the health of interconnects, such as solder joints, which provide mechanical, electrical and thermal connections between circuit components. During field lifecycle conditions, interconnects are often subjected to a DC open circuit, one of the most common interconnect failure modes, due to cracking. An interconnect damaged by cracking is sometimes extremely hard to detect when it is a part of a daisy-chain structure, neighboring with other healthy interconnects that have not yet cracked. This cracked interconnect may seem to provide a good electrical contact due to the compressive load applied by the neighboring healthy interconnects, but it can cause the occasional loss of electrical continuity under operational and environmental loading conditions in field applications. Thus, cracked interconnects can lead to the intermittent failure of electronic assemblies and eventually to permanent failure of the product or the system. This paper introduces a model-based prognostic approach to quantitatively detect and predict interconnect failure using impedance analysis and particle filtering. Impedance analysis was previously reported as a sensitive means of detecting incipient changes at the surface of interconnects, such as cracking, based on the continuous monitoring of RF impedance. To predict the time to failure, particle filtering was used as a prognostic approach using the Paris model to address the fatigue crack growth. To validate this approach, mechanical fatigue tests were conducted with continuous monitoring of RF impedance while degrading the solder joints under test due to fatigue cracking. The test results showed the RF impedance consistently increased as the solder joints were degraded due to the growth of cracks, and particle filtering predicted the time to failure of the interconnects similarly to their actual timesto- failure based on the early sensitivity of RF impedance.

  5. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  6. Ventilation distribution in rats: Part I - The effect of gas composition as measured with electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Dunster Kimble R

    2012-09-01

    Full Text Available Abstract The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air. The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.

  7. Investigation of body's impedance under different conditions for electro-acupuncture

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Abrarov, S.; Khan, R.R.; Maqsood, R.S.; Qaiser, M.A.; Karimov, Kh. S.

    2001-01-01

    A computer controlled automated setup has been designed to investigate the body acupuncture points (bio-active points) by using a probes matrix which exerts a uniform pressure on the body. 16 probes matrix was placed in a 15 : 15 mm/sup 2/ dielectric substrate with 5 mm inter probe distance, compatible with the average diameter of the points. These probes have been designed to facilitate a semiconductor injection laser for probing of the points along with optical and/or electric signal. The bioactive points were identified by evaluating the impedance between each probe and a hand held electrode through a micro-controlled scan. This also allowed the selection of an appropriate signal - DC, AC or tidal waveform, for the electric treatment of bioactive points. It has been found that body impedance decreases with the increase of measuring voltage. Moreover, for current-voltage characteristics a nonlinearity coefficient in the range 2-3 was also observed. The study revealed that at low applied voltages 0.l V, the impedance depends on the polarity of the applied signal. Furthermore, body impedance decreases nonlinearly by increasing the probe's pressure on the skin, which may be attributed to piezo resistive effect. By using the AC and Dc measurements an appropriate body equivalent circuit is proposed in this investigation. (author)

  8. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.

    Science.gov (United States)

    Rodriguez, Saul; Ollmar, Stig; Waqar, Muhammad; Rusu, Ana

    2016-06-01

    The measurement of the biological tissue's electrical impedance is an active research field that has attracted a lot of attention during the last decades. Bio-impedances are closely related to a large variety of physiological conditions; therefore, they are useful for diagnosis and monitoring in many medical applications. Measuring living tissues, however, is a challenging task that poses countless technical and practical problems, in particular if the tissues need to be measured under the skin. This paper presents a bio-impedance sensor ASIC targeting a battery-free, miniature size, implantable device, which performs accurate 4-point complex impedance extraction in the frequency range from 2 kHz to 2 MHz. The ASIC is fabricated in 150 nm CMOS, has a size of 1.22 mm × 1.22 mm and consumes 165 μA from a 1.8 V power supply. The ASIC is embedded in a prototype which communicates with, and is powered by an external reader device through inductive coupling. The prototype is validated by measuring the impedances of different combinations of discrete components, measuring the electrochemical impedance of physiological solution, and performing ex vivo measurements on animal organs. The proposed ASIC is able to extract complex impedances with around 1 Ω resolution; therefore enabling accurate wireless tissue measurements.

  9. Accurate position estimation methods based on electrical impedance tomography measurements

    Science.gov (United States)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less

  10. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    Science.gov (United States)

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  11. A comparison framework for temporal image reconstructions in electrical impedance tomography

    International Nuclear Information System (INIS)

    Gagnon, Hervé; Adler, Andy; Grychtol, Bartłomiej

    2015-01-01

    Electrical impedance tomography (EIT) provides low-resolution images of internal conductivity distributions, but is able to achieve relatively high temporal resolutions. Most EIT image reconstruction algorithms do not explicitly account for the temporal constraints on the measurements or physiological processes under investigation. Instead, algorithms typically assume both that the conductivity distribution does not change during the acquisition of each EIT data frame, and that frames can be reconstructed independently, without consideration of the correlation between images. A failure to account for these temporal effects will result in aliasing-related artefacts in images. Several methods have been proposed to compensate for these effects, including interpolation of raw data, and reconstruction algorithms using Kalman and temporal filtering. However, no systematic work has been performed to understand the severity of the temporal artefacts nor the extent to which algorithms can account for them. We seek to address this need by developing a temporal comparison framework and figures of merit to assess the ability of reconstruction algorithms to account for temporal effects. Using this approach, we compare combinations of three reconstruction algorithms using three EIT data frame types: perfect, realistic and interpolated. The results show that, without accounting for temporal effects, artefacts are present in images for dynamic conductivity contrasts at frequencies 10–20 times slower than the frame rate. The proposed methods show some improvements in reducing these artefacts. (paper)

  12. NOTE: Impedance magnetocardiogram

    Science.gov (United States)

    Kandori, Akihiko; Miyashita, Tsuyoshi; Suzuki, Daisuke; Yokosawa, Koichi; Tsukada, Keiji

    2001-02-01

    We have developed an impedance magnetocardiogram (IMCG) system to detect the change of magnetic field corresponding to changes in blood volume in the heart. A low magnetic field from the electrical activity of the human heart - the so-called magnetocardiogram (MCG) - can be simultaneously detected by using this system. Because the mechanical and electrical functions in the heart can be monitored by non-invasive and non-contact measurements, it is easy to observe the cardiovascular functions from an accurate sensor position. This system uses a technique to demodulate induced current in a subject. A flux-locked circuit of a superconducting quantum interference device has a wide frequency range (above 1 MHz) because a constant current (40 kHz) is fed through the subject. It is shown for the first time that the system could measure IMCG signals at the same time as MCG signals.

  13. Impedance spectroscopy studies of surface engineered TiO2 ...

    Indian Academy of Sciences (India)

    Administrator

    Impedance; nanoTiO2; self-assembled monolayers; electrical resistivity; permittivity. 1. Introduction ... search studies showed that nanostructured TiO2 ceramics possess ..... tion handbook (ed) J Cazes (New York: Marcel Dekker). 3rd ed, p ...

  14. The frequency characteristics of medium voltage distribution system impedances

    Directory of Open Access Journals (Sweden)

    Liviu Emil Petrean

    2009-10-01

    Full Text Available In this paper we present the frequency characteristics of impedances involved in the electrical equivalent circuit of a large medium voltage distribution system. These impedances influence harmonics distortions propagation occurring due to the nonsinusoidal loads. We analyse the case of a 10 kV large urban distribution system which supplies industrial, commercial and residential customers. The influence of various parameters of the distribution network on the frequency characteristics are presented, in order to assess the interaction of harmonic distortion and distribution system network.

  15. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    tissue impedance measurement is more informative and dynamic and able to mirror morphologic features of organ’s tissue, since it does not depend from electric field divergence lines, electrode polarization and their localization, what takes place during contact method of impedance measurement. Contactless method of biological tissue impedance measurement can be applied as the base diagnostic method – dynamic volumogaraphy. 

  16. Electrical Impedance Tomography: a new study method for neonatal Respiratory Distress Syndrome?

    Science.gov (United States)

    Chatziioannidis, I; Samaras, T; Nikolaidis, N

    2011-01-01

    Treatment of cardiorespiratory system diseases is a procedure that usually demands data collection on terms of the anatomy and the operation of the organs that are under study. Electrical Impedance Tomography (EIT) is an alternative approach, in comparison to existing techniques. With EIT electrodes are placed in the perimeter of the human body and images of the estimated organ are reconstructed, using the measurement of its impendence (or resistance) distribution and determining its alteration through time, while at the same time the patient is not exposed to ionizing radiation. Its clinical use presupposes the correct placement of the electrodes over the perimeter of the human body, the rapid data collection and electrical safety. It is a low cost technique and it is implemented near the patient. It is able to determine the distribution of ventilation, blood supply, diffused or localized lung defects, but it can also estimate therapeutic interventions or alteration to assisted ventilation of the neonate. EIT was developed at the beginning of the 1980s, but it has only recently begun to be implemented on neonates, and especially in the study of their respiratory system function. The low rate of image analysis is considered to be a drawback, but it is offset by the potential offered for the estimation of lungs' function (both under normal and pathological conditions), since ventilation and resistance are two quite similar concepts. In this review the most important studies about EIT are mentioned as a method of estimating respiratory distress syndrome in neonates. In terms of the above mentioned development, it is supposed that this technique will offer a great amount of help to the doctor in his / her estimations of the cardiorespiratory system and to his / her selection of the best intervening strategies. PMID:22435017

  17. Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Moeller, Knut; Soleimani, Manuchehr

    2015-01-01

    This study proposes a method to improve performance of sparse recovery inverse solvers in 3D electrical impedance tomography (3D EIT), especially when the volume under study contains small-sized inclusions, e.g. 3D imaging of breast tumours. Initially, a quadratic regularized inverse solver is applied in a fast manner with a stopping threshold much greater than the optimum. Based on assuming a fixed level of sparsity for the conductivity field, finite elements are then sampled via applying a compressive sensing (CS) algorithm to the rough blurred estimation previously made by the quadratic solver. Finally, a sparse inverse solver is applied solely to the sampled finite elements, with the solution to the CS as its initial guess. The results show the great potential of the proposed CS-based sparse recovery in improving accuracy of sparse solution to the large-size 3D EIT. (paper)

  18. Measurements of Electric Performance and Impedance of a 75 Ah NMC Lithium Battery Module

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Engelbrecht, Kurt

    2012-01-01

    and the Laplace transformed excitation signal technique which each have pros and cons. By combining the two impedance measurement techniques we are able to reduce the measurement time by a factor of 20 relative to ordinary single-sine measurements. Further we use the impedance measurements to calculate...

  19. Cutting tool wear monitoring with the use of impedance layers

    OpenAIRE

    Sadílek, Marek; Kratochvíl, Jiří; Petrů, Jana; Čep, Robert; Zlámal, Tomáš; Stančeková, Dana

    2014-01-01

    The article deals with problems of cutting process monitoring in real time. It is focused on tool wear by means of impedance layers applied on ceramic cutting inserts. In the experimental part the cutting process is monitored using electrical resistance measurement. The results are compared and verified using the monitored cutting temperature and tool wear. The testing of impedance layers is reasonable mainly for cutting edge diagnostics. The width of this layer determines the wear allowance ...

  20. Evaluation of the Harmonic Impedance of Frydlant (Line 53 Power Network

    Directory of Open Access Journals (Sweden)

    Shehab Abdulwadood Ali

    2013-01-01

    Full Text Available The harmonic impedance of the power system is an important quantity, which describes the behaviour of the power system with the existence of different frequencies beside the fundamental. The harmonic study belongs to the most difficult part of the electrical measurements and calculations even by using computer software. The main problem accompanying the calculating methods is to obtain the exact data of the electrical network parameters or to know the exact operational status of the system. In this paper the harmonic impedance of Frydlant (line 53, 22~kV in Czech Republic power network was calculated by using a very specialized software and suitable for solving such calculations called "NetCalc. version 3.0" [1].

  1. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    Science.gov (United States)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  2. Electrical impedance scanning - application of this new technique for lymph node evaluation in children

    Energy Technology Data Exchange (ETDEWEB)

    Mentzel, Hans-Joachim; Malich, Ansgar; Freesmeyer, Martin; Boettcher, Joachim; Vogt, Susanna; Kaiser, Werner A. [Institute of Diagnostic and Interventional Radiology, University of Jena, Bachstrasse 18, 07740 Jena (Germany); Kentouche, Karim; Gruhn, Bernd; Zintl, Felix [Department of Pediatrics, University of Jena, Jena (Germany); Schneider, Gerlind [Department of Otorhinolaryngology, University of Jena, Jena (Germany); Anderson, Roselle [Siemens-Elema, Elema (Sweden)

    2003-07-01

    Precise assessment of lymph nodes is crucial to the choice of therapy and prediction of outcome in cases of malignancy. Electrical impedance scanning (EIS) is being experimentally investigated for potential use as a diagnostic tool for differentiation of malignant lesions. Malignancies show different electrical properties with changes in conductivity and capacitance that can be analysed by EIS. Using a TransScan TS-2000 (TransScan Medical, Migdal Ha'Emek, Israel, distributed by Siemens-Elema AB, Solna, Sweden), EIS has been used in various studies for the identification of breast cancer as well as for characterisation of superficial lesions. To evaluate the reliability of EIS for classifying lymph nodes in a pediatric population with sonographically suspicious lesions and to prove its accuracy. The study population consisted of 77 children (42 boys, 35 girls) aged 1.1-17.1 years. All EIS results were compared to either histopathological findings or long-term follow-up investigations. Sensitivity for malignancies using EIS was 75% and specificity was 87%. The negative predictive value was 93% and the positive predictive value was 60%. This study suggests the potential usefulness of EIS as an additional imaging modality for the differentiation of lymph-node diseases in children. The histopatholgical spectrum of malignant lymph node transformation in children compared to studies in adults, and the characteristic meltdown in inflammatory or granulomatous transformed nodes, pose challenges to differentiation based on sonographic evaluation, and also to EIS classification. (orig.)

  3. Assessment of regional ventilation distribution: comparison of vibration response imaging (VRI) with electrical impedance tomography (EIT).

    Science.gov (United States)

    Shi, Chang; Boehme, Stefan; Bentley, Alexander H; Hartmann, Erik K; Klein, Klaus U; Bodenstein, Marc; Baumgardner, James E; David, Matthias; Ullrich, Roman; Markstaller, Klaus

    2014-01-01

    Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation. Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R(2) = 0.96. Bland-Altman analysis showed a bias of -1.07±24.71 ml and limits of agreement of -49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R(2) values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT. Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT.

  4. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    Science.gov (United States)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  5. A shape-based quality evaluation and reconstruction method for electrical impedance tomography.

    Science.gov (United States)

    Antink, Christoph Hoog; Pikkemaat, Robert; Malmivuo, Jaakko; Leonhardt, Steffen

    2015-06-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community. In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed. Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images.

  6. A shape-based quality evaluation and reconstruction method for electrical impedance tomography

    International Nuclear Information System (INIS)

    Antink, Christoph Hoog; Pikkemaat, Robert; Leonhardt, Steffen; Malmivuo, Jaakko

    2015-01-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community.In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed.Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images. (paper)

  7. An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography

    International Nuclear Information System (INIS)

    Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Fu, Feng; Liu, Ruigang; Dong, Xiuzhen

    2011-01-01

    Delayed detection of an internal hemorrhage may result in serious disabilities and possibly death for a patient. Currently, there are no portable medical imaging instruments that are suitable for long-term monitoring of patients at risk of internal hemorrhage. Electrical impedance tomography (EIT) has the potential to monitor patients continuously as a novel functional image modality and instantly detect the occurrence of an internal hemorrhage. However, the low spatial resolution and high sensitivity to noise of this technique have limited its application in clinics. In addition, due to the circular boundary display mode used in current EIT images, it is difficult for clinicians to identify precisely which organ is bleeding using this technique. The aim of this study was to propose an optimized strategy for EIT reconstruction to promote the use of EIT for clinical studies, which mainly includes the use of anatomically accurate boundary shapes, rapid selection of optimal regularization parameters and image fusion of EIT and computed tomography images. The method was evaluated on retroperitoneal and intraperitoneal bleeding piglet data. Both traditional backprojection images and optimized images among different boundary shapes were reconstructed and compared. The experimental results demonstrated that EIT images with precise anatomical information can be reconstructed in which the image resolution and resistance to noise can be improved effectively

  8. Highly sensitive three-dimensional interdigitated microelectrode for microparticle detection using electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Chang, Fu-Yu; Chen, Ming-Kun; Jang, Ling-Sheng; Wang, Min-Haw

    2016-01-01

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticle detection (e.g. cell quantity detection) using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for particles in the sensing area. Various quantities of particles were captured in Dulbecco’s modified Eagle medium and their impedances were measured. With the 3D IME, the particles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model. The impedance (1269 Ω) of 69 particles was used to estimate the particle quantity (68 particles) with 98.6% accuracy using a parabolic regression curve at 500 kHz. (paper)

  9. Spermometer: electrical characterization of single boar sperm motility

    NARCIS (Netherlands)

    de Wagenaar, B.; Geijs, Daan J.; de Boer, Hans L.; Bomer, Johan G.; Olthuis, Wouter; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Objective: To study single sperm boar motility using electrical impedance measurements in a microfluidic system. Design: Comparison of the optical data and electrical impedance data. Setting: Research laboratory at a university. Animal(s): Boar semen sample were used. Intervention(s): A microfluidic

  10. Impedance and electric modulus analysis of Sm-modified Pb(Zr{sub 0.55}Ti{sub 0.45}){sub 1-x/4}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajiv [Department of Physics, J. Co-operative College, Kolhan University, Jharkhand 831036 (India); Kumar, Rajiv [Department of Physics, J. Worker' s College, Kolhan University, Jharkhand 831012 (India); Kumar, Nawnit [Department of Physics and Meteorology, IIT Kharagpur, West Bengal 721302 (India); Behera, Banarji [School of Physics, Sambalpur University, Jyoti Vihar, Bula 768019, Orissa (India); Choudhary, R.N.P., E-mail: crnpfl@gmail.com [Department of Physics, ITER, S.O.A. University, Bhubaneswar 751 013, Orissa (India)

    2011-06-02

    Highlights: > The PSZT ceramics with samarium were prepared by solid-state reaction technique. > Bulk resistive contribution is found to decrease with the increase in temperature. > PSZT ceramics exhibit NTCR type behavior usually found in semiconductors. > Modulus plots show the presence of grain boundary along with bulk contributions. > Impedance analysis has confirmed the presence of non-Debye type of relaxation. - Abstract: The polycrystalline ceramic samples of Pb{sub 1-x}Sm{sub x}(Zr{sub 0.55}Ti{sub 0.45}){sub 1-x/4}O{sub 3} (x = 0.00, 0.03, 0.06 and 0.09) were prepared by solid-state reaction technique at high temperature. Electric impedance (Z) and modulus (M) properties of the materials have been investigated within a wide range of temperature and frequency using complex impedance spectroscopy (CIS) technique. The complex impedance analysis has suggested the presence of mostly bulk resistive (grain) contributions in the materials. This bulk resistance is found to decrease with the increase in temperature. It indicates that the PSZT compounds exhibit a typical negative temperature coefficient of resistance (NTCR) behavior. The bulk contribution also exhibits an increasing trend with the increase in Sm{sup 3+} substitution to PZT. The complex modulus plots have confirmed the presence of grain (bulk) as well as grain boundary contributions in the materials. Both the complex impedance and modulus studies have suggested the presence of non-Debye type of relaxation in the materials.

  11. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  12. Array of piezoelectric energy harvesting by the equivalent impedance approach

    International Nuclear Information System (INIS)

    Lien, I C; Shu, Y C

    2012-01-01

    This article proposes to use the idea of equivalent impedance to investigate the electrical response of an array of piezoelectric oscillators endowed with distinct energy harvesting circuits. Three interface electronics systems are considered including standard AC/DC and parallel/series-SSHI (synchronized switch harvesting on inductor) circuits. Various forms of equivalent load impedance are analytically obtained for different interfaces. The steady-state response of an array system is then shown to be determined by the matrix formulation of generalized Ohm’s law whose impedance matrix is explicitly expressed in terms of the load impedance. A model problem is proposed for evaluating the ability of power harvesting under various conditions. It is shown first that harvested power is increased dramatically for the case of small deviation in the system parameters. On the other hand, if the deviation in mass is relatively large, the result is changed from the power-boosting mode to wideband mode. In particular, the parallel-SSHI array system exhibits much more significant bandwidth improvement than the other two cases. Surprisingly, the series-SSHI array system shows the worst electrical response. Such an observation is opposed to our previous finding that an SSHI technique avails against the standard technique in the case based on a single piezoelectric energy harvester and the explanation is under investigation. (fast track communication)

  13. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.

    Science.gov (United States)

    Ferreira, J; Seoane, F; Lindecrantz, K

    2013-01-01

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  14. Determination of energy band diagram and charge carrier mobility of white emitting polymer from optical, electrical and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Sarjidan, M.A., E-mail: mohd.arif@um.edu.my; Mohd Mokhtar, H.A.; Abd Majid, W.H., E-mail: q3haliza@um.edu.my

    2015-03-15

    A single-layer white polymer light-emitting device (WPLED) has been fabricated using spin coating technique. The device was constructed as ITO/PEDOT:PSS(50 nm)/SPW-111(50 nm)/LiF(1 nm)/Al(100 nm). Indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS) are used as the transparent anode. SPW-111 is fabricated as a white emissive layer and lithium fluoride (LiF) and aluminum (Al) are used as reflecting cathode. Energy band diagram of the device was estimated from a combination of ultraviolet–visible (UV–vis) and current–voltage (J–V) analyses. Charge carrier mobility (μ) of PLED was evaluated using negative differential susceptance (−ΔB) method from impedance spectroscopy (IS) analysis. The calculated μ of the SPW-111 device is in the magnitude of 10{sup −6} cm{sup 2}/V/s. - Highlights: • Single layer PLED has been fabricated with spin-coating technique and device performance has been evaluated. • Energy band diagram of the SPW-111 is estimated from optical and electrical analyses. • Charge carrier mobility of the SPW-111 materials is obtained by impedance spectroscopy.

  15. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  16. Analysis of Conductor Impedances Accounting for Skin Effect and Nonlinear Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, M P; Ong, M M; Brown, C G; Speer, R D

    2011-07-20

    It is often necessary to protect sensitive electrical equipment from pulsed electric and magnetic fields. To accomplish this electromagnetic shielding structures similar to Faraday Cages are often implemented. If the equipment is inside a facility that has been reinforced with rebar, the rebar can be used as part of a lighting protection system. Unfortunately, such shields are not perfect and allow electromagnetic fields to be created inside due to discontinuities in the structure, penetrations, and finite conductivity of the shield. In order to perform an analysis of such a structure it is important to first determine the effect of the finite impedance of the conductors used in the shield. In this paper we will discuss the impedances of different cylindrical conductors in the time domain. For a time varying pulse the currents created in the conductor will have different spectral components, which will affect the current density due to skin effects. Many construction materials use iron and different types of steels that have a nonlinear permeability. The nonlinear material can have an effect on the impedance of the conductor depending on the B-H curve. Although closed form solutions exist for the impedances of cylindrical conductors made of linear materials, computational techniques are needed for nonlinear materials. Simulations of such impedances are often technically challenging due to the need for a computational mesh to be able to resolve the skin depths for the different spectral components in the pulse. The results of such simulations in the time domain will be shown and used to determine the impedances of cylindrical conductors for lightning current pulses that have low frequency content.

  17. Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study

    International Nuclear Information System (INIS)

    Liu Yang; Zhu Shanan; He Bin

    2009-01-01

    We have investigated induced current magnetic resonance electrical impedance tomography (IC-MREIT) by means of computer simulations. The J-substitution algorithm was implemented to solve the IC-MREIT reconstruction problem. By providing physical insight into the charge accumulating on the interfaces, the convergence characteristics of the reconstruction algorithm were analyzed. The simulation results conducted on different objects were well correlated with the proposed theoretical analysis. The feasibility of IC-MREIT to reconstruct the conductivity distribution of head-brain tissues was also examined in computer simulations using a multi-compartment realistic head model. The present simulation results suggest that IC-MREIT may have the potential to become a useful conductivity imaging technique.

  18. A mixed-mode traffic assignment model with new time-flow impedance function

    Science.gov (United States)

    Lin, Gui-Hua; Hu, Yu; Zou, Yuan-Yang

    2018-01-01

    Recently, with the wide adoption of electric vehicles, transportation network has shown different characteristics and been further developed. In this paper, we present a new time-flow impedance function, which may be more realistic than the existing time-flow impedance functions. Based on this new impedance function, we present an optimization model for a mixed-mode traffic network in which battery electric vehicles (BEVs) and gasoline vehicles (GVs) are chosen. We suggest two approaches to handle the model: One is to use the interior point (IP) algorithm and the other is to employ the sequential quadratic programming (SQP) algorithm. Three numerical examples are presented to illustrate the efficiency of these approaches. In particular, our numerical results show that more travelers prefer to choosing BEVs when the distance limit of BEVs is long enough and the unit operating cost of GVs is higher than that of BEVs, and the SQP algorithm is faster than the IP algorithm.

  19. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography

    International Nuclear Information System (INIS)

    Zhang, Jie; Patterson, Robert

    2010-01-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 ± 13 years, 78 ± 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC—end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Ω cm to 1583 Ω cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method

  20. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography.

    Science.gov (United States)

    Zhang, Jie; Patterson, Robert

    2010-08-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.

  1. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  2. Impedance-stabilized positive corona discharge and its decontamination properties

    International Nuclear Information System (INIS)

    Horak, P; Khun, J

    2010-01-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  3. Electrical and electronic principles

    CERN Document Server

    Knight, SA

    1988-01-01

    Electrical and Electronic Principles, 3 focuses on the principles involved in electrical and electronic circuits, including impedance, inductance, capacitance, and resistance.The book first deals with circuit elements and theorems, D.C. transients, and the series circuits of alternating current. Discussions focus on inductance and resistance in series, resistance and capacitance in series, power factor, impedance, circuit magnification, equation of charge, discharge of a capacitor, transfer of power, and decibels and attenuation. The manuscript then examines the parallel circuits of alternatin

  4. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection

    Directory of Open Access Journals (Sweden)

    Thürk Florian

    2016-09-01

    Full Text Available An accurate detection of anatomical structures in electrical impedance tomography (EIT is still at an early stage. Aorta detection in EIT is of special interest, since it would favor non-invasive assessment of hemodynamic processes in the body. Here, diverse EIT reconstruction parameters of the GREIT algorithm were systematically evaluated to detect the aorta after saline bolus injection in apnea. True aorta position and size were taken from computed tomography (CT. A comparison with CT showed that the smallest error for aorta displacement was attained for noise figure nf = 0.7, weighting radius rw = 0.15, and target size ts = 0.01. The spatial extension of the aorta was most precise for nf = 0.7, rw = 0.25, and ts = 0.07. Detection accuracy (F1-score was highest with nf = 0.6, rw = 0.15, and ts = 0.04. This work provides algorithm-related evidence for potentially accurate aorta detection in EIT after injection of a saline bolus.

  5. Influence of size and depth on accuracy of electrical impedance scanning

    Energy Technology Data Exchange (ETDEWEB)

    Malich, Ansgar; Facius, Mirjam; Boettcher, Joachim; Sauner, Dieter; Hansch, Andreas; Marx, Christiane; Petrovitch, Alexander; Pfleiderer, Stefan; Kaiser, Werner [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Bachstrasse 18, 07740, Jena (Germany); Anderson, Roselle [Siemens Medical Systems, Oncology Care Systems Group, 4040 Nelson Ave., CA 94520, Concorde (United States)

    2003-11-01

    Cancer cells exhibit altered local dielectric properties which can be assessed using electrical impedance scanning (EIS). The study was aimed at clarifying influence of lesion size and depth on EIS performance. From a series of 387 lesions (129 malignant and 258 benign) from 363 patients being sonographically and/or mammographically evaluated, size and depth information was not available in 112 lesions, size was available in 86 lesions and additional depth information was available in 189 lesions, respectively, while performing EIS. Lesions were either histologically verified or had a follow-up of at least 2 years. One hundred three of 129 malignant lesions and 165 of 258 benign lesions were correctly detected (sensitivity 79.8%, specificity 64.0%, accuracy 71.9%). Sensitivity without knowledge of size and depth was 64.6% (10 of 16 malignant lesions detected). This value increased to 76.2% (32 of 42) with knowledge of the size and further increased to 85.9% with knowledge of size and depth (61 of 71). Specificity values in the three subgroups were almost similar: 64.6 (62 of 96), 65.9 (29 of 44), and 62.7% (74 of 118), respectively. Accuracy rises from 63.6% (without knowledge of size/depth) to 71.1 and 74.3% (with size knowledge and with size and depth knowledge, respectively). Accuracy of EIS improved significantly by including sonographical information about depth and size into the analysis. Ultrasound examination should be performed prior to EIS. (orig.)

  6. Influence of size and depth on accuracy of electrical impedance scanning

    International Nuclear Information System (INIS)

    Malich, Ansgar; Facius, Mirjam; Boettcher, Joachim; Sauner, Dieter; Hansch, Andreas; Marx, Christiane; Petrovitch, Alexander; Pfleiderer, Stefan; Kaiser, Werner; Anderson, Roselle

    2003-01-01

    Cancer cells exhibit altered local dielectric properties which can be assessed using electrical impedance scanning (EIS). The study was aimed at clarifying influence of lesion size and depth on EIS performance. From a series of 387 lesions (129 malignant and 258 benign) from 363 patients being sonographically and/or mammographically evaluated, size and depth information was not available in 112 lesions, size was available in 86 lesions and additional depth information was available in 189 lesions, respectively, while performing EIS. Lesions were either histologically verified or had a follow-up of at least 2 years. One hundred three of 129 malignant lesions and 165 of 258 benign lesions were correctly detected (sensitivity 79.8%, specificity 64.0%, accuracy 71.9%). Sensitivity without knowledge of size and depth was 64.6% (10 of 16 malignant lesions detected). This value increased to 76.2% (32 of 42) with knowledge of the size and further increased to 85.9% with knowledge of size and depth (61 of 71). Specificity values in the three subgroups were almost similar: 64.6 (62 of 96), 65.9 (29 of 44), and 62.7% (74 of 118), respectively. Accuracy rises from 63.6% (without knowledge of size/depth) to 71.1 and 74.3% (with size knowledge and with size and depth knowledge, respectively). Accuracy of EIS improved significantly by including sonographical information about depth and size into the analysis. Ultrasound examination should be performed prior to EIS. (orig.)

  7. Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V; Vasquez, F Guevara

    2010-01-01

    We introduce an inversion algorithm for electrical impedance tomography (EIT) with partial boundary measurements in two dimensions. It gives stable and fast reconstructions using sparse parameterizations of the unknown conductivity on optimal grids that are computed as part of the inversion. We follow the approach in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD thesis Rice University, Houston, TX, USA) that connects inverse discrete problems for resistor networks to continuum EIT problems, using optimal grids. The algorithm in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) is based on circular resistor networks, and solves the EIT problem with full boundary measurements. It is extended in Borcea et al (2010 Inverse Problems 26 045010) to EIT with partial boundary measurements, using extremal quasi-conformal mappings that transform the problem to one with full boundary measurements. Here we introduce a different class of optimal grids, based on resistor networks with pyramidal topology, that is better suited for the partial measurements setup. We prove the unique solvability of the discrete inverse problem for these networks and develop an algorithm for finding them from the measurements of the Dirichlet to Neumann map. Then, we show how to use the networks to define the optimal grids and to approximate the unknown conductivity. We assess the performance of our approach with numerical simulations and compare the results with those in Borcea et al (2010)

  8. Data-driven classification of ventilated lung tissues using electrical impedance tomography

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Hogan, Matthew J; Elke, Gunnar; Weiler, Norbert; Frerichs, Inéz; Adler, Andy

    2011-01-01

    Current methods for identifying ventilated lung regions utilizing electrical impedance tomography images rely on dividing the image into arbitrary regions of interest (ROI), manually delineating ROI, or forming ROI with pixels whose signal properties surpass an arbitrary threshold. In this paper, we propose a novel application of a data-driven classification method to identify ventilated lung ROI based on forming k clusters from pixels with correlated signals. A standard first-order model for lung mechanics is then applied to determine which ROI correspond to ventilated lung tissue. We applied the method in an experimental study of 16 mechanically ventilated swine in the supine position, which underwent changes in positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (F I O 2 ). In each stage of the experimental protocol, the method performed best with k = 4 and consistently identified 3 lung tissue ROI and 1 boundary tissue ROI in 15 of the 16 subjects. When testing for changes from baseline in lung position, tidal volume, and respiratory system compliance, we found that PEEP displaced the ventilated lung region dorsally by 2 cm, decreased tidal volume by 1.3%, and increased the respiratory system compliance time constant by 0.3 s. F I O 2 decreased tidal volume by 0.7%. All effects were tested at p < 0.05 with n = 16. These findings suggest that the proposed ROI detection method is robust and sensitive to ventilation dynamics in the experimental setting

  9. A two-layered forward model of tissue for electrical impedance tomography

    International Nuclear Information System (INIS)

    Kulkarni, Rujuta; Saulnier, Gary J; Kao, Tzu-Jen; Newell, Jonathan C; Boverman, Gregory; Isaacson, David

    2009-01-01

    Electrical impedance tomography is being explored as a technique to detect breast cancer, exploiting the differences in admittivity between normal tissue and tumors. In this paper, the geometry is modeled as an infinite half space under a hand-held probe. A forward solution and a reconstruction algorithm for this geometry were developed previously by Mueller et al (1999 IEEE Trans. Biomed. Eng. 46 1379). In this paper, we present a different approach which uses the decomposition of the forward solution into its Fourier components to obtain the forward solution and the reconstructions. The two approaches are compared in terms of the forward solutions and the reconstructions of experimental tank data. We also introduce a two-layered model to incorporate the presence of the skin that surrounds the body area being imaged. We demonstrate an improvement in the reconstruction of a target in a layered medium using this layered model with finite difference simulated data. We then extend the application of our layered model to human subject data and estimate the skin and the tissue admittivities for data collected on the human abdomen using an ultrasound-like hand-held EIT probe. Lastly, we show that for this set of human subject data, the layered model yields an improvement in predicting the measured voltages of around 81% for the lowest temporal frequency (3 kHz) and around 61% for the highest temporal frequency (1 MHz) applied when compared to the homogeneous model

  10. Circular resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V

    2010-01-01

    We introduce an algorithm for the numerical solution of electrical impedance tomography (EIT) in two dimensions, with partial boundary measurements. The algorithm is an extension of the one in Borcea et al (2008 Inverse Problems 24 035013 (31pp)) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) for EIT with full boundary measurements. It is based on resistor networks that arise in finite volume discretizations of the elliptic partial differential equation for the potential on so-called optimal grids that are computed as part of the problem. The grids are adaptively refined near the boundary, where we measure and expect better resolution of the images. They can be used very efficiently in inversion, by defining a reconstruction mapping that is an approximate inverse of the forward map, and acts therefore as a preconditioner in any iterative scheme that solves the inverse problem via optimization. The main result in this paper is the construction of optimal grids for EIT with partial measurements by extremal quasiconformal (Teichmüller) transformations of the optimal grids for EIT with full boundary measurements. We present the algorithm for computing the reconstruction mapping on such grids, and we illustrate its performance with numerical simulations. The results show an interesting trade-off between the resolution of the reconstruction in the domain of the solution and distortions due to artificial anisotropy induced by the distribution of the measurement points on the accessible boundary

  11. A High Performance Impedance-based Platform for Evaporation Rate Detection.

    Science.gov (United States)

    Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng

    2016-10-17

    This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.

  12. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  13. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  14. Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy

    International Nuclear Information System (INIS)

    Takebe, H; Sakamoto, D; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T

    2002-01-01

    We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO 2 (Y 2 O 3 -ZrO 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure

  15. Self-impedances of finite and infinite wires with earth-return

    International Nuclear Information System (INIS)

    Koglin, H.J.; Meyer, E.P.

    1981-01-01

    The electromagnetic field for a thin wire of finite length, embedded in a homogeneous earth of infinite extent in all directions, is given. The distribution of the electric field intensity close to the wire is examined. The mathematical model for the finite wire is expanded by substituting a spheroidal earth-electrode at each end. The external self-impedance of the wire between the earth-electrodes is calculated by integrating the electric field intensity along a presupposed radius. Especially in the case of short wires the results show considerable deviations to the known depth of current penetration as compared to that of an infinitely long wire. By considering the approximations used for short wires in this model, one can draw conclusions on the external self-impedance for short wires above, on and under the earth's surface. (orig.) [de

  16. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  17. Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring.

    Directory of Open Access Journals (Sweden)

    Divya Padmaraj

    Full Text Available A biological microelectromechanical system (BioMEMS device was designed to study complementary mitochondrial parameters important in mitochondrial dysfunction studies. Mitochondrial dysfunction has been linked to many diseases, including diabetes, obesity, heart failure and aging, as these organelles play a critical role in energy generation, cell signaling and apoptosis. The synthesis of ATP is driven by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. We have developed a tool to study the ionic activity of the mitochondria in parallel with dielectric measurements (impedance spectroscopy to gain a better understanding of the properties of the mitochondrial membrane. This BioMEMS chip includes: 1 electrodes for impedance studies of mitochondria designed as two- and four-probe structures for optimized operation over a wide frequency range and 2 ion-sensitive field effect transistors for proton studies of the electron transport chain and for possible monitoring other ions such as sodium, potassium and calcium. We have used uncouplers to depolarize the mitochondrial membrane and disrupt the ionic balance. Dielectric spectroscopy responded with a corresponding increase in impedance values pointing at changes in mitochondrial membrane potential. An electrical model was used to describe mitochondrial sample's complex impedance frequency dependencies and the contribution of the membrane to overall impedance changes. The results prove that dielectric spectroscopy can be used as a tool for membrane potential studies. It can be concluded that studies of the electrochemical parameters associated with mitochondrial bioenergetics may render significant information on various abnormalities attributable to these organelles.

  18. Impeditividad eléctrica en la detección temprana del cáncer cervical Electrical impedivity in the early detection of cervical cancer

    Directory of Open Access Journals (Sweden)

    David Alejandro Miranda Mercado

    2010-12-01

    Full Text Available La espectroscopia de impeditividad eléctrica (EIE es una técnica que permite estudiar las propiedades eléctricas de los materiales, como por ejemplo, el tejido humano. El objetivo de esta investigación fue comparar la EIE con la histopatología de cérvix y determinar la capacidad de la EIE de diferenciar entre tejidos normales y lesiones neoplásicas asociadas a cáncer de cervix. El espectro de impeditividad eléctrica se midió en tejido cervical in vivo y ex vivo. Las medidas EIE se compararon con los resultados obtenidos del estudio histopatológico de las mismas muestras y se encontró una correlación significativa (p The electrical impedivity spectroscopy (EIS is a technique used to study the electrical properties of the materials, including human tissue. The objective of this research was the comparison between EIS and the cervix histopathology and determinate the capability of the EIS to differentiate between normal and neoplastic tissue. In this research, the electrical impedivity spectrum in cervical tissue was measured in vivo and ex vivo. The EIS measures were compared with the histopathological study results for each tissue. A significant correlation in the discrimination between the normal and abnormal tissue was obtained (p < 0.05. The results of this research could be employed in the future studies for validation of new diagnostic techniques using the histopathology results as the gold standard. Salud UIS 2010; 42: 212-219

  19. Impedance measurement of irradiated potatoes: a method to identify radiation processing

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.H.

    1992-01-01

    The potato is firmly established in many parts of the world as a major staple food. Then, radiation processing of potato is approved in many countries for sprouting inhibition and extension of shelf life in a dose range from about 0.01 to 0.15 kGy of 60 Co. The use of electrical conductance methods for the detection of Salmonella, some virus or the action of herbicides on plant has been reported and differences have been observed between instruments in respect of the magnitude of conductance change or rates of change in conductance response. A reliable technique to identify potatoes or other food products has not been established so far, though several methods have been reported. Electrical impedance might thus serve for characterization of unirradiated and irradiated tissues and cells. In this work, potato tubers from an European variety, named Bintje, grown in Sao Paulo State were employed. Potatoes were punctured with steel electrodes and impedance measured at different frequencies (1 k Hz-100 k Hz) by passing 3-5 m A alternating current through it. The impedance ratio of 50 k Hz/5 k Hz calculated from ten replicate samples decreases with the increment of the dose when doses of O 0.75 and 0.15 kGy from a Gamma Cell 220 were utilized. The impedance measurement were slightly affected by the place of puncture. (author)

  20. Investigating the low-temperature impedance increase of lithium-ion cells

    International Nuclear Information System (INIS)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  1. Towards the development of a wearable Electrical Impedance Tomography system: A study about the suitability of a low power bioimpedance front-end.

    Science.gov (United States)

    Menolotto, Matteo; Rossi, Stefano; Dario, Paolo; Della Torre, Luigi

    2015-01-01

    Wearable systems for remote monitoring of physiological parameter are ready to evolve towards wearable imaging systems. The Electrical Impedance Tomography (EIT) allows the non-invasive investigation of the internal body structure. The characteristics of this low-resolution and low-cost technique match perfectly with the concept of a wearable imaging device. On the other hand low power consumption, which is a mandatory requirement for wearable systems, is not usually discussed for standard EIT applications. In this work a previously developed low power architecture for a wearable bioimpedance sensor is applied to EIT acquisition and reconstruction, to evaluate the impact on the image of the limited signal to noise ratio (SNR), caused by low power design. Some anatomical models of the chest, with increasing geometric complexity, were developed, in order to evaluate and calibrate, through simulations, the parameters of the reconstruction algorithms provided by Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) project. The simulation results were compared with experimental measurements taken with our bioimpedance device on a phantom reproducing chest tissues properties. The comparison was both qualitative and quantitative through the application of suitable figures of merit; in this way the impact of the noise of the low power front-end on the image quality was assessed. The comparison between simulation and measurement results demonstrated that, despite the limited SNR, the device is accurate enough to be used for the development of an EIT based imaging wearable system.

  2. Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Haifeng Dai

    2018-01-01

    Full Text Available Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs, and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.

  3. A feasibility study of magnetic resonance electrical impedance tomography for prostate cancer detection

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Yingchun

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an imaging technique that reconstructs the conductivity distribution inside the subject using magnetic flux density or current density measurements acquired by a magnetic resonance imaging system. Since the primary prostate cancer diagnostic method, prostate biopsy, has limited accuracy in cancer diagnosis and malignant tissues have shown significantly different electrical properties from normal or benign tissues, MREIT has potential application in prostate cancer detection. The feasibility of utilizing MREIT in detecting prostate cancer was evaluated via a series of well-designed computer simulations in the present study. MREIT techniques with three different electrode configurations (external, trans-rectal, and trans-urethral electrode arrays) and two different reconstruction algorithms (J-substitution algorithm and harmonic B z  algorithm) were successfully developed. The performance of different MREIT techniques were evaluated and compared based on the imaging accuracy of the reconstructed conductivity distribution in the prostate. Without the presence of noise, the external MREIT achieves a better imaging accuracy than the two endo-MREIT (trans-rectal and trans-urethral) techniques, while the trans-urethral MREIT achieves the best imaging accuracy in noisy environments. We also found that the J-substitution reconstruction algorithm consistently offered better imaging accuracy than the harmonic B z  algorithm. When Gaussian distributed random noise with a standard deviation of 0.25 nT was added, the relative errors (RE) between the reconstructed and target conductivity distributions inside the prostate were observed to be 14.18% and 17.35% by the trans-urethral MREIT with the J-substitution and harmonic B z  algorithms respectively. The lower REs of 9.64% and 11.17% were achieved respectively when the standard deviation of noise was reduced to 0.05 nT. The simulation results demonstrate the

  4. LIA longitudinal coupling impedance

    International Nuclear Information System (INIS)

    Faltens, A.

    1980-01-01

    The beam generated fields enter into the problems of waveform generation and longitudinal stability. In the former, provision must be made for the longitudinally defocusing forces due to the space charge and the beam loading effects on the accelerating voltage due to the current of a presumably known bunch. In the latter, the concern is for the growth of unintentional perturbations to unacceptably large values through the interaction of the charge and current fluctuations with the rest of the beam and the surrounding structures. These beam generated electric fields may be related to the beam current through a coupling impedance

  5. Assessing the immediate impact of botulinum toxin injection on impedance of spastic muscle.

    Science.gov (United States)

    Li, Xiaoyan; Shin, Henry; Li, Le; Magat, Elaine; Li, Sheng; Zhou, Ping

    2017-05-01

    This study aimed to investigate the immediate impacts of Botulinum Toxin A (BoNT-A) injections on the inherent electrical properties of spastic muscles using a newly developed electrical impedance myography (EIM) technique. Impedance measures were performed before and after a BoNT-A injection in biceps brachii muscles of 14 subjects with spasticity. Three major impedance variables, resistance (R), reactance (X) and phase angle (θ) were obtained from three different configurations, and were evaluated using the conventional EIM frequency at 50kHz as well as multiple frequency analysis. Statistical analysis demonstrated a significant decrease of resistance in the injected muscles (Multiple-frequency: R pre =25.17±1.94Ohm, R post =23.65±1.63Ohm, ptoxin effects on the muscle. This study demonstrated high sensitivity of the EIM technique in the detection of alterations to muscle composition. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Electrical and impedance spectroscopy analysis of sol-gel derived spin coated Cu2ZnSnS4 solar cell

    Science.gov (United States)

    Gupta, Goutam Kumar; Garg, Ashish; Dixit, Ambesh

    2018-01-01

    We carried out electrical and impedance studies on solution derived Al:ZnO/ZnO/CdS/Cu2ZnSnS4/Mo/Glass multilayered solar cell structures to understand their impact on photovoltaic performance. The Cu2ZnSnS4 layer is synthesized on a molybdenum (Mo) coated soda lime glass substrate as an absorber and characterized intensively to optimize the absorber physical properties. The optimized Cu2ZnSnS4 is p-type with 5.8 × 1017 cm-3 hole carrier concentration. The depletion width of the junction is around 20.5 nm and the diffusion capacitance is ˜35.5 nF for these devices. We observed relatively large minority carrier life time ˜23 μs for these structures using open voltage decay analysis. The measured Cu2ZnSnS4/MoS2 and Cu2ZnSnS4/CdS interface resistances are 7.6 kΩ and 12.5 kΩ, respectively. The spatial inhomogeneities are considered and the corresponding resistance is ˜11.4 kΩ. The impedance measurements suggest that in conjunction with series resistance ˜350 Ω, the interface and spatial inhomogeneity resistances also give a significant contribution to the photovoltaic performance.

  7. Relaxations in Ba{sub 2}BiTaO{sub 6} ceramics investigated by impedance and electric modulus spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Joao Elias Figuereido Soares [Departamento de Fisica - CCET, Universidade Federal do Maranhao, Campus do Bacanga, 65085-580, Sao Luis -MA (Brazil); Paschoal, Carlos William de Araujo, E-mail: paschoal@ufma.br [Departamento de Fisica - CCET, Universidade Federal do Maranhao, Campus do Bacanga, 65085-580, Sao Luis -MA (Brazil); Silva, Eder Nascimento [Departamento de Fisica - CCET, Universidade Federal do Maranhao, Campus do Bacanga, 65085-580, Sao Luis -MA (Brazil); Mince, Kathryn A.; Lufaso, Michael W. [Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We have confirmed that the relaxation observed in Ba{sub 2}BiTaO{sub 6} is due to the conduction mechanism. Black-Right-Pointing-Pointer The conduction mechanism is the oxygen vacancies hopping. Black-Right-Pointing-Pointer We have explained because the activation energy for the Ba{sub 2}BiTaO{sub 6} is lower than observed for Ba{sub 2}BiSbO{sub 6} with basis in zero-point energy of both materials. Black-Right-Pointing-Pointer We have showed that a minor secondary phase is a minor secondary phase, which is common when the BBTO is obtained by ceramic method under air, does not change significantly the electrical properties of BBTO. -- Abstract: Impedance spectroscopy analysis of the dielectric properties of a Ba{sub 2}BiTaO{sub 6} ceramic was performed in the temperature range from room temperature to 500 K. The sample was prepared using conventional solid state synthesis under air and the X-ray diffraction shows the presence of Ba{sub 5}Ta{sub 4}O{sub 15} as a minor secondary phase (0.09%). The impedance data clearly show contributions of the grain and grain boundary. The results indicate that the conduction in Ba{sub 2}BiTaO{sub 6} is due to hopping of oxygen vacancies and that the impurities not influence the conduction mechanism.

  8. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    Science.gov (United States)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  9. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  10. Multivariate analysis of electrical impedance spectra for relaxed and contracted skeletal muscle

    International Nuclear Information System (INIS)

    Zagar, T; Krizaj, D

    2008-01-01

    Four-electrode impedance spectra of relaxed and contracted muscle biceps brachii were analyzed in an adult human subject over the frequency range from 300 Hz to 75 kHz. A feasibility of the principal component analysis of bioimpedance measurement for the evaluation of skeletal muscle contractile state was examined. The principal components score plots show a data grouping of the impedance spectra from the two muscle groups. The classification was performed using a soft independent modeling of class analogy (SIMCA) method. The data set comprised 32 samples (16 samples of contracted muscle and 16 samples of relaxed muscle). The leave-one-out test of the classification yields about 80% of correctly classified samples (11 samples for contracted and 15 samples for relaxed muscle)

  11. Microstructure and electrical properties of slug-type resistors based on B4C and TiC - ESCA - XPS and impedance spectroscopy investigations

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.; Bak, W.; Starzyk, F.

    2000-01-01

    The microstructure and electrical properties of slug-type resistors based on B 4 C and TiC were investigated. From XPS measurements was deducted that Ti in TiO 2 is in intermediate oxidation number between Ti +4 and Ti +3 . The impedance of both type of resistors is independent on frequency in the range from 10 3 to 10 4 Hz, only very subtle differences above 10 4 Hz are observed. The metallic type conductivity in TiC and semiconducting in B 4 C was established. (author)

  12. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    Directory of Open Access Journals (Sweden)

    Ramasamy S

    2014-12-01

    Full Text Available Sakthivel Ramasamy,1 Devasier Bennet,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea; 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. Keywords: screening of bioactive agents, impedance-based cell

  13. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    International Nuclear Information System (INIS)

    Nguyen, D T; Kosobrodov, R; Jin, C; McEwan, A; Barry, M A; Chik, W; Thiagalingam, A; Oh, T I

    2013-01-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  14. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography

    International Nuclear Information System (INIS)

    Deibele, J M; Luepschen, H; Leonhardt, S

    2008-01-01

    In spontaneously breathing or ventilated subjects, it is difficult to image cardiac-related conductivity changes using electrical impedance tomography (EIT) due to the high amplitude of the ventilation component. Previous attempts to separate these components included either electrocardiogram-gated averaging, frequency domain filtering or holding the breath while performing the measurements. However, such methods are either not able to produce continuous real-time images or to fully separate cardiac and pulmonary changes. The aim of this work was to develop a new dynamic filtering method for the online separation of pulmonary and cardiac changes avoiding the drawbacks of the previous attempts. The approach is based on estimating template functions for the pulmonary and cardiac components by means of principal component analysis and frequency domain filtering. Then, these templates are fitted into the input signals. The new method enables an observer to examine the variation of the cardiac signal beat-by-beat after a one-time setup period of 20 s. Preliminary in vivo results of two healthy subjects are presented. The results are superior to frequency domain filtering and in good agreement with signals averaged over several cardiac cycles. The method does not depend on ECG or other a priori knowledge. The apparent validity of the method's ability to separate cardiac and pulmonary changes in EIT images was shown and has to be confirmed in future studies. The algorithm opens up new possibilities for future clinical trials on continuous monitoring by means of EIT and for the examination of the relation between the cardiac component and lung perfusion

  15. Regional respiratory inflation and deflation pressure-volume curves determined by electrical impedance tomography.

    Science.gov (United States)

    Frerichs, I; Dargaville, P A; Rimensberger, P C

    2013-06-01

    Measurement of regional lung volume changes during a quasi-static pressure-volume (PV) manoeuvre using electrical impedance tomography (EIT) could be used to assess regional respiratory system mechanics and to determine optimal ventilator settings in individual patients. Using this approach, we studied regional respiratory system mechanics in healthy and lung-injured animals, before and after surfactant administration during inflation and deflation PV manoeuvres. The comparison of the EIT-derived regional PV curves in ventral, middle and dorsal regions of the right and left lungs showed not only different amounts of hysteresis in these regions but also marked differences among different landmark pressures calculated on the inflation and deflation limbs of the curves. Regional pressures at maximum compliance as well as the lower and upper pressures of maximum compliance change differed between the inflation and deflation and increased from ventral to dorsal regions in all lung conditions. All these pressure values increased in the injured and decreased in the surfactant treated lungs. Examination of regional respiratory system mechanics using EIT enables the assessment of spatial and temporal heterogeneities in the ventilation distribution. Characteristic landmarks on the inflation and especially on the deflation limb of regional PV curves may become useful measures for guiding mechanical ventilation.

  16. Regional respiratory inflation and deflation pressure–volume curves determined by electrical impedance tomography

    International Nuclear Information System (INIS)

    Frerichs, I; Dargaville, P A; Rimensberger, P C

    2013-01-01

    Measurement of regional lung volume changes during a quasi-static pressure–volume (PV) manoeuvre using electrical impedance tomography (EIT) could be used to assess regional respiratory system mechanics and to determine optimal ventilator settings in individual patients. Using this approach, we studied regional respiratory system mechanics in healthy and lung-injured animals, before and after surfactant administration during inflation and deflation PV manoeuvres. The comparison of the EIT-derived regional PV curves in ventral, middle and dorsal regions of the right and left lungs showed not only different amounts of hysteresis in these regions but also marked differences among different landmark pressures calculated on the inflation and deflation limbs of the curves. Regional pressures at maximum compliance as well as the lower and upper pressures of maximum compliance change differed between the inflation and deflation and increased from ventral to dorsal regions in all lung conditions. All these pressure values increased in the injured and decreased in the surfactant treated lungs. Examination of regional respiratory system mechanics using EIT enables the assessment of spatial and temporal heterogeneities in the ventilation distribution. Characteristic landmarks on the inflation and especially on the deflation limb of regional PV curves may become useful measures for guiding mechanical ventilation. (paper)

  17. Monitoring voltage-sensitive membrane impedance change using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2010-01-01

    Here we present a new technique to monitor dynamic conformational changes in voltage-sensitive membrane-bound proteins using radio frequency (RF) impedance measurements. Xenopus oocytes were transfected to express ShakerB-IR K(+) ion channels, and step changes in membrane potential were applied using two-electrode voltage clamp (TEVC). Simultaneously, bipolar extracellular electrodes were used to measure the RF electrical impedance across the cell (300 kHz - 1 MHz). RF current will either pass through the media, around the cell, or displace charge across the cell membrane. The change in displacement current in the cell membrane during voltage clamp resulted in measurable RF impedance change. RF impedance change during DC membrane depolarization was significantly greater in ShakerB-IR expressing oocytes than in endogenous controls at 300 kHz, 500 kHz and, to a lesser extent, 1 MHz. Since the RF were too high to modulate ShakerB-IR protein conformational state (e.g. open channel probability), impedance changes are interpreted as reflections of voltage-dependent protein conformation and associated biophysics such as ion-channel dipole interactions, fluctuations in bound water, or charged lipid head-group rotations.

  18. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics.

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  19. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  20. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    Science.gov (United States)

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  1. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers

    Science.gov (United States)

    Proença, Martin; Adler, Andy; Riedel, Thomas; Thiran, Jean-Philippe; Solà, Josep

    2018-01-01

    Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninvasive measure of SV, but inconsistent results have been reported. Our goal is to determine the accuracy and reliability of EIT-based SV measurements, and whether advanced image reconstruction approaches can help to improve the estimates. Data were collected on ten healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity to heart displacement and thorax morphology reported in previous work, we used a 3D EIT configuration with 2 planes of 16 electrodes and subject-specific reconstruction models. Various EIT-derived SV estimates were compared to reference measurements derived from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images. Therefore, the analysis was restricted to measurements in supine position under controlled conditions (low noise and stable heart and lung regions). In these measurements, amplitudes of impedance changes in the heart and lung regions could successfully be derived from EIT using ECG gating. However, despite a subject-specific calibration the heart-related estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of relative SV changes, a concordance rate of 80.9% and an angular error of −1.0 ± 23.0° were obtained. These performances are insufficient for most clinical uses. Similar conclusions were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-based SV monitoring is that purely amplitude-based features are strongly influenced by other factors (such as posture, electrode contact impedance and lung or heart conductivity). All the data of the present study are made publicly available for further investigations. PMID:29373611

  2. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study

    Science.gov (United States)

    Rutkove, S. B.; Darras, B. T.

    2013-04-01

    Electrical impedance myography (EIM) provides a non-invasive approach for quantifying the severity of neuromuscular disease. Here we determine how well EIM data correlates to functional and ultrasound (US) measures of disease in children with Duchenne muscular dystrophy (DMD) and healthy subjects. Thirteen healthy boys, aged 2-12 years and 14 boys with DMD aged 4-12 years underwent both EIM and US measurements of deltoid, biceps, wrist flexors, quadriceps, tibialis anterior, and medial gastrocnemius. EIM measurements were performed with a custom-designed probe using a commercial multifrequency bioimpedance device. US luminosity data were quantified using a gray-scale analysis approach. Children also underwent the 6-minute walk test, timed tests and strength measurements. EIM and US data were combined across muscles. EIM 50 kHz phase was able to discriminate DMD children from healthy subjects with 98% accuracy. In the DMD patients, average EIM phase measurements also correlated well with standard functional measures. For example the 50 kHz phase correlated with the Northstar Ambulatory Assessment test (R = 0.83, p = 0.02). EIM 50 kHz phase and US correlated as well, with R = -0.79 (p Duchenne muscular dystrophy severity.

  3. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    Science.gov (United States)

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  4. Impedance and ac conductivity studies of Ba (Pr1/2Nb1/2) O3 ceramic

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Impedance and a.c. conductivity studies of ... Abstract. Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell ...

  5. System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Susana Aguiar Santos

    2016-07-01

    Full Text Available A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz–960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images.

  6. System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography

    Science.gov (United States)

    Aguiar Santos, Susana; Robens, Anne; Boehm, Anna; Leonhardt, Steffen; Teichmann, Daniel

    2016-01-01

    A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz–960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images. PMID:27463715

  7. Impedance spectroscopy study of Na{sub 1/2}Sm{sub 1/2}TiO{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S K; Choudhary, R N.P. [I.I.T., Department of Physics and Meteorology, Kharagpur (India); Mahapatra, P K [Vidyasagar University, Department of Physics and Technophysics, Midnapur, West Bengal (India)

    2007-07-15

    Complex impedance analysis of a valence-compensated perovskite ceramic oxide Na{sub 1/2}Sm{sub 1/2}TiO{sub 3}, prepared by a mixed oxide (solid-state reaction) method, has been carried out. The formation of single-phase material was confirmed by X-ray diffraction studies, and it was found to be an orthorhombic phase at room temperature. In a scanning electron microscope, grains separated by well-defined boundaries are visible, which is in good agreement with that of impedance analysis. Alternating current impedance measurements were made over a wide temperature range (31-400 C) in an air atmosphere. Complex impedance and modulus plots helped to separate out the contributions of grain and grain boundaries to the overall polarization or electrical behavior. The physical structure of the samples was visualized most prominently at higher temperatures (275 C) from the Nyquist plots showing inter- and intragranular impedance present in the material. The frequency dependence of electrical data is also analyzed in the framework of the conductivity and modulus formalisms. The bulk resistance, evaluated from the impedance spectrum, was observed to decrease with rise in temperature, showing a typical negative temperature coefficient of resistance-type behavior like that of semiconductors. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the materials, which is supported by the impedance data. (orig.)

  8. Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajiv [Department of Physics, Jamshedpur Co-operative College, Jamshedpur 831036 (India); Kumar, Rajiv [Department of Physics, Jamshedpur Worker' s College, Jamshedpur 831012 (India); Behera, Banarji [Department of Physics and Meteorology, I.I.T. Kharagpur 721302 (India); Choudhary, R.N.P., E-mail: crnpfl@phy.iitkgp.ernet.i [Department of Physics and Meteorology, I.I.T. Kharagpur 721302 (India)

    2009-11-01

    The polycrystalline samples of Pb{sub 1-x}Sm{sub x}(Zr{sub 0.60}Ti{sub 0.40}){sub 1-x/4}O{sub 3} (PSZT) where x=0.00, 0.03, 0.06 and 0.09 were prepared by a high-temperature solid-state reaction technique. The preliminary structural analysis using X-ray diffraction (XRD) data collected at room temperature has confirmed the formation of single-phase compounds in tetragonal crystal system. The morphological study of each sample using scanning electron microscope (SEM) has revealed that the grains are uniformly distributed through out the surfaces of the samples. Using complex impedance spectroscopy (CIS) technique, the electrical impedance and modulus properties of the materials were studied in a wide range of temperatures at different frequencies. The impedance analysis indicates the presence of bulk resistive contributions in the materials which is found to decrease on increasing temperature. The nature of variation of resistances with temperature suggests a typical negative temperature coefficient of resistance (NTCR) type behavior of the materials. The complex modulus plots clearly exhibits the presence of grain boundaries along with the bulk contributions in the PSZT materials. The presence of non-Debye type of relaxation has been confirmed by the complex impedance analysis. The variation of dc conductivity (bulk) with temperature demonstrates that the compounds exhibit Arrhenius type of electrical conductivity.

  9. Assessment of distribution of ventilation by electrical impedance tomography in standing horses

    International Nuclear Information System (INIS)

    Ambrisko, T D; Schramel, J P; Moens, Y P S; Adler, A; Kutasi, O; Makra, Z

    2016-01-01

    The aim was to evaluate the feasibility of using electrical impedance tomography (EIT) in horses. Thoracic EIT was used in nine horses. Thoracic and abdominal circumference changes were also measured with respiratory ultrasound plethysmography (RUP). Data were recorded during baseline, rebreathing of CO_2 and sedation. Three breaths were selected for analysis from each recording. During baseline breathing, horses regularly took single large breaths (sighs), which were also analysed. Functional EIT images were created using standard deviations (SD) of pixel signals and correlation coefficients (R) of each pixel signal with a reference respiratory signal. Left-to-right ratio, centre-of-ventilation and global-inhomogeneity-index were calculated. RM-ANOVA and Bonferroni tests were used (P  <  0.05). Distribution of ventilation shifted towards right during sighs and towards dependent regions during sighs, rebreathing and sedation. Global-inhomogeneity-index did not change for SD but increased for R images during sedation. The sum of SDs for the respiratory EIT signals correlated well with thoracic (r "2  =  0.78) and abdominal (r "2  =  0.82) tidal circumferential changes. Inverse respiratory signals were identified on the images at sternal location and based on reviewing CT images, seemed to correspond to location of gas filled intestines. Application of EIT in standing non-sedated horses is feasible. EIT images may provide physiologically useful information even in situations, such as sighs, that cannot easily be tested by other methods. (paper)

  10. Wireless guided wave and impedance measurement using laser and piezoelectric transducers

    International Nuclear Information System (INIS)

    Park, Hyun-Jun; Sohn, Hoon; Yun, Chung-Bang; Chung, Joseph; Lee, Michael M S

    2012-01-01

    Guided-wave- and impedance-based structural health monitoring (SHM) techniques have gained much attention due to their high sensitivity to small defects. One of the popular devices commonly used for guided wave and impedance measurements is a lead zirconate titanate (PZT) transducer. This study proposes a new wireless scheme where the power and data required for PZT excitation and sensing are transmitted via laser. First, a modulated laser beam is wirelessly transmitted to the photodiode connected to a PZT on a structure. Then, the photodiode converts the laser light into an electric signal, and it is applied to the PZT for excitation. The corresponding responses, impedance at the same PZT or guided waves at another PZT, are measured, re-converted into laser light, and wirelessly transmitted back to the other photodiode located in the data interrogator for signal processing. The feasibility of the proposed wireless guided wave and impedance measurement schemes has been examined through circuit analyses and experimentally investigated in a laboratory setup. (paper)

  11. Mantle cloaks for elliptical cylinders excited by an electric line source

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Yakovlev, Alexander B.; Arslanagic, Samel

    2016-01-01

    We investigate the ability of surface impedance mantle cloaks for cloaking of elliptical cylinders excited by an electric line source. The exact analytical solution of the problem utilizing Mathieu functions is obtained and is used to derive optimal surface impedances to cloak a number of configu......We investigate the ability of surface impedance mantle cloaks for cloaking of elliptical cylinders excited by an electric line source. The exact analytical solution of the problem utilizing Mathieu functions is obtained and is used to derive optimal surface impedances to cloak a number...

  12. Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Schwartz, Thomas; Rapp, Bastian E.

    2016-03-01

    Biofilm formation is ubiquitous in nature where microorganisms attach to surfaces and form highly adapted and protected communities. In technical and industrial systems like drinking water supply, food production or shipping industry biofilms are a major cause of product contamination, biofouling, and biocorrosion. Therefore, understanding of biofilm formation and means of preventing biofilm formation is important to develop novel biofilm treatment strategies. A system allowing directly online detection and monitoring biofilm formation is necessary. However, until today, there are little to none technical systems featuring a non-destructive real-time characterization of biofilm formation in a highthroughput manner. This paper presents such a microfluidic system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The sensor consists of four modules, each housing 24 independent electrodes within 12 microfluidic channels. Attached biomass on the electrodes is monitored as increased inhibition in charge transfer by EIS and a change in metabolic activity is measured as change in produced electric current by amperometry. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications. Among others, biofilm formation processes can be characterized online, biofilm manipulation like inactivation or destabilization can be monitored in real-time and gene expression can be analyzed in parallel. The use of different electrode designs allows effective biofilm studies during all biofilm phases. The whole system was recently extended by an integrated pneumatic microfluidic pump which enables easy handling procedures. Further developments of this pumping module will allow a fully- automated computer-controlled valving and pumping.

  13. Ventilation distribution in rats: Part 2 – A comparison of electrical impedance tomography and hyperpolarised helium magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Dunster Kimble R

    2012-09-01

    Full Text Available Abstract Background Hyperpolarised helium MRI (He3 MRI is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.

  14. Impact Study on Power Factor of Electrical Load in Power Distribution System

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawardi Hasim; Ahmad Asraf, A.S.

    2014-01-01

    Low Power Factor of electrical loads cause high current is drawn from power supply. The impact of this circumstance is influenced by impedance of electrical load. Therefore, the key consideration of this study is how impedance of electrical loads influence power factor of electrical loads, and then power distribution as the whole. This study is important to evaluate the right action to mitigate low power factor effectively for electrical energy efficiency purpose. (author)

  15. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Guo, Zheng [Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang, Xing-Jiu [Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Wei, Yan, E-mail: yanwei_wnmc@hotmail.com [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China)

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (R{sub et}) for operating the impedance. A linear relation between the relative R{sub et} and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. - Highlights: • A tunable gold nanogap device was used as to electrochemical impedance biosensor. • Linear range from 1 pM to 100 nM with LOD of 1 pM for streptavidin detection was obtained. • The nanogap devices exhibit a satisfactory precision, stability, and reproducibility. • The combination of electrochemical impedance technique and nanogap devices was achieved.

  16. A novel post-processing scheme for two-dimensional electrical impedance tomography based on artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Sébastien Martin

    Full Text Available Electrical Impedance Tomography (EIT is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort.In this paper, a post-processing technique based on an artificial neural network (ANN is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver.Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms.This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications.

  17. Multi-phase flow monitoring with electrical impedance tomography using level set based method

    International Nuclear Information System (INIS)

    Liu, Dong; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2015-01-01

    Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method

  18. Electrical conductivity and transport properties of cement-based materials measured by impedance spectroscopy

    Science.gov (United States)

    Shane, John David

    The use of Impedance Spectroscopy (IS) as a tool to evaluate the electrical and transport properties of cement-based materials was critically evaluated. Emphasis was placed on determining the efficacy of IS by applying it as a tool to investigate several families of cement-based materials. Also, the functional aspects of electroding and null corrections were also addressed. The technique was found to be advantageous for these analyses, especially as a non-destructive, in-situ, rapid test. Moreover, key insights were gained into several cement-based systems (e.g., cement mortars and oil-well grouts) as well as the effect that certain testing techniques can have on materials (e.g., the rapid chloride permeability test). However, some limitations of IS were identified. For instance, improper electroding of samples can lead to erroneous results and incorrect interpretations for both two-point and multi-point measurements. This is an area of great importance, but it has received very little attention in the literature. Although the analysis of cement/electrode techniques is in its infancy, much progress was made in gaining a full understand of how to properly and reliably connect electrodes to cement-based materials. Through the application of IS to materials such as oil-well grouts, cement mortars and concretes, a great deal of valuable information about the effectiveness of IS has been gained. Oil-well cementing is somewhat limited by the inability to make measurements in the well-bore. By applying IS to oil-well grouts in a laboratory environment, it was demonstrated that IS is a viable technique with which to test the electrical and transport properties of these materials in-situ. Also, IS was shown to have the ability to measure the electrical conductivity of cement mortars with such accuracy, that very subtle changes in properties can be monitored and quantified. Through the use of IS and theoretical models, the complex interplay between the interfacial transition

  19. A network model to correlate conformational change and the impedance spectrum of single proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via Arnesano, Lecce (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) (Italy)

    2008-02-13

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  20. Photoluminescence and electrical impedance measurements on alloyed Zn{sub (1-x)}Cd{sub x}S nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. Sakthi Sudar, E-mail: rsakthiss@yahoo.com [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer High yield synthesis of Zn-Cd-S QDs. is achieved by solvothermal-microwave heating. Black-Right-Pointing-Pointer The samples are highly crystalline and the average particle size is {approx}3.5 nm. Black-Right-Pointing-Pointer High luminescent quantum yield and narrow emission spectral widths are obtained. Black-Right-Pointing-Pointer High conduction activation energy is observed in the case of Zn-Cd coexisting QDs. - Abstract: A series of wurtzite Zn{sub (1-x)}Cd{sub x}S (x = 0, 0.25, 0.5, 0.75 and 1) nanocrystals with average crystallite size of 1.98, 1.82, 1.80, 2.04 and 2.51 nm, respectively, have been synthesized by simple solvothermal microwave heating method. The photoluminescence yield is found to be higher in the case of alloyed nanocrystals (x = 0.25, 0.5, 0.75) as compared to ZnS (x = 0) and CdS (x = 1). The optical emission is tuned from blue (440 nm) to orange (575 nm) with the increase of Cd composition in Zn{sub (1-x)}Cd{sub x}S nanocrystal. The impedance analysis for Zn{sub (1-x)}Cd{sub x}S nanocrystals has been measured as a function of frequency and temperature. The real and imaginary part of complex impedance plots exhibit semicircle behavior in the complex plane. The AC activation energies of ZnS, Zn{sub 0.75}Cd{sub 0.25}S, Zn{sub 0.5}Cd{sub 0.5}S, Zn{sub 0.25}Cd{sub 0.75}S and CdS nanocrystals were calculated from electrical conductivity analysis and are found to be 0.188, 0.378, 0.456, 0.284 and 0.255 eV, respectively. The conductivity of the alloyed nanocrystals was higher than that of ZnS and CdS.

  1. Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions

    Directory of Open Access Journals (Sweden)

    Jiangong Zhu

    2017-01-01

    Full Text Available An impedance-based temperature estimation method is investigated considering the electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium before the impedance measurement. A detailed experiment is performed to investigate the regularity of the battery impedance in short-term relaxation time after switch-off current excitation, which indicates that the impedance can be measured and also has systematical decrement with the relaxation time growth. Based on the discussion of impedance variation in electrochemical perspective, as well as the monotonic relationship between impedance phase shift and battery internal temperature in the electrochemical equilibrium state, an exponential equation that accounts for both measured phase shift and relaxation time is established to correct the measuring deviation caused by electrochemical non-equilibrium. Then, a multivariate linear equation coupled with ambient temperature is derived considering the temperature gradients between the active part and battery surface. Equations stated above are all identified with the embedded thermocouple experimentally. In conclusion, the temperature estimation method can be a valuable alternative for temperature monitoring during cell operating, and serve the functionality as an efficient implementation in battery thermal management system for electric vehicles (EVs and hybrid electric vehicles (HEVs.

  2. Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection

    Directory of Open Access Journals (Sweden)

    Maria Mallén-Alberdi

    2016-03-01

    Full Text Available Impedance-based biosensors for bacterial detection offer a rapid and cost-effective alternative to conventional techniques that are time-consuming and require specialized equipment and trained users. In this work, a new bacteria detection scheme is presented based on impedance measurements with antibody-modified polysilicon interdigitated electrodes (3 μm pitch, IDEs. The detection approach was carried out taking advantage of the E. coli structure which, in electrical terms, is constituted by two insulating cell membranes that separate a conductive cytoplasmatic medium and a more conductive periplasm. Impedance detection of bacteria is usually analyzed using electrical equivalent circuit models that show limitations for the interpretation of such complex cell structure. Here, a differential impedance spectrum representation is used to study the unique fingerprint that arises when bacteria attach to the surface of IDEs. That fingerprint shows the dual electrical behavior, insulating and conductive, at different frequency ranges. In parallel, finite-element simulations of this system using a three-shell bacteria model are performed to explain such phenomena. Overall, a new approach to detect bacteria is proposed that also enables to differentiate viable bacteria from other components non-specifically attached to the IDE surface by just detecting their spectral fingerprints. Keywords: Impedance spectroscopy, Bacterial detection, Interdigitated electrodes, Label-free detection, Immuno-detection, E. coli O157:H7

  3. Electricity electron measurement

    International Nuclear Information System (INIS)

    Kim, Sang Jin; Sung, Rak Jin

    1985-11-01

    This book deals with measurement of electricity and electron. It is divided into fourteen chapters, which depicts basic of electricity measurement, unit and standard, important electron circuit for measurement, instrument of electricity, impedance measurement, power and power amount measurement, frequency and time measurement, waveform measurement, record instrument and direct viewing instrument, super high frequency measurement, digital measurement on analog-digital convert, magnetic measurement on classification by principle of measurement, measurement of electricity application with principle sensors and systematization of measurement.

  4. Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors.

    Science.gov (United States)

    Mills, Edmund Martin; Kim, Sangtae

    2016-12-15

    Peukert's equation is widely used to model the rate dependence of battery capacity, and has recently attracted attention for application to supercapacitors. Here we present a newly developed method to readily determine Peukert's constant using impedance spectroscopy. Impedance spectroscopy is ideal for this purpose as it has the capability of probing electrical performance of a device over a wide range of time-scales within a single measurement. We demonstrate that the new method yields consistent results with conventional galvanostatic measurements through applying it to commercially available supercapacitors. Additionally, the novel method is much simpler and more precise, making it an attractive alternative for the determination of Peukert's constant.

  5. Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator

    International Nuclear Information System (INIS)

    Arriagada, A J; Jurkov, A S; Mintchev, M P; Neshev, E; Andrews, C N; Muench, G

    2011-01-01

    Functional neural gastrointestinal electrical stimulation (NGES) is a methodology of gastric electrical stimulation that can be applied as a possible treatment for disorders such as obesity and gastroparesis. NGES is capable of generating strong lumen-occluding local contractions that can produce retrograde or antegrade movement of gastric content. A feedback-controlled implantable NGES system has been designed, implemented and tested both in laboratory conditions and in an acute animal setting. The feedback system, based on gastric tissue impedance change, is aimed at reducing battery energy requirements and managing the phenomenon of gastric tissue accommodation. Acute animal testing was undertaken in four mongrel dogs (2 M, 2 F, weight 25.53 ± 7.3 kg) that underwent subserosal two-channel electrode implantation. Three force transducers sutured serosally along the gastric axis and a wireless signal acquisition system were utilized to record stimulation-generated contractions and tissue impedance variations respectively. Mechanically induced contractions in the stomach were utilized to indirectly generate a tissue impedance change that was detected by the feedback system. Results showed that increasing or decreasing impedance changes were detected by the implantable stimulator and that therapy can be triggered as a result. The implantable feedback system brings NGES one step closer to long term treatment of burdening gastric motility disorders in humans

  6. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study

    International Nuclear Information System (INIS)

    Rutkove, S B; Darras, B T

    2013-01-01

    Electrical impedance myography (EIM) provides a non-invasive approach for quantifying the severity of neuromuscular disease. Here we determine how well EIM data correlates to functional and ultrasound (US) measures of disease in children with Duchenne muscular dystrophy (DMD) and healthy subjects. Thirteen healthy boys, aged 2–12 years and 14 boys with DMD aged 4–12 years underwent both EIM and US measurements of deltoid, biceps, wrist flexors, quadriceps, tibialis anterior, and medial gastrocnemius. EIM measurements were performed with a custom-designed probe using a commercial multifrequency bioimpedance device. US luminosity data were quantified using a gray-scale analysis approach. Children also underwent the 6-minute walk test, timed tests and strength measurements. EIM and US data were combined across muscles. EIM 50 kHz phase was able to discriminate DMD children from healthy subjects with 98% accuracy. In the DMD patients, average EIM phase measurements also correlated well with standard functional measures. For example the 50 kHz phase correlated with the Northstar Ambulatory Assessment test (R = 0.83, p = 0.02). EIM 50 kHz phase and US correlated as well, with R = −0.79 (p < 0.001). These results show that EIM provides valuable objective measures Duchenne muscular dystrophy severity.

  7. The effect of serial data collection on the accuracy of electrical impedance tomography images

    International Nuclear Information System (INIS)

    Yerworth, Rebecca; Bayford, Richard

    2013-01-01

    There has been a surge of interest in using electrical impedance tomography (EIT) for monitoring regional lung ventilation, however, EIT is an ill-conditioned problem, and errors/noise in the boundary voltages can have an undesirable effect on the quality of the final image. Most EIT systems in clinical usage use serial data collection hence data used to create a single image will have been collected at different times. This paper presents a study of the resulting image distortion, and proposes a method for correcting this lag in situations where the frame rate is insufficient to prevent significant image degradation. Significant correlation between the standard deviation of the time dependent reciprocity error and time delay dL e between the reciprocal electrode combinations was found for both adult and neonate data. This was reduced when the data was corrected for dL e . Original and corrected data was reconstructed with the GREIT algorithm and visible differences were found for the neonate data. Ideally EIT systems should be run at a frame rate of at least 50 times the frequency of the dominant and interesting physiological signals. Where this is not practical, the intra-frame system timings should be determined and lag corrected for. (paper)

  8. A Local Region of Interest Imaging Method for Electrical Impedance Tomography with Internal Electrodes

    Directory of Open Access Journals (Sweden)

    Hyeuknam Kwon

    2013-01-01

    Full Text Available Electrical Impedance Tomography (EIT is a very attractive functional imaging method despite the low sensitivity and resolution. The use of internal electrodes with the conventional reconstruction algorithms was not enough to enhance image resolution and accuracy in the region of interest (ROI. We propose a local ROI imaging method with internal electrodes developed from careful analysis of the sensitivity matrix that is designed to reduce the sensitivity of the voxels outside the local region and optimize the sensitivity of the voxel inside the local region. We perform numerical simulations and physical measurements to demonstrate the localized EIT imaging method. In preliminary results with multiple objects we show the benefits of using an internal electrode and the improved resolution due to the local ROI image reconstruction method. The sensitivity is further increased by allowing the surface electrodes to be unevenly spaced with a higher density of surface electrodes near the ROI. Also, we analyse how much the image quality is improved using several performance parameters for comparison. While these have not yet been studied in depth, it convincingly shows an improvement in local sensitivity in images obtained with an internal electrode in comparison to a standard reconstruction method.

  9. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance

    Directory of Open Access Journals (Sweden)

    Amador M. González

    2016-01-01

    Full Text Available Electronic devices using the piezoelectric effect contain piezoelectric materials: often crystals, but in many cases poled ferroelectric ceramics (piezoceramics, polymers or composites. On the one hand, these materials exhibit non-negligible losses, not only dielectric, but also mechanical and piezoelectric. In this work, we made simulations of the effect of the three types of losses in piezoelectric materials on the impedance spectrum at the resonance. We analyze independently each type of loss and show the differences among them. On the other hand, electrical and electronic engineers include piezoelectric sensors in electrical circuits to build devices and need electrical models of the sensor element. Frequently, material scientists and engineers use different languages, and the characteristic material coefficients do not have a straightforward translation to those specific electrical circuit components. To connect both fields of study, we propose the use of accurate methods of characterization from impedance measurements at electromechanical resonance that lead to determination of all types of losses, as an alternative to current standards. We introduce a simplified equivalent circuit model with electrical parameters that account for piezoceramic losses needed for the modeling and design of industrial applications.

  10. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance.

    Science.gov (United States)

    González, Amador M; García, Álvaro; Benavente-Peces, César; Pardo, Lorena

    2016-01-26

    Electronic devices using the piezoelectric effect contain piezoelectric materials: often crystals, but in many cases poled ferroelectric ceramics (piezoceramics), polymers or composites. On the one hand, these materials exhibit non-negligible losses, not only dielectric, but also mechanical and piezoelectric. In this work, we made simulations of the effect of the three types of losses in piezoelectric materials on the impedance spectrum at the resonance. We analyze independently each type of loss and show the differences among them. On the other hand, electrical and electronic engineers include piezoelectric sensors in electrical circuits to build devices and need electrical models of the sensor element. Frequently, material scientists and engineers use different languages, and the characteristic material coefficients do not have a straightforward translation to those specific electrical circuit components. To connect both fields of study, we propose the use of accurate methods of characterization from impedance measurements at electromechanical resonance that lead to determination of all types of losses, as an alternative to current standards. We introduce a simplified equivalent circuit model with electrical parameters that account for piezoceramic losses needed for the modeling and design of industrial applications.

  11. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca) oils extracted by Soxhlet and mechanical pressing

    OpenAIRE

    Vieira, D. S.; Menezes, M.; Gonçalves, G.; Mukai, H.; Lenzi, E. K.; Pereira, N. C.; Fernandes, P. R.G.

    2015-01-01

    In this report, the temperature dependence of the refractive index and electric impedance of vegetable oil grape seeds extracted from Vitis vinifera (v. Cabernet) and Vitis labrusca (v. Bordo) are investigated by means of experimental techniques. The seeds were collected from wineries located in two cities in the south of Brazil. In both extraction methods, the seeds were dried at 40.0 °C and at 80.0 °C, respectively, before the oil extraction. From optical microscopy and refractometry result...

  12. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling

    International Nuclear Information System (INIS)

    Xie, Yuanyuan; Li, Jianyang; Yuan, Chris

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) has been widely utilized as an experimental method for understanding the internal mechanisms and aging effect of lithium ion battery. However, the impedance interpretation still has a lot of difficulties. In this study, a multi-physics based EIS simulation approach is developed to study the cycling effect on the battery impedance responses. The SEI film growth during cycling is coherently coupled with the complicated charge, mass and energy transport processes. The EIS simulation is carried out by applying a perturbation voltage on the electrode surface, and the numerical results on cycled cells are compared with the corresponding experimental data. The effect of electrical double layer, electrode open circuit potential as well as the diffusivity of binary electrolyte are simulated on battery impedance responses. The influence of different SEI growth rate, thermal conditions and charging-discharging rate during cycling are also studied. This developed method can be potentially utilized for interpretation and analysis of experimental EIS results

  13. The Effect of Electrical Impedance Matching on the Electromechanical Characteristics of Sandwiched Piezoelectric Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-12-01

    Full Text Available For achieving the power maximum transmission, the electrical impedance matching (EIM for piezoelectric ultrasonic transducers is highly required. In this paper, the effect of EIM networks on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers is investigated in time and frequency domains, based on the PSpice model of single sandwiched piezoelectric ultrasonic transducer. The above-mentioned EIM networks include, series capacitance and parallel inductance (I type and series inductance and parallel capacitance (II type. It is shown that when I and II type EIM networks are used, the resonance and anti-resonance frequencies and the received signal tailing are decreased; II type makes the electro-acoustic power ratio and the signal tailing smaller whereas it makes the electro-acoustic gain ratio larger at resonance frequency. In addition, I type makes the effective electromechanical coupling coefficient increase and II type makes it decrease; II type make the power spectral density at resonance frequency more dramatically increased. Specially, the electro-acoustic power ratio has maximum value near anti-resonance frequency, while the electro-acoustic gain ratio has maximum value near resonance frequency. It can be found that the theoretically analyzed results have good consistency with the measured ones.

  14. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca oils extracted by Soxhlet and mechanical pressing

    Directory of Open Access Journals (Sweden)

    Vieira, D. S.

    2015-09-01

    Full Text Available In this report, the temperature dependence of the refractive index and electric impedance of vegetable oil grape seeds extracted from Vitis vinifera (v. Cabernet and Vitis labrusca (v. Bordo are investigated by means of experimental techniques. The seeds were collected from wineries located in two cities in the south of Brazil. In both extraction methods, the seeds were dried at 40.0 °C and at 80.0 °C, respectively, before the oil extraction. From optical microscopy and refractometry results, one can see that the grape seed oil extracted by mechanical pressing shows a linear dependence between the refractive index and temperature and has no birefringent residues. From the fitting of the EIS (Electrical Impedance Spectroscopy data, an equivalent electric circuit composed of a parallel RC in series with a resistor is proposed. The circuit model is in good agreement with the experimental data and provides the electrical permittivity of the vegetable oils investigated.Se investiga mediante técnicas experimentales la dependencia del índice de refracción y la impedancia eléctrica de aceites vegetales extraídos de semillas de uva Vitis vinifera (v. Cabernet y Vitis labrusca (v. Bordo. Las semillas fueron recolectadas de bodegas situadas en dos ciudades al sur de Brasil. Antes de la extracción del aceite, mediante dos métodos de extracción, las semillas fueron secadas a 40,0 °C y 80,0 °C. De los resultados de refractometria y microscopía óptica, se comprueba que el aceite de semilla de uva extraída por prensado mecánico obedece a una relación lineal del índice de refracción con la temperatura y no presentan resíduos birrefringentes. Con los datos de impedancia eléctrica, se propone un circuito eléctrico equivalente formado por una resistencia y un condensador en paralelo, a su vez ligado a otra resistencia en serie. El modelo de circuito tiene una alta correlación con los datos experimentales y permite obtener la constante diel

  15. Advances In Impedance Theory

    International Nuclear Information System (INIS)

    Stupakov, G.

    2009-01-01

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  16. Reconstruction of conductivity change in lung lobes utilizing electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Schullcke Benjamin

    2017-09-01

    Full Text Available Electrical Impedance Tomography (EIT is a novel medical imaging technology which is expected to give valuable information for the treatment of mechanically ventilated patients as well as for patients with obstructive lung diseases. In lung-EIT electrodes are attached around the thorax to inject small alternating currents and to measure resulting voltages. These voltages depend on the internal conductivity distribution and thus on the amount of air in the lungs. Based on the measured voltages, image reconstruction algorithms are employed to generate tomographic images reflecting the regional ventilation of the lungs. However, the ill-posedness of the reconstruction problem leads to reconstructed images that are severely blurred compared to morphological imaging technologies, such as X-ray computed tomography or Magnetic Resonance Imaging. Thus, a correct identification of the particular ventilation in anatomically assignable units, e.g. lung-lobes, is often hindered. In this study a 3D-FEM model of a human thorax has been used to simulate electrode voltages at different lung conditions. Two electrode planes with 16 electrodes at each layer have been used and different amount of emphysema and mucus plugging was simulated with different severity in the lung lobes. Patient specific morphological information about the lung lobes is used in the image reconstruction process. It is shown that this kind of prior information leads to better reconstructions of the conductivity change in particular lung lobes than in classical image reconstruction approaches, where the anatomy of the patients’ lungs is not considered. Thus, the described approach has the potential to open new and promising applications for EIT. It might be used for diagnosis and disease monitoring for patients with obstructive lung diseases but also in other applications, e.g. during the placement of endobronchial valves in patients with severe emphysema.

  17. Characterization of Bi4Ge3O12 single crystal by impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zélia Soares Macedo

    2003-12-01

    Full Text Available Bi4Ge3O12 (bismuth germanate - BGO single crystals were produced by the Czochralski technique and their electrical and dielectric properties were investigated by impedance spectroscopy. The isothermal ac measurements were performed for temperatures from room temperature up to 750 °C, but only the data taken above 500 °C presented a complete semicircle in the complex impedance diagrams. Experimental data were fitted to a parallel RC equivalent circuit, and the electrical conductivity was obtained from the resistivity values. Conductivity values from 5.4 × 10(9 to 4.3 × 10-7 S/cm were found in the temperature range of 500 to 750 °C. This electrical conductivity is thermally activated, following the Arrhenius law with an apparent activation energy of (1.41 ± 0.04 eV. The dielectric properties of BGO single crystal were also studied for the same temperature interval. Permittivity values of 20 ± 2 for frequencies higher than 10³ Hz and a low-frequency dispersion were observed. Both electric and dielectric behavior of BGO are typical of systems in which the conduction mechanism dominates the dielectric response.

  18. Electrical characteristics of Li(Ni7/10Fe3/10)VO4 ceramics

    International Nuclear Information System (INIS)

    Ram, Moti

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The compound [Li(Ni 7/10 Fe 3/10 )VO 4 ] was synthesized by a solution-based chemical method. → Structural, microstructural and electrical properties are studied using X-ray diffraction, field emission scanning electron microscopy and complex impedance spectroscopy techniques, respectively. → Electrical conductivity study indicates that electrical conduction in the material is a thermally activated process. - Abstract: The compound [Li(Ni 7/10 Fe 3/10 )VO 4 ] was produced by a solution-based chemical route whose electrical properties were investigated using complex impedance spectroscopy technique. X-ray diffraction study reveals an orthorhombic unit cell structure of the compound. Complex electrical impedance analysis exhibits: (i) grain interior, grain boundary and electrode-material interface contributions to electrical response and (ii) the presence of temperature dependent electrical relaxation phenomena in the material. Electrical conductivity study indicates that electrical conduction in the material is a thermally activated process.

  19. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites

    Science.gov (United States)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2018-05-01

    This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.

  20. Magnetic, Electrical Transport and Impedance Spectroscopy Studies on Ti Substituted La0.67Sr0.33MnO3 Ceramics

    International Nuclear Information System (INIS)

    Zalita, Z.; Halim, S.A.; Lim, K.P.; Talib, Z.A.; Hishamuddin, Z.; Walter, C.P.

    2009-01-01

    La 0.67 Sr 0.33 Mn 1-x Ti x O 3 samples with x = 0.0, 0.2, 0.4 and 0.6 have been prepared using the conventional solid-state reaction method. The structure, magnetic and electrical transport properties as well as the impedance spectroscopy of the samples were investigated. The powder XRD analysis showed that all samples were single phase with rhombohedral perovskite structure. The magnetization curve suggests that the Ti substituted samples exhibit weak ferromagnetic behaviour. The highest magnetoresistance (MR) value was obtained for sample x = 0.2 at temperature 200 K and field 1 T, which was 32.5 %. Low field magnetoresistance (LFMR) effect was observed for the x = 0.0 sample. The metal-like resistivity curve for the x = 0.0 sample was best fitted with ρ = ρo + ρ2T2 equation, indicating the grain boundary effects and electron-electron scattering process contribution. Semiconductor-like transport behaviour was observed for the Ti substituted samples and can be fitted by variable range hopping (VRH) and small polaron hopping (SPH) mechanisms. The activation energy of the samples increased when the Ti composition increased. An equivalent circuit was proposed for the impedance plot with a series of two parallel RC circuits. The grain, grain boundary and electrode resistance values increased with Ti composition due to the reduction of the Mn 3+ / Mn 4+ ratio. (author)

  1. Methods for calculating the electrode position Jacobian for impedance imaging.

    Science.gov (United States)

    Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A

    2017-03-01

    Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.

  2. Pathogen identification using peptide nanotube biosensors and impedance AFM

    Science.gov (United States)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  3. The IMPACT shirt: textile integrated and portable impedance cardiography

    International Nuclear Information System (INIS)

    Ulbrich, Mark; Wan, Tingting; Leonhardt, Steffen; Walter, Marian; Mühlsteff, Jens; Sipilä, Auli; Kamppi, Merja; Koskela, Anne; Myry, Manu

    2014-01-01

    Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient’s home. (paper)

  4. Complex numbers in chemometrics: examples from multivariate impedance measurements on lipid monolayers.

    Science.gov (United States)

    Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta

    2007-07-09

    Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.

  5. Design of optimized impedance transformer for ICRF antenna in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan); Seki, T.; Kasahara, H.; Seki, R.; Kumazawa, R.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan)

    2013-10-15

    Highlights: ► We developed optimization method of impedance transformer for ICRF antenna. ► Power loss will be one-third with the optimized impedance transformer. ► Possibility of damage on the transmission line will be drastically reduced. ► High performance will be kept in the wide antenna impedance region. -- Abstract: A pair of ion cyclotron range of frequencies (ICRF) antennas in the large helical device (LHD), HAS antennas showed high efficiency in minority ion heating. However the low loading resistance must be increased to prevent breakdown in transmission line. Moreover, the voltage and the current around the feed-through must be reduced to protect it. For these purpose, we developed a design procedure of the impedance transformer for HAS antennas. To optimize the transformer, the inner conductors were divided into several segments and the radii of them were given discretely and independently. The maximum effective loading resistance was obtained by using all combinations of radii within the limitations of the voltage and current at the feed-through and the electric field on the transformer. To get a precise solution, this procedure was repeated several times by narrowing the range of radii of inner conductors. Then the optimized impedance transformer was designed by smoothing the radii of inner conductors. For the typical discharge, the voltage and current at the feed-through were reduced to the half of the original values with the same power. The effective loading resistance was increased to more than four times. High performance is expected in wide impedance region.

  6. Blood Pressure and Impedance Cardiography duríng Tilt Table Test

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Plachý, M.; Fráňa, P.; Leinveber, Pavel

    2009-01-01

    Roč. 36, - (2009), s. 429-432 ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801 Institutional research plan: CEZ:AV0Z20650511 Keywords : blood pressure * heart rate * thoracic impedance cardiography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://cinc.mit.edu/archives/2009/pdf/0429.pdf

  7. Impedance-spectroscopy analysis and piezoelectric properties of Pb2KNb5O15 ceramics

    International Nuclear Information System (INIS)

    Rao, K. Sambasiva; Murali Krishna, P.; Swarna Latha, T.; Madhava Prasad, D.

    2006-01-01

    Preparation, dielectric, piezoelectric, hysteresis, impedance spectroscopy and AC conductivity studies in the Pb 0.8 K 0.4 Nb 2 O 6 ferroelectric ceramic have been presented. The Pb 1-x K 2x Nb 2 O 6 (PKN) characterized for ferroelectric and impedance spectroscopy studies from room temperature to 600 deg. C. The sample shows a single phase with orthorhombic structure from X-ray diffraction studies. The Cole-Cole plots and electric modulus plots at different temperatures are drawn. The results obtained from the impedance spectroscopy are analyzed, to understand the conductivity behavior of PKN. The piezoelectric constant, d 33 , has been found to be 75 x 10 -12 C/N

  8. Nonsynchronous Noncommensurate Impedance Transformers

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, K

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of two types of transmission lines: transmission lines with a characteristic impedance equal to the impedance of the source, and transmission lines with a characteristic impedance equal to the load. The practical...... advantage of such transformers is that they can be constructed using sections of transmission lines with a limited variety of characteristic impedances. These transformers also provide comparatively compact size in applications where a wide transformation ratio is required. This paper presents the data...... matrix approach and experimentally verified by synthesizing a 12-section nonsynchronous noncommensurate impedance transformer. The measured characteristics of the transformer are compared to the characteristics of a conventional tapered line transformer....

  9. Role of electrogastrography and gastric impedance measurements in evaluation of gastric emptying and motility

    NARCIS (Netherlands)

    Smout, A. J.; Jebbink, H. J.; Akkermans, L. M.; Bruijs, P. P.

    1994-01-01

    Electrogastrography records electrical potential variations brought about by myoelectrical activity of the stomach. Abnormal myoelectrical rhythms such as tachygastrias may also be detected. Electrogastrography provides little information on gastric motility and emptying. Impedance epigastrography

  10. A technique for performing electrical impedance myography in the mouse hind limb: data in normal and ALS SOD1 G93A animals.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available To test a method for performing electrical impedance myography (EIM in the mouse hind limb for the assessment of disease status in neuromuscular disease models.An impedance measuring device consisting of a frame with electrodes embedded within an acrylic head was developed. The head was rotatable such that data longitudinal and transverse to the major muscle fiber direction could be obtained. EIM measurements were made with this device on 16 healthy mice and 14 amyotrophic lateral sclerosis (ALS animals. Repeatability was assessed in both groups.The technique was easy to perform and provided good repeatability in both healthy and ALS animals, with intra-session repeatability (mean ± SEM of 5% ± 1% and 12% ± 2%, respectively. Significant differences between healthy and ALS animals were also identified (e.g., longitudinal mean 50 kHz phase was 18 ± 0.6° for the healthy animals and 14 ± 1.0° for the ALS animals, p=0.0025.With this simple device, the EIM data obtained is highly repeatable and can differentiate healthy from ALS animals.EIM can now be applied to mouse models of neuromuscular disease to assess disease status and the effects of therapy.

  11. Structural characterization and impedance studies of PbO nanofibers synthesized by electrospinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Hari Prasad, Kamatam [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Vinoth, S. [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Centre for Nanoscience, Pondicherry University, Puducherry, 605014 (India); Jena, Paramananda [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); School of Materials Science and Technology, Indian Institute of Technology(BHU), Varanasi, 221 005 (India); Venkateswarlu, M. [R & D, Amara Raja Batteries Ltd, Karakambadi, 517 520, A.P (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Puducherry, 605 014 (India)

    2017-06-15

    One-dimensional electrospun lead oxide nanofibers synthesized by a simple electrospinning technique. The prepared lead oxide nanofibers investigated by using TG/DTA, FTIR, Raman, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analyzer, scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), Transmission electron microscopy (TEM), and impedance spectroscopy techniques. TG/DTA results confirmed the thermal behavior of the as-spun nanofibers. XRD, FTIR, and Raman spectra results, respectively, confirm the formation of pure orthorhombic crystalline phase and structural coordination of the lead oxide (β-PbO) nanofibers. The BET specific surface area of β-PbO nanofibers sample is found to be 51.23 m{sup 2} g{sup -1}. SEM and AFM micrographs showed the formation of β-PbO nanofibers with a diameter of 85–300 nm. The impedance measurements of lead oxide nanofibers as a function of temperature, 25–150 °C, was evaluated by analyzing the measured impedance data using the winfit software. The electrical conductivity of the lead oxide (β-PbO) nanofibers evaluated by analyzing the measured impedance data using the winfit software is found to be 5.68 × 10{sup -6} S cm{sup -1} at 150 °C. Also, an activation energy (E{sub a}) for the migration of the charge carrier evaluated from the temperature dependence of conductivity plot is found to be 0.27 eV. The temperature dependence AC conductivity of β-PbO nanofibers was evaluated using the measured impedance data and sample dimension. The observed variation of high-frequency AC conductivity attributed to the hopping electrons between the adjacent sites. - Highlights: • First time, β-PbO nanofibers were successfully prepared by electrospinning technique. • Structural, morphological, roughness and electrical properties are studied. • TG/DTA, XRD, FTIR, Raman, SEM/AFM, TEM-EDX, and impedance measurements were made.

  12. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy

    Science.gov (United States)

    Shah, Pratikkumar; Narayanan, Tharangattu N.; Li, Chen-Zhong; Alwarappan, Subbiah

    2015-08-01

    Transition metal dichalgogenides such as MoS2 have recently emerged as hot two-dimensional (2D) materials due to their superior electronic and catalytic properties. Recently, we have reported the usefulness of MoS2 nanosheets toward the electrochemical detection of neurotransmitters and glucose (Narayanan et al 2014 Nanotechnology 25 335702). Furthermore, there are reports available in the literature that demonstrate the usefulness of MoS2 nanosheets for biosensing and energy storage applications (Zhu et al 2013 J. Am. Chem. Soc. 135 5998-6001 Pumera and Loo 2014 Trends Anal. Chem. 61 49-53 Lee et al 2014 Sci. Rep. 4 7352; Stephenson et al 2014 Energy Environ. Sci. 7 209-31). Understanding the cytotoxic effect of any material is very important prior to employing them for any in vivo biological applications such as implantable sensors, chips, or carriers for drug delivery and cell imaging purposes. Herein, we report the cytotoxicity of the MoS2 nanosheets based on the cytotoxic assay results and electrical impedance analysis using rat pheochromocytoma cells (PC12) and rat adrenal medulla endothelial cells (RAMEC). Our results indicated that the MoS2 nanosheets synthesized in our work are safe 2D nanosheets for futuristic biomedical applications.

  13. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    Science.gov (United States)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  14. On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Maziar, E-mail: m.afshar@lmm.uni-saarland.de [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Leber, Moritz [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Poppendieck, Wigand [Department of Medical Engineering & Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, St. Ingbert D-66386 (Germany); König, Karsten [Lab for Biophotonics and Laser Technology, Saarland University, Saarbrücken D-66123 (Germany); Seidel, Helmut; Feili, Dara [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany)

    2016-01-01

    Graphical abstract: - Highlights: • A novel method to make sub-20 nm nanopatterning in ITO thin films by laser writing. • A novel way to functionalize ITO bio-electrodes to yield near-field polarizing feature. • A basic characterization of ITO electrodes was performed by impedance spectroscopy. • Presentation of simulations and possible theoretical approaches to explain the results. - Abstract: In this work, the effect of laser-induced nanostructuring of transparent indium tin oxide (ITO) electrodes on flexible glass is investigated. Multi-electrode arrays (MEA) for electrical and optical characterization of biological cells were fabricated using standard MEMS technologies. Optimal sputter parameters concerning oxygen flow, sputter power and ambient pressure for ITO layers with both good optical and electrical properties were determined. Afterwards, coherent sub-20 nm wide and 150 nm deep nanocuts of many micrometers in length were generated within the ITO electrodes by a sub-15 femtosecond (fs) pulsed laser. The influence of laser processing on the electrical and optical properties of electrodes was investigated. The electrochemical impedance of the manufactured electrodes was measured before and after laser modification using electrochemical impedance spectroscopy. A small reduction in electrode impedance was observed. These nanostructured electrodes show also polarizing effects by the visible spectrum.

  15. Electric transport properties study of bulk BaFe{sub 12}O{sub 19} by complex impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayak, R., E-mail: ranjit.p20@gmail.com [Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha (India); Panigrahi, S. [Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha (India); Dash, T. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha (India); Muduli, R.; Behera, D. [Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha (India)

    2015-10-01

    Polycrystalline M-type hexagonal Barium ferrite (BaFe{sub 12}O{sub 19}) was prepared by the solid state reaction method. The single phase and well grain growth of micrometer range was confirmed by XRD pattern and SEM image respectively. The presence of Fe{sup 2+} and Fe{sup 3+} states were verified by XPS study. In this report, the electric transport properties of BaFe{sub 12}O{sub 19} (BaM) was systematically investigated and analyzed in the frequency range of 100 Hz to 1 MHz and temperature range of 30–200 °C. The relaxation behaviors were examined by considering both impedance and modulus formalism, to differentiate intrinsic (grain) and extrinsic (grain boundary and electrode polarization) conduction process. The co-contribution effect of grain and grain boundary was verified which appeared as a single relaxation process in the chosen frequency and temperature range. However, the sample experienced the early (even at room temperature) arrival of surface conduction which dominates over grain boundary with increasing of temperature.

  16. Pyrolytic carbon microelectrodes for impedance based cell sensing

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2016-01-01

    Electrically conductive glass-like carbon structures can be obtained from a polymer template through a pyrolysis process. These structures can be used as electrodes for bio sensing applications such as electrochemical evaluation of cell adhesion and proliferation. This study focuses on the optimi...... to decrease the resistivity of the resulting carbon material and improve the performance in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Finally, EIS was used to monitor adhesion and proliferation of HeLa cells....

  17. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    Science.gov (United States)

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.

  18. IMPEDANCE METHOD OF MEASURING OF THE TITRATABLE ACIDITY OF YOGURT

    Directory of Open Access Journals (Sweden)

    Miroslav Vasilev

    2016-10-01

    Full Text Available In the present work are analyzed studies related to changes in the active impedance component of the dairy environment caused by the flow of lactic fermentation and coagulation of casein in milk. The aim of this work was to determine the relationship between the relative change of titratable acidity and the relative change of active impedance component of the dairy environment with lactic fermentation, causing coagulation of the casein in milk. . The data were interpolated with cubic spline, visualizing how when the fat content increases, the electrical resistance increases too. All data, collected during the tests would complement and be used for solving the optimization problem to determine the time of completion of the coagulation in future work.

  19. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell

    Science.gov (United States)

    Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining

    2018-04-01

    The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.

  20. Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Fernandez Grande, Efren

    2017-01-01

    The ear-canal acoustic impedance and reflectance are useful for assessing conductive hearing disorders and calibrating stimulus levels in situ. However, such probe-based measurements are affected by errors due to the presence of evanescent modes and incorrect estimates or assumptions regarding...... characteristic impedance. This paper proposes a method to compensate for evanescent modes in measurements of acoustic impedance, reflectance, and sound pressure in waveguides, as well as estimating the characteristic impedance immediately in front of the probe. This is achieved by adjusting the characteristic...... impedance and subtracting an acoustic inertance from the measured impedance such that the non-causality in the reflectance is minimized in the frequency domain using the Hilbert transform. The method is thus capable of estimating plane-wave quantities of the sought-for parameters by supplying only...

  1. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  2. Non-Invasive Electrical Impedance Tomography for Multi-Scale Detection of Liver Fat Content

    Science.gov (United States)

    Luo, Yuan; Abiri, Parinaz; Zhang, Shell; Chang, Chih-Chiang; Kaboodrangi, Amir H.; Li, Rongsong; Sahib, Ashish K.; Bui, Alex; Kumar, Rajesh; Woo, Mary; Li, Zhaoping; Packard, René R. Sevag; Tai, Yu-Chong; Hsiai, Tzung K.

    2018-01-01

    Introduction: Obesity is associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). While Magnetic Resonance Imaging (MRI) is a non-invasive gold standard to detect fatty liver, we demonstrate a low-cost and portable electrical impedance tomography (EIT) approach with circumferential abdominal electrodes for liver conductivity measurements. Methods and Results: A finite element model (FEM) was established to simulate decremental liver conductivity in response to incremental liver lipid content. To validate the FEM simulation, we performed EIT imaging on an ex vivo porcine liver in a non-conductive tank with 32 circumferentially-embedded electrodes, demonstrating a high-resolution output given a priori information on location and geometry. To further examine EIT capacity in fatty liver detection, we performed EIT measurements in age- and gender-matched New Zealand White rabbits (3 on normal, 3 on high-fat diets). Liver conductivity values were significantly distinct following the high-fat diet (p = 0.003 vs. normal diet, n=3), accompanied by histopathological evidence of hepatic fat accumulation. We further assessed EIT imaging in human subjects with MRI quantification for fat volume fraction based on Dixon procedures, demonstrating average liver conductivity of 0.331 S/m for subjects with low Body-Mass Index (BMI 25 kg/m²). Conclusion: We provide both the theoretical and experimental framework for a multi-scale EIT strategy to detect liver lipid content. Our preliminary studies pave the way to enhance the spatial resolution of EIT as a marker for fatty liver disease and metabolic syndrome. PMID:29556346

  3. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Impedance response characteristics of iron oxide interface in the EDTA solutions

    International Nuclear Information System (INIS)

    Sawa, Tosio; Higuchi, Shigeo; Kataoka, Ichiro; Ito, Hisao.

    1986-01-01

    The relationship between the dissolution and the surface conditions of Fe 3 O 4 were studied in the various conditions of EDTA solutions by means of the A · C impedance measurement. From the experimental results obtained, surface layer of Fe 3 O 4 electrode can be expressed with electrical equivalent circuit that have capacitance and reaction resistance in the electrical double layer. In the Na 2 SO 4 solution without occuring dissolution, reaction resistance was estimated as 314 kΩ · cm 2 and capacitance was 203 μF/cm 2 . In the EDTA solutions, reaction resistance decreases along with dissolution of Fe 3 O 4 . The factors to make decrease reaction resistance are EDTA concentration, pH and temperature of the solutions. In contrast with this, the factor to increase it is dissolved oxygen in the solutions. The reciprocal value of reaction resistance agrees well with the rate of dissolution. On the other hand, when the electrode potential was maintained under the cathodic polarization in the EDTA solutions, impedances of electrode surface showed the lower value than that in the immersion condition. And apparent resistance came near to 0 at the potential of -2.0 V in all the range of frequency. Fe 3 O 4 electrodes pretreated with the cathodic polarization exhibited the characteristic impedance response that were caused by the change of electrode surface and the deposites such as iron hydroxide. (author)

  5. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  6. Application of internal electrodes to the oesophageal and tracheal tube in an animal trial: evaluation of its clinical and technical potentiality in electrical impedance tomography.

    Science.gov (United States)

    Czaplik, Michael; Antink, Christoph Hoog; Rossaint, Rolf; Leonhardt, Steffen

    2014-06-01

    Electrical impedance tomography (EIT) is of potential medical interest e.g., to optimize ventilator settings during mechanical ventilation. Nevertheless there are still several challenges. Although electrode belts are commonly used and promoted, they are not necessarily adequate for the long-term monitoring of patients in intensive-care units (ICU). ICU patients are usually equipped with breathing tubes and feeding tubes, ideal surfaces to attach EIT electrodes to. The aim of our study was therefore to examine the potentiality of internal electrodes in a porcine animal trial. Following an animal trial protocol studying acute lung injury, additional EIT measurements were obtained both with conventional electrodes set upon a rubber belt and after having moved the electrodes internally in seven pigs. For this reason the two most dorsally located electrodes were selected. An adjacent stimulation and measurement pattern was used, and resulting voltages in the time and frequency domains as well as within reconstructed images were examined to compare perfusion and ventilation data qualitatively and quantitatively. Particularly, lung morphology as well as signal strength for both the mediastinal and lung region were studied. All animals were submitted to the additional protocol without any adverse events. Distinguishability of lungs was improved in reconstructed frames. The resulting sensitivity of measured electrical impedance was enhanced around the mediastinal region and even cardiac-related activity was significantly increased by a factor of up to 6. In conclusion the application of internal electrodes appears to be beneficial for diverse clinical purposes and should be addressed in further studies.

  7. Characterization and evaluation of EB-PVD thermal barrier coatings by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia; Liu Fushun; Gong Shengkai; Xu Huibin [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    Two layer thermal barrier coatings (TBCs) were prepared by EB-PVD (electron beam-physical vapor deposition) at different substrate temperatures in the range of 823 to 1123 K, and their microstructure was investigated with SEM and AC impedance as a function of substrate temperature and thermal cycling time. YSZ layer of all TBCs samples is in column structure, but the grain size and growth orientation are different with substrate. In this research, impedance spectra (IS) was measured as a function of thermal cycling between 1323 K and 298 K for these thermal barrier coatings. Grain boundary and bulk can be distinguished from analysis of AC impedance spectroa to provide information about the relation between microstructure and electric properties. The change in IS until failure was found to be related with the thickness, microcracks and macrocracks of TGO and the change in the interfacial of TGO/YSZ. (orig.)

  8. Effect of psychological stress on gastric motility assessed by electrical bio-impedance.

    Science.gov (United States)

    Huerta-Franco, María Raquel; Vargas-Luna, Miguel; Montes-Frausto, Juana Berenice; Morales-Mata, Ismael; Ramirez-Padilla, Lorena

    2012-09-28

    To evaluate gastric motility using electrical bio-impedance (EBI) and gastric changes as a result of stress induced by psychological tests. A group of 57 healthy women, aged 40-60 years, was recruited, and a clinical history and physical examination were performed. The women were free from severe anxiety, chronic or acute stress, severe depression, mental diseases and conditions that affect gastric activity. The women were evaluated under fasting conditions, and using a four-electrode configuration, the gastric signals were obtained through a BIOPAC MP-150 system. The volunteers were evaluated using the following paradigm: basal state, recording during the Stroop Test, intermediate resting period, recording during the Raven Test, and a final resting period. We analyzed the relative areas of the frequency spectrum: A1 (1-2 cpm), A2 (2-4 cpm), A3 (4-8 cpm), and A4 (8-12 cpm), as well as the median of area A2 + A3. The data were analyzed by an autoregressive method using a Butterworth filter with MatLab and Origin. Analysis of variance (ANOVA) and Friedman ANOVA (for nonparametric variables) were performed; in addition, pairs of groups were compared using the T dependent and Wilcoxon T tests. The results of the main values of area A2 were not significantly different comparing the five steps of the experimental paradigm. Nevertheless, there was a tendency of this A2 region to decrease during the stress tests, with recuperation at the final resting step. When an extended gastric region was considered (1-4 cpm), significant differences with the psychological stress tests were present (F = 3.85, P = 0.005). The A3 region also showed significant changes when the stress psychological tests were administered (F = 7.25, P stress test showed significant changes (F = 5.5, P stress test (P stress can be evaluated by short-term EBI.

  9. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...

  10. Impedance spectroscopy study of dehydrated chitosan and chitosan containing LiClO4

    International Nuclear Information System (INIS)

    Costa, M.M.; Terezo, A.J.; Matos, A.L.; Moura, W.A.; Giacometti, Jose A.; Sombra, A.S.B.

    2010-01-01

    Cast films of chitosan and chitosan containing LiClO 4 were characterized using Fourier transform infrared spectroscopy and the thermogravimetric technique. The electric properties of hydrated and dehydrated films were investigated with impedance spectroscopy in the frequency range from 0.1 Hz to 1 MHz, at temperatures varying from 30 to 110 o C. The frequency dependence of the impedance for dehydrated chitosan and chitosan containing LiClO 4 films indicated ionic conduction. Two relaxation peaks were evident on the imaginary curve of the electric modulus, which were assigned to ionic conduction. The peak at higher frequency was found for chitosan and chitosan containing LiClO 4 films. The peak at lower frequency was attributed to Li + conduction since it appeared only for the chitosan containing LiClO 4 . The peak frequency varied with the temperature according to an Arrhenius process with activation energies of circa of 0.6 and 0.45 eV, for H + and Li + conduction, respectively.

  11. Transition metal oxide as anode interface buffer for impedance spectroscopy

    Science.gov (United States)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  12. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  13. Application of electrochemical impedance spectroscopy to monitor seawater fouling on stainless steels and copper alloys

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    Electrochemical impedance spectroscopy may be applied to detect and to follow seawater fouling. Experiments have been conducted with natural seawater flowing inside tube-electrodes at temperatures between 30 deg C and 85 deg C. With stainless steel tubes, mineral and organic foulings have been followed; a linear relationship between the dry weight of the organic fouling and its electrical resistance, has been observed. On copper alloy tubes, only mineral deposits have occurred and so have been detected by impedance spectroscopy. (Author). 5 refs., 6 figs

  14. Analytical Model for High Impedance Fault Analysis in Transmission Lines

    Directory of Open Access Journals (Sweden)

    S. Maximov

    2014-01-01

    Full Text Available A high impedance fault (HIF normally occurs when an overhead power line physically breaks and falls to the ground. Such faults are difficult to detect because they often draw small currents which cannot be detected by conventional overcurrent protection. Furthermore, an electric arc accompanies HIFs, resulting in fire hazard, damage to electrical devices, and risk with human life. This paper presents an analytical model to analyze the interaction between the electric arc associated to HIFs and a transmission line. A joint analytical solution to the wave equation for a transmission line and a nonlinear equation for the arc model is presented. The analytical model is validated by means of comparisons between measured and calculated results. Several cases of study are presented which support the foundation and accuracy of the proposed model.

  15. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  16. Longitudinal coupling impedance imposed by a beam feedback in a synchrotron

    International Nuclear Information System (INIS)

    Ivanov, S.

    1997-01-01

    Commonly, a longitudinal beam feedback processes a slowly varying signal at zero intermediate frequency (a phase offset, an amplitude departure). Often, only a portion of the data confined in a picked-up band-pass beam signal is retained (like, say, in a purely phase feedback). Sometimes, a beam feedback employs different RF bands to pick up beam data and return a correction back to the beam. All the manipulations thus involved with signal spectra result in cross-talk between various beam-current and electric-field waves propagating along the orbit, which is shown to be described by an impedance matrix with, at most, three non-trivial elements per row. It is this matrix which gives the intuitive notion that a linear feedback is seen by a beam as an artificial coupling impedance controlled from the outside from a quantitative basis. This (impedance) approach has at least two plain advantages: (i) It allows one to mount the feedback's effect into the well-established theory of longitudinal coherent instabilities to use most of its inventory: beam transfer functions, threshold maps, handling of coupled-bunch motion, etc. (ii) The destabilizing effect of the beam environment, being available in standard terms of coupling impedances, is naturally taken into account since the early stages of feedback R and D. (orig.)

  17. Characterization of Porous WO3 Electrochromic Device by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien Chon Chen

    2013-01-01

    Full Text Available This paper concerns the microstructure of the anodic tungsten oxide (WO3 and its use in an electrochromic (EC glass device. When voltages between 100 V and 160 V were applied to tungsten film for 1 h under 0.4 wt. % NaF electrolyte, porous WO3 film was formed. The film, which had a large surface area, was used as electrochromic film for EC glass. The average transmittance in a visible region of the spectrum for a 144 cm2 EC device was above 75% in the bleached state and below 40% in the colored state, respectively. Repeatability using of the colored/bleached cycles was tested good by a cyclic voltammograms method. The internal impedance values under colored and bleached states were detected and simulated using an electrical impedance spectra (EIS technique. The EC glass impedance characteristics were simulated using resistors, capacitors, and Warburg impedance. The ITO/WO3, WO3/electrolyte, electrolyte/NiO, and NiO/ITO interfaces can be simulated using a resistance capacitance (RC parallel circuits, and bulk materials such as the indium tin oxide (ITO and conducting wire can be simulated by using a series of resisters.

  18. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    Science.gov (United States)

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  19. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    Science.gov (United States)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-03-01

    Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  20. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-01-01

    Bi 2 O 3 -doped barium zirconate titanate ceramics, Ba 1-x Bi x (Zr 0.05 Ti 0.95 )O 3 , have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi 3+ substitutes A-site ion, and thereafter with higher Bi 3+ content, it enters the B-site sub lattice. Substitution of Bi 3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  1. Impedance-Based Harmonic Instability Assessment in Multiple Electric Trains and Traction Network Interaction System

    DEFF Research Database (Denmark)

    Tao, Haidong; Hu, Haitao; Wang, Xiongfei

    2018-01-01

    This paper presents an impedance-based method to systematically investigate the interaction between multi-train and traction networks, focusing on evaluating the harmonic instability problems. Firstly, the interaction mechanism of multi-train and the traction network is represented as a feedback ...

  2. Microwave Impedance Spectroscopy and Temperature Effects on the Electrical Properties of Au/BN/C Interfaces

    Directory of Open Access Journals (Sweden)

    Hazem K. Khanfar

    2017-01-01

    Full Text Available In the current study, an Au/BN/C microwave back-to-back Schottky device is designed and characterized. The device morphology and roughness were evaluated by means of scanning electron and atomic force microscopy. As verified by the Richardson–Schottky current conduction transport mechanism which is well fitted to the experimental data, the temperature dependence of the current-voltage characteristics of the devices is dominated by the electric field assisted thermionic emission of charge carriers over a barrier height of ~0.87 eV and depletion region width of ~1.1 μm. Both the depletion width and barrier height followed an increasing trend with increasing temperature. On the other hand, the alternating current conductivity analysis which was carried out in the frequency range of 100–1400 MHz revealed the domination of the phonon assisted quantum mechanical tunneling (hopping of charge carriers through correlated barriers (CBH. In addition, the impedance and power spectral studies carried out in the gigahertz-frequency domain revealed a resonance-antiresonance feature at frequency of  ~1.6 GHz. The microwave power spectra of this device revealed an ideal band stop filter of notch frequency of  ~1.6 GHz. The ac signal analysis of this device displays promising characteristics for using this device as wave traps.

  3. Study on electric parameters of wild and cultivated cotton forms being in normal state and irradiated

    International Nuclear Information System (INIS)

    Nazirov, N.N.; Kamalov, N.; Norbaev, N.

    1978-01-01

    The radiation effect on electric conductivity of tissues in case of alternating current, electrical capacity and cell impedance has been studied. Gamma irradiation of seedlings results in definite changes of electric factors of cells (electric conductivity, electric capacity, impedance). It is shown that especially strong changes have been revealed during gamma irradiation of radiosensitive wild form of cotton plants. The deviation of cell electric factors from the standard depends on the violation of evolutionally composed ion heterogeneity and cell colloid system state, which results in changes in their structure and metabolism in them

  4. Impedance-based structural health monitoring of additive manufactured structures with embedded piezoelectric wafers

    Science.gov (United States)

    Scheyer, Austin G.; Anton, Steven R.

    2017-04-01

    Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple

  5. [Design of High Frequency Signal Detecting Circuit of Human Body Impedance Used for Ultrashort Wave Diathermy Apparatus].

    Science.gov (United States)

    Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen

    2016-02-01

    The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.

  6. Determination of SoH of Lead-Acid Batteries by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Kwiecien

    2018-05-01

    Full Text Available The aging mechanisms of lead-acid batteries change the electrochemical characteristics. For example, sulfation influences the active surface area, and corrosion increases the resistance. Therefore, it is expected that the state of health (SoH can be reflected through differentiable changes in the impedance of a lead-acid battery. However, for lead-acid batteries, no reliable SoH algorithm is available based on single impedance values or the spectrum. Additionally, the characteristic changes of the spectrum during aging are unknown. In this work, lead-acid test cells were aged under specific cycle regimes known as AK3.4, and periodic electrochemical impedance spectroscopy (EIS measurements and capacity tests were conducted. It was examined that single impedance values increased linearly with capacity decay, but with varying slopes depending on the pre-history of the cell and measurement frequency of impedance. Thereby, possible reasons for ineffective SoH estimation were found. The spectra were fitted to an equivalent electrical circuit containing, besides other elements, an ohmic and a charge-transfer resistance of the negative electrode. The linear increase of the ohmic resistance and the charge-transfer resistance were characterized for the performed cyclic aging test. Results from chemical analysis confirmed the expected aging process and the correlation between capacity decay and impedance change. Furthermore, the positive influence of charging on the SoH could be detected via EIS. The results presented here show that SoH estimation using EIS can be a viable technique for lead-acid batteries.

  7. Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires

    International Nuclear Information System (INIS)

    Garcia, C.; Chizhik, A.; Val, J.J. del; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2005-01-01

    Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe 77.5 B 15 Si 7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability

  8. Application of two electrical methods for the rapid assessment of freezing resistance in Salix epichloro

    Energy Technology Data Exchange (ETDEWEB)

    Tsarouhas, V.; Kenney, W.A.; Zsuffa, L. [University of Toronto, Ontario (Canada). Faculty of Forestry

    2000-09-01

    The importance of early selection of frost-resistant Salix clones makes it desirable to select a rapid and accurate screening method for assessing freezing resistance among several genotypes. Two electrical methods, stem electrical impedance to 1 and 10 khz alternating current, and electrolyte leakage of leaf tissue, were evaluated for detecting freezing resistance on three North America Salix epichloro Michx., clones after subjecting them to five different freezing temperatures (-1, -2, -3, -4, and -5 deg C). Differences in the electrical impedance to 1 and 10 kHz, and the ratio of the impedance at the two frequencies (low/high) before and after the freezing treatment (DZ{sub low}, DZ{sub high}, and DZ{sub ratio}, respectively) were estimated. Electrolyte leakage was expressed as relative conductivity (RC{sub t}) and index of injury (IDX{sub t}). Results from the two methods, obtained two days after the freezing stress, showed that both electrical methods were able to detect freezing injury in S. eriocephala. However, the electrolyte leakage method detected injury in more levels of freezing stress (-3, -4, and -5 deg C) than the impedance (-4, and -5 deg C), it assessed clonal differences in S. eriocephala freezing resistance, and it was best suited to correlate electrical methods with the visual assessed freezing injury. No significant impedance or leakage changes were found after the -1 and -2 deg C freezing temperatures. (author)

  9. Influence of intensive light exposure on the complex impedance of polymer light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Fábio Rogério Cury

    2008-06-01

    Full Text Available In this work we investigated the effect of visible radiation on the electrical properties of poly[(2-methoxy-5-hexyloxy-p-phenylenevinylene]- MH-PPV films and light emitting diodes. Complex impedance measurements of (Au or ITO/MH-PPV/(Au or Al samples were carried out at room temperature and exposed to white light. Over the frequency range from 100 mHz to 2 MHz, the electrical results of Au/MH-PPV/Au was dominated by the Cole-Cole approach, where the electrode influence is negligible. However, some additional influence of the interface was observed to occur when Al was used as electrode. These effects were observed under both dark and visible-light illumination conditions. A simple model based on resistor-capacitor parallel circuits was developed to represent the complex impedance of the samples, thereby separating bulk and interface contributions. We observed that the polymer electrical resistivity decreased while the dielectric constant of the polymer and the thickness of the Al/MH-PPV layer were almost constant with increasing light intensity. The decrease of the polymer layer resistance comes from a better charge injection due to a light induced dissociation of positive charge carriers at the electrode.

  10. A new approach to electrical impedance imaging technique

    International Nuclear Information System (INIS)

    Afroj Quadir, K.; Nasir, F.; Rahman, M.; Rabbani, K.S.

    2004-09-01

    It is possible to obtain a 2 dimensional (2D) image of a volume conductor, to locate a few widely separated objects, by driving ac constant currents through two orthogonal pairs of electrodes and measuring the resulting potential differences between several diagonally placed electrodes at the centre and back-projecting their impedance values along equi-potential lines. This has been termed as Pigeon Hole Imaging (PHI). Experimental verification has been attempted using a small insulating object placed at different locations in a saline filled 2D phantom. For a 6 x 6 matrix, the image in 16 pixels in close proximity of the diagonal along which electrodes are arranged, coincide with the object positions, while they do nt for the remaining 20 pixels. We applied a new technique where image smearing patterns have been used to correct the images in 14 of these pixels while 6 pixels near the two opposite comers still remain uncertain. Thus 30 pixels out of 36 give the right object position which may be termed a success. The concept may be extended further to higher order matrices by increasing the number of diagonal electrodes. The present work mainly concentrates on the feasibility of localization of a single small object in one matrix position of the image. (author)

  11. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  12. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  13. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  14. Electrical circuit modeling of conductors with skin effect

    International Nuclear Information System (INIS)

    Kerst, D.W.; Sprott, J.C.

    1986-01-01

    The electrical impedance of a lossy conductor is a complicated function of time (or frequency) because of the skin effect. By solving the diffusion equation for magnetic fields in conductors of several prototypical shapes, the impedance can be calculated as a function of time for a step function of current. The solution suggests an electrical circuit representation that allows calculation of time-dependent voltages and currents of arbitrary waveforms. A technique using an operational amplifier to determine the current in such a conductor by measuring some external voltage is described. Useful analytical approximations to the results are derived

  15. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso

    2016-01-01

    This work, for the first time, investigates an Impedance Spectroscopy (IS) based method for detecting potential-induced degradation (PID) in crystalline silicon photovoltaic (c-Si PV) panels. The method has been experimentally tested on a set of panels that were confirmed to be affected by PID...

  16. Computational method for estimating boundary of abdominal subcutaneous fat for absolute electrical impedance tomography.

    Science.gov (United States)

    Yamaguchi, Tohru F; Okamoto, Yoshiwo

    2018-01-01

    Abdominal fat accumulation is considered an essential indicator of human health. Electrical impedance tomography has considerable potential for abdominal fat imaging because of the low specific conductivity of human body fat. In this paper, we propose a robust reconstruction method for high-fidelity conductivity imaging by abstraction of the abdominal cross section using a relatively small number of parameters. Toward this end, we assume homogeneous conductivity in the abdominal subcutaneous fat area and characterize its geometrical shape by parameters defined as the ratio of the distance from the center to boundary of subcutaneous fat to the distance from the center to outer boundary in 64 equiangular directions. To estimate the shape parameters, the sensitivity of the noninvasively measured voltages with respect to the shape parameters is formulated for numerical optimization. Numerical simulations are conducted to demonstrate the validity of the proposed method. A 3-dimensional finite element method is used to construct a computer model of the human abdomen. The inverse problems of shape parameters and conductivities are solved concurrently by iterative forward and inverse calculations. As a result, conductivity images are reconstructed with a small systemic error of less than 1% for the estimation of the subcutaneous fat area. A novel method is devised for estimating the boundary of the abdominal subcutaneous fat. The fidelity of the overall reconstructed image to the reference image is significantly improved. The results demonstrate the possibility of realization of an abdominal fat scanner as a low-cost, radiation-free medical device. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy: progress assessment

    Science.gov (United States)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2012-02-01

    The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.

  18. Smartphone-Based Bioelectrical Impedance Analysis Devices for Daily Obesity Management

    Directory of Open Access Journals (Sweden)

    Ahyoung Choi

    2015-09-01

    Full Text Available Current bioelectric impedance analysis (BIA systems are often large, cumbersome devices which require strict electrode placement on the user, thus inhibiting mobile capabilities. In this work, we developed a handheld BIA device that measures impedance from multiple frequencies (5 kHz~200 kHz with four contact electrodes and evaluated the BIA device against standard body composition analysis systems: a dual-energy X-ray absorptiometry (DXA system (GE Lunar Prodigy, GE Healthcare, Buckinghamshire, UK and a whole-body BIA system (InBody S10, InBody, Co. Ltd, Seoul, Korea. In the study, 568 healthy participants, varying widely in body mass index, age, and gender, were recruited at two research centers: the Samsung Medical Center (SMC in South Korea and the Pennington Biomedical Research Center (PBRC in the United States. From the measured impedance data, we analyzed individual body fat and skeletal muscle mass by applying linear regression analysis against target reference data. Results indicated strong correlations of impedance measurements between the prototype pathways and corresponding InBody S10 electrical pathways (R = 0.93, p < 0.0001. Additionally, body fat estimates from DXA did not yield significant differences (p > 0.728 (paired t-test, DXA mean body fat 29.45 ± 10.77 kg, estimated body fat 29.52 ± 12.53 kg. Thus, this portable BIA system shows a promising ability to estimate an individual’s body composition that is comparable to large stationary BIA systems.

  19. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  20. Effect of lanthanum substitution on dielectric relaxation, impedance response, conducting and magnetic properties of strontium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in; Bhat, Bilal Hamid; Ahmad, Bhat Zahoor

    2015-04-05

    Highlights: • The substitution of La affects the dielectric and magnetic properties of strontium hexaferrite. • The electric behaviour of the compound follows the Koop’s phenomenological theory. • The impedance study shows the role of grain boundaries to the electric properties of the compound. • The substitution of La to strontium hexaferrite reduces the resistive nature of grain boundaries. - Abstract: Lanthanum strontium hexaferrite Sr{sub 1−x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.08, 0.13 , 0.18) has been successfully synthesized by using citrate-precursor method and characterized by different techniques. The X-ray diffraction results revealed that the sample is crystalline in nature and is of single phase with the space group P63/mmc. The dielectric, conducting and impedance related studies have been carried out as a function of frequency and concentration of lanthanum in the frequency ranges of 20 Hz–3 MHz. Impedance studies were performed in the frequency domain to distinguish between bulk and grain boundary contributions of the material to the overall dielectric response. The electric response of the material was also modeled by an equivalent circuit and different circuit parameters were calculated. Magnetic characterization of the material was also performed and the effect of lanthanum concentration was studied. The hysteresis loop obtained from the magnetometer showed that with the increase of lanthanum concentration, the saturation magnetisation decreases while as coercivity increases.

  1. Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system

    Directory of Open Access Journals (Sweden)

    Yongling FU

    2018-03-01

    Full Text Available Electrohydrostatic actuator (EHA is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of position-based impedance control (PBIC for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained. Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test. Keywords: Actuation system, Aerospace, Electrohydrostatic actuator, Force control, Nonlinear dynamics, Particle swarm optimization, Position control

  2. Electrical Impedance Spectroscopy for Quality Assessment of Meat and Fish: A Review on Basic Principles, Measurement Methods, and Recent Advances

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-01-01

    Full Text Available Electrical impedance spectroscopy (EIS, as an effective analytical technique for electrochemical system, has shown a wide application for food quality and safety assessment recently. Individual differences of livestock cause high variation in quality of raw meat and fish and their commercialized products. Therefore, in order to obtain the definite quality information and ensure the quality of each product, a fast and on-line detection technology is demanded to be developed to monitor product processing. EIS has advantages of being fast, nondestructive, inexpensive, and easily implemented and shows potential to develop on-line detecting instrument to replace traditional methods to realize time, cost, skilled persons saving and further quality grading. This review outlines the fundamental theories and two common measurement methods of EIS applied to biological tissue, summarizes its application specifically for quality assessment of meat and fish, and discusses challenges and future trends of EIS technology applied for meat and fish quality assessment.

  3. Ventilation and cardiac related impedance changes in children undergoing corrective open heart surgery

    International Nuclear Information System (INIS)

    Schibler, Andreas; Pham, Trang M T; Moray, Amol A; Stocker, Christian

    2013-01-01

    Electrical impedance tomography (EIT) can determine ventilation and perfusion relationship. Most of the data obtained so far originates from experimental settings and in healthy subjects. The aim of this study was to demonstrate that EIT measures the perioperative changes in pulmonary blood flow after repair of a ventricular septum defect in children with haemodynamic relevant septal defects undergoing open heart surgery. In a 19 bed intensive care unit in a tertiary children's hospital ventilation and cardiac related impedance changes were measured using EIT before and after surgery in 18 spontaneously breathing patients. The EIT signals were either filtered for ventilation (ΔZV) or for cardiac (ΔZQ) related impedance changes. Impedance signals were then normalized (normΔZV, normΔZQ) for calculation of the global and regional impedance related ventilation perfusion relationship (normΔZV/normΔZQ). We observed a trend towards increased normΔZV in all lung regions, a significantly decreased normΔZQ in the global and anterior, but not the posterior lung region. The normΔZV/normΔZQ was significantly increased in the global and anterior lung region. Our study qualitatively validates our previously published modified EIT filtration technique in the clinical setting of young children with significant left-to-right shunt undergoing corrective open heart surgery, where perioperative assessment of the ventilation perfusion relation is of high clinical relevance. (paper)

  4. Ventilation and cardiac related impedance changes in children undergoing corrective open heart surgery.

    Science.gov (United States)

    Schibler, Andreas; Pham, Trang M T; Moray, Amol A; Stocker, Christian

    2013-10-01

    Electrical impedance tomography (EIT) can determine ventilation and perfusion relationship. Most of the data obtained so far originates from experimental settings and in healthy subjects. The aim of this study was to demonstrate that EIT measures the perioperative changes in pulmonary blood flow after repair of a ventricular septum defect in children with haemodynamic relevant septal defects undergoing open heart surgery. In a 19 bed intensive care unit in a tertiary children's hospital ventilation and cardiac related impedance changes were measured using EIT before and after surgery in 18 spontaneously breathing patients. The EIT signals were either filtered for ventilation (ΔZV) or for cardiac (ΔZQ) related impedance changes. Impedance signals were then normalized (normΔZV, normΔZQ) for calculation of the global and regional impedance related ventilation perfusion relationship (normΔZV/normΔZQ). We observed a trend towards increased normΔZV in all lung regions, a significantly decreased normΔZQ in the global and anterior, but not the posterior lung region. The normΔZV/normΔZQ was significantly increased in the global and anterior lung region. Our study qualitatively validates our previously published modified EIT filtration technique in the clinical setting of young children with significant left-to-right shunt undergoing corrective open heart surgery, where perioperative assessment of the ventilation perfusion relation is of high clinical relevance.

  5. Flow-volume loops measured with electrical impedance tomography in pediatric patients with asthma.

    Science.gov (United States)

    Ngo, Chuong; Dippel, Falk; Tenbrock, Klaus; Leonhardt, Steffen; Lehmann, Sylvia

    2018-05-01

    Electrical impedance tomography (EIT) provides information on global and regional ventilation during tidal breathing and mechanical ventilation. During forced expiration maneuvers, the linearity of EIT and spirometric data has been documented in healthy persons. The present study investigates the potential diagnostic use of EIT in pediatric patients with asthma. EIT and spirometry were performed in 58 children with asthma (average age ± SD: 11.86 ± 3.13 years), and 58 healthy controls (average age ± SD: 12.12 ± 2.9 years). The correlation between EIT data and simultaneously acquired spirometric data were tested for FEV 1 , FEV 0.5 , MEF 75 , MEF 50 , and MEF 25 . Binary classification tests were performed for the EIT-derived Tiffeneau index FEV 1 /FVC and the bronchodilator test index ΔFEV 1 . Average flow-volume (FV) loops were generated for patients with pathologic spirometry to demonstrate the feasibility of EIT for graphic diagnosis of asthma. Spirometry and global EIT-based FV loops showed a strong correlation (P  0.9 in FEV 1 and FEV 0.5 ). In all criteria, the binary classification tests yielded high specificity (>93%), a high positive predictive value (≥75%) and a high negative predictive value (>80%), while sensitivity was higher in ΔFEV 1 (86.67%) and lower in FEV 1 /FVC (25% and 35.29%). A typical concave shape of the EIT-derived average FV loops was observed for asthmatic children with improvement after bronchospasmolysis. Global FV loops derived from EIT correlate well with spirometry. Positive bronchospasmolysis can be observed in EIT-derived FV loops. Flow-volume loops originated from EIT have a potential to visualize pulmonary function. © 2018 Wiley Periodicals, Inc.

  6. Optimizing PEEP by Electrical Impedance Tomography in a Porcine Animal Model of ARDS.

    Science.gov (United States)

    Hochhausen, Nadine; Biener, Ingeborg; Rossaint, Rolf; Follmann, Andreas; Bleilevens, Christian; Braunschweig, Till; Leonhardt, Steffen; Czaplik, Michael

    2017-03-01

    Mechanical ventilation is necessary in diverse clinical circumstances. Especially in the context of ARDS, so-called protective ventilation strategies must be followed. It is already known that PEEP might enhance oxygenation in ARDS. However, determining the optimal PEEP settings in clinical routines is challenging. Electrical impedance tomography (EIT) is a promising technique with which to adjust ventilator settings. We investigated whether the combination of different EIT parameters, namely the global inhomogeneity and hyperdistension indices, may lead to a feasible and safe PEEP setting. ARDS was induced by a double-hit approach in 18 pigs weighing, on average, 34.8 ± 3.97 kg. First, a surfactant washout was conducted; second, the tidal volume was increased to 20 mL/kg body weight, triggering a ventilator-induced lung injury. Subsequently, pigs were randomized to either the EIT or control groups, followed by an observation time of 24 h. In the control group, PEEP was set according to the ARDS network table. In the EIT group, a PEEP trial was conducted to determine an appropriate PEEP. At defined time points, hemodynamic measures, ventilation parameters, and EIT recordings, as well as blood samples, were taken. After euthanization, lungs were removed for subsequent histopathological and cytological examination. The combination of PEEP and F IO 2 differed between groups, although respiratory compliance, gas exchange, and histopathological examinations, as well as hemodynamics, did not show any statistical differences between the EIT and control groups. However, in the control group, the PEEP/F IO 2 settings followed the given coupling; in the EIT group, divergent individual combinations of PEEP and F IO 2 ranges occurred. PEEP setting by EIT facilitates a more individual ventilation therapy. However, in our relatively short ARDS observation period of 24 h, no significant differences appeared in common clinical parameters compared with a control group. Copyright

  7. Fracture Flow Characterization from Seismic and Electric Properties: Insight from Experimental and Numerical Approaches

    Science.gov (United States)

    Sawayama, K.; Kitamura, K.; Tsuji, T.; Fujimitsu, Y.

    2017-12-01

    The estimation of fluid flow and its distribution in the fracture is essential to evaluate subsurface fluid (e.g., geothermal water, ground water, oil and gas). Recently, fluid flow in the geothermal reservoir has been attracting attention to develop EGS (enhanced geothermal system) technique. To detect the fluid distribution under the ground, geophysical exploration such as seismic and electromagnetic methods have been broadly applied. For better interpretation of these exploration data, more detailed investigation about the effect of fluid on seismic and electric properties of fracture is required. In this study, we measured and calculated seismic and electric properties of a cracked rock to discuss the effect of water distribution and saturation on them as well as fluid flow. For the experimental observation, we developed the technique to measure electrical impedance, P-wave velocity and water saturation simultaneously during the fluid-flow test. The test has been conducted as follows; a cracked andesite core sample was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure and then, brine (1wt.%-KCl, 1.75 S/m) was injected into the sample to replace the gas. During the test, water saturation, permeability, electrical impedance and P-wave velocity were measured. As a result of this experimental study, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine in the broad fracture. After the brine injection, electrical impedance decreased with injection pressure by up to 40% while P-wave velocity was almost constant. This decrease of electrical impedance could be related to the flow to the narrow path (microcrack) which cannot be detected by P-wave velocity. These two types of fluid flow mechanism were also suggested from other parameters such as

  8. Design of a microscopic electrical impedance tomography system using two current injections

    International Nuclear Information System (INIS)

    Liu, Qin; Oh, Tong In; Wi, Hun; Woo, Eung Je; Lee, Eun Jung; Seo, Jin Keun

    2011-01-01

    We describe a novel design of a microscopic electrical impedance tomography (micro-EIT) system for long-term noninvasive monitoring of cell or tissue cultures. The core of the micro-EIT system is a sample container including two pairs of current-injection electrodes and 360 voltage-sensing electrodes. In designing the container, we took advantage of a hexagonal structure with fixed dimensions and electrode configuration. This eliminated technical difficulties related to the unknown irregular boundary geometry of an imaging object in conventional medical EIT. Attaching a pair of large current-injection electrodes fully covering the left and right sides of the hexagonal container, we generated uniform parallel current density inside the container filled with saline. The 360 voltage-sensing electrodes were placed on the front, bottom and back sides of the hexagonal container in three sets of 8 × 15 arrays with equal gaps between them. We measured voltage differences between all neighboring pairs along the direction of the parallel current pathway. For the homogeneous container, all measured voltages must be the same since the voltage changes linearly along that direction. Any anomaly in the container perturbed the current pathways and therefore equipotential lines to produce different differential voltage data. For conductivity image reconstructions, we adopted a lately developed image reconstruction algorithm for this electrode configuration to first produce projected conductivity images on the front, bottom and back sides. Using a backprojection method, we reconstructed three-dimensional conductivity images from those projection images. To improve the image quality and also to meet the mathematical requirement on the uniqueness of a reconstructed image, we used a second pair of thin and long current-injection electrodes located at the middle of the front and back sides. This paper describes the design and construction of such a micro-EIT system with experimental

  9. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.

    Directory of Open Access Journals (Sweden)

    Le Li

    Full Text Available This study investigates the impact of the subcutaneous fat layer (SFL thickness on localized electrical impedance myography (EIM, as well as the effects of different current electrodes, varying in distance and direction, on EIM output. Twenty-three healthy subjects underwent localized multi-frequency EIM on their biceps brachii muscles with a hand-held electrode array. The EIM measurements were recorded under three different configurations: wide (or outer longitudinal configuration 6.8 cm, narrow (or inner longitudinal configuration 4.5 cm, and narrow transverse configuration 4.5 cm. Ultrasound was applied to measure the SFL thickness. Coefficients of determination (R2 of three EIM variables (resistance, reactance, and phase and SFL thickness were calculated. For the longitudinal configuration, the wide distance could reduce the effects of the subcutaneous fat when compared with the narrow distance, but a significant correlation still remained for all three EIM parameters. However, there was no significant correlation between SFL thickness and reactance in the transverse configuration (R2 = 0.0294, p = 0.434. Utilizing a ratio of 50kHz/100kHz phase was found to be able to help reduce the correlation with SFL thickness for all the three configurations. The findings indicate that the appropriate selection of the current electrode distance, direction and the multi-frequency phase ratio can reduce the impact of subcutaneous fat on EIM. These settings should be evaluated for future clinical studies using hand-held localized arrays to perform EIM.

  10. Beam measurements of the LHC impedance and validation of the impedance model

    CERN Document Server

    Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H

    2014-01-01

    Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.

  11. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  12. Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Herrera, Daniel Salazar; Besio, Walter G

    2017-07-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper, we measured the impedance on both tripolar concentric ring electrodes and standard cup electrodes by electrochemical impedance spectroscopy (EIS) using both Ten20 and TD246 electrode paste. Furthermore, we applied the model to prove that the model can predict the performance of the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  13. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    Science.gov (United States)

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  14. An impedance spectroscopy investigation of nanocrystalline CsPbBr{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, G. [Department of Electronic Engineering and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Conte, G. [Department of Electronic Engineering and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy)]. E-mail: gconte@ele.uniroma3.it; Aloe, P. [Department of Physics and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Somma, F. [Department of Physics and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy)

    2005-12-15

    Thin films of CsPbBr{sub 3} were prepared by co-evaporation of CsBr and PbBr{sub 2} powders. Deposited materials are constituted by nanometer-sized crystals as evidenced by atomic force microscopy and X ray diffraction. Impedance spectroscopy measurements, aimed to study the dielectric relaxation processes and transport mechanisms at grain boundary and grain interior, reveal a complex response of the material both on the frequency and on the temperature variations. DC current voltage curves are ohmic for applied electric field strength up to 2 x 10{sup 6} V/cm. The DC conductivity Arrhenius plot gives a value of the activation energy equal to 0.85 eV, smaller then that expected for an intrinsic semiconductor. On the other hand, impedance measurements on a wide frequency range and at different temperatures can be reduced to a single master curve addressing hopping transport mechanism and dielectric relaxation processes being active. Finally, a simple model based on multiple Voigt's elements has been used to fit the impedance spectroscopy data and to evaluate relevant material parameters.

  15. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide, E-mail: pdzhao@eyou.com, E-mail: pdzhao@hebut.edu.cn [School of Science, Hebei University of Technology, Beichen Campus, Tianjin 300401 (China); Li, Erping, E-mail: liep@zju.edu.cn [Institute of High Performance Computing, Fusionopolis, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632 (Singapore)

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  16. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Yamokoski, John D. (Inventor); Strawser, Philip A. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  17. Evaluation of electrical broad bandwidth impedance spectroscopy as a tool for body composition measurement in cows in comparison with body measurements and the deuterium oxide dilution method.

    Science.gov (United States)

    Schäff, C T; Pliquett, U; Tuchscherer, A; Pfuhl, R; Görs, S; Metges, C C; Hammon, H M; Kröger-Koch, C

    2017-05-01

    Body fatness and degree of body fat mobilization in cows vary enormously during their reproduction cycle and influence energy partitioning and metabolic adaptation. The objective of the study was to test bioelectrical impedance spectroscopy (BIS) as a method for predicting fat depot mass (FDM), in living cows. The FDM is defined as the sum of subcutaneous, omental, mesenteric, retroperitoneal, and carcass fat mass. Bioelectrical impedance spectroscopy is compared with the prediction of FDM from the deuterium oxide (DO) dilution method and from body conformation measurements. Charolais × Holstein Friesian (HF; = 18; 30 d in milk) crossbred cows and 2 HF (lactating and nonlactating) cows were assessed by body conformation measurements, BIS, and the DO dilution method. The BCS of cows was a mean of 3.68 (SE 0.64). For the DO dilution method, a bolus of 0.23 g/kg BW DO (60 atom%) was intravenously injected and deuterium (D) enrichment was analyzed in plasma and whey by stabile isotope mass spectrometry, and total body water content was calculated. Impedance measurement was performed using a 4-electrode interface and time domain-based measurement system consisting of a voltage/current converter for applying current stimulus and an amplifier for monitoring voltage across the sensor electrodes. For the BIS, we used complex impedances over three frequency decades that delivers information on intra- and extracellular water and capacity of cell membranes. Impedance data (resistance of extra- and intracellular space, cell membrane capacity, and phase angle) were extracted 1) by simple curve fit to extract the resistance at direct current and high frequency and 2) by using an electrical equivalent circuit. Cows were slaughtered 7 d after BIS and D enrichment measurements and dissected for the measurement of FDM. Multiple linear regression analyses were performed to predict FDM based on data obtained from body conformation measurements, BIS, and D enrichment, and applied

  18. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  19. Impedance Based Characterization of a High-Coupled Screen Printed PZT Thick Film Unimorph Energy Harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, R.; Borregaard, L. M.

    2014-01-01

    The single degree of freedom mass-spring-damper system is the most common approach for deriving a full electromechanical model for the piezoelectric vibration energy harvester. In this paper, we revisit this standard electromechanical model by focusing on the impedance of the piezoelectric device...... parameters which, by means of the piezoelectric impedance expression, all can be determined accurately by electrical measurements. It is shown how four of five lumped parameters can be determined from a single impedance measurement scan, considerably reducing the characterization effort. The remaining...... parameter is determined from shaker measurements, and a highly accurate agreement is found between model and measurements on a unimorph MEMS-based screen printed PZT harvester. With a high coupling term K-2 Q similar or equal to 7, the harvester exhibits two optimum load points. The peak power performance...

  20. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  1. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    Science.gov (United States)

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  2. Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study

    Science.gov (United States)

    Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.

    2010-04-01

    Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.

  3. Impedance measurements on oxide films on aluminium obtained by pulsed tensions

    Energy Technology Data Exchange (ETDEWEB)

    Belmokre, K. [Lab. of Applied Chemical, Dept. of Chemie, Skikda University, BP 26 - 21000 Skikda (Algeria); Azzouz, N. [Dept. of Industrial Chemie, Jijel University Center, 18000 Jijel (Algeria); Hannani, A. [Lab. Electrochem. Corros. Institute of Chemical USTHB Alger (Algeria); Pagetti, J. [Lab. LCMI, Franche-Comte - University UFR Sciences and Technical 16, Gray street - 25030 Besancon Cedex (France)

    2003-01-01

    We have performed this study on oxide films sealed or not in boiling water. The films are first obtained on type 1050 A aluminium substrate by pulsed tensions anodizing technique, in a sulfuric acid solution. Afterwards the, Electrochemical Impedance Spectroscopy (EIS) is employed to appreciate the films behaviour in a neutral solution of 3.5% K{sub 2}SO{sub 4}, in which the interface processes interest only the ageing phenomenon of the oxide films and not their corrosion. We have also attempted a correlation between pulse parameters of anodization and the electrical parameters characterizing these films. The sealing influence on ageing has been studied as well. For all films, ageing is appreciated using impedance diagrams evolution versus time. The results show: - the existence of two capacitive loops confirming the presence of two oxide layers characteristic of oxide films obtained in a sulfuric acid medium. The first loop, at high frequencies, is related to the external porous layer and the second one, at lower frequencies, is related to the internal barrier layer. - the thickness of the barrier layer varies between 25 and 40 nm in relation with the electrical pulse parameters. - the sealing acts favorably against anodic oxide films ageing. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. Development of electrochemical impedance spectroscopy based sensing system for DEHP detection

    KAUST Repository

    Zia, Asif I.

    2011-11-01

    This research work presents a real time and non invasive technique to detect Di(2-ethylhexyl) phthalate (DEHP)content in purified water and quantify its concentration by Electrochemical Impedance Spectroscopy(E.I.S.). Planar Inter-digital capacitive sensor is employed to evaluate conductivity, permeability and dielectric properties of material under test. This sensor, consisting of inter-digitated microelectrodes, is fabricated on silicon substrate using thin-film Microelectromechanical system (MEMS) based semiconductor device fabrication technology. Impedance spectrums are obtained with various concentrations of DEHP in purified water by using an electric circuit in order to extract sample conductance. Relationship of sample conductance with DEHP concentration is studied in this research work which enables us to show the ability of E.I.S. to detect DEHP concentration in water and hence can be applied in water treatment process for contamination quantification. © 2011 IEEE.

  5. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...

  6. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    Science.gov (United States)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  7. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets

    International Nuclear Information System (INIS)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    2014-01-01

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance and diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand

  8. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.

    Science.gov (United States)

    Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D

    2001-10-01

    The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.

  9. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  10. A multichannel frequency response analyser for impedance spectroscopy on power sources

    Directory of Open Access Journals (Sweden)

    DANIEL J. L. BRETT

    2013-06-01

    Full Text Available A low-cost multi-channel frequency response analyser (FRA has been developed based on a DAQ (data acquisition/LabVIEW interface. The system has been tested for electric and electrochemical impedance measurements. This novel association of hardware and software demonstrated performance comparable to a commercial potentiostat / FRA for passive electric circuits. The software has multichannel capabilities with minimal phase shift for 5 channels when operated below 3 kHz. When applied in active (galvanostatic mode in conjunction with a commercial electronic load (by discharging a lead acid battery at 1.5 A the performance was fit for purpose, providing electrochemical information to characterize the performance of the power source.

  11. Positive phase error from parallel conductance in tetrapolar bio-impedance measurements and its compensation

    Directory of Open Access Journals (Sweden)

    Ivan M Roitt

    2010-01-01

    Full Text Available Bioimpedance measurements are of great use and can provide considerable insight into biological processes.  However, there are a number of possible sources of measurement error that must be considered.  The most dominant source of error is found in bipolar measurements where electrode polarisation effects are superimposed on the true impedance of the sample.  Even with the tetrapolar approach that is commonly used to circumvent this issue, other errors can persist. Here we characterise the positive phase and rise in impedance magnitude with frequency that can result from the presence of any parallel conductive pathways in the measurement set-up.  It is shown that fitting experimental data to an equivalent electrical circuit model allows for accurate determination of the true sample impedance as validated through finite element modelling (FEM of the measurement chamber.  Finally, the model is used to extract dispersion information from cell cultures to characterise their growth.

  12. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  13. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  14. An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    In this paper a method for estimating the fuel cell impedance is presented, namely the current pulse injection (CPI) method, which is well suited for online implementation. This method estimates the fuel cell impedance and unlike electrochemical impedance spectroscopy (EIS), it is simple...... to implement at a low cost. This makes it appealing as a characterization method for on-line diagnostic algorithms. In this work a parameter estimation method for estimation of equivalent electrical circuit (EEC) parameters, which is suited for on-line use is proposed. Tests on a 10 cell high temperature PEM...... fuel cell show that the method yields consistent results in estimating EEC parameters for different current pulse at different current loads, with a low variance. A comparison with EIS shows that despite its simplicity the response of CPI can reproduce well the impedance response of the high...

  15. Application of bioelectrical impedance analysis in prediction of light kid carcass and muscle chemical composition.

    Science.gov (United States)

    Silva, S R; Afonso, J; Monteiro, A; Morais, R; Cabo, A; Batista, A C; Guedes, C M; Teixeira, A

    2018-06-01

    Carcass data were collected from 24 kids (average live weight of 12.5±5.5 kg; range 4.5 to 22.4 kg) of Jarmelista Portuguese native breed, to evaluate bioelectrical impedance analysis (BIA) as a technique for prediction of light kid carcass and muscle chemical composition. Resistance (Rs, Ω) and reactance (Xc, Ω), were measured in the cold carcasses with a single frequency bioelectrical impedance analyzer and, together with impedance (Z, Ω), two electrical volume measurements (VolA and VolB, cm2/Ω), carcass cold weight (CCW), carcass compactness and several carcass linear measurements were fitted as independent variables to predict carcass composition by stepwise regression analysis. The amount of variation explained by VolA and VolB only reached a significant level (Pcarcass fat weight (0.814⩽R 2⩽0.862; Pcarcass fat weight (combined with carcass length, CL; R 2=0.943; Pcarcass composition.

  16. Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT).

    Science.gov (United States)

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik

    2003-05-01

    In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.

  17. Phase boundary estimation in electrical impedance tomography using the Hooke and Jeeves pattern search method

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Kim, Kyung Youn; Ijaz, Umer Zeeshan; Lee, Jeong Seong; Kim, Sin

    2010-01-01

    In industrial processes, monitoring of heterogeneous phases is crucial to the safety and operation of the engineering structures. Particularly, the visualization of voids and air bubbles is advantageous. As a result many studies have appeared in the literature that offer varying degrees of functionality. Electrical impedance tomography (EIT) has already been proved to be a hallmark for process monitoring and offers not only the visualization of the resistivity profile for a given flow mixture but is also used for detection of phase boundaries. Iterative image reconstruction algorithms, such as the modified Newton–Raphson (mNR) method, are commonly used as inverse solvers. However, their utility is problematic in a sense that they require the initial solution in close proximity of the ground truth. Furthermore, they also rely on the gradient information of the objective function to be minimized. Therefore, in this paper, we address all these issues by employing a direct search algorithm, namely the Hooke and Jeeves pattern search method, to estimate the phase boundaries that directly minimizes the cost function and does not require the gradient information. It is assumed that the resistivity profile is known a priori and therefore the unknown information will be the size and location of the object. The boundary coefficients are parameterized using truncated Fourier series and are estimated using the relationship between the measured voltages and injected currents. Through extensive simulation and experimental result and by comparison with mNR, we show that the Hooke and Jeeves pattern search method offers a promising prospect for process monitoring

  18. Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales

    Directory of Open Access Journals (Sweden)

    Peirong Chen

    2015-11-01

    Full Text Available Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz and high-frequency (HF; GHz impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS, which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR, not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed.

  19. Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales

    Science.gov (United States)

    Chen, Peirong; Schönebaum, Simon; Simons, Thomas; Rauch, Dieter; Dietrich, Markus; Moos, Ralf; Simon, Ulrich

    2015-01-01

    Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz) and high-frequency (HF; GHz) impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR), not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed. PMID:26580627

  20. Mensuration of magnetic and electric characteristics

    International Nuclear Information System (INIS)

    Owen M, Eduardo; Sarria Navarro, Erika; Fula, Marco Antonio

    2000-01-01

    The paper presents the design of a virtual instrument (VI) that allows the quick and precise measure of the magnetic behavior (of the materials), under the magnetization cycle. Additionally, the (VI) will be in capacity of measuring the electric impedance of an element or electric circuit. The virtual instrument was elaborated in the tool of virtual instrumentation Lab View 4.0 of National Instruments