WorldWideScience

Sample records for electrical energy efficiency

  1. A study on electric bicycle energy efficiency

    Directory of Open Access Journals (Sweden)

    Ivan EVTIMOV

    2015-09-01

    Full Text Available The paper presents a construction of an experimental electric bicycle for evaluation of the energy efficiency. The bicycle is equipped with onboard computer which can store the information about motion and energy consumption. The result concerning power, energy consumption, recharging during brake process, etc. are given. Energy consumption for 3 typical city routes is studied.

  2. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  3. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  4. Barriers to electric energy efficiency in Ghana

    Science.gov (United States)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  5. Energy-efficient electric motors study

    Science.gov (United States)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  6. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  7. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  8. Renewable energy and energy efficiency in liberalized European electricity markets

    International Nuclear Information System (INIS)

    Wohlgemuth, Norbert

    2000-01-01

    Given the projected growth in global energy demand, renewable energy (RE) and energy efficiency (EE) play a crucial role in the attainment of the environmental dimension of sustainable development. Policy mechanisms to promote RE and EE have been justified on the rationale of market failure, which prevents price signals alone from being sufficient to induce consumers to implement the socially optimal level. The paper shows driving forces for increasing competition in the electricity supply industry and discusses the implication of electricity industry liberalisation on RE/EE activities. Policies of the European Commission to promote RE/EE are presented, including a more detailed description of the experience made in the United Kingdom. Conclusions are that the new market structure may be too short sighted to stimulate RE and EE activities and that the design of policies should be compatible with the new market-orientated structure of the electricity industry. If implemented properly, and compatible with the competitive market organisation, electricity supply liberalisation could pave the way for 'sustainable electricity' in the European Union. (Author)

  9. Preliminary survey on electric energy efficiency in Ethiopia:- Areas of ...

    African Journals Online (AJOL)

    In this paper the significance of electric energy efficiency improvement and major areas of loss in Ethiopia's electric power system are highlighted for further rigorous study. Major electric energy loss areas in the utility transmission and distribution systems and consumer premises are indicated. In the consumer area the loss ...

  10. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  11. Differential electricity pricing and energy efficiency in South Africa

    International Nuclear Information System (INIS)

    Kohler, Marcel

    2014-01-01

    By international standards the economy of South Africa is extremely energy intensive with only a few countries having higher intensities. SA's primary energy use per unit of GDP is amongst the highest in the world. The high energy and electricity intensity of the economy partly reflects SA's resource endowments (in particular the abundance of coal) but is also a function of the historical under-pricing of coal and electricity by the authorities. South African mining and industrial electricity efficiency is particularly concerning and considerably lower than the global average. This paper sets out to fill a significant gap in the South African energy literature by highlighting the importance of incorporating electricity demand factors as part of the country's energy policy and electricity planning horizon. The paper focuses its attention on modelling the electricity consumption of SA's industrial and mining sectors given these account for the lion's share of electricity demand. A differential electricity pricing policy which targets electricity intensive industrial and mining activities (as practised in China since 2004) is viewed by the author to be a superior policy to blanket electricity price increases administered by authorities in an effort to encourage electricity savings and improve energy efficiency in South Africa. - Highlights: • SA's primary energy use per unit of GDP is amongst the highest in the world. • SA industrial electricity efficiency is considerably lower than the global average. • A differential electricity pricing policy which targets electricity intensive activities. • Differential tariffs raise the cost of energy inefficiency and induces energy saving. • Highlights importance of energy demand modelling in electricity supply planning

  12. Economic analysis of Brazilian policies for energy efficient electric motors

    International Nuclear Information System (INIS)

    Andrade, Cássio Tersandro de Castro; Pontes, Ricardo Silva Thé

    2017-01-01

    Brazil is leading several energy efficiency initiatives and has ambitious goals for 2030, according to the Brazilian National Energy Plan 2030. One of the main initiatives is the minimum efficiency performance standards (MEPS) program for energy-driven equipment and the electric motors appear as the most significant one (49% share of the total electricity consumption). The MEPS levels set new grades for efficiency, and then manufacturers and consumers have to conform to the new products and costs. Policy makers have to economically assess the effects of these MEPS in order to maintain the market stability. Since the benefits of this program come from future energy savings, this cost-effective analysis has to consider the parameters uncertainty and the results should reinforce the market players’ confidence. Thus, the goal of this work is, first, to analyze the economic viability of the MEPS transitions in Brazil considering the uncertainty of the parameters involved and then, to estimate the effects of this program on the energy savings goals for 2030. At the end, we also verify whether this investment in energy efficiency is competitive with other forms of investments in energy. - Highlights: • A cost-effectiveness method with uncertainty for efficiency program is presented. • Savings from electric motors MEPS program makes the 2030 Brazilian goals possible. • Electric motors MEPS program cost-effectiveness in Brazil is confirmed. • Saved energy cost from efficiency improvement is a competitive energy investment.

  13. Energy Efficiency in Electrical Systems: A Case Study of an ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Energy Efficiency in Electrical Systems: A Case. Study of an .... industries in Morocco have a medium-voltage billing bellow, which is ... the circulation of the reactive energy on the distribution ... High voltage drops. Indeed, for ...

  14. Electric buses - An energy efficient urban transportation means

    Energy Technology Data Exchange (ETDEWEB)

    Kuehne, Reinhart [German Aerospace Center (DLR), Transportation Studies, Rutherfordstr. 2, 12489 Berlin (Germany)

    2010-12-15

    Bus transit systems with electric traction are an important contribution to the post fossil fuel mobility. Most renewable energy sources provide energy in the form of electricity. Electric motors thus have promise in the development of the way ''beyond oil''. The reactivation of trolley bus systems - grid bounded but also catenary free for short distances - paves this way. The design of modern trolley bus operations overcomes the existing disadvantages of conventional buses using fossil fuel. Germany has an efficient industry in this field, that offers braking energy recovery and energy storage in modern supercapacitors as well as technical and organisational innovations for a local emission free and a low noise transit system. Gentle but powerful when starting and braking, the trolley bus is cost effective and easy to integrate into an existing infrastructure. Such an electric bus system is ecological, customer-friendly and suitable for cities. It has a high economic efficiency and it also expands the traffic planning field towards an ecological future technology. This paper shows examples at home and abroad how electric buses achieve an energy solving modern urban traffic. It gives insights into technical developments of electric vehicle equipment, cateneries with fast driving handling characteristics and the use of plain electric and hybrid powertrains. (author)

  15. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  16. Time-varying value of electric energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    2017-06-30

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range

  17. Energy efficiency improvements in electric motors and drives

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldi, P. [Commission of the European Communities, Brussels (Belgium). Directorate General for Energy; Ameida, A.T. de [Coimbra Univ. (Portugal). Dept. de Engenharia Electrotecnica; Falkner, H. [eds.] [AEA Technolgy, Harwell (United Kingdom). ETSU

    2000-07-01

    This book covers the state of the art of energy-efficient electric motor technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. Recent developments in advanced motor technologies by some of the largest manufacturers of motors and drives are also presented. Although energy-efficient motor technologies can save a huge amount of electricity, they still have not been widely adopted. The barriers which can hinder the adoption of those technologies are presented. Policies and programmes to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the European Union, North America, Latin America, Japan, Australia and New Zealand. (orig.)

  18. Energy efficient motion control of the electric bus on route

    Science.gov (United States)

    Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.

    2018-02-01

    At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.

  19. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  20. Development of an International Electric Cooperative Initiative on Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Paul Clark; David South

    2004-05-01

    NRECA conceived of the International Electric Cooperative Initiative on Energy Efficiency (IECIEE) in order to provide an ongoing means of contributing voluntary actions on greenhouse gas emissions mitigation as an integral component of its international programs and projects. This required designing the IECIEE to be integrated directly with the core interests and attributes of participating cooperatives in the U.S. and Latin America, which was the initial focus area selected for the IECIEE. In the case of NRECA International, the core interests related to promoting and strengthening the electric cooperative model, which has proved highly successful in maximizing operational efficiencies in electric power generation, distribution and retailing, as compared to government-owned entities. The approach involved three basic components: (i) establishing the IECIEE mechanism, which involved setting up a functioning organizational vehicle providing for investment, management, and emissions credit accounting; (ii) developing a portfolio of projects in countries where NRECA International could effectively implement the broader mandate of cooperative development as energy efficient suppliers and distributors of electrical energy; and (iii) conducting outreach to obtain the commitment of participants and resources from U.S. and Latin American cooperatives and partnering agencies in the development financing community.

  1. Energy efficiency and CO2: is electricity the key factor?

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Y.

    2007-07-01

    Europe must face soon to the depletion of fossil energy resources. Efficiency in end energy uses is a key to prepare this challenge. First, the report shows that significant energy efficiency capacities remain in the main economy sectors in France and Europe: buildings, industry, transportation. The key technologies, mainly electricity-driven, are briefly presented, together with the related main tracks for R and D: heat pumps, thermal insulation, induction and mechanical vapour compression for industry, plugged hybrid vehicle, LED sources for lighting. Their ability to decrease CO2 emissions is shown. Control equipment and users behaviour are pointed out, mainly with the key role of price energy with recent French experience : load shifting, peak shaving. Finally, the report shows that a firm policy, based on high performance equipments, could lead to a significant decrease of energy needs in France around 2030.

  2. Energy efficiency improvement of medical electric tools and devices

    Directory of Open Access Journals (Sweden)

    Meshkov Aleksandr S.

    2014-01-01

    Full Text Available With the ever-increasing volume of applications of various kinds of electric drives in all spheres of human activity, the issues in improving the efficiency of the electromechanical converters of electric energy, one of the most important components of the electric drive (ED, are becoming increasingly important. Such issues include reducing their weight and size, improving the functional characteristics of these devices to increase their operational life and reducing the cost of manufacture. Taking full advantage of these opportunities relates to the AC and DC single-phase commutator motor (SCM, which is widely used in regulated and high-speed motor drives in medical electric hand tools. The SCM is used in machinery where the load torque has a hyperbolic dependence on the rotational speed and the need to work with a large motor overload due to the “soft” mechanical characteristics of such motors.

  3. Efficient integration of renewable energies in the German electricity market

    International Nuclear Information System (INIS)

    Nabe, C.A.

    2006-01-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  4. Energy-efficiency instruments in the electricity area

    International Nuclear Information System (INIS)

    Hammer, S.; Oettli, B.; Schneider, Ch.; Iten, R.; Peherstorfer, N.

    2007-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) describes a mix of instruments that could increase the efficiency of electricity usage in Switzerland. The basis for the development of these instruments - the experience gained in Europe in this area - is discussed. Explicitly not discussed are energy and electricity steering taxes, which could also be part of a future instrument-mix. The measures suggested include the setting of compulsory long-term reduction targets that are to form the basis for strategies and measures to be taken in particular areas and the development of an appropriate instrument-mix for this purpose. These could include regulations and labels, a national fund and certificate trading. Suppliers of electricity could be committed to increasing the efficiency of electricity use and national programmes could also attempt to influence consumer habits. The instruments should, according to the authors, be based on the existing legal framework and use know-how and structures that are already available

  5. Energy-efficient microcontrollers for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Makowitz, Rainer; Gryska, Holger; Thanner, Manfred; Steinert, Frank [Freescale Halbleiter GmbH, Muenchen (Germany)

    2010-07-01

    Electric vehicles with their limited supply of energy are accelerating the trend towards more energy-efficient electronics that has started with the discussion on reducing the production of greenhouse gas of vehicles. While electricifaction of functions in a car is a technique that will help reduce overall energy consumption, microcontrollers are playing an important role in energetically optimizing the resulting electronics. In this presentation we give an overview of operating strategies for embedded automotive systems that lead to a set of power modes for the microcontrollers. Examples will be shown how Freescale's microcontrollers are designet to optimize energy consumption in each of these modes. We will also outline what needs to be done in the overall vehicle communication network design and in software to effectively use these new features of microcontrollers. The major elements that would benefit from standardization (e.g. in Autosar) will be indicated. (orig.)

  6. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  7. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  8. Energy efficiency and performance indicators of European electricity market

    Directory of Open Access Journals (Sweden)

    Constantin DUGULEANĂ

    2015-06-01

    Full Text Available The electric power system plays a vital role in the development of every country, ensuring the “fuel” which feeds its economic motor. The efficient functioning of this motor is essential for economy. The efficiency and the performances of electric power systems are reflected on the living level of population, through the money spent and the satisfaction level of their needs. The continuity of power distribution process, the good communication between the suppliers and consumers, the promptitude of interventions, the environment protection - all these are aspects characterizing the performance level of power distribution systems. The paper analyzes the evolution of quality indicators of power distribution systems both for countries’ level and for population on European market of electricity.

  9. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  10. Experience with Energy Efficiency Requirements for Electrical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication has been produced as part of the work programme in support of the Gleneagles Plan of Action (GPOA), where the IEA was requested to 'undertake a study to review existing global appliance standards and codes'. In accordance with the G8 request, this study investigates the coverage and impact of forms of minimum energy performance standards (MEPS) and comparative energy labelling programmes; which comprise the cornerstone of most IEA countries national energy efficiency strategy. This scope also reflects governments' aspirations to achieve ambitious targets for reducing greenhouse gas emissions. As a result, this study does not address endorsement labelling and associated voluntary programmes, although these are also important policy tools for national energy efficiency strategies.

  11. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This publication is the first global analysis of energy consumption and energy efficiency potential of EMDS (electric motor- driven system). The electric motors and systems they drive are the largest single electricity end use, accounting for more than 40% of global electricity consumption. Huge energy efficiency potential was found untapped in EMDS - around 25% of EMDS electricity use could be saved cost-effectively, reducing total global electricity demand by about 10%. However, the energy efficiency of EMDS has been relatively neglected in comparison with other sustainable energy opportunities. It is crucial to scale up the operations and resources committed to realizing the vast savings potential of optimized EMDS. This paper proposes a comprehensive package of policy recommendations to help governments realize the potential for energy savings in EMDS.

  12. Establishing strategic energy assessment indicators for Zimbabwe: A key to improving electrical energy efficiency

    Science.gov (United States)

    Goto, Felix

    In Zimbabwe, there is still very little realization of the potential of demand side management (DSM) to increase industrial energy efficiency. Without clear guidelines that indicate the most economic energy efficiency strategies to implement, it is difficult for industry to easily evaluate the benefits of energy assessments. This research focused on establishing and evaluating indicators that guide correct implementation of energy assessments into Zimbabwean industry. This quantitative and qualitative study used a theoretic approach to develop indicators that identified industrial subsectors that should be targeted for DSM interventions. This may bring about reduction in energy demand in high power consuming Zimbabwean industrial companies, which were compared with energy utility performances of similar industrial companies in countries located in other parts of the world. This research used pattern-matching, categorical aggregation, and stochastic frontier regression analysis for data analysis. In maximizing electrical efficiency, the implications of this study may be used by individual companies in Zimbabwe to perform energy efficiency self-diagnoses, operational efficiency evaluations, and capital resource justifications. From a societal perspective, this study may benefit Zimbabwe because it provides opportunities for the alleviation of both shortages in power supply and the capital constraints of building new generating capacity. This study will also benefit ordinary Zimbabweans by lowering energy costs and providing reliable power. This promotes sustainable economic growth and lowers the need for foreign currency to import power.

  13. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    Science.gov (United States)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  14. ENERGY EFFICIENCY DETERMINATION OF LOADING-BACK SYSTEM OF ELECTRIC TRACTION MACHINES

    Directory of Open Access Journals (Sweden)

    A. M. Afanasov

    2014-03-01

    Full Text Available Purpose.Acceptance post-repair testsof electric traction machinesare conducted onloading-backstandsthat reducethe overall power costsfor the tests.Currentlya numberof possiblecircuit designs of loading-backsystems of electric machines are known, but there is nomethod of determiningtheir energy efficiency. This in turn makes difficult the choiceof rationaloptions. The purpose of the article is the development of the corresponding methodo-logy to make easier this process. Methodology. Expressions for determining theenergy efficiency ofa stand for testingof electric traction machineswere obtained using the generalizedscheme analysisof energy transformationsin the loading-backsystems of universal structure. Findings.Thetechnique wasoffered and the analytical expressions for determining the energy efficiency of loading-backsystemsof electric traction machines wereobtained. Energy efficiency coefficientofloading-backsystemisproposed to consider as the ratio of the total actionenergy of the mechanical and electromotive forces, providing anchors rotation and flowof currents in electric machines, which are being tested,to the total energy, consumed during the test from the external network. Originality. The concept was introduced and the analytical determination method of the energy efficiency of loading-backsystem in electric traction machines was offered. It differs by efficiency availability of power sources and converters, as well as energy efficiency factors of indirect methods of loss compensation. Practical value. The proposed technique of energy efficiency estimation of a loading-backsystemcan be used in solving the problem of rational options choice of schematics stands decisions for electric traction machines acceptance tests of main line and industrial transport.

  15. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  16. Energy efficiency at Hydro-Quebec: Why forget the substitution of electricity by natural gas?

    International Nuclear Information System (INIS)

    Bernard, J.-T.

    1994-01-01

    Hydro-Quebec has launched an energy program which will cost $1.9 billion and which intends to save 9.3 TWh of electricity consumption by the year 2000, equivalent to 5.6% of the forecasted electricity consumption. The program only considers electricity and ignores other energy sources. An analysis is conducted to determine whether the subsidies that Hydro-Quebec is prepared to spend in each sector of the program would be sufficient to make up the difference between the cost of electricity and that of natural gas for the end-user. A positive response to this question will allow identification of a less costly way that Hydro-Quebec could realize its energy efficiency objectives. The analysis takes into account the marginal cost of electricity production, the average cost of energy efficiency measures, electricity prices, and the prices of natural gas and of gas-burning equipment. The results of a detailed analysis of four typical cases in the residential and commercial sectors indicate that market segments exist in which an energy efficiency program that includes substitution of other forms of energy for electricity would be preferable to a simple reduction in electricity consumption. However, the rationale for the Hydro-Quebec program is that electricity prices are based on historical average costs; as a result, electricity prices are lower than marginal costs. This problem should be addressed before considering expensive energy efficiency programs where the least-cost alternative is not even considered. 5 refs., 1 fig., 2 tabs

  17. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DOE / EERE / NEED Project

    2011-06-07

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  18. Energy-efficient electrical machines by new materials. Superconductivity in large electrical machines

    International Nuclear Information System (INIS)

    Frauenhofer, Joachim; Arndt, Tabea; Grundmann, Joern

    2013-01-01

    The implementation of superconducting materials in high-power electrical machines results in significant advantages regarding efficiency, size and dynamic behavior when compared to conventional machines. The application of HTS (high-temperature superconductors) in electrical machines allows significantly higher power densities to be achieved for synchronous machines. In order to gain experience with the new technology, Siemens carried out a series of development projects. A 400 kW model motor for the verification of a concept for the new technology was followed by a 4000 kV A generator as highspeed machine - as well as a low-speed 4000 kW propeller motor with high torque. The 4000 kVA generator is still employed to carry out long-term tests and to check components. Superconducting machines have significantly lower weight and envelope dimensions compared to conventional machines, and for this reason alone, they utilize resources better. At the same time, operating losses are slashed to about half and the efficiency increases. Beyond this, they set themselves apart as a result of their special features in operation, such as high overload capability, stiff alternating load behavior and low noise. HTS machines provide significant advantages where the reduction of footprint, weight and losses or the improved dynamic behavior results in significant improvements of the overall system. Propeller motors and generators,for ships, offshore plants, in wind turbine and hydroelectric plants and in large power stations are just some examples. HTS machines can therefore play a significant role when it comes to efficiently using resources and energy as well as reducing the CO 2 emissions.

  19. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  20. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  1. The effect of economic factors and energy efficiency programs on residential electricity consumption

    Science.gov (United States)

    Sakai, Mihoko

    Many countries have implemented policies to correct market and behavioral failures that lead to inefficient energy use. It is important to know what factors and policies can effectively overcome such failures and improve energy efficiency; however, a comprehensive analysis has been difficult because of data limitations. Using state scores compiled by American organizations recently, and adopting fixed-effects regression models, I analyze the joint impacts of relevant factors and policy programs on residential electricity consumption in each U.S. state. The empirical results reveal that increases in electricity price have small and negative effects, and increases in personal income have positive effects on residential electricity sales per capita (a measure of energy efficiency). The results suggest that it may take time for economic factors to affect electricity sales. The effects of personal income suggest the difficulty of controlling residential electricity consumption; however, they also imply that there is some room in households to reduce electricity use. The study also finds that programs and budgets of several policies seem to be associated with electricity sales. The estimates from a model including interaction terms suggest the importance of including multiple policies when analyzing and designing policies to address electricity efficiency. The results also imply the possibility of rebound effects of some policies, whereby improvements in energy efficiency lead to increases in energy consumption due to the associated lower per unit cost. Future studies should analyze both short-term and long-term effects of economic factors and policies, based on improved and accumulated time series and panel data, in order to design more effective policies for improving residential electricity efficiency.

  2. Incorporating energy efficiency into electric power transmission planning: A western United States case study

    International Nuclear Information System (INIS)

    Barbose, Galen L.; Sanstad, Alan H.; Goldman, Charles A.

    2014-01-01

    Driven by system reliability goals and the need to integrate significantly increased renewable power generation, long-range, bulk-power transmission planning processes in the United States are undergoing major changes. At the same time, energy efficiency is an increasing share of the electricity resource mix in many regions, and has become a centerpiece of many utility resource plans and state policies as a means of meeting electricity demand, complementing supply-side sources, and reducing carbon dioxide emissions from the electric power system. The paper describes an innovative project in the western United States to explicitly incorporate end-use efficiency into load forecasts – projections of electricity consumption and demand – that are a critical input into transmission planning and transmission planning studies. Institutional and regulatory background and context are reviewed, along with a detailed discussion of data sources and analytical procedures used to integrate efficiency into load forecasts. The analysis is intended as a practical example to illustrate the kinds of technical and institutional issues that must be addressed in order to incorporate energy efficiency into regional transmission planning activities. - Highlights: • Incorporating energy efficiency into electric power transmission planning is an emergent analytical and policy priority. • A new methodology for this purpose was developed and applied in the western U.S. transmission system. • Efficiency scenarios were created and incorporated into multiple load forecasts. • Aggressive deployment of efficiency policies and programs can significantly reduce projected load. • The approach is broadly applicable in long-range transmission planning

  3. Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors

    International Nuclear Information System (INIS)

    Urpelainen, Johannes

    2011-01-01

    Why are some countries developing many energy efficiency innovations, while others are lagging behind? I argue that export orientation and electricity at low variable cost from nuclear and hydropower plants have an interactive effect on energy efficiency innovation. Export-oriented countries have strong incentives to invest in energy efficiency innovation, as they are in a position to export these technology innovations for global markets. But if inexpensive electricity is supplied in a country, the domestic demand for energy efficiency innovation is missing, and so the home market cannot serve as a springboard for international commercialization. I test this theory against international patent data on energy efficiency innovation in insulation, heating, and lighting for 22 OECD countries, 1991-2007. The statistical analysis indicates that export orientation has large positive effects on energy efficiency innovation in countries that do not rely on nuclear and hydroelectricity. - Highlights: → Export-oriented countries produce energy efficiency innovations. → Nuclear and hydropower reduce energy efficiency innovation. → Data on international patents from industrialized countries support the argument.

  4. Public policy analysis of energy efficiency and load management in changing electricity business

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Energy Analysis Dept.; Hamrin, J. [Centre for Resource Solutions (United States); Eyre, N. [Energy Savings Trust (United Kingdom); Crossley, D.; Maloney, M.; Watt, G. [Energy Futures Australia Pty Ltd (Australia)

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted. (author)

  5. Public policy analysis of energy efficiency and load management in changing electricity businesses

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-04-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted.

  6. Public policy analysis of energy efficiency and load management in changing electricity businesses

    International Nuclear Information System (INIS)

    Vine, Edward; Hamrin, Jan; Eyre, Nick; Crossley, David; Maloney, Michelle; Watt, Greg

    2003-01-01

    The focus of this paper is (1) the potential effectiveness of the reform of the electricity industry on promoting energy efficiency and load management, and (2) the potential effectiveness of new mechanisms for promoting energy efficiency and load management. Many countries are initiating reforms of their power sectors to stimulate private investment, increase operation and management efficiencies, and lower the cost of power. These countries are unbundling vertically integrated utilities into distinct generation, transmission, distribution and retail supply companies; introducing commercial management principles to government-owned monopolies; and in many cases transferring operation or ownership to private companies. Electric industry restructuring may force regulators and policy makers to re-examine existing mechanisms for promoting load management and energy efficiency. In some cases, electric industry restructuring replaces the long-standing relationship between a single monopoly provider and protected customer franchise with a new set of relationships among retail electricity suppliers and customers who may now be free to choose suppliers. In these types of situations, markets, not government regulators and utility monopolies, are seen as determining future energy production and consumption decisions. However, it is uncertain whether this type of restructuring will overcome important market barriers to energy efficiency that limit markets for energy-efficient products and services from functioning effectively. As a result of these barriers, a large, untapped potential for cost-effective energy-efficiency investments exists. Supporters of public policies argue that energy-efficiency programs are an appropriate government strategy to capture economic efficiencies that the market cannot secure unassisted

  7. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  8. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  9. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  10. Essays on the efficient integration of renewable energies into electricity markets

    International Nuclear Information System (INIS)

    Obermueller, Frank

    2018-01-01

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO 2 -emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO 2 -reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  11. Essays on the efficient integration of renewable energies into electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Obermueller, Frank

    2018-01-09

    The dissertation ''Essay on the Efficient Integration of Renewable Energies into Electricity Markets'' consists of five research articles which shed light on the efficient integration of renewable energies into electricity markets. A major share of renewable energies has characteristics which differ from classical conventional generation technologies. The uncertain weather-dependent characteristics in combination with almost-zero marginal generation costs raise new challenges to some parts of the electricity system. On the other side, the promotion of renewable energies seems promising to achieve the Energy Transition targets and reduce Germany's CO{sub 2}-emissions. This becomes relevant in the light of the 2015 UN Climate Change Conference which negotiated the Paris Agreement to tackle climate change, e.g. by the restriction of global warming to a maximum of 2 C, and translate to CO{sub 2}-reduction efforts, especially for the carbon-dioxide intense electricity sectors. The five research papers focusing on different aspects and potential inefficiencies of the renewable energy market integration. The focus can roughly be separated into temporal and regional efficiency examinations. The temporal efficiency is subject to paper 1, paper 2 and paper 3. The regional efficiency is subject to paper 5 which is based on the preliminary findings and the generated dataset in paper 4.

  12. Efficiency snakes and energy ladders: A (meta-)frontier demand analysis of electricity consumption efficiency in Chinese households

    International Nuclear Information System (INIS)

    Broadstock, David C.; Li, Jiajia; Zhang, Dayong

    2016-01-01

    Policy makers presently lack access to quantified estimates – and hence an explicit understanding – of energy consumption efficiency within households, creating a potential gap between true efficiency levels and the necessarily assumed efficiency levels that policy makers adopt in designing and implementing energy policy. This paper attempts to fill this information gap by empirically quantifying electricity consumption efficiency for a sample of more than 7,000 households. Adopting the recently introduced ‘frontier demand function’ due to Filippini and Hunt (2011) but extending it into the metafrontier context – to control for structural heterogeneity arising from location type – it is shown that consumption efficiency is little more than 60% on average. This implies huge potential for energy reduction via the expansion of schemes to promote energy efficiency. City households, which are the wealthiest in the sample, are shown to define the metafrontier demand function (and hence have the potential to be the most efficient households), but at the same time exhibit the largest inefficiencies. These facts together allow for a potential refinement on the household energy ladder concept, suggesting that wealth affords access to the best technologies thereby increasing potential energy efficiency (the ‘traditional view of the household energy ladder), but complementary to this these same households are most inefficient. This has implications for numerous areas of policy, including for example the design of energy assistance schemes, identification of energy education needs/priorities as well more refined setting of subsidies/tax-credit policies. - Highlights: •Frontier demand functions are estimated for a sample of 7102 Chinese households. •Metafrontier methods capture heterogeneity arising from urban form (e.g. cities, towns and villages). •Wealthier houses have higher efficiency potential, but are in fact less efficient in their consumption of

  13. Dealing with the paradox of energy efficiency promotion by electric utilities

    International Nuclear Information System (INIS)

    Sousa, José Luís; Martins, António Gomes; Jorge, Humberto

    2013-01-01

    Utility-based Demand-Side Management (DSM) programmes started after the oil crises of the 70's and were adopted by utilities as a standard practice. However, deregulation of the electricity industry threatened DSM. More recent concerns regarding energy dependence and environmental impact of energy use caused renewed attention on the utilities role in energy efficiency fostering. EE is presently a cross-cutting issue, influencing energy policy definition and regulatory activity worldwide. Some instruments for influencing the behaviour of electric utilities in the market are used by regulators, corresponding to both impositions and stimuli, such as defining savings targets or decoupling profits from energy sales. The paper addresses categories of regulatory instruments and refers to examples of countries and regions using these identified categories of instruments. Although some cases show voluntary involvement of utilities in EE promotion on the grounds of customer retention strategies, there is a clear prevalence of regulatory constrained markets where utilities rationally engage in energy efficiency promotion

  14. Projected electricity savings from implementing minimum energy efficiency standard for household refrigerators in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Choudhury, I.A.; NoorLeha, A.R.

    2003-01-01

    The Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances, especially refrigerator-freezers. Almost every house in Malaysia owns a refrigerator-freezer. The Malaysia Energy Center considered implementing a minimum energy efficiency standard for household refrigerator-freezers sometime in the coming year. This paper attempts to predict the amount of energy savings in the residential sector by implementing a minimum energy efficiency standard for household refrigerator-freezers. The calculations are based on the growth of refrigerator-freezer ownership data in Malaysian households. By implementing the programs in 2004, about 8722 GWh will be saved in the year 2013. Therefore, efficiency improvement of this appliance will provide a significant impact in future electricity consumption in Malaysia

  15. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  16. Electricity savings from implementation of minimum energy efficiency standard for TVs in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M.; Masjuki, H.H.; Mahlia, T.M.I. [University of Malaya, Kuala Lumpur (Malaysia). Department of Mechanical Engineering

    2005-06-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD in Malaysia are poised to have a large impact on overall TV electricity consumption in the country. With the increasing of overall TV energy consumption, energy efficiency standards are one of highly effective policies for decreasing electricity consumption in the residential sector. Energy efficiency standards are also capable of reducing consumer's electricity bill and contribute towards positive environmental impacts. This paper attempts to predict the amount of energy that can be saved in the residential sector by implementing minimum energy efficiency standard for television sets in Malaysia. Over the past 30 years, television ownership in Malaysian residents has increased from 186,036 units in 1970 to 2,741,640 units in 1991. This figure is expected to reach 6,201,316 units in the year 2010. Hence, efficiency improvement for this appliance will have a significant impact on the future of electricity consumption in this country. (author)

  17. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  18. Evaluating games console electricity use : technologies and policy options to improve energy efficiency.

    OpenAIRE

    Webb, Amanda E.

    2016-01-01

    Energy efficiency regulations and standards are increasingly being used as an approach to reduce the impact of appliances on climate change. Each new generation of games consoles is significantly different to the last and their cumulative electricity use has risen due to improved performance and functionality and increasing sales. As a result, consoles have been identified in the EU, US and Australia as a product group with the potential for significant electricity savings. However, there is ...

  19. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  20. Securing energy efficiency as a high priority. Scenarios for common appliance electricity consumption in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Foran, T. [Unit for Social and Environmental Research USER, Faculty of Social Sciences, Chiang Mai University, P.O. Box 144, Chiang Mai, 50200 (Thailand); Du Pont, P.T. [International Resources Group and Joint Graduate School of Energy and Environment, Bangkok (Thailand); Parinya, P. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Phumaraphand, N. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand)

    2010-11-15

    Between 1995 and 2008, Thailand's energy efficiency programs produced an estimated total of 8,369 GWh/year energy savings and 1,471 MW avoided peak power. Despite these impressive saving figures, relatively little future scenario analysis is available to policy makers. Before the 2008 global financial crisis, electricity planners forecasted 5-6% long-term increases in demand. We explored options for efficiency improvements in Thailand's residential sector, which consumes more than 20% of Thailand's total electricity consumption of 150 TWh/year. We constructed baseline and efficient scenarios for the period 2006-2026, for air conditioners, refrigerators, fans, rice cookers, and compact fluorescent light bulbs. We drew on an appliance database maintained by Electricity Generating Authority of Thailand's voluntary labeling program. For the five appliances modeled, the efficiency scenario results in total savings of 12% of baseline consumption after 10 years and 29% of baseline after 20 years. Approximately 80% of savings come from more stringent standards for air conditioners, including phasing out unregulated air conditioner sales within 6 years. Shifting appliance efficiency standards to current best-in-market levels within 6 years produces additional savings. We discuss institutional aspects of energy planning in Thailand that thus far have limited the consideration of energy efficiency as a high-priority resource.

  1. Study on the effect of driving cycles on energy efficiency of electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ji Fenzhu; Xu Licong [School of Transportation Science and Engineering of Beihang Univ., BJ (China); Wu Zhixin [Tianjin Qing Yuan Electric Vehicle Corp. Ltd., TJ (China)

    2009-07-01

    The energy usage efficiency of electric vehicles (EVS) and evaluation index of electromotor efficiency were studied. The idea of ''interval usage percentage of energy efficiency'' and ''exertion degree of energy efficiency'' of electromotor was brought forward. The effect of driving cycles on the distribution of running status of electromotor and its efficiency was investigated. The electromotor efficiency and the variety trend of average driving force at different driving cycles were discussed. Based on several typical domestic and foreign driving cycles, the exertion degree of energy efficiency and the whole efficiency of power train on some types of EVS were analyzed and calculated. The result indicates that there is a difference of 9.64% in exertion degree of energy efficiency of electromotor at different driving cycles. The efficiency distribution of electromotor and control system is different, and the average driving force is different, too. That cause the great variety in driving range. The idiographic reference data are provided to the establishment of driving cycles' criterion of EVS in our country. (orig.)

  2. Data on electrical energy conservation using high efficiency motors for the confidence bounds using statistical techniques.

    Science.gov (United States)

    Shaikh, Muhammad Mujtaba; Memon, Abdul Jabbar; Hussain, Manzoor

    2016-09-01

    In this article, we describe details of the data used in the research paper "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques" [1]. The data presented in this paper is intended to show benefits of high efficiency electric motors over the standard efficiency motors of similar rating in the industrial sector of Pakistan. We explain how the data was collected and then processed by means of formulas to show cost effectiveness of energy efficient motors in terms of three important parameters: annual energy saving, cost saving and payback periods. This data can be further used to construct confidence bounds for the parameters using statistical techniques as described in [1].

  3. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  4. Examining demand response, renewable energy and efficiencies to meet growing electricity needs

    International Nuclear Information System (INIS)

    Elliot, N.; Eldridge, M.; Shipley, A.M.; Laitner, J.S.; Nadel, S.; Silverstein, A.; Hedman, B.; Sloan, M.

    2007-01-01

    While Texas has already taken steps to improve its renewable energy portfolio (RPS), and its energy efficiency improvement program (EEIP), the level of savings that utilities can achieve through the EEIP can be greatly increased. This report estimated the size of energy efficiency and renewable energy resources in Texas, and suggested a range of policy options that might be adopted to further extend EEIP. Current forecasts suggest that peak demand in Texas will increase by 2.3 per cent annually from 2007-2012, a level of growth which is threatening the state's ability to maintain grid reliability at reasonable cost. Almost 70 per cent of installed generating capacity is fuelled by natural gas in Texas. Recent polling has suggested that over 70 per cent of Texans are willing support increased spending on energy efficiency. Demand response measures that may be implemented in the state include incentive-based programs that pay users to reduce their electricity consumption during specific times and pricing programs, where customers are given a price signal and are expected to moderate their electricity usage. By 2023, the widespread availability of time-varying retail electric rates and complementary communications and control methods will permanently change the nature of electricity demand in the state. At present, the integrated utilities in Texas offer a variety of direct load control and time-of-use, curtailable, and interruptible rates. However, with the advent of retail competition now available as a result of the structural unbundling of investor-owned utilities, there is less demand response available in Texas. It was concluded that energy efficiency, demand response, and renewable energy resources can meet the increasing demand for electricity in Texas over the next 15 years. 4 figs

  5. Adoption of energy-efficient televisions for expanded off-grid electricity service

    Directory of Open Access Journals (Sweden)

    Won Young Park

    Full Text Available Even though they dominate the global television (TV market, light-emitting diode backlit liquid crystal display (LED-LCD TVs have received little attention for use with off-grid household-scale renewable energy systems, primarily because of high up-front costs. However, technological advances and price declines mean that these TVs can now provide the same level of electricity service as standard LED-LCD TVs offer but at lower total energy cost. Moreover, LED-LCD TVs are inherently direct-current (DC-powered devices and therefore well suited for use with off-grid solar home systems. We estimate that DC-powered energy-efficient LED-LCD TVs can decrease the retail purchase price of solar home systems by about 25% by allowing use of 50% smaller photovoltaics and battery capacities than would be needed for the same energy system to power a standard LED-LCD TV. We recommend that policies such as awards, bulk procurement, incentives, and energy labels be considered to facilitate the adoption of these energy-efficient TVs in off-grid settings. Keywords: DC television, TV energy efficiency, Electricity access, Off-grid electricity service, Cost-benefit analysis

  6. EFFICIENT USE OF ENERGY IN A ELECTRIC ARC FURNANCE BY HEAT INTEGRATION APPROACH

    OpenAIRE

    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni

    2016-01-01

    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  7. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking

    International Nuclear Information System (INIS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Song, Jian; He, Kai; Li, Chenfeng

    2016-01-01

    Highlights: • Downshift is effective in improving the energy efficiency of electric vehicles. • Energy improvement of downshift varies with vehicle speed and brake strength. • The designed nonlinear sliding mode observer is accurate in estimating bake torque. • The proposed resembling PWM method is practical to regulate hydraulic pressure. • The effect of downshift on braking safety and comfort can be restrained by control. - Abstract: Downshift during regenerative braking helps to improve the energy efficiency of electric vehicles. Two main problems are involved in the downshift process. One is the determination of optimal downshift point, and the other is the cooperative control of regenerative braking and hydraulic braking. In order to achieve a systemic solution to these problems, a hierarchical control strategy is brought forward for an electric vehicle with a two-speed automated mechanical transmission. For the upper controller, an off-line calculation and on-line look-up table method is adopted to obtain the optimal downshift point, and a series regenerative braking distribution strategy is designed. For the medium controller, a nonlinear sliding mode observer is designed to obtain the actual hydraulic brake torque. For the lower controller, cooperative control of regenerative braking and hydraulic braking is given to ensure brake safety during downshift process, and a resembling pulse width modulation method is proposed to regulated the hydraulic brake torque. Simulation results and hardware-in-loop test show that the proposed algorithm is effective in improving the energy efficiency of electric vehicles.

  8. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  9. Energy Efficiency of Electrical Appliances - Effects of Instruments and Measures; Energieeffizienz bei Elektrogeraeten

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, C.U.; Bush, E.; Gasser, S.; Lingenhel, S.; Nipkow, J.

    2001-07-01

    This comprehensive report for the Swiss Federal Office of Energy presents the results of an analysis made of the market for electrical appliances in Switzerland with the aim of understanding the instruments and measures needed to improve energy efficiency better. The paper reports on reviews made of previous studies that were made in Switzerland and Germany and on interviews made with important persons and institutions in this field. Eight basic findings are listed concerning market expansion, technical progress, user behaviour, efficiency, possibilities for intervention, market forces, efficient appliances as a niche market and the competence lacking in the energy-efficiency area. Twelve basic points to be considered in the implementation of an energy-efficiency strategy are discussed and a list of requirements to be fulfilled by politics is presented. The results of the analysis for various sectors and the recommendations made for an implementation organisation are presented in detail. The report is concluded with a extract from the data base on the energy consumption of electrical appliances.

  10. The importance of comprehensiveness in renewable electricity and energy-efficiency policy

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome. (author)

  11. The importance of comprehensiveness in renewable electricity and energy-efficiency policy

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-04-15

    Based on extensive research interviews and supplemented with a review of the academic literature, this article assesses the best way to promote renewable energy and energy efficiency. It begins by briefly laying out why government intervention is needed, and then details the four most favored policy mechanisms identified by participants: eliminating subsidies for conventional and mature electricity technologies, pricing electricity accurately, passing a national feed-in tariff, and implementing a nationwide systems benefit fund to raise public awareness, protect lower income households, and administer demand side management programs. Drawing mostly from case studies in the United States, the article also discusses why these policy mechanisms must be implemented comprehensively, not individually, if the barriers to renewables and energy efficiency are to be overcome. (author)

  12. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  13. The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province

    International Nuclear Information System (INIS)

    Feng Dianshu; Sovacool, Benjamin K.; Khuong Minh Vu

    2010-01-01

    This article investigates the barriers to energy efficiency at the residential sector within one province in China and explores patterns of household electricity consumption. The article presents the results of a survey questionnaire distributed to more than 600 households in Liaoning Province, field research at various Liaoning government agencies, and research interviews of Liaoning government officials to determine the efficacy of their energy efficiency efforts in China. It then investigates the extent that electricity consumers have taken advantage of energy efficiency opportunities relating to more efficient lights, water heaters, appliances, air-conditioners and heaters, and better energy-efficiency labels. The article also assesses the degree that electricity users have become more aware about electricity prices and their levels of consumption, and touches on the connection between rising levels of income and electricity use. It concludes by providing recommendations for how to improve efforts to promote conservation and reduce electricity load growth in Liaoning Province and beyond.

  14. The barriers to energy efficiency in China. Assessing household electricity savings and consumer behavior in Liaoning Province

    Energy Technology Data Exchange (ETDEWEB)

    Dianshu, Feng; Sovacool, Benjamin K.; Minh Vu, Khuong [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-02-15

    This article investigates the barriers to energy efficiency at the residential sector within one province in China and explores patterns of household electricity consumption. The article presents the results of a survey questionnaire distributed to more than 600 households in Liaoning Province, field research at various Liaoning government agencies, and research interviews of Liaoning government officials to determine the efficacy of their energy efficiency efforts in China. It then investigates the extent that electricity consumers have taken advantage of energy efficiency opportunities relating to more efficient lights, water heaters, appliances, air-conditioners and heaters, and better energy-efficiency labels. The article also assesses the degree that electricity users have become more aware about electricity prices and their levels of consumption, and touches on the connection between rising levels of income and electricity use. It concludes by providing recommendations for how to improve efforts to promote conservation and reduce electricity load growth in Liaoning Province and beyond. (author)

  15. The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province

    Energy Technology Data Exchange (ETDEWEB)

    Feng Dianshu, E-mail: dianshu@nus.edu.s [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore); Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore); Khuong Minh Vu, E-mail: sppkmv@nus.edu.s [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-02-15

    This article investigates the barriers to energy efficiency at the residential sector within one province in China and explores patterns of household electricity consumption. The article presents the results of a survey questionnaire distributed to more than 600 households in Liaoning Province, field research at various Liaoning government agencies, and research interviews of Liaoning government officials to determine the efficacy of their energy efficiency efforts in China. It then investigates the extent that electricity consumers have taken advantage of energy efficiency opportunities relating to more efficient lights, water heaters, appliances, air-conditioners and heaters, and better energy-efficiency labels. The article also assesses the degree that electricity users have become more aware about electricity prices and their levels of consumption, and touches on the connection between rising levels of income and electricity use. It concludes by providing recommendations for how to improve efforts to promote conservation and reduce electricity load growth in Liaoning Province and beyond.

  16. What is the most energy efficient route for biogas utilization: Heat, electricity or transport?

    International Nuclear Information System (INIS)

    Hakawati, Rawan; Smyth, Beatrice M.; McCullough, Geoffrey; De Rosa, Fabio; Rooney, David

    2017-01-01

    Highlights: •The paper developed an assessment tool for analyzing biogas utilization routes. •The LCA methodology was used to allow a uniform assessment of the biogas system. •“% energy efficiency” was used as the functional unit for assessment. •49 biogas-to-energy routes were assessed based on their final useful energy form. •The framework aids policy makers in the decision process for biogas exploitation. -- Abstract: Biogas is a renewable energy source that can be used either directly or through various pathways (e.g. upgrading to bio-methane, use in a fuel cell or conversion to liquid fuels) for heat, electricity generation or mechanical energy for transport. However, although there are various options for biogas utilization, there is limited guidance in the literature on the selection of the optimum route, and comparison between studies is difficult due to the use of different analytical frameworks. The aim of this paper was to fill that knowledge gap and to develop a consistent framework for analysing biogas-to-energy exploitation routes. The paper evaluated 49 biogas-to-energy routes using a consistent life cycle analysis method focusing on energy efficiency as the chosen crtierion. Energy efficiencies varied between 8% and 54% for electricity generation; 16% and 83% for heat; 18% and 90% for electricity and heat; and 4% and 18% for transport. Direct use of biogas has the highest efficiencies, but the use of this fuel is typically limited to sites co-located with the anaerobic digestion facility, limiting available markets and applications. Liquid fuels have the advantage of versatility, but the results show consistently low efficiencies across all routes and applications. The energy efficiency of bio-methane routes competes well with biogas and comes with the advantage that it is more easily transported and used in a wide variety of applications. The results were also compared with fossil fuels and discussed in the context of national

  17. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  18. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  19. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...... these models, estimates of the power production, eciency, forces and moments are made. We nd that it is possible to extract a signicant amount of energy from an ocean wave using the described device. Further studies are required for a full treatment of the device....

  20. Analytical framework for analyzing the energy conversion efficiency of different hybrid electric vehicle topologies

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2009-01-01

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of the components and applied control strategy. There are many available patterns of combining the power flows to meet load requirements making it difficult to analyze and evaluate a newly designed HEV. In order to enhance design of HEVs, the paper provides a stand alone analytical framework for evaluating energy conversion phenomena of different HEV topologies. Analytical analysis is based on the energy balance equations and considers the complete energy path in the HEVs from the energy sources to the wheels and to other energy sinks. The analytical framework enables structuring large amount of data in physically meaningful energy flows and associated energy losses, and therefore provides insightful information for HEV optimization. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components, since it reveals and quantifies the instruments that could lead to improved energy conversion efficiency of particular HEV. The analytical framework is also applicable for correcting the energy consumption of the HEV to the value corresponding to balanced energy content of the electric storage devices.

  1. THE MAIN DIRECTIONS OF IMPROVING THE EFFICIENCY OF PRODUCTION, TRANSMISSION AND DISTRIBUTION OF ELECTRICAL ENERGY

    Directory of Open Access Journals (Sweden)

    I. V. Zhezhelenko

    2018-01-01

    Full Text Available The main directions of increase of efficiency of production, transmission and distribution of electric energy have been formulated. The relation between the values of electricity losses during transmission via power grids of different countries and the level of the economies of these countries characterized by the value of gross domestic product at purchasing power parity per capita has been established. In the countries with a gross domestic product at purchasing power parity per capita less than 20 thousand US dollars electricity losses during its transmission via power grids are 1.5–2.5 times more than the ones transmitted via power grids of the industrialized countries where the specified purchasing power parity is in the range of 30.4–54.5 thousand US dollars. In the countries with more developed economies the technical culture of production, transmission and distribution of electricity is higher; the modern control systems of operation modes of electrical networks are used as well as of monitoring and accounting of electricity; also there are solvent and disciplined consumers in such countries as well as clear regulatory framework and tariff regulation system. However, the process of transmission and distribution of electricity is effective if not only low relative losses take place, but the normal (contractual requirements for carrying capacity, quality and reliability of electricity supply are provided. The possibility of analytical determination of the optimum value of reserve capacity of power plants providing the required level of reliability of the power system has been considered.

  2. Distributional impacts of state-level energy efficiency policies in regional electricity markets

    International Nuclear Information System (INIS)

    Sahraei-Ardakani, Mostafa; Blumsack, Seth; Kleit, Andrew

    2012-01-01

    A number of U.S. states have passed legislation targeting energy efficiency and peak demand reduction. We study one such state, Pennsylvania, within the context of PJM, a regional electricity market covering numerous different states. Our focus is on the distributive impacts of this policy—specifically how the policy is likely to impact electricity prices in different areas of Pennsylvania and in the PJM market more generally. Such spatial differences in policy impacts are difficult to model and the transmission system is often ignored in policy studies. Our model estimates supply curves on a “zonal” basis within regional electricity markets and yields information on price and fuel utilization within each zone. We use the zonal supply curves estimated by our model to study regional impacts of energy-efficiency legislation on utilities both inside and outside of Pennsylvania. For most utilities in Pennsylvania, it would reduce the influence of natural gas on electricity price formation and increase the influence of coal. It would also save 2.1 to 2.8 percent of total energy cost in Pennsylvania in a year similar to 2009. The savings are lower than 0.5 percent in other PJM states and the prices may slightly increase in Washington, DC area. - Highlights: ► We model distributional impacts of energy efficiency and conservation policies. ► We use our model to study the impacts of Pennsylvania act 129. ► We estimate $235 million in annual savings for PA and $275 million for PJM. ► The prices decrease in most of the zones but the impacts are not uniform. ► The influence of coal on electricity prices increases relative to natural gas.

  3. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  4. Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine

    International Nuclear Information System (INIS)

    Ibrik, I.H.; Mahmoud, M.M.

    2005-01-01

    Energy conservation in utilities has played a vital role in improving energy efficiency in the industrial, commercial and residential sectors. The electrical energy consumption in Palestine has increased sharply in the past few years and achieved by the end of 2001 to 10% per year. It is expected that this percentage will increase to about 12% if the current political situation will end hopefully with peace. Modern energy efficient technologies are needed for the national energy policy. Such technologies are investigated in this paper. Implementing of a national 3 years project aiming at energy efficiency improvement in residential and industrial sectors as well as in public utilities, which include wide range of diversified audits and power measurements, had led to creating this paper. Measurement and audit results had shown that the total conservation potential in these sectors is around 15% of the total energy consumption. The associated costs of the investment in this field are relatively low and correspond to a pay back period varying in the range from 6 to 36 months. Consequently, the energy conservation policy will be seriously improved in the forthcoming years. It is estimated that 10% of the new energy purchasing capacity will be reduced accordingly

  5. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  6. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  7. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  8. Potential benefits from improved energy efficiency of key electrical products: The case of India

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie E.; McMahon, James E.

    2008-01-01

    The economy of the world's second most populous country continues to grow rapidly, bringing prosperity to a growing middle class while further straining an energy infrastructure already stretched beyond capacity. At the same time, efficiency policy initiatives have gained a foothold in India, and promise to grow in number over the coming years. This paper considers the maximum cost-effective potential of efficiency improvement for key energy-consuming products in the Indian context. The products considered are: household refrigerators, window air conditioners, motors and distribution transformers. Together, these products account for about 27% of delivered electricity consumption in India. The analysis estimates the minimum Life-Cycle Cost option for each product class, according to use patterns and prevailing customer marginal rates in each sector. This option represents an efficiency improvement ranging between 12% and 60%, depending on product class. If this level of efficiency was achieved starting in 2010, we estimate that total electricity consumption in India could be reduced by 4.7% by 2020, saving over 74 million tons of oil equivalent and over 246 million tons of carbon dioxide emissions. Net present financial savings of this efficiency improvement totals 8.1 billion dollars

  9. Assessing the Energy Content of System Frequency and Electric Vehicle Charging Efficiency for Ancillary Service Provision

    DEFF Research Database (Denmark)

    Thingvad, Andreas; Ziras, Charalampos; Hu, Junjie

    2017-01-01

    The purpose of this paper is to quantify the effect of biased system frequency deviations and charger losses in order for an aggregation of electric vehicles (EVs) to provide reliable primary frequency control (PFC). A data set consisting of one year of frequency measurements of the Nordic....... Additionally, a method for calculating the expected energy loss caused by continuous charging and discharging is presented together with efficiency measurements of a commercial bidirectional EV charger. It is found that during a year, the energy balance of the service provider, relative to the grid, is within...

  10. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  11. Organizational human factors as barriers to energy efficiency in electrical motors systems in industry

    International Nuclear Information System (INIS)

    Sola, Antonio Vanderley Herrero; Augusto de Paula, Xavier Antonio

    2007-01-01

    This paper presents a study accomplished in the State of Parana in Southern Brazil, aiming at verifying the correlation between organizational human factors (OHF) and the level of energy losses in organizations. The purpose is to subsidize the formularization of institutional policies in organizations to improve the energy efficiency in the productive sector. The research was carried out in ten industries of the following sectors: pulp and paper; food; wood and chemical products. The losses of electric energy were determined in motor systems with the aid of a mathematical model and the evaluation of 27 OHF identified in the literature review was made with the supervisors in the industries by means of a structurized questionnaire. Seven OHF had presented significant correlation with energy losses and six of them are inversely proportional to the losses, in accordance with linear regression analysis. The inversely proportional factors to the losses also with significant correlation are considered determinative OHF and constitute barriers for energy efficiency in organizations. These barriers are linked with the following organizational areas: management system; education of employees; strategical vision. The study recommends the implementation of the determinative OHF in organizations as a way to transpose the human barriers for energy efficiency

  12. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles

    International Nuclear Information System (INIS)

    Qiu, Chengqun; Wang, Guolin

    2016-01-01

    Highlights: • Two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. • Methodologies for calculating the contribution made by regenerative brake to improve vehicle energy efficiency are proposed. • Road test results imply that the proposed parameters are effective. - Abstract: Comprehensive research is conducted on the design and control of a regenerative braking system for electric vehicles. The mechanism and evaluation methods of contribution brought by regenerative braking to improve electric vehicle’s energy efficiency are discussed and analyzed by the energy flow. Methodologies for calculating the contribution made by regenerative brake are proposed. Additionally a new regenerative braking control strategy called “serial 2 control strategy” is introduced. Moreover, two control strategies called “parallel control strategy” and “serial 1 control strategy” are proposed as the comparative control strategy. Furthermore, two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. Finally, road tests are carried out under China typical city regenerative driving cycle standard with three different control strategies. The serial 2 control strategy offers considerably higher regeneration efficiency than the parallel strategy and serial 1 strategy.

  13. Information v. energy efficiency incentives: Evidence from residential electricity consumption in Maryland

    International Nuclear Information System (INIS)

    Alberini, Anna; Towe, Charles

    2015-01-01

    We focus on two utility programs intended to reduce energy usage and the associated CO2 emissions—a home energy audit and rebates on the purchase of high-efficiency air-source heat pumps. We use a unique panel dataset from participating and non-participating households to estimate the average treatment effect of participating in either program on electricity usage. We fit models with household-by-season, season-by-year, and household-by-year fixed effects to account for all possible confounders that might influence energy usage. Since the programs are voluntary, we seek to restore near-exogeneity of the program “treatment” by matching participating households with control households. We deploy coarsened exact matching (CEM; Iacus et al., 2011) as our main matching method. We ask whether it is sufficient to match households based on past electricity usage, or if we gain by adding structural characteristics of the home, including heating system type. We find that the two programs reduce electricity usage by 5% on average. The effects are strong in both winter and summer for the energy audit groups but appear to be stronger in the winter for the heat pump rebate group. Adding house characteristics to the matching variables does seem to affect results, suggesting that using past usage alone, or house characteristics alone, may not be sufficient to identify the effects of program participation.

  14. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  15. ANALYSIS OF ENERGY EFFICIENCY OF OPERATING MODES OF ELECTRICAL SYSTEMS WITH THE TRACTION LOADS

    Directory of Open Access Journals (Sweden)

    V. E. Bondarenko

    2017-03-01

    Full Text Available Innovative scenarios of reliable energy supply of transportation process aimed at reducing the specific energy consumption and increase energy efficiency of the systems of electric traction. The paper suggests innovative energy saving directions in traction networks of railways and new circuit solutions accessing traction substations in energy systems networks, ensure energy security of the transportation process. To ensure the energy security of rail transport special schemes were developed to propose the concept of external power traction substations, which would increase the number of connections to the networks of 220 – 330 kV, as well as the creation of transport and energy corridors, development of its own supply of electric networks of 110 kV substations and mobile RP-110 kV of next generation. Therefore, the investment program of the structures owned by the Ukrainian Railways (Ukrzaliznytsia need to be synchronized in their technological characteristics, as well as the criteria of reliability and quality of power supply with the same external energy investment programs. It is found that without any load on left or right supplying arm one of two less loaded phases of traction transformer begins generating specific modes in the supplying three-phase line. Thus, modes of mobile substation cause leakage in one of the phases of the supply line of traction transformers of active-capacitive current, and as a result generating energy in the main power line of 154 kV, which is fixed and calculated by electricity meters. For these three phase mode supply network is necessary to use 1st algorithm, i.e. taking into account the amount of electricity as the energy in all phases. For effective application of reactive power compensation devices in the AC traction power supply systems it is proposed to develop regulatory documentation on necessity of application and the order of choice of parameters and placement of compensation systems taking into

  16. Analysis Platform for Energy Efficiency Enhancement in Hybrid and Full Electric Vehicles

    Directory of Open Access Journals (Sweden)

    NICOLAICA, M.-O.

    2016-02-01

    Full Text Available The current paper presents a new virtual analysis method that is applied both on hybrid and electric vehicle architectures with the purpose of contributing to the improvement of energy efficiency. The study is based on Matlab modeling and simulation. A set of parameters are considered in order to assess the system performance. The benefit is given by the comparative overview obtained after the completed analysis. The effectiveness of the analysis method is confirmed by a sequence of simulation results combined in several case studies. The impulse of the research is given by the fact that the automotive market is focusing on wider simulation techniques and better control strategies that lead to more efficient vehicles. Applying the proposed method during design would improve the battery management and controls strategy. The advantage of this method is that the system behavior with regards to energy efficiency can be evaluated from an early concept phase. The results contribute to the actual necessity of driving more efficient and more environmental friendly vehicles.

  17. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation

    International Nuclear Information System (INIS)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R.; Nordmann, T.

    2010-05-01

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  18. Increase of energy efficiency of testing of traction electric machines of direct and pulsating current

    Directory of Open Access Journals (Sweden)

    A.M. Afanasov

    2015-03-01

    Full Text Available The results of the analysis of the effect of the load current of traction electric machines when tested for heating on the total electricity consumption for the test are presented. It is shown that increase of load current at the heating test permits to significantly reduce the consumption of electrical energy, and reduce the testing time without reducing its quality.

  19. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  20. [Efficiency of oxidant gas generator cells powered by electric or solar energy].

    Science.gov (United States)

    Brust Carmona, H; Benitez, A; Zarco, J; Sánchez, E; Mascher, I

    1998-02-01

    Diseases caused by microbial contaminants in drinking water continue to be a serious problem in countries like Mexico. Chlorination, using chlorine gas or chlorine compounds, is one of the best ways to treat drinking water. However, difficulties in handling chlorine gas and the inefficiency of hypochlorite solution dosing systems--due to sociopolitical, economic, and cultural factors--have reduced the utility of these chlorination procedures, especially in far-flung and inaccessible rural communities. These problems led to the development of appropriate technologies for the disinfection of water by means of the on-site generation of mixed oxidant gases (chlorine and ozone). This system, called MOGGOD, operates through the electrolysis of a common salt solution. Simulated system evaluation using a hydraulic model allowed partial and total costs to be calculated. When powered by electrical energy from the community power grid, the system had an efficiency of 90%, and in 10 hours it was able to generate enough gases to disinfect about 200 m3 of water at a cost of approximately N$8 (US $1.30). When the electrolytic cell was run on energy supplied through a photoelectric cell, the investment costs were higher. A system fed by photovoltaic cells could be justified in isolated communities that lack electricity but have a gravity-fed water distribution system.

  1. ENERGY EFFICIENCY OF ELECTRIC HEATING OF REACTORS IN THE MANUFACTURE OF VARNISHES AND PAINTS

    Directory of Open Access Journals (Sweden)

    Tovajniansky L.L.

    2014-08-01

    Full Text Available The drawbacks of the traditional design of the heaters, which make known imperfections in manufacturing processes, realized with the use of electric heating. This determines the need for a radically new design of the heating devices. Created by high-temperature ceramics, characterized by abnormally high thermal stability and clarified the parameters that allow a certain degree change its thermal conductivity. On this basis the contact type ceramic heaters that provide thermal flow direction using different materials in the body of the heater - of high thermal conductivity, the surface facing the heat transfer and low which differs opposite sides of the heater are designed to eliminate the dissipation of heat into the surrounding space. This made it possible to equip the modern production paint industry energy efficient heating equipment with explosion and fire heating system reactors.

  2. Energy efficient non-road hybrid electric vehicles advanced modeling and control

    CERN Document Server

    Unger, Johannes; Jakubek, Stefan

    2016-01-01

    Analyzing the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications, which work in continuous high dynamic operation, this book gives practical insight in to how to maximize the energetic efficiency and drivability of such powertrains. The book addresses an energy management control structure, which considers all constraints of the physical powertrain and uses novel methodologies for the prediction of the future load requirements to optimize the controller output in terms of an entire work cycle of a non-road vehicle. The load prediction includes a methodology for short term loads as well as for an entire load cycle by means of a cycle detection. A maximization of the energetic efficiency can so be achieved, which is simultaneously a reduction in fuel consumption and exhaust emissions. Readers will gain a deep insight into the necessary topics to be considered in designing an energy and battery management system for non-road vehicles and that only a combinatio...

  3. Analysis of the energy efficiency of the implementation power electric generated modules in the CHS

    Science.gov (United States)

    Sukhikh, A. A.; Milyutin, V. A.; Lvova, A. M.

    2017-11-01

    Application on the Central heat source (CHS) local generation of electricity is primarily aimed at solving problems of own needs of electric energy that not only guarantees the independence of the work of the CHS from external electrical networks, but will prevent the stop of heat supply of consumers and defrosting heating networks in case of accidents in electrical networks caused by natural or anthropogenic factors. Open the prospects of electric power supply stand-alone objects, such commercial or industrial objects on the territory of a particular neighborhood.

  4. Replacement or additional purchase: The impact of energy-efficient appliances on household electricity saving under public pressures

    International Nuclear Information System (INIS)

    Mizobuchi, Kenichi; Takeuchi, Kenji

    2016-01-01

    This study examined the influence of additional and replacement purchases of energy-efficient air-conditioners on power savings. We used a questionnaire survey and measured electricity use data from 339 Japanese households, collected from two city areas with different level of government-requested electricity-saving rates, namely, Osaka (10%) and Matsuyama (5%). The main findings of our study are as follows: (1) Households that purchased energy-efficient air-conditioners saved more electricity than those that did not. (2) “Additional-purchase households” showed significant energy savings, whereas “replacement households” did not. The rebound effect may negate the energy-saving effects of a new air-conditioner. (3) Altruistic attitude is associated with more active participation in power saving. (4) Households in Osaka saved more electricity than those in Matsuyama, probably because the government call to save electricity was more forceful. - Highlights: •Energy efficient air conditioner purchases affect household power savings. •Additional air conditioner purchase led to significant energy savings. •Replacement units did not produce more savings than non-purchase. • “Electricity conservation directives” amount had a significant power-saving effect. •Altruistic households were more likely to cooperate with power-saving requests.

  5. The Question of Energy-Efficient Design of the Automated Electric Drive of Multi-Engine Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Semykina Irina

    2015-01-01

    Full Text Available The article proposes a method for improving the energy efficiency of multi-motor variable frequency electric drives of trunk belt conveyors, based on the conveyor speed changing and controlling of the magnetic state of the motor. At conclusion, economic and energy effects of the implementation are estimated.

  6. Financial impact of energy efficiency under a federal combined efficiency and renewable electricity standard: Case study of a Kansas 'super-utility'

    International Nuclear Information System (INIS)

    Cappers, Peter; Goldman, Charles

    2010-01-01

    Historically, local, state and federal policies have separately promoted the generation of electricity from renewable technologies and the pursuit of energy efficiency to help mitigate the detrimental effects of global climate change and foster energy independence. Federal policymakers are currently considering and several states have enacted a combined efficiency and renewable electricity standard which proponents argue provides a comprehensive approach with greater flexibility and at lower cost. We examine the financial impacts on various stakeholders from alternative compliance strategies with a Combined Efficiency and Renewable Electricity Standard (CERES) using a case study approach for utilities in Kansas. Our results suggest that an investor-owned utility is likely to pursue the most lucrative compliance strategy for its shareholders-one that under-invests in energy efficiency resources. If a business model for energy efficiency inclusive of both a lost fixed cost recovery mechanism and a shareholder incentive mechanism is implemented, our analysis indicates that an investor-owned utility would be more willing to pursue energy efficiency as a lower-cost CERES compliance strategy. Absent implementing such a regulatory mechanism, separate energy efficiency and renewable portfolio standards would improve the likelihood of reducing reliance on fossil fuels at least-cost through the increased pursuit of energy efficiency.

  7. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration

    Science.gov (United States)

    Siler-Evans, Kyle

    There is growing interest in reducing the environmental and human-health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly suggested solutions. Such interventions may provide health and environmental benefits by displacing emissions from conventional power plants. However, the generation mix varies considerably from region to region and emissions vary by the type and age of a generator. Thus, the benefits of an intervention will depend on the specific generators that are displaced, which vary depending on the timing and location of the intervention. Marginal emissions factors (MEFs) give a consistent measure of the avoided emissions per megawatt-hour of displaced electricity, which can be used to evaluate the change in emissions resulting from a variety of interventions. This thesis presents the first systematic calculation of MEFs for the U.S. electricity system. Using regressions of hourly generation and emissions data from 2006 through 2011, I estimate regional MEFs for CO2, NO x, and SO2, as well as the share of marginal generation from coal-, gas-, and oil-fired generators. This work highlights significant regional differences in the emissions benefits of displacing a unit of electricity: compared to the West, displacing one megawatt-hour of electricity in the Midwest is expected to avoid roughly 70% more CO2, 12 times more SO 2, and 3 times more NOx emissions. I go on to explore regional variations in the performance of wind turbines and solar panels, where performance is measured relative to three objectives: energy production, avoided CO2 emissions, and avoided health and environmental damages from criteria pollutants. For 22 regions of the United States, I use regressions of historic emissions and generation data to estimate marginal impact factors, a measure of the avoided health and environmental damages per megawatt-hour of displaced electricity. Marginal impact factors are used

  8. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Risonarta, Victor; Pfeifer, Herbert

    2009-01-01

    Determining the complete energy balance of an electric arc furnace (EAF) provides an appropriate method to examine energy efficiency and identify energy saving potentials. However, the EAF energy balance is complex due to the combined input of electrical energy and chemical energy resulting from natural gas (NG) combustion and oxidation reactions in the steel melt. In addition, furnace off-gas measurements and slag analysis are necessary to reliably determine energy sinks. In this paper 70 energy balances and energy efficiencies from multiple EAFs are presented, including data calculated from plant measurements and compiled from the literature. Potential errors that can be incorporated in these calculations are also highlighted. The total energy requirement of these modern EAFs analysed ranged from 510 to 880 kWh/t, with energy efficiency values (η = ΔH Steel /E Total ) of between 40% and 75%. Furthermore, the focus was placed on the total energy related CO 2 emissions of EAF processes comprising NG combustion and electrical energy input. By assessing multiple EAF energy balances, a significant correlation between the total energy requirement and energy related specific CO 2 emissions was not evident. Whilst the specific consumption of NG in the EAF only had a minor impact on the EAF energy efficiency, it decreased the specific electrical energy requirement and increased EAF productivity where transformer power was restricted. The analysis also demonstrated that complementing and substituting electrical energy with NG was beneficial in reducing the total energy related CO 2 emissions when a certain level of substitution efficiency was achieved. Therefore, the appropriate use of NG burners in modern EAFs can result in an increased EAF energy intensity, whilst the total energy related CO 2 emissions remain constant or are even decreased.

  9. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  10. Including Energy Efficiency and Renewable Energy Policies in Electricity Demand Projections

    Science.gov (United States)

    Find more information on how state and local air agencies can identify on-the-books EE/RE policies, develop a methodology for projecting a jurisdiction's energy demand, and estimate the change in power sector emissions.

  11. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  12. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bilello, Daniel E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growing electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.

  13. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  14. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  15. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  16. Walking the Torque: Proposed Work Plan for Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Electric motor-driven system is the largest single energy end use accounting for more than 40% of global electricity consumption. This paper sets out an ambitious but achievable target with the global work plan to improve the energy efficiency of electric motor-driven system by 10% to 15% based on the finding of working paper ''Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (Waide et al., 2011)''. If governments commit to the proposed work plan immediately and maintain resourcing levels, this could be achieved by 2030 and it would be equivalent to reducing total global electricity use by around 5%. The proposed work plan of this paper is to align regulatory settings within a globally applicable scheme. The IEA believes this target can only be achieved through global co-operation leading to aligned national policy settings that countries can unlock the economies of scale that will result from using more energy efficient EMDS.

  17. The role of energy and investment literacy for residential electricity demand and end-use efficiency

    NARCIS (Netherlands)

    Blasch, J.E.; Boogen, Nina; Filippini, Massimo; Kumar, Nilkanth

    2017-01-01

    This paper estimates the level of transient and persistent efficiency in the use of electricity in Swiss households using the newly developed generalized true random effects model (GTREM). An unbalanced panel dataset of 1, 994 Swiss households from 2010 to 2014 collected via a household survey is

  18. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  19. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  20. ELECTRICITY SAVINGS BY IMPLEMENTING ENERGY EFFICIENCY STANDARDS AND LABELS FOR CLOTHES WASHERS IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    ABU SALEH AHMED

    2011-02-01

    Full Text Available Clothes washers being one of the energy consuming household appliances in Malaysia have become a target for energy efficiency improvements. In the present study, a series of experiment investigations have been conducted on six clothes washers of varying capacities. The objectives are to develop the standards and labels. The test has been performed according to IEC (International Electrotechnical Commision clothes washers test specification. Using the experimental data, a baseline standard has been developed by statistical method. From the baseline standards, 10% standards have been developed. The baseline unit energy consumption was calculated to be 32 Wh/kg/cycle (average unit energy consumption of the six models and on the basis of baseline unit, standard unit energy consumption had been proposed to be 29 Wh/kg/cycle. It has been estimated with the introduction of minimum energy efficiency standards for clothes washer 38077037.46 kWh of energy could be saved per year. To develop a comprehensive energy guide labels, three labels had been design, which were star labeling, speedometer labeling and letter bin labeling. A survey was conducted with three different types of labels among the consumers and with the surveys respond, energy guide label of household clothes washers has been proposed for Malaysia. This is result from used of energy-efficient appliances product and is well positioned to promote more widespread efficient improvement.

  1. Comparison the programs of energy efficiency for industrial electric motors; Comparacao de programas de eficiencia energetica para motores eletricos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues dos; Demanboro, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: cam@fec.unicamp.br; jimnaturesa@yahoo.com; joubert@fec.unicamp.br; anto1810@fec.unicamp.br

    2006-07-01

    This paper aims to present a comparison among the existing programs of energy efficiency for industrial electric motors in Brazil, in the United States of America and in the European Community. The analysis is restricted to the action of each program, considering that the mentioned countries present distinct economical, political and social characteristics. Therefore, it is intended to discuss the main barriers existing in the Brazilian industrial context which cause difficulties to develop a program of electric motors efficiency and to indicate some ways to overcome those barriers. (author)

  2. Competition, regulation, and energy efficiency options in the electricity sector: Opportunities and challenges in developing countries

    Science.gov (United States)

    Phadke, Amol Anant

    This dissertation explores issues related to competition in and regulation of electricity sectors in developing countries on the backdrop of fundamental reforms in their electricity sectors. In most cases, electricity sector reforms promoted privatization based on the rationale that it will lower prices and improve quality. In Chapter 2, I analyze this rationale by examining the stated capital cost of independent (private) power producer's (IPPs) power projects in eight developing countries and find that the stated capital cost of projects selected via competitive bidding is on an average about 40% to 60% lower than that of the projects selected via negotiations, which, I argue, represents the extent to which the costs of negotiated projects are overstated. My results indicate that the policy of promoting private sector without an adequate focus on improving competition or regulation has not worked in most cases in terms of getting competitively priced private sector projects. Given the importance of facilitating effective competition or regulation, In Chapter 3, I examine the challenges and opportunities of establishing a competitive wholesale electricity market in a developing country context. I model a potential wholesale electricity market in Maharashtra (MH) state, India and find that it would be robustly competitive even in a situation of up-to five percent of supply shortage, when opportunities for demand response are combined with policies such as divestiture and requiring long-term contracts. My results indicate that with appropriate policies, some developing countries could establish competitive wholesale electricity markets. In Chapter 4, I focus on the demand side and analyze the cost effectiveness of improving end-use efficiency in an electricity sector with subsidized tariffs and electricity shortages and show that they offer the least expensive way of reducing shortages in Maharashtra State, India. In Chapter 5, I examine the costs of reducing carbon

  3. Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming

    2017-12-01

    Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.

  4. Implementing energy efficiency: Challenges and opportunities for rural electric co-operatives and small municipal utilities

    International Nuclear Information System (INIS)

    Wilson, Elizabeth J.; Plummer, Joseph; Fischlein, Miriam; Smith, Timothy M.

    2008-01-01

    Challenges in implementing demand side management (DSM) programs in rural electric co-operatives and small municipal utilities are not well understood, yet these organizations sell roughly 15% of electricity in the US, many are more coal-intensive than investor-owned utilities (IOUs), and they are politically important-rural electric co-operatives cover about 75% of the US land area and municipal utilities are found in every state except Hawaii. We provide a background on rural co-operatives and municipal utilities in the context of the US electric sector and highlight the challenges and opportunities of implementing DSM programs in these institutions. Where past studies of utility DSM have mostly focused on IOUs or consisted of qualitative case studies of municipal utilities with exemplary DSM performance, this study makes a unique contribution to the DSM literature by systematically analyzing an entire co-operative and municipal utility population in Minnesota through the use of a survey. In doing so, we provide policy recommendations relevant to energy planners and policy makers to support DSM in rural electric co-operatives and municipal utilities

  5. Analysis of electrical audit and energy efficiency in building Hotel BC, North Jakarta

    Science.gov (United States)

    Wahyudi Biantoro, Agung

    2018-03-01

    The Hotel BC is using power source from PLN with capacity of 4300 kVA which is divided into 3 units of 2000 kVA transformer. Transformers are used to supply the load of Mall tenants, and Utility loads, such as Chiller, pumps and others. Problems found in the field are complaints from the hotel regarding the safety of electrical installations and wasteful, inefficient electrical costs. The purpose of this study is to check the electrical installation in the building and determine the Energy Use Intensity (EUI) and the cost of payment according to usage based on historical data of the building then compare it with the EUI standard of Ministry of Energy and Mineral Resources of Indonesia. The method used is survey measurement method and quantitative descriptive analysis by comparing in general condition of energy consumption of this building with standard issued by Ministry of Energy and Mineral Resources of Indonesia. The EUI is average 645.58 kWh/m2/year, or 53.79 kWh/m2/month, this is inefficient category, because its EUI value is > 24 kWh / m2 / month. For Electrical audit on imaging thermal test at Panel Out Going of chiller pump, 200 ampere, the highest temperature is 97.3° C, at 200 ampere phase S termination, and this is included in the major category. The numbers of hot spots on the Capacitor bank panels are 10 major points and Chiller panel has 10 major. There are many major points and they are quite dangerous because they can cause fire hazard on the panel. The AC average temperature and humidity distribution did not meet the standard of SNI (Indonesia National Standard).

  6. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  7. Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP

    International Nuclear Information System (INIS)

    Yang Zhao; Cheng Heng; Wu Xi; Chen Yiguang

    2011-01-01

    The gas engine-driven heat pump (GEHP), which has been considered as a preferable choice in the heating and air-conditioning scheme can make full use of the waste heat from the engine and achieve a higher primary energy ratio (PER) than other forms of heating/cooling systems. In this paper, the relationship between the capacity characteristic of the GEHP and the heating and cooling loads of buildings has been analyzed. Meanwhile the reasons of the imbalance of the urban electricity and natural gas consumptions between summer and winter have been studied. The running characteristic of a water-to-water GEHP has been investigated experimentally and the PER was measured. Based on the analysis and experimental results, it could be concluded that if both the gas-fired boilers and electric air conditioners are replaced by GEHPs in some percentage, we can narrow the gaps between the requirement and provision of electricity and natural gas and balance the seasonal consumption differences of electricity and natural gas between summer and winter simultaneously. In order to improve energy efficiency, environmental quality and energy consumption structure effectively, the governmental incentive policies for promoting use of GEHPs should be formulated in China and some other developing countries. - Highlights: → The GEHP is more energy-efficient than the traditional electric-driven heat pump. → Capacity of GEHP can be easily adjusted to meet the load variation of buildings. → Extending the use of the GEHP can balance the electricity and gas consumptions. → The GEHP is good for improving the energy consumption configuration of countries. → The GEHP could play an important role in the aspect of society and environment.

  8. Estimating the cost of saving electricity through U.S. utility customer-funded energy efficiency programs

    International Nuclear Information System (INIS)

    Hoffman, Ian M.; Goldman, Charles A.; Rybka, Gregory; Leventis, Greg; Schwartz, Lisa; Sanstad, Alan H.; Schiller, Steven

    2017-01-01

    The program administrator and total cost of saved energy allow comparison of the cost of efficiency across utilities, states, and program types, and can identify potential performance improvements. Comparing program administrator cost with the total cost of saved energy can indicate the degree to which programs leverage investment by participants. Based on reported total costs and savings information for U.S. utility efficiency programs from 2009 to 2013, we estimate the savings-weighted average total cost of saved electricity across 20 states at $0.046 per kilowatt-hour (kW h), comparing favorably with energy supply costs and retail rates. Programs targeted on the residential market averaged $0.030 per kW h compared to $0.053 per kW h for non-residential programs. Lighting programs, with an average total cost of $0.018 per kW h, drove lower savings costs in the residential market. We provide estimates for the most common program types and find that program administrators and participants on average are splitting the costs of efficiency in half. More consistent, standardized and complete reporting on efficiency programs is needed. Differing definitions and quantification of costs, savings and savings lifetimes pose challenges for comparing program results. Reducing these uncertainties could increase confidence in efficiency as a resource among planners and policymakers. - Highlights: • The cost of saved energy allows comparisons among energy resource investments. • Findings from the most expansive collection yet of total energy efficiency program costs. • The weighted average total cost of saved electricity was $0.046 for 20 states in 2009–2013. • Averages in the residential and non-residential sectors were $0.030 and $0.053 per kW h, respectively. • Results strongly indicate need for more consistent, reliable and complete reporting on efficiency programs.

  9. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  10. The Development of an Energy Efficient Electric Mitad for Baking Injeras in Ethiopia

    NARCIS (Netherlands)

    Jones, Robin; Diehl, J.C.; Simons, Leon; Verwaal, M.

    2017-01-01

    Preparation of Injera, the cultural staple bread food
    item in Ethiopia, is known for its intensive energy consuming
    cooking. Baking this food item in the traditional three stone stoves,
    with an efficiency of 5-15%, consumes huge amounts of firewood
    and causes consequent problems like

  11. Unitary assessment of economical efficiency of the energy resources for electricity production in Romania

    International Nuclear Information System (INIS)

    Luca, Gheorghe

    2004-01-01

    In our country, within the studies, on which the development strategies of power output are based on, the assessment of the economical efficiency of the use of two main energetic resources, the fuel used in cogeneration thermal power plants and the water used in hydropower plants respectively, was made in compliance with non-unitary specific norms. In contradiction with the degree of utilization of hydroelectric resources, realized all over the world in the developed countries (80-90%) resulted that in our country, where the degree of utilization is only 40%, the use of hydroelectric potential is not yet justified from technical-economical point of view. This anomaly was determined by the cause of non-unitary assessment of the economic efficiency for the cogeneration thermo-power plants and hydropower plants. This paper presents comparatively the elements, which were to the basis of the assessment of the economic efficiency for two types of electrical power plants, and one presents a proposal in the aim to perform a unitary assessment of the economical efficiency by applying efficiently the laws in force. (author)

  12. Efficient integration of renewable energies in the German electricity market; Effiziente Integration erneuerbarer Energien in den deutschen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Nabe, C.A.

    2006-07-01

    Liberalisation of the electricity sector aims to carry out coordination tasks within the system by markets and market prices. This study examines how markets need to be designed to carry out coordination tasks caused by integration of renewable energies in an efficient way. This question is applied to the German electricity system and recommendations are derived from identified deficits. The examination uses the structure-conduct-performance approach of industrial organisation economics. Integration of renewable energies does not result in entirely new coordination tasks but complicates those that exist in any electricity supply system. Within the short-term coordination tasks provision and operation of reserve capacity is affected by renewable energies. Long-term coordination means that the relation between fixed and variable costs of generators as well as generator flexibility has to be adjusted to the characteristics of renewable energies. The relevant short-term coordination task with the network is congestion management. In the long run costs of grid expansion and permanent congestion management have to be balanced. For the execution of short-run coordination tasks integrated and centralised market architectures are superior to decentralised architectures. The increase of short-term coordination tasks due to renewable energies caused by inflexibilities of consumers and conventional generators results in more information that has to be considered. By centralising that information in one market, an increase in productive efficiency can be obtained. In Germany the increased coordination tasks are determined by the integration of wind generators into the electricity system. The present German market architecture results in inefficiencies in short-term coordination. This is demonstrated by an analysis of procedural rules and prices of the ancillary service markets. They demonstrate that market performance is low and significant deviations from competitive prices

  13. The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea

    International Nuclear Information System (INIS)

    Jin, Sang-Hyeon

    2007-01-01

    The government of South Korea considers an energy efficiency improvement policy an effective economic measure for climate change like many other governments. But it is unaware of any 'rebound effect', the unexpected result of energy efficiency improvement. So the rebound effect of residential electricity use in South Korea was estimated using two different scales in this paper. At the macro level, the rebound effect was estimated indirectly by using price elasticity, and at the micro level, the rebound effect of individual home appliances was estimated directly by using a non-linear relationship between energy efficiency and energy use. At the macro level, the long- and short-term results of rebound effect were estimated at 30% and 38%, respectively. Also at the micro level, the rebound effect of air conditioners was 57-70%; while refrigerators showed only a composite of rebound and income effects. Finally, there was no backfire effect, and efficiency improvement brought energy reduction. In conclusion, these suggest that rebound effect is an important factor that the government of South Korea must consider when planning its energy efficiency improvement policy. (author)

  14. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  15. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  16. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  17. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Firestone, Ryan [Berkeley Lab MS 90R4000 (United States)

    2007-07-01

    The first major paradigm shift in electricity generation, delivery, and control is emerging in the developed world, notably Europe, North America, and Japan. This shift will move electricity supply away from the highly centralised universal service quality model with which we are familiar today towards a more dispersed system with heterogeneous qualities of service. One element of dispersed control is the clustering of sources and sinks into semi-autonomous {mu}grids (microgrids). Research, development, demonstration, and deployment (RD3) of {mu}grids are advancing rapidly on at least three continents, and significant demonstrations are currently in progress. This paradigm shift will result in more electricity generation close to end-uses, often involving combined heat and power application for building heating and cooling, increased local integration of renewables, and the possible provision of heterogeneous qualities of electrical service to match the requirements of various end-uses. In Europe, microgrid RD3 is entering its third major round under the 7th European Commission Framework Programme; in the U.S., one specific microgrid concept is undergoing rigorous laboratory testing, and in Japan, where the most activity exists, four major publicly sponsored and two privately sponsored demonstrations are in progress. This evolution poses new challenges to the way buildings are designed, built, and operated. Traditional building energy supply systems will become much more complex in at least three ways: 1. one cannot simply assume gas arrives at the gas meter, electricity at its meter, and the two systems are virtually independent of one another; rather, energy conversion, heat recovery and use, and renewable energy harvesting may all be taking place simultaneously within the building energy system; 2. the structure of energy flows in the building must accommodate multiple energy processes in a manner that permits high overall efficiency; and 3. multiple qualities

  18. Electric power supply and the influence of changes on renewable sources' utilisation and energy efficiency

    International Nuclear Information System (INIS)

    Kurek, J.

    2000-01-01

    Changes expected to occur at the electricity market min the Republic of Croatia will have a considerable influence on the development of renewable sources and on the interest in the rationalisation of electricity consumption. If this area and its significance within the total, not only energy-related but also social relations, is stimulated by the law, the influence will be a positive one. Post-liberalisation experience of developed European countries presented in this paper implies arising problems, which can be partly avoided by means of anticipated legislative alternations. Special attention is paid to the possibility of introducing additional work places through a new market approachz, renewable sources' utilisation and consumption rationalisation. (author)

  19. Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow

    International Nuclear Information System (INIS)

    Ericsson, Niclas; Nordberg, Åke; Sundberg, Cecilia; Ahlgren, Serina; Hansson, Per-Anders

    2014-01-01

    Highlights: • Using LCA, CHP from willow use in biogas was compared with direct combustion. • Direct combustion was ninefold more energy-efficient. • Biogas had a much greater cooling effect on global mean surface temperature. • The effects of soil carbon changes on temperature over time differed. • Biogas had long-term temperature effects, direct combustion short-term effects. - Abstract: Short rotation coppice willow is an energy crop used in Sweden to produce electricity and heat in combined heat and power plants. Recent laboratory-scale experiments have shown that SRC willow can also be used for biogas production in anaerobic digestion processes. Here, life cycle assessment is used to compare the climate impact and energy efficiency of electricity and heat generated by these measures. All energy inputs and greenhouse gas emissions, including soil organic carbon fluxes were included in the life cycle assessment. The climate impact was determined using time-dependent life cycle assessment methodology. Both systems showed a positive net energy balance, but the direct combustion system delivered ninefold more energy than the biogas system. Both systems had a cooling effect on the global mean surface temperature change. The cooling impact per hectare from the biogas system was ninefold higher due to the carbon returned to soil with the digestate. Compensating the lower energy production of the biogas system with external energy sources had a large impact on the result, effectively determining whether the biogas scenario had a net warming or cooling contribution to the global mean temperature change per kWh of electricity. In all cases, the contribution to global warming was lowered by the inclusion of willow in the energy system. The use of time-dependent climate impact methodology shows that extended use of short rotation coppice willow can contribute to counteract global warming

  20. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang

    2015-01-01

    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.

  1. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  2. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  3. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  4. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  5. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.

    2012-10-01

    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  6. Energy Efficiency

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government...

  7. Energy Efficiency

    OpenAIRE

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas; Tsakiris, Aristeidis

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government of South Africa, the Inter-American Development Bank (IDB), the United Nations Environment Programme (UNEP) and the World Bank Group. A large share of the research for this report was conducted on a v...

  8. New concept of electrical drives for paper and board machines based on energy efficiency principles

    Directory of Open Access Journals (Sweden)

    Jeftenić Borislav

    2006-01-01

    Full Text Available In this paper, it is described how the reconstruction of the facility of paper machine has been conducted, at the press and drying part of the machine in June 2001, as well as the expansion of the Paper Machine with the "third coating" introducing, that has been done in July 2002, in the board factory "Umka". The existing old drive of the press and the drive of drying groups were established as a Line Shaft Drive, 76 m long. The novel drive is developed on the basis of conventional squirrel cage induction motor application, with frequency converter. The system control is carried out with the programmable controller, and the communication between controllers, converters, and control boards is accomplished trough profibus. Reconstruction of the coating part of the machine, during technological reconstruction of this part of the machine, was being conducted with a purpose to improve performance of the machine by adding device for spreading "third coating". The demands for the power facility were to replace existing facility with the new one, based on energy efficiency principles and to provide adequate facility for new technological sections. Also, new part of the facility had to be connected with the remaining part of the machine, i.e. with the press and drying part, which have been reconstructed in 2001. It has to be stressed that energy efficiency principles means to realize new, modernized drive with better performances and greater capacity for the as small as possible amount of increased installed power of separate drives. In the paper are also, graphically presented achieved energy savings results, based on measurements performed on separate parts of paper machine, before and after reconstruction. .

  9. Verification of electricity savings through energy-efficient train management - Energy data base for traction units - Annex 5; Verifizierung der Stromeinsparung durch energieeffizientes Zugsmanagement - Anhang 5: Energiedatenbank Traktion

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Lerjen, M.; Menth, S. [emkamatik GmbH, Wettingen (Switzerland); Luethi, M. [Swiss Federal Insitute of Technology (ETHZ), Institute for Transport Planning and Systems (IVT), Zuerich (Switzerland); Tuchschmid, M. [SBB AG, BahnUmwelt-Center, 3000 Bern (Switzerland)

    2009-11-15

    This appendix to a final report for the Swiss Federal Office of Energy (SFOE) takes a look at how various data sources on the energy consumption of the SBB's traction units can be combined into an energy-data basis. In this way, the considerable amount of work previously involved in combining and correlating data can be avoided. The aims being followed in the realisation of the traction data base are examined and discussed. The data base will provide the basis for the manual detail analysis of energy consumption within the framework of the overall efforts to save electricity using efficient train management.

  10. Smart electricity metering as an energy efficiency instrument: Comparative analyses of regulation and market conditions in Europe. Volume 1

    International Nuclear Information System (INIS)

    Morch, Andrei Z.; Parsons, John; Kester, Josco C.P.

    2007-01-01

    The new European Directive on Energy End-use Efficiency and Energy Services (ESD) (EC 2006/32, 2006) states the importance of installing metering and billing systems allowing consumers to regulate and steer their consumption. Extra information provided by these 'Smart Meters', is proposed as an important technological innovation to improve energy efficiency. In the next few years the European energy markets will face a challenging task - implementation of Smart Metering systems for small and middle-size customers. The public policies and implementation paths of Smart Metering today vary across Europe from full-scale implementation to very limited. Implementation of Smart Metering systems provides a technological basis, which makes it possible to implement new market-based products and services encouraging the Final Customers to save energy. Electricity suppliers and Distribution System Operators play a key role in a full utilisation of the energy saving potential from Smart Metering, but need a benefit for doing this. These new market opportunities could provide this benefit

  11. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  12. TRIGENERATION - A highly energy efficient source for heating, domestic hot water preparation, electricity and air cooling systems for tertiary sector

    International Nuclear Information System (INIS)

    Barbuta, Mariana; Ghitulescu, Mircea; Nicolau, Irina; Athanasovici, Cristian; Constantin, Cristinel; Ivan, Robert

    2004-01-01

    The general concerns relating to sustainable energy development have led to the implementation of certain solutions at the international level that have increased both energy generation and energy consuming processes efficiency. In our country the first steps in this direction have been carried out by the private companies that, after having analyzed the income increase and costs diminishing, have come to the conclusion that a reliable way to save money would be the rational use of the energy resources for utilities. A favorable consequence was the synergetic effect of the measures meant to increase energy efficiency for the energy generation and consumption processes that are also accompanied by benefit effects on the environmental impact by reduction CO 2 emissions. One of the solutions making the utmost of primary energy is the combined heat and power production (co-generation) that has significantly developed in our country within the energy sector as a whole. Co-generation may be considered environmentally friendly because it saves fuel on the one hand and, technologically, generates less emissions as compared to the separate generation of heat and power, on the other hand. The most favorable applications of co-generation at a medium and small scale are in the tertiary sector (hotels, hospitals, and office buildings) where heat consumption is usually high enough and is accompanied by relatively constant electricity consumption. By corroborating the above mentioned facts relating to local cogeneration installation utilization with those relating to the increased need for cooling in the tertiary buildings, a concept named 'TRI-GENERATION' in specialized literature has occurred, representing, in fact, utilization of cogeneration installations for supplying energy to the electricity, heat and cold consumer. Thus, the cogeneration installation utilization time will be practically prolonged over the entire duration of a year a fact that has extremely favorable

  13. A computationally efficient electricity price forecasting model for real time energy markets

    International Nuclear Information System (INIS)

    Feijoo, Felipe; Silva, Walter; Das, Tapas K.

    2016-01-01

    Highlights: • A fast hybrid forecast model for electricity prices. • Accurate forecast model that combines K-means and machine learning techniques. • Low computational effort by elimination of feature selection techniques. • New benchmark results by using market data for year 2012 and 2015. - Abstract: Increased significance of demand response and proliferation of distributed energy resources will continue to demand faster and more accurate models for forecasting locational marginal prices. This paper presents such a model (named K-SVR). While yielding prediction accuracy comparable with the best known models in the literature, K-SVR requires a significantly reduced computational time. The computational reduction is attained by eliminating the use of a feature selection process, which is commonly used by the existing models in the literature. K-SVR is a hybrid model that combines clustering algorithms, support vector machine, and support vector regression. K-SVR is tested using Pennsylvania–New Jersey–Maryland market data from the periods 2005–6, 2011–12, and 2014–15. Market data from 2006 has been used to measure performance of many of the existing models. Authors chose these models to compare performance and demonstrate strengths of K-SVR. Results obtained from K-SVR using the market data from 2012 and 2015 are new, and will serve as benchmark for future models.

  14. Efficiency trends in electric machines and drives

    International Nuclear Information System (INIS)

    Mecrow, B.C.; Jack, A.G.

    2008-01-01

    Almost all electricity in the UK is generated by rotating electrical generators, and approximately half of it is used to drive electrical motors. This means that efficiency improvements to electrical machines can have a very large impact on energy consumption. The key challenges to increased efficiency in systems driven by electrical machines lie in three areas: to extend the application of variable-speed electric drives into new areas through reduction of power electronic and control costs; to integrate the drive and the driven load to maximise system efficiency; and to increase the efficiency of the electrical drive itself. In the short to medium term, efficiency gains within electrical machines will result from the development of new materials and construction techniques. Approximately a quarter of new electrical machines are driven by variable-speed drives. These are a less mature product than electrical machines and should see larger efficiency gains over the next 50 years. Advances will occur, with new types of power electronic devices that reduce switching and conduction loss. With variable-speed drives, there is complete freedom to vary the speed of the driven load. Replacing fixed-speed machines with variable-speed drives for a high proportion of industrial loads could mean a 15-30% energy saving. This could save the UK 15 billion kWh of electricity per year which, when combined with motor and drive efficiency gains, would amount to a total annual saving of 24 billion kWh

  15. Considerations for the selection of an applicable energy efficiency test procedure for electric motors in Malaysia: Lessons for other developing countries

    International Nuclear Information System (INIS)

    Yanti, P.A.A.; Mahlia, T.M.I.

    2009-01-01

    Electric motors are a major energy-consuming appliance in the industrial sector. According to a survey, electric motors account for more than 70% of the total growth from 1991 to 2004 in electricity consumption in this sector in Malaysia. To reduce electricity consumption, Malaysia should consider resetting the minimum energy efficiency standards for electric motors sometime in the coming year. The first step towards adopting energy efficiency standards is the creation of a procedure for testing and rating equipment. An energy test procedure is the technical foundation for all energy efficiency standards, energy labels and other related programs. The test conditions in the test procedure must represent the conditions of the country. This paper presents the process for the selection of an energy test procedure for electric motors in Malaysia based on the country's conditions and requirements. The adoption of test procedures for electric motors internationally by several countries is also discussed in this paper. Even though the paper only discusses the test procedure for electric motors in Malaysia, the methods can be directly applied in other countries without major modifications.

  16. Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; De Buen, O.; Goldfman, C.

    1990-12-01

    This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

  17. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    Science.gov (United States)

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  18. Design of variable energy and price components of electricity tariffs as an incentive for system-efficient energy management of flexible consumers in households

    International Nuclear Information System (INIS)

    Schreiber, Michael

    2017-01-01

    To mitigate anthropogenic climate change, both the heating and transport sectors will need to be electrically driven, with the higher electrical demand met by emission-free technologies, in addition to general efficiency improvements. On the generation side, wind and photovoltaic power plants must have a rated power significantly exceeding the current peak demand, in order to cover this increased electrical requirement. On the consumption side, heat pumps and private electric vehicles will increase the percentage of energy withdrawn at the low-voltage level of the new system. Given the right incentives, these customers will shift the energy demand in such a way as to benefit the system. This flexibility can be used as a tool to deal with variable renewable insertion while avoiding simultaneous overloading of the power grid. This thesis analyses and evaluates the effects of different electricity tariff designs on energy consumption. These tariffs should incentivise households to adapt their energy consumption to market prices, without inducing critical peak demands in times of particularly low prices. Therefore, time-varying energy price components and power price components are combined into flexible electricity tariffs and implemented as target functions within an optimization problem. The cost-minimizing effect of household energy management is determined under these flexible tariffs, and the effects of the tariff designs on energy consumption and the induced costs are evaluated. Additionally, the results of the flexible tariff approach are compared with results from a centralized optimization by a virtual power plant. It is possible to develop a design for a suitable flexible tariff that decreases the energy procurement costs of electric vehicles while simultaneously reducing peak demand in comparison to a single real-time pricing incentive. Furthermore, this thesis shows that certain kinds of electricity tariff design do not only fail to support but actually

  19. Energy-efficient control of a multi-section supercapacitor power supply of an electric drive

    Directory of Open Access Journals (Sweden)

    Mozzhechkov Vladimir

    2018-01-01

    Full Text Available A method for synthesizing the control laws of a multi-section supercapacitor power supply of an electric drive is developed. The synthesized control law for an electric drive realizes the prescribed motion and minimizes the required capacitance of the power source. It is achieved through optimal disconnection and connection to the power line of the drive at designated times of one of the power supply sections. Reduction of the required capacitance of the power supply is achieved through a fuller discharge of some of its sections in motion conditions requiring a low level of electrical voltage and saving high voltage in other sections for the respective motion conditions. A mathematical formulation of the problem and a method of its solution is proposed. An example of the implementation of the proposed method is considered.

  20. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif; Leung, Siu; Fan, Zhiyong; Lee, Yi-Kuen

    2017-01-01

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication

  1. Enhancing Access to Electricity for Clean and Efficient Energy Services in Africa

    DEFF Research Database (Denmark)

    Christensen, John M.; Mackenzie, Gordon A.; Nygaard, Ivan

    This report examines key issues related to electricity access in Africa, through the lens of selected case studies of countries that have successfully managed to increase access significantly in a short period of time, backed up with more general regional analysis. On the basis of this overview a...

  2. Industrial electricity demand and energy efficiency policy: The role of price changes and private R and D in the Swedish pulp and paper industry

    International Nuclear Information System (INIS)

    Henriksson, Eva; Söderholm, Patrik; Wårell, Linda

    2012-01-01

    The objective of this paper is to analyze electricity demand behaviour in the Swedish pulp and paper industry in the context of the increased interest in so-called voluntary energy efficiency programs. In these programs tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. We employ a panel data set of 19 pulp and paper firms, and estimate both the own- and cross-price elasticities of electricity demand as well as the impact of knowledge accumulation following private R and D on electricity use. The empirical results show that electricity use in the Swedish pulp and paper industry is relatively own-price insensitive, and the self-reported electricity savings following the voluntary so-called PFE program support the notion of important information asymmetries at the company level. However, the results display that already in a baseline setting pulp and paper firms tend to invest in private R and D that have electricity saving impacts, and our model simulations suggest that up to about one-third of the industry sector's self-reported electricity savings in PFE could be attributable to pure baseline effects. Future evaluations of voluntary energy efficiency programs must increasingly recognize the already existing incentives to reduce energy use in energy-intensive industries. - Highlights: ► We analyze electricity demand behaviour in the Swedish pulp and paper industry. ► An important context is the voluntary energy efficiency programs PFE. ► The electricity savings following PFE are significant, but price responses are low. ► Still, already in a baseline setting firms tend to invest in electricity-saving R and D. ► These baseline issues are not adequately addressed in PFE.

  3. Effects of economies of scale and experience on the costs of energy-efficient technologies. Case study of electric motors in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Jardot, D.; Eichhammer, W.; Fleiter, T. [Fraunhofer Institute for Systems and Innovation Research (ISI), Breslauer Str. 48, 76139 Karlsruhe (Germany)

    2010-11-15

    Increasing energy efficiency is discussed as an effective way to protect the climate, even though this is frequently associated with additional (investment) costs when compared to standard technologies. However, the investment costs of emerging energy-efficient technologies can be reduced by economies of scale and experience curve effects. This also brings about higher market penetration by lowering market barriers. Experience curves have already been analyzed in detail for renewable energy technologies, but are not as well documented for energy-efficient technologies despite their significance for energy and climate policy decisions. This work provides empirical evidence for effects of economies of scale and experience on the costs of energy-efficient electric motors. We apply a new methodology to the estimation of learning effects that is particularly promising for energy-efficient technologies where the very low data availability did not allow calculations of learning rates so far. Energy-efficient electric motors are a highly relevant energy technology that is responsible for about 55% of German electricity consumption. The analysis consists of three main steps. First, the calculation of composite price indices based on gross value added statistics for Germany which show the changes in cost components of electric motors over the period 1995 to 2006; second, an estimation of the corresponding learning rate which is, in a third step, compared with learning rates observed for other energy-efficient technologies in a literature review. Due to restrictions of data availability, it was not possible to calculate a learning rate for the differential costs of energy-efficient motors compared to standard motors. Still, we estimated a learning rate of 9% for 'Eff2' motors in a period when they penetrated the market and replaced the less efficient 'Eff3' motors. Furthermore, we showed the contribution of different effects to these cost reductions, like

  4. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  5. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  6. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  7. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  8. Is disaggregation the holy grail of energy efficiency? The case of electricity

    International Nuclear Information System (INIS)

    Carrie Armel, K.; Gupta, Abhay; Shrimali, Gireesh; Albert, Adrian

    2013-01-01

    This paper aims to address two timely energy problems. First, significant low-cost energy reductions can be made in the residential and commercial sectors, but these savings have not been achievable to date. Second, billions of dollars are being spent to install smart meters, yet the energy saving and financial benefits of this infrastructure – without careful consideration of the human element – will not reach its full potential. We believe that we can address these problems by strategically marrying them, using disaggregation. Disaggregation refers to a set of statistical approaches for extracting end-use and/or appliance level data from an aggregate, or whole-building, energy signal. In this paper, we explain how appliance level data affords numerous benefits, and why using the algorithms in conjunction with smart meters is the most cost-effective and scalable solution for getting this data. We review disaggregation algorithms and their requirements, and evaluate the extent to which smart meters can meet those requirements. Research, technology, and policy recommendations are also outlined. - Highlights: ► Appliance energy use data can produce many consumer, industry, and policy benefits. ► Disaggregating smart meter data is the most cost-effective and scalable solution. ► We review algorithm requirements, and ability of smart meters to meet those. ► Current technology identifies ∼10 appliances; minor upgrades could identify more. ► Research, technology, and policy recommendations for moving forward are outlined.

  9. Energy-efficient electrical machines by new materials. Superconductivity in large electrical machines; Energieeffiziente elektrische Maschinen durch neue Materialien. Supraleitung in grossen elektrischen Maschinen

    Energy Technology Data Exchange (ETDEWEB)

    Frauenhofer, Joachim [Siemens, Nuernberg (Germany); Arndt, Tabea; Grundmann, Joern [Siemens, Erlangen (Germany)

    2013-07-01

    The implementation of superconducting materials in high-power electrical machines results in significant advantages regarding efficiency, size and dynamic behavior when compared to conventional machines. The application of HTS (high-temperature superconductors) in electrical machines allows significantly higher power densities to be achieved for synchronous machines. In order to gain experience with the new technology, Siemens carried out a series of development projects. A 400 kW model motor for the verification of a concept for the new technology was followed by a 4000 kV A generator as highspeed machine - as well as a low-speed 4000 kW propeller motor with high torque. The 4000 kVA generator is still employed to carry out long-term tests and to check components. Superconducting machines have significantly lower weight and envelope dimensions compared to conventional machines, and for this reason alone, they utilize resources better. At the same time, operating losses are slashed to about half and the efficiency increases. Beyond this, they set themselves apart as a result of their special features in operation, such as high overload capability, stiff alternating load behavior and low noise. HTS machines provide significant advantages where the reduction of footprint, weight and losses or the improved dynamic behavior results in significant improvements of the overall system. Propeller motors and generators,for ships, offshore plants, in wind turbine and hydroelectric plants and in large power stations are just some examples. HTS machines can therefore play a significant role when it comes to efficiently using resources and energy as well as reducing the CO{sub 2} emissions.

  10. POSSIBILITIES OF APPLYING THE DEA METHOD IN THE ASSESSMENT OF EFFICIENCY OF COMPANIES IN THE ELECTRIC POWER INDUSTRY: REVIEW OF WIND ENERGY COMPANIES

    Directory of Open Access Journals (Sweden)

    Dario Maradin

    2014-07-01

    Full Text Available One of the fundamental tasks of modern power system is finding ways to produce stable and continuous electricity from scarce energy resources. One of the possible solutions is introduction, implementation and improvement of alternative forms of energy such as renewable energy sources, particularly wind energy as an increasingly important energy source which is expected to further increase its share in total electricity production. Numerous methods can be used in assessing the efficiency of wind energy companies, and in the focus of this research is the Data Envelopment Analysis method (DEA, a widely accepted methodology given its interdisciplinary approach and flexibility. This method represents a step forward in the field of renewable energy management, because it provides the possibility to compare the selected companies with the best in the industry (the most efficient and the possibility of determining sources of inefficiency and, consequently, the possibilities of their elimination.

  11. Energy Efficient Drivepower: An Overview.

    Energy Technology Data Exchange (ETDEWEB)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  12. Electricity and heat supply of a settlement at different standards of energy efficiency; Strom- und Waermeversorgung einer Siedlung bei unterschiedlichen Energieeffizienz-Standards

    Energy Technology Data Exchange (ETDEWEB)

    Schuberth, Jens; Tschetschorke, Katja

    2013-07-15

    The underlying study analyses the ecologic impact and the economic efficiency of several conventional and innovative heat supply systems to provide a quarter heat for space and water heating and electricity for residential and commercial application and for street lighting. Retrofits of buildings change the ratio of demands for electricity and heat. The demand for heat decreases more than the demand for electricity, and the share of distribution losses in heat grids rises. The question is if it is still economically efficient to build or extend local and long-distance district heating networks. Demands for final and primary energy, greenhouse gas emissions and costs (for operation, energy consumption and investments) of the different systems are compared and rated both in charts and tables. A sensitivity analysis includes increasing energy purchasing costs and assesses the possible economic efficiency of the supply systems in future. Another sensitivity analysis estimates how the climate impact of the supply systems for heat and electricity changes if electricity generation becomes less harmful for climate. Additionally, costs for environmental damage - so-called external costs - are internalised in the analysis of economic efficiency. In an overall rating ecologic and economically efficient systems are recommended.

  13. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  14. Assessing the efficiency of US electricity markets

    International Nuclear Information System (INIS)

    Arciniegas, I.; Barrett, C.; Marathe, A.

    2003-01-01

    The recent California's energy crisis has raised doubts about the benefits of energy deregulation. While it is true that the California electricity market is in turmoil, other electricity markets like the Pennsylvania-NewJersey-Maryland (PJM) are doing fine. This paper assesses the mark of efficiency reached by the electricity markets in California, New York, and PJM. It also compares the degree of efficiency across markets (forward vs. real time) and across time. No significant differences between the California and PJM electricity markets were discovered in the year of California's energy crisis (2000) using the co-integration tests. This research suggests that differences in price behavior between these two markets during 2000 did not arise from differences in efficiency. According to our analysis and measures of efficiency, PJM and California electricity markets are more efficient than the New York market. Also, as these markets become more mature over time, their efficiency level goes up. We also found evidence that a multi-settlement scheduling system leads to higher efficiency. (author)

  15. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  16. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  18. An Assessment Model for Energy Efficiency Program Planning in Electric Utilities: Case of the Pacific of Northwest U.S.A

    Science.gov (United States)

    Iskin, Ibrahim

    Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy

  19. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores

    Directory of Open Access Journals (Sweden)

    N. Nishiyama

    2016-05-01

    Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  20. Investigations on an energy efficient air conditioning of hybrid vehicles and electric-powered vehicles; Untersuchungen zur energieeffizienten Klimatisierung von Hybrid- und Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, Joerg; Baumgart, Rico; Danzer, Christoph; Unwerth, Thomas von [Technische Univ. Chemnitz (Germany). Professur Alternative Fahrzeugantriebe

    2012-11-01

    The energy-efficient air conditioning of passenger cells is an ever-increasing challenge in the development of electric vehicles because the electric heating in particular reduces the cruising range significantly. For this reason, a simulation model has been developed at Chemnitz University of Technology, which simulates the whole air conditioning system including the passenger cell and the complete powertrain in electric cars. Using this model, different optimization approaches have been analyzed and evaluated concerning the cruising range. This paper first illustrates how much the cruising range of an exemplary electric vehicle is reduced by using the electric heating under different wintery weather conditions. Afterwards, the exploitation of the waste heat produced by the powertrain components (electric motor and power electronics) will be explained. Finally, it shall be described to what extent this exploitation increases the cruising range. (orig.)

  1. Energy conservation prospects through electric load management

    Energy Technology Data Exchange (ETDEWEB)

    El-Shirbeeny, E H.T.

    1984-04-01

    In this paper, concepts of electric load management are discussed for effective energy conservation. It is shown that the conservation program must be comprehensive to provide solutions to the problems facing the electric consumer, the electric utility and the society by reducing the rate of growth of energy consumption and power system peak demand requirements. The impact of energy management programs on electric energy conservation is examined, with emphasis on efficiency, storage, cogeneration and controls with computers.

  2. Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households

    NARCIS (Netherlands)

    Blasch, J.E.; Filippini, Massimo; Boogen, Nina; Kumar, Nilkanth

    2017-01-01

    This paper estimates the level of transient and persistent efficiency in the use of electricity in Swiss households using the newly developed generalized true random effects model (GTREM). An unbalanced panel dataset of 1994 Swiss households from 2010 to 2014 collected via a household survey is used

  3. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  4. The effects of variable renewable electricity on energy efficiency and full load hours of fossil-fired power plants in the European Union

    NARCIS (Netherlands)

    de Groot, Mats; Crijns-Graus, Wina; Harmsen, Robert

    2017-01-01

    This study focused on the effects of variable renewable electricity (VRE) on full load hours and energy efficiency of fossil-fired power generation in the European Union from 1990-2014. Member states were aggregated into three groups based on the level of VRE penetration. Average full load hours are

  5. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  7. Demand for electrical energy

    International Nuclear Information System (INIS)

    Bergougnoux, J.; Fouquet, D.

    1983-01-01

    The different utilizations of electric energy are reviewed in the residential and tertiary sectors, in the industry. The competitive position of electricity in regard to other fuels has been strengthned by the sudden rise in the price of oil in 1973-1974 and 1979-1980. The evolution of electricity prices depended on the steps taken to adjust the electricity generation system. The substitution of electricity applications for hydro-carbons is an essential point of energy policy. The adjustment at all times, at least cost and most reliability, of the supply of electricity to the demand for it is a major problem in the design and operation of electric systems. National demand for power at a given moment is extremely diversified. Electricity consumption presents daily and seasonal variations, and variations according to the different sectors. Forecasting power requirements is for any decision on operation or investment relating to an electrical system. Load management is desirable (prices according to the customers, optional tariffs for ''peak-day withdrawal''). To conclude, prospects for increased electricity consumption are discussed [fr

  8. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  9. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  10. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  11. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  12. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  13. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  14. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  15. Industry agreement on efficient electrical motors

    International Nuclear Information System (INIS)

    Schnyder, G.

    2004-01-01

    This comprehensive final report presents the results of a project carried out on behalf of the Swiss Federal Office of Energy (SFOE) and the Swiss Automation Pool (SAP) concerning the efficiency of electrical drives. The main goal of the project was to conclude a target agreement between the federal government and the Swiss electric motors/drives industry. This involves the promotion of the highest, 'eff1' energy-efficiency category of the three categories defined by the European Committee of Manufacturers of Electrical Machines and Power Electronics (CEMP). The report presents the findings of the project and recommends the banning of the use of motors in the lowest, 'eff3' category. Comparisons are made between the CEMP standards and further standards and promotion programmes in the USA and in Great Britain. Associated measures to be taken to aid the promotion of the drive standard are discussed

  16. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  17. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  18. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  19. Contribution to the enhancement of the energy efficiency in electrical / electronic architectures of automobiles; Beitrag zur Steigerung der Energieeffizienz in Kfz-Elektrik-/Elektronik-Architekturen

    Energy Technology Data Exchange (ETDEWEB)

    Goerber, Matthias

    2013-06-01

    Increasing customer demands for enhanced comfort, safety or assistance functions provide automotive manufacturers with high demands in their product development process. At the same time the criterion of environmental friendliness of the automobile gained more and more importance. These requirements mean that the electrical / electronic architecture of a vehicle is becoming important increasingly. Under this aspect, the author of the contribution under consideration reports on the criterion of energy efficiency of electrical / electronic architecture and its influence on fuel consumption and range of vehicles.

  20. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  1. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  2. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  3. Energy labeling for electric fans in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Taha, F.M.; Rahim, N.A.; Saidur, R.

    2005-01-01

    To reduce energy consumption in the residential sector, Malaysia Energy Commission is considering implementing energy labels for household electrical appliances including electric fans in 2005. The purpose of the energy labels is to provide the consumers a guideline to compare the size, features, price and efficiency of the appliance. This paper discusses the energy label for electric fans in this country based on Malaysian Standards developed by a technical committee that reviewed the performance of household electrical appliances. This study includes methodology for the calculation of the energy efficiency star rating and projected energy usage, performance requirements, details of the energy label and the requirements for the valid application in Malaysia. The label also can be adopted for other household electrical appliances with only slight modifications

  4. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  5. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  6. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  7. Submission to the Ontario Energy Board regarding the review of further efficiencies in the electricity distribution sector

    International Nuclear Information System (INIS)

    Silano, B.E.; Boodhoo, D.; Shelton, A.

    2004-02-01

    This report presents the views of the Ontario Division of the Canadian Union of Public Employees (CUPE) on the Ontario Energy Board's consideration to promote further efficiencies in the power distribution sector. CUPE claims that efficiencies aimed at lowering costs through amalgamations often lead to increased costs, degradation in services and decreased reliability of power distribution. CUPE also argues that the main concerns of Ontario ratepayers is reliability and the threat of increased prices. CUPE recommends that the Ontario Energy Board hold open consultations with ratepayers, who are in fact shareholders in their local utilities. This report reviewed the current regulatory regime known as Performance Based Regulation and its effect on local distribution utilities. It also reviewed the impacts of mergers, amalgamations, acquisitions and divestitures (MAAD), with particular reference to rates, privatization of utility services, service degradation and job losses

  8. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  9. Comparison of energy efficiency solutions for households applying electrical energy measurement of individual consumers - Final report; Vergleich verschiedener Effizienzloesungen mit Einzelverbrauchermessung fuer Haushalte - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fercu, M.; Kistler, R.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the growing demand for so-called 'Energy Feedback Systems' being experienced by numerous energy utilities. These systems allow the presentation of highly-detailed (electrical) energy consumption information to the residents of households. The aim of these systems is discussed which is to sensitize the customers and provide them with a higher level of awareness of their personal energy consumption in order to motivate them to conserve power. This short report analyses existing and near-future systems that can provide power consumption information and which can also automate the operation of household electrical devices. The report focuses on the comparison of four commercial systems available in Switzerland that conform to basic requirements. Furthermore, information on other systems is also provided.

  10. Comparison of energy efficiency solutions for households applying electrical energy measurement of individual consumers - Final report; Vergleich verschiedener Effizienzloesungen mit Einzelverbrauchermessung fuer Haushalte - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fercu, M.; Kistler, R.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the growing demand for so-called 'Energy Feedback Systems' being experienced by numerous energy utilities. These systems allow the presentation of highly-detailed (electrical) energy consumption information to the residents of households. The aim of these systems is discussed which is to sensitize the customers and provide them with a higher level of awareness of their personal energy consumption in order to motivate them to conserve power. This short report analyses existing and near-future systems that can provide power consumption information and which can also automate the operation of household electrical devices. The report focuses on the comparison of four commercial systems available in Switzerland that conform to basic requirements. Furthermore, information on other systems is also provided.

  11. Energy-efficiency instruments in the electricity area; Instrumente fuer Energieeffizienz im Elektrizitaetsbereich. Auslaendische Erfahrungen und Instrumenten-Mix fuer die Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, S; Oettli, B; Schneider, Ch; Iten, R [Infras, Zuerich (Switzerland); Peherstorfer, N [Oesterreichische Energieagentur, Wien (Austria)

    2007-06-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) describes a mix of instruments that could increase the efficiency of electricity usage in Switzerland. The basis for the development of these instruments - the experience gained in Europe in this area - is discussed. Explicitly not discussed are energy and electricity steering taxes, which could also be part of a future instrument-mix. The measures suggested include the setting of compulsory long-term reduction targets that are to form the basis for strategies and measures to be taken in particular areas and the development of an appropriate instrument-mix for this purpose. These could include regulations and labels, a national fund and certificate trading. Suppliers of electricity could be committed to increasing the efficiency of electricity use and national programmes could also attempt to influence consumer habits. The instruments should, according to the authors, be based on the existing legal framework and use know-how and structures that are already available.

  12. The argentine electric sector reform and its correlation with energy efficiency; La reforma del sector electrico argentino y su relacion con la eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Carpio, Claudio [MGM International (Argentina)

    2005-04-15

    The reforms in the Argentine electrical sector and the effect these have originated in the energy efficiency policies for public sector are presented. The characteristics exposed of the Argentina Electric sector previous to the 1992 transformation are the departing base that gave rise to the reform fundaments, generating privatizations and a vertical economic scheme. The transformation of the electric sector departing from its environmental regulations yielded in a quality service, good electricity distribution, better prices and proper energy efficiency. [Spanish] Se presentan las reformas en el sector electrico argentino y el efecto que han tenido sobre las politicas de eficiencia energetica elaboradas en el sector publico. Las caracteristicas expuestas del sector electrico argentino previas a la transformacion de 1992 son la base de partida que dio lugar a los fundamentos de la reforma generando privatizaciones y un esquema economico vertical. La transformacion del sector electrico a partir de sus regulaciones energeticas y ambientales redituaron en calidad de servicio, de distribucion de electricidad, precios y en la propia eficiencia energetica.

  13. Energy conservation in electric distribution

    International Nuclear Information System (INIS)

    Lee, Chong-Jin.

    1994-01-01

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal's knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution

  14. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  15. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  16. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2011-01-05

    ... Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3... Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... motors and small electric motors, clarify the scope of energy conservation standards for electric motors...

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  18. Development of a module for taking remuneration under the Renewable Energy Law into account in a model for calculating the economic efficiency of smart electricity grids

    International Nuclear Information System (INIS)

    Ludwig, Maximilian Uwe; Toprani, Vipul; Witte, Frank

    2014-01-01

    The enactment of the Law Giving Priority to Renewable Energies (EEG) in 2000 laid the cornerstone for the transformation of the German electricity supply. Since then the proportion of renewable energy in electricity production has grown dramatically, confronting the German network infrastructure, which was initially designed for a centralised supply system, with new problems and challenges. In order to achieve optimal coordination between volatile energy infeeds, electricity storage plants and consumers it is necessary to bring all components involved together in a smart grid. A small-scale grid of this description is currently being operated and investigated on the EUREF Campus in Berlin Schoeneberg. The task of achieving optimal allocation of energy flows and getting the micro smart grid to run accordingly, i.e. at a profit, poses new challenges to all involved. To be able to determine the economic efficiency of smart grids a calculation model was developed which simulates the operation of production and storage plants and takes the behaviour of real consumers into account. The model rates the profitability of investments made in terms of their capital value. In its current version the model still disregards the legal regulations for the remuneration of electricity produced from a mix of renewable resources. These cannot be considered as physically separate in a smart grid. In the present study a module based on EEG provisions was developed which calculates remuneration rates as a function of production and demand at a given moment. This is one of several factors which influence the economic efficiency of smart grids. The study undertakes to identify these factors and describe their influence on the profitability of the total investment.

  19. Diagnosis of electric energy using for a cold storage room of chicken emphasizing energy efficiency measures; Diagnostico do uso de energia eletrica de um frigorifico de frangos de corte enfatizando medidas de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Leda Gobbo de Freitas [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Tecnologia; Rossi, Luis Antonio; Mederos, Barbara Teruel; Moura, Daniella Jorge de [Universidade Estadual de Campinas (FEA/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    In the slaughterhouses the operations that if unchain in the one before slaughter until the storage of the end item are intensely dependents of the electric energy and answer for the final product quality. This work had as objective to diagnosis, to analyze and to consider solutions that lead to the rational use of the electric energy without intervening or keeping the product quality in the lines of production of one cold storage room of broiler including the storage process that uses chambers of cooling and freezing. This work was carried through in one cold storage room of slaughter of chicken situated in the state of Sao Paulo in the period of 2004 the 2008. Through the analyses it was verified that the compressors of the room of machines, responsible for the maintenance of the cold of cooled environments, had presented the biggest consumption of electric energy in the cold storage room, about 97%. It was observed that in none of the evaluated electric engines, the potency factor, reaches the value recommended for the ANEEL, and that possibly with the implantation of measures of conservation of electric energy pointers of energy efficiency as the load factor and the specific consumption they can be optimized. It was concluded to have imperfections in the use of the electric energy demonstrating necessity of the implementation of an action plan that aims at the conservation and the rational use of the energy and consequence reduction in the costs generated for production of broiler. (author)

  20. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  1. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  2. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  3. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    Science.gov (United States)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  6. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  7. Benefits in the electrical systems through an energy efficiency program; Beneficios en los sistemas electricos a traves de un programa de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Kushler, M. (and others)

    2006-01-15

    The results of the search for electric efficiency programs providing savings during the hot summer days in the United States are presented. This search was named The Electric Energy Efficiency Programs Focused on Reliability and was executed in 50 states of the United States of America with the purpose of describing examples of successful programs that would help to guarantee the uninterrupted power supply, i.e. reliable by means of the consumer side demand management. Here the methodology of the project is described, the results of a discriminatory scrutiny of different programs in 50 states are presented, followed by a description of 22 programs of energy efficiency that were located as study cases along with the executive and legislative order measures taken to guarantee the reliability of the electric energy. [Spanish] Se presentan los resultados de la busqueda de programas de eficiencia energetica que proporcionen ahorros durante los dias calurosos del verano en Estados Unidos. Esta busqueda se titulo Los Programas de Eficiencia Energetica Enfocados a la Confiabilidad y fue realizada en 50 estados de la union americana con el objetivo de describir ejemplos de programas exitosos que ayudaran a garantizar un suministro electrico ininterrumpido, i. e. confiable por medio de una administracion de la demanda del lado del consumidor. Aqui se describe la metodologia del proyecto, se presentan los resultados de un escrutinio discriminatorio de diferentes programas en los 50 estados, seguidos de una descripcion de 22 programas de eficiencia energetica que se ubicaron como casos de estudio junto con las medidas de orden ejecutivo y legislativo tomadas para garantizar la confiabilidad de la energia electrica.

  8. A cost-efficient expansion of renewable energy sources in the European electricity system. An integrated modelling approach with a particular emphasis on diurnal and seasonal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Christiane

    2012-11-01

    This thesis determines a cost-efficient expansion of electricity generated by renewable energy sources (RES-E) in the European power generation system. It is an integrated modelling approach with a particular emphasis on diurnal and seasonal patterns of renewable energy sources (RES). An integrated modelling approach optimizes the overall European electricity system while comprising fossil, nuclear, and renewable generation as well as storage capacities. The integrated model approach corresponds to a situation in which renewable generation is subject to electricity price signals. In sensitivity scenarios cases of the integrated model approach are compared to situations in which renewable generation is granted priority feed-in and is decoupled from electricity price signals. In addition, the role of different flexibility options, which can be provided by storage capacities and grid expansion are scrutinized. The methodology of the thesis consists of two parts. First, it develops an integrative model approach by extending an existing European electricity model only comprising conventional power generating technologies. Second, an appropriate representation of intermittent RES for electricity market models is established by the determination of corresponding typedays. The typeday modelling takes the spatial correlation of RES and the correlation between wind and solar power into account. Moreover, the typeday modelling captures average dispatch-relevant, diurnal and seasonal RES characteristics such as the level, the variance, and the gradient. The scenario analysis shows that separate developments of renewable and conventional technologies imply several inefficiencies. These increase with higher RES-E penetration. Inefficiencies such as an increased wind power curtailment, an augmented capital turnover, or a higher cumulative installed power generating capacity are revealed and quantified.

  9. CEE Energy Efficiency Report - Slovakia

    International Nuclear Information System (INIS)

    Hecl, V.

    2005-01-01

    A review of future trends of energy consumption shows that, in the absence of an active energy policy which promotes energy efficiency, energy consumption will increase as a whole by approximately 6.8% by 2012 continuing to raise after this period.. This result hides large differences between the different sources of energy (mainly heat, fuels and electricity) and between the different sectors - transport, industry, buildings etc. It is therefore clear that a strong energy policy is needed to counterbalance the expected increase in energy consumption in all sectors, with emphasis on measures in the building sector (both residential and tertiary) and in the transport sector. Furthermore improvements in the district heating sector are also essential to prevent further disconnection from district heating and a shift to other means of heating. A review of the main barriers to energy efficiency leads to the conclusion that while significant changes are needed in the regulatory framework, the lack of access to finance and the general lack of awareness about existing technologies and best practice represent the greatest barriers. In order to evaluate the success of energy. In a few studies available from past 2-3 years the calculation of low and high targets for energy policy was elaborated. The low targets would represent about 11% - 12% reduction in overall energy consumption. The high targets would represent a 13% - 15% reduction in overall energy consumption. Policy instruments have been identified which can turn energy efficiency into one of the driving forces of the overall economic and development strategy of the country. Some of these instruments deal with general issues such as general policy issues, regulatory and legal aspects, the institutional framework and fiscal, taxation and pricing policy. They are designed to improve the present conditions and would use only a limited part of the available public budget. The state budget dedicated to energy issues will

  10. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    Science.gov (United States)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  11. Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Marčič, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij

    2016-01-01

    Highlights: • Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled. • A supervised machine learning models by using real process data are applied. • The equation of ejector pumped mass flow from steam turbine condenser was solved. • The loss of specific energy capable of work in a SEPS or LRVP component was analysed. • The economic efficiency analysis per different coal heating values was made. - Abstract: This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.

  12. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  13. Energy efficiency labelling

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This research assesses the likely effects on UK consumers of the proposed EEC energy-efficiency labeling scheme. Unless (or until) an energy-labeling scheme is introduced, it is impossible to do more than postulate its likely effects on consumer behavior. This report shows that there are indeed significant differences in energy consumption between different brands and models of the same appliance of which consumers are unaware. Further, the report suggests that, if a readily intelligible energy-labeling scheme were introduced, it would provide useful information that consumers currently lack; and that, if this information were successfully presented, it would be used and could have substantial effects in reducing domestic fuel consumption. Therefore, it is recommended that an energy labeling scheme be introduced.

  14. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  15. Electric power in the competitive market - Investing capital for cleaner energy generation still a rewarding business? New perspectives for electrical energy efficiency improvement, the cogeneration technology, and renewable energy generation

    International Nuclear Information System (INIS)

    Schwanhold, E.

    2000-01-01

    The meeting gathered policymakers, members of the energy industry, the business consulting professions, and scientific institutes and relevant technology companies. New perspectives have been discussed in the context of required framework conditions and processes that have to/can be put in place, or further developed, in order to create a concrete basis or stronger incentives for realisation of climate protection and environmental policy goals in the energy sector. There have been two panel discussions on the issue of whether investing in clean generation technologies will be rewarding. Five papers each presented to these panels have been analysed and prepared for separate retrieval from the database, as well as five papers each of the discussion forum A, ''New perspectives for energy efficiency measures and contracting partnerships'', and the discussion forum B, ''New perspectives for distributed power generation with CHP systems''. From the discussion forum C, ''New perspectives for renewable energy sources'', one paper has been prepared for separate retrieval. (CB) [de

  16. Energy efficient home in Lebanon

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the study is to present new methods or new products that could save money while improving the environment in Lebanon. Cost of energy is on the increase and is predicted to increase even more in the future. Environmental issues and awareness are gaining momentum in Lebanon. With electricity production directly linked to power plants that represent about 30% of the air pollution which is also linked to health related issues. There is an intermediate need to introduce more energy efficient products in the construction industry which require less energy to operate or could be linked indirectly to energy. In this context, cost-benefit analysis of heating, light, painting, energy consumption and energy lamp burning hours in addition to fuel burner, gas and electric heater in buildings are presented in tables. Finally, there is a lack of awareness on the positive impact on the environment reflected in the saving of natural resources, reducing pollution and creation of a better living environment

  17. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  18. Thrust Efficiency, Energy Efficiency, and the Role of VDF in Hall Thruster Performance Analysis (Preprint)

    National Research Council Canada - National Science Library

    Larson, C. W; Hargus, William A; Brown, Daniel L

    2007-01-01

    ...) of the propellant jet on the conversion of anode electrical energy to jet kinetic energy. This enabled a mathematically rigorous distinction to be made between thrust efficiency and energy efficiency...

  19. Thrust Efficiency, Energy Efficiency, and the Role of VDF in Hall Thruster Performance Analysis (Postprint)

    National Research Council Canada - National Science Library

    Larson, C. W; Hargus, William A; Brown, Daniel L

    2007-01-01

    ...) of the propellant jet on the conversion of anode electrical energy to jet kinetic energy. This enabled a mathematically rigorous distinction to be made between thrust efficiency and energy efficiency...

  20. Evaluation of efficiency in Japan electric power companies

    International Nuclear Information System (INIS)

    Ghaderi, F.; Muyajima, M.

    2001-01-01

    Achieving energy efficiency also must consider supply efficiency, how much energy it takes to generate electricity and transmit it to the end user. system efficiency reflects the loss of energy during the processes of generation, transmission and distribution of electricity. Of the millions of tons of coal that are burned to produce heat in generation of electricity every year, only one third is converted into electricity.The electric power plant immediately uses 5 to 10 percent of that energy for use in the plant. Around another 10 percent of this energy is consumed in the transmission and distribution of electric energy to end users. Overall,more that 70 percent of the energy used to produce and deliver electricity never gets to the end user. The costs of this wasted energy are reflected in the customer's electricity bill. Furthermore, once delivered, users of electricity are subjected to more h idden c osts the demand charge which reflects the rate at which consumers draw energy from the power plant during a particular time of day, are also affected by the time of year. This additional charge c n be dramatic. For example, the cost for using electric air conditioning at the w rong t ime of the day , are also affected by the time of year. This additional charge can be dramatic. For example, the cost for using electric air conditioning at the wrong time of the day could be as much as 25 to 40 percent higher than what a facility normally pays for electricity during off-peak times. Minimizing the costs of operations, therefor, is a must for all electric companies. In the other hand utility rates, such as the cost of electricity, are a necessary element of operating in all enterprises.In some industries the payment over electricity make a large percentage of their total expenses, but that doesn't mean that every effort should not be made to reduce their impact on the bottom line, it should be considered that a very small change in operating procedure can change

  1. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    Science.gov (United States)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  2. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    Science.gov (United States)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  3. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2012-05-04

    ... Conservation Program: Test Procedures for Electric Motors and Small Electric Motors; Final Rules #0;#0;Federal... Procedures for Electric Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable... electric motors and small electric motors. That supplemental proposal, along with an earlier proposal from...

  4. The Next Frontier in Industiral Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2010-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  5. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  6. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation; Stromeffizienz und erneuerbare Energien - Wirtschaftliche alternative zu Grosskraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R. [Infras, Zuerich (Switzerland); Nordmann, T. [TNC Consulting AG, Erlenbach (Switzerland)

    2010-05-15

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  7. What Do Capacity Deployment Rates Tell Us about the Efficiency of Electricity Generation from Renewable Energy Sources Support Measures in Greece?

    Directory of Open Access Journals (Sweden)

    Sotiris Papadelis

    2016-01-01

    Full Text Available The efficiency of fiscal support for electricity generation from renewable energy sources (RES-E is a multifaceted notion that cannot be adequately described by a single metric. Efficiency is related to the ability of a policy measure to support deployment without creating negative feedback effects. These negative effects may stem from saturation of the grid’s ability to absorb an increased amount of RES-E power, the inability of regulatory bodies to cope with the larger workload due to the increased number of projects requesting permits or from rent-seeking behavior. Furthermore, the primary rationale for feed-in tariffs (FITs and other fiscal support schemes is that increased deployment of RES-E technologies will lead to reductions in costs and increases in efficiency. As a result, the efficiency of an RES-E support policy should be also judged by its ability to capitalize on cost reductions. Overall, we present an approach to facilitate ongoing assessments of the efficiency of support measures for RES-E deployment. We demonstrate the proposed approach using the FIT support policy in Greece as a case study. In particular, the RES-E support policy in Greece has been recently revised through tariff cuts and a moratorium on new production licenses. We aim to demonstrate that if publicly available data are appropriately monitored, a policy revision can take place in a timelier and less disruptive manner.

  8. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  9. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  10. Electricity. The answer to sustainable energy needs

    International Nuclear Information System (INIS)

    Bulcke, J.

    1996-01-01

    When debating the rational use of energy, it very often happens that all attention is drawn to the reduction of the use of electricity. Limiting, even eliminating the application of electric heating is seen as a rational choice. On the other hand, industrial consumers are urged to invest in combined heat and power, even without considering a thorough analysis of energy usage. Mastering such an environment is today's challenge for the electricity producers and distributors. Considering the fact that, for a majority of customers, the cost of electricity is more important than the cost of other energy sources, products and services has been developed which, lead to lower bills and lower energy use. From a marketing point of view, this approach introduces electro-thermy to the consumer thereby securing the electricity company of durable sales and even increases in sales. The high efficiency of electrothermal applications secures a reduction in primary energy use. (author)

  11. Diesel engine power generating set efficiency for nuclear power plant electrical energy supply in case of emergency

    International Nuclear Information System (INIS)

    Popovic, I.; Aksamija, R.; Tumpa, M.

    1984-01-01

    Working ability of diesel engine set to starting and functioning reliability during operation is evaluated within study of efficiency. methods of calculation are applied: data compilation method and Markov method. The evaluation is that a diesel engine set has efficiency of 0.993285. It is a high efficiency which ensures a safe start, load take over and safe operation. This evaluation makes a basis for similar calculations which will be needed for national nuclear program. (author)

  12. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    Science.gov (United States)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  13. Renewable Energy and Electricity Prices in Spain

    OpenAIRE

    Liliana Gelabert; Xavier Labandeira; Pedro Linares

    2011-01-01

    Growing concerns about climate change and energy dependence are driving specific policies to support renewable or more efficient energy sources in many regions, particularly in the production of electricity. These policies have a non-negligible cost, and therefore a careful assessment of their impacts seems necessary. In particular, one of the most-debated impacts is their effect on electricity prices, for which there have been some ex-ante studies, but few ex-post studies. This article prese...

  14. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  15. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  16. ASPECTS ON THE EFFICIENCY OF MOBILE TEAM INTERVENTIONS ON ELECTRICAL ENERGY DISTRIBUTION EQUIPMENT TOWARDS DOMESTIC AND INDUSTRIAL CONSUMERS

    OpenAIRE

    Cristinel POPESCU

    2017-01-01

    The paper aims at presenting how to coordinate intervention teams in the event of failure regimes in electric power distribution installations to domestic and industrial low voltage consumers. The work was theoretically and practically supported by an application implemented within the Faculty of Engineering and coordinated by the author.

  17. Energy efficiency and renewables policies: Promoting efficiency or facilitating monopsony?

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2011-01-01

    The cliche in the electricity sector, the 'cheapest power plant is the one we don't build,' neglects the benefits of the energy that plant would generate. That economy-wide perspective need not apply in considering benefits to only consumers if not building that plant was the exercise of monopsony power. A regulator maximizing consumer welfare may need to avoid rationing demand at monopsony prices. Subsidizing energy efficiency to reduce electricity demand at the margin can solve that problem, if energy efficiency and electricity use are substitutes. Renewable energy subsidies, percentage use standards, or feed in tariffs may also serve monopsony as well with sufficient inelasticity in fossil fuel electricity supply. We may not observe these effects if the regulator can set price as well as quantity, lacks buyer-side market power, or is legally precluded from denying generators a reasonable return on capital. Nevertheless, the possibility of monopsony remains significant in light of the debate as to whether antitrust enforcement should maximize consumer welfare or total welfare. - Research Highlights: → Subsidizing energy efficiency can promote monopsony, if efficiency and use are substitutes. → Renewable energy subsidies, portfolio standards, or feed-in tariffs may also promote monopsony. → Effects require buyer-side market power and ability to deny generators a reasonable return. → Monopsony is significant in light of whether antitrust should maximize consumer or total welfare.

  18. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  19. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Hydro Quebec's energy efficiency initiatives are reviewed and the economic benefits it expects to garner from such programs are described. Energy efficiency programs affect the cost of supplying electricity, and rates usually rise during the early years and are subsequently offset by the benefits the program generates. Energy efficiency programs should allow Hydro Quebec to avoid $6 billion in expenditures for electricity supply, while entailing contributions of $1.4 billion for the efficiency measures. Evaluation of the potential for efficiency has allowed Hydro Quebec to set a target of 12.9 TWh/y in 1999 on a potential estimated at 18% of regular sales in Quebec in 1989, namely 23.3 TWh. Customers, who contribute $1.4 billion of their own funds to efficiency programs will realize savings of $3.2 billion. Hydro Quebec programs insist strongly on replacement of appliances and motors of all sorts, and in the residential sector, purchases of slightly less than $0.5 billion will consist of electric lamps (3%), water heaters (2.4%), insulation products (32%), hardware (2.5%), and various electric appliances (33%). In the commercial sector, expenditures will be higher, reaching ca $650 million. These are allocated to purchases of electric lamps (18%), heating equipment (12%), insulation products (24%), street lighting (4%), and various electric devices such as controls (39%). 2 figs., 4 tabs

  20. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  1. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  2. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  3. The relation between energy efficiency and general objectives

    International Nuclear Information System (INIS)

    Holmberg, John; Naessen, Jonas; Sprei, Frances

    2006-09-01

    Three overall objectives for energy efficiency programs are discussed: Reduction of negative externalities, esp. climatic change; Phase-out of nuclear power while limiting electricity imports; and creating welfare gains by correcting market failures of energy efficiency programs (rebound effects)

  4. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  5. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  6. Maintenance Tools applied to Electric Generators to Improve Energy Efficiency and Power Quality of Thermoelectric Power Plants

    Directory of Open Access Journals (Sweden)

    Milton Fonseca Junior

    2017-07-01

    Full Text Available This paper presents a specific method to improve the reliability of the equipment and the quality of power supplied to the electrical systems with the frequency and voltage control of a thermoelectric plant, to guarantee a more stable system. The method has the novelty of combining Total Productive Maintenance (TPM using only four pillars, with Electrical Predictive Maintenance based in failure analysis and diagnostic. It prevents voltage drops caused by excessive reactive consumption, thus guaranteeing the company a perfect functioning of its equipment and providing a longer life of them. The Maintenance Management Program (MMP seeks to prevent failures from causing the equipment to be shut down from the electrical system, which means large financial losses, either by reducing billing or by paying fines to the regulatory agency, in addition to prejudice the reliability of the system. Using management tools, but applying only four TPM pillars, it was possible to achieve innovation in power plants with internal combustion engines. This study aims to provide maintenance with a more reliable process, through the implantation of measurement, control and diagnostic devices, thus allowing the management to reduce breakdown of plant equipment. Some results have been achieved after the implementation, such as reduction of annual maintenance cost, reduction of corrective maintenance, increase of MTBF (Mean Time between Failures and reduction of MTTR (Mean Time to Repair in all areas. Probabilistic models able to describe real processes in a more realistic way, and facilitate the optimization at maximum reliability or minimum costs are presented. Such results are reflected in more reliable and continual power generation.

  7. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode.

    Science.gov (United States)

    Lanzarini-Lopes, Mariana; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2017-12-01

    Electrochemical oxidation (EO) is an advanced oxidation process for water treatment to mineralize organic contaminants. While proven to degrade a range of emerging pollutants in water, less attention has been given to quantify the effect of operational variables such applied current density and pollutant concentration on efficiency and energy requirements. Particular figures of merit were mineralization current efficiency (MCE) and electrical energy per order (E EO ). Linear increases of applied current exponentially decreased the MCE due to the enhancement of undesired parasitic reactions that consumed generated hydroxyl radical. E EO values ranged from 39.3 to 331.8 kW h m -3 order -1 . Increasing the applied current also enhanced the E EO due to the transition from kinetics limited by current to kinetics limited by mass transfer. Further increases in current did not influence the removal rate, but it raised the E EO requirement. The E EO requirement diminished when decreasing initial pollutant loading with the increase of the apparent kinetic rate because of the relative availability of oxidant per pollutant molecule in solution at a defined current. Oxidation by-products released were identified, and a plausible degradative pathway has been suggested. Copyright © 2017. Published by Elsevier Ltd.

  8. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  9. Energy Efficient Cooking - The EffiCooker

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Jørgen

    2011-01-01

    Substantial energy savings in moist heat cooking may be achieved by employing a pan with integrated electric heating element rather than an ordinary pan on a conventional electric range. The electric pan should be thermally insulated and equipped with an "intelligent" controller and timer....... A working prototype of a saucepan, dubbed the EffiCooker, has been constructed according to these guidelines. The EffiCooker has demonstrated energy savings in the range from 28% to 81% compared to conventional equipment when performing ordinary cooking tasks. The user need not be particularly aware...... of energy conservation to realize such savings; even those who are more concerned with their culinary achievements than with energy efficiency are likely to benefit. Besides being energy efficient the EffiCooker is user friendly. Many cooking tasks, once initiated, are performed automatically without any...

  10. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  11. Saving, efficiency and management of electric sector demand

    International Nuclear Information System (INIS)

    Sanchez de Tembleque, L. J.

    2007-01-01

    Spanish economic model of development is based on energy consumption, and its main source is imported fossil fuels, which have some environmental and scarcity consequences in the mid term, among others. These problems could be reduced in two ways: economic activity reduction or energy efficiency improvement. In the presence of these possibilities, It may be desirable to bet for saving and energy efficiency, to maintain the economic development. This assignment analyzes the main available regulatory and social mechanisms to promote saving and energy efficiency in the power sector, like systems to internalize social costs in the electricity price, efficiency standards, and encourage the new saving culture. (Author) 15 refs

  12. Frequency converters increase the energy efficiency of electric motors in refrigerators; Frequenzumrichter steigern die Energieeffizienz von Elektromotoren in Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Alexander [Ziehl-Abegg AG Produktmanagement System- und Regeltechnik, Kuenzelsau (Germany)

    2011-07-01

    Refrigerators have vast potential for energy conservation. Blowers mounted on condensers and recirculation coolers are commonly controlled via phase angle control. It is shown how modern frequency converters can improve the energy balance of existing systems. The advantages of a combination of frequency converter and sinus filter are explained by the example of the Fcontrol frequency converter, which has an integrated all-phase sinus filter. Retrofitting is easy, and the payback period will be short. An example is presented to show that more than 50 % of the energy cost can be saved this way. In addition to blower control, also the compressor motor can be controlled by frequency converters, with advantages for the whole refrigerating system. The paper shows how retrofitting of modern frequency converters will reduce the energy cost and operating cost of existing refrigeration systems. [German] Kaelteanlagen, insbesondere bestehende Kaelteanlagen, bieten grosses Potenzial Energie einzusparen. Ventilatoren, die auf Verfluessigern oder Rueckkuehlern montiert sind, werden ueberwiegend mit Regelgeraeten betrieben, die die Drehzahl ueber die Spannung variieren (Phasenanschnittregelung). Es wird aufgezeigt, dass durch moderne Frequenzumrichter auf einfache Art und Weise bestehende Anlagen energetisch verbessert werden koennen. Am Beispiel des Frequenzumrichters Fcontrol, der einen allpolig wirksamen Sinusfilter integriert hat, werden die Vorteile durch die Kombination von Frequenzumrichter und Sinusfilter erklaert. Die nachtraegliche Installation in bestehende Anlagen ist einfach. Die Investition in eine solche Umruestung rechnet sich in der Regel sehr schnell. Beispielhaft wird gezeigt, dass beim Ersetzen der Phasenanschnittregelung gegen einen Frequenzumrichter mehr als 50 % der Energiekosten an den Ventilatoren eingespart werden koennen. Neben der energiesparenden Regelung der Ventilatoren auf Verfluessigern oder Rueckkuehlern, kann auch der Verdichtermotor durch

  13. Economic-efficiency considerations in restructuring electric markets

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.

    1996-12-01

    In response to the Energy Policy Act of 1992 and the Federal Energy Regulatory Commission`s subsequent rulemaking on transmission access, many states are exploring options to restructure their electric industries. In their deliberations on restructuring, policymakers should consider (1) the reliability of the electric system; (2) income-distribution effects on ratepayers and utilities; (3) social consequences such as effects on energy conservation, renewable energy, and the environment; and (4) economic efficiency. We address economic-efficiency considerations in this study. Economic efficiency is important because it is one of the primary reasons that policymakers should consider restructuring in the first place: improving the electric-industry`s efficiency lowers costs and, hence, electric prices. In this study, we look at the sources of (in)efficiency in existing and proposed electric markets with the objective of guiding policymakers to design efficient electric markets. The advantages of a competitive market are well known: it leads to lower costs for the utility, lower prices for consumers, more product choices, better customer service, and often the need for less regulation by federal and state agencies. In the short run, firms who cannot produce at the market-clearing price are forced to leave the industry, ensuring that customers have the lowest price possible. In the long run, competition promotes innovation and lower costs. The physical and institutional characteristics of the U.S. electric industry, however, could be impediments to attaining efficiently run, competitive markets. Because of these characteristics, there are multiple sources of efficiencies and inefficiencies in existing electric markets, and there will be multiple sources in restructured ones. The objective of policymakers should not be to trade one set of inefficiencies in existing electric markets for another set in restructured markets.

  14. Economic-efficiency considerations in restructuring electric markets

    International Nuclear Information System (INIS)

    Hill, L.J.

    1996-12-01

    In response to the Energy Policy Act of 1992 and the Federal Energy Regulatory Commission's subsequent rulemaking on transmission access, many states are exploring options to restructure their electric industries. In their deliberations on restructuring, policymakers should consider (1) the reliability of the electric system; (2) income-distribution effects on ratepayers and utilities; (3) social consequences such as effects on energy conservation, renewable energy, and the environment; and (4) economic efficiency. We address economic-efficiency considerations in this study. Economic efficiency is important because it is one of the primary reasons that policymakers should consider restructuring in the first place: improving the electric-industry's efficiency lowers costs and, hence, electric prices. In this study, we look at the sources of (in)efficiency in existing and proposed electric markets with the objective of guiding policymakers to design efficient electric markets. The advantages of a competitive market are well known: it leads to lower costs for the utility, lower prices for consumers, more product choices, better customer service, and often the need for less regulation by federal and state agencies. In the short run, firms who cannot produce at the market-clearing price are forced to leave the industry, ensuring that customers have the lowest price possible. In the long run, competition promotes innovation and lower costs. The physical and institutional characteristics of the U.S. electric industry, however, could be impediments to attaining efficiently run, competitive markets. Because of these characteristics, there are multiple sources of efficiencies and inefficiencies in existing electric markets, and there will be multiple sources in restructured ones. The objective of policymakers should not be to trade one set of inefficiencies in existing electric markets for another set in restructured markets

  15. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  16. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    KAUST Repository

    Zhang, Fang; Liu, Jia; Yang, Wulin; Logan, Bruce E.

    2015-01-01

    addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized

  17. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  18. A Cross-Layer Wireless Sensor Network Energy-Efficient Communication Protocol for Real-Time Monitoring of the Long-Distance Electric Transmission Lines

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2015-01-01

    Full Text Available Optimization of energy consumption in Wireless Sensor Network (WSN nodes has become a critical link that constrains the engineering application of the smart grid due to the fact that the smart grid is characterized by long-distance transmission in a special environment. The paper proposes a linear hierarchical network topological structure specific to WSN energy conservation in environmental monitoring of the long-distance electric transmission lines in the smart grid. Based on the topological structural characteristics and optimization of network layers, the paper also proposes a Topological Structure be Layered Configurations (TSLC routing algorithm to improve the quality of WSN data transmission performance. Coprocessing of the network layer and the media access control (MAC layer is achieved by using the cross-layer design method, accessing the status for the nodes in the network layer and obtaining the status of the network nodes of the MAC layer. It efficiently saves the energy of the whole network, improves the quality of the network service performance, and prolongs the life cycle of the network.

  19. Electric Energy Access in Bangladesh

    Directory of Open Access Journals (Sweden)

    Muhammad Taheruzzaman

    2016-07-01

    Full Text Available This paper represents the overall electrical energy profile and access in Bangladesh. In the recent past Bangladesh has been experiencing shortage of electricity, and about 42 % of population no access to the electricity. The electricity consumption has rapidly increased over last decade. The demand and consumption will intensify in the remote future as overall development and future growth. To set “vision 2021” of Bangladesh; government of Bangladesh has devoted to ensuring access of affordable and reliable electricity for all by 2021. In the modern time, energy is the vital ingredient for socioeconomic growth in the developing country i.e., alleviating poverty. Along with electricity access in Bangladesh strived to become middle income country by 2021. Bangladesh has experienced that energy consumption inclines to increase rapidly when per capita income researches between US$ 1,000 and US$ 10,000, and a country’s

  20. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  1. Electric vehicle energy impacts.

    Science.gov (United States)

    2017-05-01

    The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...

  2. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  3. Technical-economic study of energy efficiency in offshore industrial electrical systems; Estudio tecnico economico de eficiencia energetica en sistemas electricos industriales costa afuera

    Energy Technology Data Exchange (ETDEWEB)

    Fiscal Escalante, Raul [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    In this work the methodology of analysis and the results obtained are presented in an technical-economic study for the application of power efficiency measures for a marine platform. The methodology is considered in the following steps: 1) Technical evaluation of the installation 2) Technical analyses of the optimization alternatives 3) Economic evaluation of the selected optimization alternatives graphs of the thermal regime of the variation with respect to the generation, variation of the efficiency with respect to the generation, efficiency curve of the motor and the designed curve of the pump are presented. A table of general reference parameters and another one of particular reference is given. Also a table of the economic evaluation when changing the electrical motor by one more efficient is presented. It is concluded that a potential of energy saving exists in their processes, generating an opportunity to perform a technical-economic feasibility study in these facilities. [Spanish] En este trabajo se presenta la metodologia de analisis y los resultados obtenidos en un estudio tecnico-economico para la aplicacion de medidas de eficiencia energetica para una plataforma marina. Se plantea la metodologia en los siguientes pasos: 1) Evaluacion tecnica de la instalacion 2) Analisis tecnico de las alternativas de optimizacion 3) Evaluacion economica de las alternativas de optimizacion seleccionadas. Se muestran graficas de la variacion del regimen termico respecto a la generacion, variacion de la eficiencia respecto a la generacion, curva de eficiencia del motor y curva de diseno de la bomba. Se da una tabla de parametros de referencia generales y otra de referencia particulares. Tambien se presenta una tabla de la evaluacion economica al cambiar el motor electrico por uno mas eficiente. Se concluye que existe un potencial de ahorro de energia en sus procesos, generando una oportunidad para realizar estudios de factibilidad tecnica economica en dichas instalaciones.

  4. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  5. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  6. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  7. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  8. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  9. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  10. Energy efficient elevators and escalators

    Energy Technology Data Exchange (ETDEWEB)

    Patrao, Carlos; Fong, Joao; Almeida, Anibal de (Dep. Electrical Engineering, Univ. of Coimbra, Coimbra (Portugal)); Rivet, Luc

    2009-07-01

    Elevators and escalators are the crucial element that makes it practical to live and work several floors above ground - more than 4,3 million units are installed in Europe. Due to ageing of the European population the installation of elevators in single family houses is experiencing a significant growth, as well as equipping existing buildings. Elevators use about 4% of the electricity in tertiary sector buildings. High untapped saving potentials exist with respect to energy-efficient technologies, investment decisions and behavioural approaches, in these sectors. This paper presents preliminary results from the IEE project E4, whose overall objective is the improvement of the energy performance of elevators and escalators, in tertiary sector buildings and in multi family residential buildings. The project is characterizing people conveyors electricity consumption in the tertiary sector and in residential buildings in the EU. The installed park is characterised by a survey among elevators national associations in each country. An assessment of the barriers has been made in the first phase of the project and will be presented. Monitoring campaigns in elevators and escalators are being conducted in each country according to a common developed methodology. More than fifty elevators and escalators will be audited. This will allow the collection of load curves (start up, travel up and down, travel full and empty), including the characterization of standby consumption. Standby consumption of an elevator can represent up to 80% of the total energy consumed per year, and can be drastically reduced. This paper presents the preliminary results of the first ten audits performed in Portugal by Isr-UC.

  11. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  12. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  13. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    Science.gov (United States)

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  14. Moving around efficiently: Energy and transportation

    Directory of Open Access Journals (Sweden)

    Hermans L. J. F.

    2013-06-01

    Full Text Available Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  15. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  16. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  17. Energy efficient lighting

    International Nuclear Information System (INIS)

    Aslam, M.

    1992-01-01

    The main sources of Pakistan's energy supply are oil, natural gas, coal, hydro power, nuclear power and liquefied petroleum gas. At present 75 % of total energy delivered is met through oil and gas. The limited resources and financial constraints have proved to be stumbling block in the way of prosperity and economics stability. Lighting is a conspicuous consumer of energy and thus an easy prey for saving drives which is indeed a very promising target for energy saving. (A.B.)

  18. Energy Efficient Televisions

    DEFF Research Database (Denmark)

    Andersen, Rikke Dorothea; Remmen, Arne

    The EuP Directive sets the frame for implementing ecodesign requirements for energy-using and energy-related products. The aim of the Directive is to achieve a high level of protection for the environment by reducing the potential environmental impact of energy-related products. The focus...

  19. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  20. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  1. Policy instruments force climate protection by increasing the energy efficiency of electric appliances and electrical systems in private households and the commercial and small-scale sector; Politikinstrumente zur Effizienzsteigerung von Elektrogeraeten und -anlagen in Privathaushalten, Bueros und im Kleinverbrauch

    Energy Technology Data Exchange (ETDEWEB)

    Duscha, Markus; Seebach, Dominik; Griessmann, Benjamin [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2006-06-15

    The implementation of new, more market-oriented instruments represents an additional starting point for future developments. This path was started on in the EU in 2005 with the CO{sub 2} emission trade. The price signals that could be expected for end customers in households and trade from this alone would most likely be too low to be a sufficient motivation for exhausting the electricity efficiency potential. At this point, we must again point out that only rarely are there economic hindrances to the complete use of potential, but rather a lack of information and organization leads to increased transaction costs in the implementation. This must be corrected by accompanying efficiency instruments and programs. However, implementing these programs does not (yet) represent an economic alternative to the efficiency measures in their own systems for the industry and power company involved in the emission trade due to such transaction costs. Otherwise there would be initiatives in the meantime for this type of privately organized program, as these have been suggested in this report as tasks for a national electricity fund. Therefore, the instrument of the EU emission trade must be supplemented in the foreseeable future with the instruments presented here. There is not much evidence as to how much a comparable implementation of tradable energy efficiency certificates (often referred to as ''white certificates'') is a suitable start for concluding efficiency potential at the level of the very inhomogeneous group of end consumers. We still see a need for research before such an instrument can be recommended as a guide for Germany or even Europe. The questions still to be clarified include, among other things, the ability of standardizing the assignment rules as well as the amount of the transaction costs to be expected, even in dependency on the market level at which the trade is started (end consumer, energy service provider, electronic equipment

  2. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  3. Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency

    OpenAIRE

    Francoise Nemry; Guillaume Leduc; Almudena Muñoz

    2009-01-01

    This technical note is a first contribution from IPTS to a JRC more integrated assessment of future penetration pathways of new vehicles technologies in the EU27 market and of their impacts on energy security, GHG emissions and on the economy. The present report focuses on battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). It provides a general overview of the current state of the research and development about the concerned technologies and builds some first estim...

  4. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  5. Electricity energy outlook in Malaysia

    International Nuclear Information System (INIS)

    Tan, C S; Leong, Y P; Maragatham, K

    2013-01-01

    Population and income growth are the key drivers behind the growing demand for energy. Demand for electricity in Malaysia is always growing in tandem with its Gross Domestic Product (GDP) growth. The growth for electricity in Malaysia forecasted by Economic Planning Unit (EPU) has shown an increase of 3.52% in 2012 compared to 3.48% in 2011. This growth has been driven by strong demand growth from commercial and domestic sectors. The share of electricity consumption to total energy consumption has increased from 17.4% in 2007 to 21.7% in 2012. The total electricity production was reported at 122.12TWh in 2012, where gas is still the major fuel source contributing to 52.7% of the total generation fuel mix of electricity followed by Coal, 38.9%, hydro, 7.3%, oil, 1% and others, 0.2%. This paper aims to discuss the energy outlook particularly the electricity production and ways toward greener environment in electricity production in Malaysia

  6. Electricity energy outlook in Malaysia

    Science.gov (United States)

    Tan, C. S.; Maragatham, K.; Leong, Y. P.

    2013-06-01

    Population and income growth are the key drivers behind the growing demand for energy. Demand for electricity in Malaysia is always growing in tandem with its Gross Domestic Product (GDP) growth. The growth for electricity in Malaysia forecasted by Economic Planning Unit (EPU) has shown an increase of 3.52% in 2012 compared to 3.48% in 2011. This growth has been driven by strong demand growth from commercial and domestic sectors. The share of electricity consumption to total energy consumption has increased from 17.4% in 2007 to 21.7% in 2012. The total electricity production was reported at 122.12TWh in 2012, where gas is still the major fuel source contributing to 52.7% of the total generation fuel mix of electricity followed by Coal, 38.9%, hydro, 7.3%, oil, 1% and others, 0.2%. This paper aims to discuss the energy outlook particularly the electricity production and ways toward greener environment in electricity production in Malaysia

  7. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  8. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  9. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  10. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  11. 10 CFR Appendix B to Subpart B of... - Uniform Test Method for Measuring Nominal Full Load Efficiency of Electric Motors

    Science.gov (United States)

    2010-01-01

    ... Efficiency of Electric Motors B Appendix B to Subpart B of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Pt. 431... Efficiency of Electric Motors 1. Definitions. Definitions contained in §§ 431.2 and 431.12 are applicable to...

  12. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  13. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  14. Liberalization of electricity markets and energy security

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2004-01-01

    Liberalization of electricity markets begun in England in 1990 and became the trends of the times. Its effects on the energy security and atomic power generation are discussed. On the effects on energy security, change of construction of fuel of power generation, decrease of fuel feed by high efficiency of power generation, decrease of fuel stock by pressure of cost-cutting, increase of import rate of electricity, increase of power consumption with decrease of power cost, flexibility of supply contract, diversification of service, international cooperation on energy security and mutual dependence relation by international investment are discussed. On the effects of liberalization on the electricity markets, characteristics of nuclear power generation, risk of investment, effects of introduction of competition on development of the existing and new nuclear power generation, relation between development of nuclear power generation and market failure and what the government should do for development of nuclear power generation are discussed. (S.Y.)

  15. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  16. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  17. Reliability and energy efficiency of zero energy homes (Conference Presentation)

    Science.gov (United States)

    Dhere, Neelkanth G.

    2016-09-01

    Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.

  18. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  19. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  20. Efficient pricing and investment in electricity markets with intermittent resources

    International Nuclear Information System (INIS)

    Chao, Hung-po

    2011-01-01

    Facing growing technological and environmental challenges, the electricity industry needs effective pricing mechanism to promote efficient risk management and investment decisions. In a restructured electricity market with competitive wholesale prices and traditionally regulated retail rates, however, there are technical and institutional barriers that prevent dynamic pricing with price responsive demand. In regions with limited energy storage capacity, intermittent renewable resources present special challenges. This could adversely affect the effectiveness of public policies causing inefficient investments in energy technologies. In this paper, we present an updated economic model of pricing and investment in restructured electricity market and use the model in a simulation study for an initial assessment of renewable energy strategy and alternative pricing mechanisms. A key objective of the study is to shed light on the policy issues so that effective decisions can be made to improve efficiency. - Highlights: → Renewable resources present special challenges in regions with limited energy storage capacity. → This paper presents an updated economic model of pricing and investment in restructured electricity market. → A simulation study assesses renewable energy strategy and alternative pricing mechanisms. → The study results inform policy decisions to improve efficient investments in energy technologies.

  1. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  2. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  3. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  4. Electric power transmission pricing regulations and efficiency

    International Nuclear Information System (INIS)

    Goldoni, G.

    1999-01-01

    An efficient-price mechanism for electricity transmission is very hard to find, essentially because of the natural monopoly condition of the grid and its peculiar interactions with generation. The use of Optimal Power Flow Models is difficult to implement and could be easily distorted by strategical behaviour of generators. These models, however, could became a valuable efficiency-test for actual transmission charges and codes [it

  5. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  6. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  7. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  8. Electricity sector abounds with energy

    International Nuclear Information System (INIS)

    Berger, P.

    2006-01-01

    This short article takes a look at Swiss energy utilities and provides a brief review of the current state of the electricity business in Switzerland. Increasing turnover has lead to increased profits. The situation in five leading utilities is looked at and commented on. The various activities of the utilities are discussed. Apart from providing normal power supply, these range from international power trading and investment through to the generation and sale of renewable forms of energy such as photovoltaics and wind power

  9. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  10. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  11. Electrical Energy Overview February 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This publication presents the electricity characteristics and noteworthy developments in France every month: consumption, generation, renewable energies, cross-border trades and transmission system developments, along with feedback on the highlights affecting this data. This issue presents the key figures for February 2012

  12. Electrical Energy Overview March 2012

    International Nuclear Information System (INIS)

    2012-03-01

    This publication presents the electricity characteristics and noteworthy developments in France every month: consumption, generation, renewable energies, cross-border trades and transmission system developments, along with feedback on the highlights affecting this data. This issue presents the key figures for March 2012

  13. Electrical Energy Overview January 2012

    International Nuclear Information System (INIS)

    2012-01-01

    This publication presents the electricity characteristics and noteworthy developments in France every month: consumption, generation, renewable energies, cross-border trades and transmission system developments, along with feedback on the highlights affecting this data. This issue presents the key figures for January 2012

  14. Electrical energy needs for space cooling

    International Nuclear Information System (INIS)

    Brunner, C. U.; Nipkow, J.; Steinemann, U.

    2008-01-01

    This article discusses measures that are to be taken to reduce increasing energy consumption resulting from global warming. A figure is quoted for the energy requirements for the ventilation and cooling of commercial, industrial and domestic buildings in Switzerland. A clear trend to higher technology densities and the associated demands for ventilation and air-conditioning are noted. The modeling of specific energy requirements for these services is discussed and the large economic gains and the refurbishment possibilities available are discussed. Possibilities for increasing the efficiency of such systems are discussed. The advantages and disadvantages of centralized and decentralized systems are examined and their effect on the electricity supply system are briefly noted.

  15. Energy Efficiency Governance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The purpose of this report is to help EE practitioners, government officials and stakeholders to establish the most effective EE governance structures, given their specific country context. It also aims to provide readers with relevant and accessible information to support the development of comprehensive and effective governance mechanisms. The International Energy Agency (IEA) conducted a global review of many elements of EE governance,including legal frameworks, institutional frameworks, funding mechanisms, co-ordination mechanisms and accountability arrangements, such as evaluation and oversight. The research tools included a survey of over 500 EE experts in 110 countries, follow-up interviews of over 120 experts in 27 countries and extensive desk study and literature searches on good EE governance.

  16. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  17. POLINOTEN Project - Efficiency of development and diffusion of innovative energy technologies policies: the concept of the 'electric vehicle coupled with building-integrated solar photovoltaic electricity' by 2030

    International Nuclear Information System (INIS)

    Popiolek, Nathalie; Bodineau, Luc; Wiss, Olivier; Bougrain, Frederic; Gruson, Jean-Francois; Poix, Michel; Quevarec, Marine; Thais, Francoise; Bodiguel, Aude; Grenier, Anne

    2014-06-01

    Building and transportation sectors are the biggest consumers of energy and therefore the main source of CO 2 emissions. Furthermore, private cars are responsible for more than half of CO 2 emissions from transportation sector. In order to reduce greenhouse gases by 75% by 2050, compared to 1990, as set out by the 'Grenelle de l'environnement' laws (2009, 2010), the French government could exploit a promising solution: fostering the integration of building and transport, by installing, on new positive energy buildings, photovoltaic systems for recharging electric vehicles. The batteries of these vehicles could be a way for stocking intermittent solar electricity for later use. This is what we call solar mobility. However, to succeed in installing a system which would lead to optimal coupling between the photovoltaic production and the electric vehicle, a change in our relationship to buildings, transport and energy, is necessary. This also relies strongly on technological progress, high performing industrial supply and appropriate public action. The objective of this work is to help the State propose public actions to promote solar mobility by 2030, integrating political objectives in energy, climate and industry, while respecting budgetary constraints, as well as social and territorial cohesion. family living in a positive energy house in 2030. Several cases have been studied, varying sun exposition, timetables of battery recharging and mobility needs. Then, with a multi-criteria analysis, mainly studying the carbon saving advantages and the cost for society, we tested the relative performance of a set of public actions aimed at introducing this innovation on a large scale by 2030. To reach these objectives, we worked on: - a deep analysis of the instruments of public policies able to take up the challenge; policies of demand, supply policies, with or without carbon tax, etc. - the construction of a Multi-criteria Decision Aid Model integrating the

  18. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  19. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    De Paoli, L.; Bongiolatti, L.

    2006-01-01

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom [it

  20. Efficiency of Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Brix, Wiebke

    2011-01-01

    The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines...... were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making the CAES process diabatic. The cooling involves exergy losses and thus lowers the efficiency...... of the storage significantly. The efficiency of CAES as an electricity storage may be defined in several ways, we discuss these and find that the exergetic efficiency of compression, storage and production together determine the efficiency of CAES. In the paper we find that the efficiency of the practical CAES...

  1. Domestic energy management methodology for optimizing efficiency in Smart Grids

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Bosman, M.G.C.; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2009-01-01

    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of domestic technologies have been developed to improve this efficiency. These technologies on their own already improve the efficiency, but more can be

  2. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  3. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  4. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  5. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  6. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting

    Science.gov (United States)

    Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.

    2018-02-01

    This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.

  7. Toward a More Efficient and Innovative Electricity Sector in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Russia is in the process of one of the most ambitious electricity sector reforms ever undertaken, reflecting the importance of an efficient and reliable electricity sector for promoting economic activity, growth and community prosperity. The outcome of this process will have a substantial impact on Russia’s energy sector and longer-term economic performance. It will help to determine the nature and pace of investment and modernisation of the sector and will help to shape incentives for efficient, flexible and innovative operation and end-use.

  8. Determinants of energy efficiency across countries

    Science.gov (United States)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  9. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  10. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  11. Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet

    Science.gov (United States)

    Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si

    2018-02-01

    In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.

  12. Evaluating the energy efficiency of a one pedal driving algorithm

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; van Boekel, J.J.P.; Nijmeijer, H.

    2015-01-01

    Regenerative braking of electric vehicles (EVs) is important to improve the energy efficiency and increase the vehicle range. However, the additional friction braking during deceleration may limit the amount of recuperated energy. To improve the energy efficiency and driving comfort of EVs, a one

  13. Energy efficiency in the foreground

    International Nuclear Information System (INIS)

    Baettig, I.

    2006-01-01

    In this interview with Eberhard Jochem, professor at the Centre for Energy Policy and Economics at the Federal Institute of Science and Technology (ETH) in Zurich, Switzerland, several energy-relevant topics are discussed. These include high oil prices, possible power shortages and binding commitments in the climate-protection area. The question is asked, how, in consideration of such general conditions, energy use and energy supply should develop in Switzerland. Options for increasing efficiency or the tapping of new energy sources is discussed, as is Switzerland's increasing energy consumption. The '2000 Watt' concept being worked on at the ETH and the activities needed for its realisation are discussed. The effects of this concept on economical and business development are discussed. The potential of renewable forms of energy and the possibility of building combined gas and steam power stations are looked at. Ways of promoting renewable energy and questions concerning the extent of the state intervention in the energy business are considered

  14. Promoting energy efficiency in developing countries: The role of NGOs

    International Nuclear Information System (INIS)

    Wojtaszek, E.I.

    1993-06-01

    Developing countries need energy growth to spur economic growth. Yet energy activities contribute significantly to local water pollution and global greenhouse gas emissions. Energy efficiency offers the means to achieve the twin goals of sustainable economic/social development and environmental protection. Energy efficiency increases industrial competitiveness and frees up capital so it can be applied to other uses, such as health and education. The key to improving energy efficiency in developing countries will be acquiring and applying Western technologies, practices, and policies and building national institutions for promoting energy efficiency. Relevant energy-efficient technologies include the use of better electric motors, adjustable speed controls, combined cycle power cogeneration, improved lighting, better refrigeration technologies, and improved electric power transmission and distribution systems. Western countries can best help developing countries by providing guidance and resources to support nongovernmental organizations (NGOS) staffed by local experts; these institutions can capture the energy efficiency potential and ensure environmental protection in developing countries

  15. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  16. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  17. Electrical efficiency and droop in MQW LEDs

    Science.gov (United States)

    Malyutenko, V. K.

    2014-02-01

    It is believed that low power conversion efficiency in commercial MQW LEDs occurs as a result of efficiency droop, current-induced dynamic degradation of the internal quantum efficiency, injection efficiency, and extraction efficiency. Broadly speaking, all these "quenching" mechanisms could be referred to as the optical losses. The vast advances of high-power InGaN and AlGaInP MQW LEDs have been achieved by addressing these losses. In contrast to these studies, in this paper we consider an alternative approach to make high-power LEDs more efficient. We identify current-induced electrical efficiency degradation (EED) as a strong limiting factor of power conversion efficiency. We found that EED is caused by current crowding followed by an increase in current-induced series resistance of a device. By decreasing the current spreading length, EED also causes the optical efficiency to degrade and stands for an important aspect of LED performance. This paper gives scientists the opportunity to look for different attributes of EED.

  18. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  19. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  20. Efficiency of the monocrystalline photovoltaic modules in conversion solar radiation into electrical energy; Eficiencia de modulos fotovoltaicos monocristalinos na conversao de radiacao solar em energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carliane Diniz e [Universidade Estadual do Maranhao (UEMA), Sao Luis, MA (Brazil). Dept. de Engenharia Agricola], Email: carlianeds@yahoo.com.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], Email: seraphim@fca.unesp.br

    2006-07-01

    With the scarcity of the conventional sources of energy production, other options must be considered, as the use of energy resources you renewed, that they offer to multiple advantages. One of the options to the supply of energy of the agricultural users is the photovoltaic solar systems for the local promotion of the quality of life. The objective of this study was to evaluate two marks of monocrystalline photovoltaic modules in different angles of inclination. The modules had presented low efficiency of conversion in conditions of field for incident solar radiation. (author)

  1. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  2. Influences of economic development in the Brazilian energy efficiency projects

    Directory of Open Access Journals (Sweden)

    Javier Cárcel Carrasco

    2012-09-01

    Full Text Available This work has as main goal to present some of the issues regarding the effects of the Brazilian economy in the effectiveness of national energy efficiency projects in order to provide some guidelines for optimizing the energy saving actions. The replacement of traditional electric motors with high efficiency motors has been considered, or that brings innovation and increases the need to search for new technologies for Brazilian industries. We must consider whether this new paradigm requires a strong federal government's investment in Brazil in order to allow the implementation of energy efficiency programs, mainly in small and medium industries. This document is divided into three main parts. The first part deals with some aspects of the economic crisis. The second presents the most important data of the National Electricity Conservation (PROCEL and Energy Efficiency Program of the ANEEL (National Electric Energy Agency. The third shows data on Small and Medium Industries and how their energy efficiency programs were affected.

  3. Electrical efficiency losses occurred by the air compressor for PEMFC

    International Nuclear Information System (INIS)

    Haubrock, J.; Heideck, G.; Styczynski, Z.

    2006-01-01

    Fuel Cells are characterised by a high efficiency and comparatively small emissions. Depending on their partial load behaviour and their high efficiency, Fuel Cells are well suited for net connected or isolated autonomous energy generators for thermal and electricity power production. Proton Exchange Membrane (PEM) Fuel Cell systems need several external components to produce electricity and thermal power. However, the high theoretical degree of efficiency of 83% is decreased by these components. To reach higher fuel utilisation it is necessary to reduce the energy consumption of these components. In this study, the influence of the air supply compressor on the fuel utilisation is investigated and an optimization strategy was developed. The results were reviewed by a real test set up using an autonomous PEM Fuel Cell system. (authors)

  4. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  5. Research on High-efficient Remanufacturing Technologies and Application of Electric Motor

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Yang, Xu; Wang, Gen

    2017-09-01

    The energy conservation of electric motor system is the key of industrial energy conservation. With the implementation and acceleration of electric motor energy efficiency improvement plan, more and more electric motors are knocked out. High-efficient remanufacturing of electric motor refers to improving the efficiency of electric motor and recycling the resources by replacing the winding, iron core and other components of electric motor on the basis of the low-efficient/outdated electric motors, which conforms to China’s policy of circular economy and resource recovery. The remanufacturing of electric motor not only maximizes the use of resources, but also reduces the energy consumption generated by reprocessing of cast iron, silicon steel sheet and other materials in dismantling of electric motor. However, structures and iron core materials used in design and manufacture of electric motors are different, and the degrees of wear of electric motors are also different under different operating conditions, which further result in diversified design schemes, increased remanufacturing cost and reduced remanufacturing efficiency. This paper analyzes the key process technologies for remanufacturing of electric motors are researched by analyzing the remanufacturing technologies of electric motors, and presents the feasibility to replace the cast-aluminum rotor with cast-copper rotor in high-efficient remanufacturing process of electric motor.

  6. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...... different vehicles. A unified method for testing the efficiency of the charger in EVs, without direct access to the component, is presented. The method is validated through extensive tests of the models Renault Zoe, Nissan LEAF and Peugeot iOn. The results show a loss between 15 % and 40 %, which is far...

  7. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Poeschk, Juergen

    2016-01-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [de

  8. Increasing Efficiency by Maximizing Electrical Output

    Science.gov (United States)

    2016-08-01

    to electricity technology in a few limited areas, one being a geothermal flash plant at Naval Air Weapons Station China Lake. But, there are few...portable generators to reduce fuel needs. d) Bottom cycling on a geothermal flash plant like the one at Naval Air Weapons Station China Lake...generation c) Increasing the efficiency of portable generators to reduce fuel needs. d) Bottom cycling on a geothermal flash plant like the one at Naval

  9. Enhanced policies for the improvement of electricity efficiencies

    International Nuclear Information System (INIS)

    Blok, Kornelis

    2005-01-01

    Energy-efficiency improvement is considered as an important option to limit greenhouse gas emissions. In this paper, the possibilities to implement new policies to improve the efficiency of electricity end-use are explored. The following policy actions are considered: - introduction of a '1 W standard' for standby power consumption of appliances;- incremental standards for large electric appliances;- design guidelines for small electric appliances;- a technology-forcing standard for lighting;- a motor-drive program;- a program directed at the reduction of electricity use during empty-office hours;- actual energy performance requirements for service-sector buildings. The implementation of these programs will contribute substantially to reaching greenhouse gas emission targets in the European Union (total estimated effect to be 200-350 Mton CO 2 emission reduction in the year 2020). However, to reach these targets a very substantial effort is required, both in terms of policy ambition, force of the applied instruments, and implementation efforts. In the case of electric appliances, regulatory instruments may need wider application. And, in order to attain the substantial potential savings in motor-drive systems, an effort comparable to the effort to promote renewable electricity in the European Union may be both justified and necessary

  10. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  11. Hydro-Quebec and energy efficiency

    International Nuclear Information System (INIS)

    1990-01-01

    There is growing awareness that energy efficiency is both profitable and environmentally beneficial. In this year's Development Plan, Hydro-Quebec is proposing an Energy Efficiency Project made up of marketing programs designed for all markets throughout the final decade of the 20th century. This Project will have two aspects: energy efficiency and consumption management. Hydro-Quebec aims to reach an energy-efficiency level of 12.9 terawatt hours per year by 1999, fully 55% of its 23-terawatt hour potential. Over the next 10 years the utility intends to spend $1.8 billion for this purpose. Cumulative anticipated energy savings should be in the vicinity of 70 terawatt hours for the coming decade, and more than 130 terawatt hours for the first decade of the next century. Of the overall goal of 12.9 terawatt hours for Horizon 1999, energy savings of 9.0 terawatt hours should be the direct result of this year's proposed marketing programs, and will account for the bulk of anticipated investments. The remaining 3.9 terawatt hours will be gained as customers acquire better electrical appliance and accessory (household appliances, home insulation) buying habits

  12. Electrical energy statistics for France

    International Nuclear Information System (INIS)

    2009-07-01

    In 2008, national electrical consumption reached 494.5 TWh, an increase of 2.9 % compared with 2007 (480.4 TWh). Adjusted for winter and summer climate contingencies and leap year, its evolution rate compared with 2007 is +1.3 % Consumption by business and private customers came to 198.0 TWh, an increase of 5.9 % compared with 2007 (187.0 TWh); consumption by Large-scale industry and SME/SMIs came to 263.0 TWh, an increase of 0.7 % compared with 2007 (261.3 TWh). Generation in France came to 549.1 TWh, as in 2006, an increase of 4.3 TWh or +0.8 % compared with 2007 (544.8 TWh). Hydro-electric generation reached 68.0 TWh, an increase of 7.5 % compared with 2007 (63.3 TWh). Renewable energy sources generation but hydro reached 9.7 TWh, an increase of 23.8 % compared with 2007 (7.8 TWh), mainly due to an increase of 37.5 % of wind energy (5.6 TWh in 2008 compared with 4.0 TWh in 2007). This progression is coherent with the increase of 48% of the installed capacity for wind generation. Nuclear generation came to 418.3 TWh in 2008, a decrease of 0.1 % compared with 2007 (418.6 TWh). Fossil thermal generation came to 53.1 TWh, a decrease of 3.5 % compared with 2007 (55.1 TWh). The heaviest load in terms of capacity reaches 92.4 GW during winter 2008/2009. Its evolution rate compared with 2007 is +3.8 % with a temperature lower by 2.2 deg. C. Since 2001, the heaviest load in winter has increased by 16% whereas the national electrical consumption has increased by 10%. The year 2008 is marked by the commissioning of the 400 kV line VIGY-MARLENHEIM. Besides, the underground circuits lengths grow by 118 km over the entire network. In terms of physical exchanges of electrical energy between France and the neighbouring countries France exported a net total of 48.0 TWh, a decrease of 15.4 % compared with 2007 (56.7 TWh). Contractual exchanges with foreign countries came to a cumulative value for exports and imports of 116.2 TWh, an increase of 5.1 % compared with 2007 (110.5 TWh

  13. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  14. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  15. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  16. The Challenge of Energy Efficiency

    International Nuclear Information System (INIS)

    Alonso Gonzalez, J. A.

    2009-01-01

    Recent Directive 2009/28/EC on the promotion of the use of renewable energies sets some binding targets for the contribution of renewable energies in 2020 to total consumption, setting the share at 20% of final energy demand, with a particularisation of 10% for the transport sector, and also a 20% reduction of greenhouse gases Together with these targets, it also sets another target relative to energy efficiency, aiming for a 20% improvement, under the terms set down by the Commission in its announcement dated 19 October 2006. This energy saving target is going to have a decisive influence on the achievement of the other two. In order to quantify the degree of difficulty of achieving the saving target and determine the policies and measures to be taken, we are going to analyze the evolution of energy efficiency (energy consumption energy units per unit of GDP - economic unit) in Spain from 1980 to date and the value of energy intensity that we should have in 2020 to achieve the targets. This will give us an idea of the magnitude of the challenge and, therefore, of the efforts we will have to make to achieve the target. (Author)

  17. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  18. Strategic Sustainable Electric Power Energy for Ethiopia:- Electric ...

    African Journals Online (AJOL)

    Mengesha

    Present trend in electrical engineering education; ... (EERS) USA plans to reduce its electric energy ... at the distribution center, step-down to low voltage. (400 V .... Ethiopian market and in use [13]. .... involved in the teaching EEPCo students.

  19. Energy efficiency standards and innovation

    Science.gov (United States)

    Morrison, Geoff

    2015-01-01

    Van Buskirk et al (2014 Environ. Res. Lett. 9 114010) demonstrate that the purchase price, lifecycle cost and price of improving efficiency (i.e. the incremental price of efficiency gain) decline at an accelerated rate following the adoption of the first energy efficiency standards for five consumer products. The authors show these trends using an experience curve framework (i.e. price/cost versus cumulative production). While the paper does not draw a causal link between standards and declining prices, they provide suggestive evidence using markets in the US and Europe. Below, I discuss the potential implications of the work.

  20. Cancellation of the energy efficiency program in Peru because of the electrical sector privatization; Cancelacion del programa de eficiencia energetica en Peru por la privatizacion del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Tomecich Cordova, Anibal [Centro de Conservacion de Energia y del Ambiente (CENERGIA) (Peru)

    2005-04-15

    The evolution of the activities related to the electric efficiency before and after the reforms of the electrical sector in Peru derived from the liberation of the economy is explained. In the first part it is explained as an antecedent the development of one of the most successful campaigns regarding demand management, considering it as a variable and not as a datum of the problem for statistic effects. The results of such campaign demonstrated that a proper management of the variable electricity demand, capital investments can be deferred in the electric infrastructure within the frame of sustainable social development. Afterwards it is explained the new regulatory frame and the principles that prevail for the fixation of the tariffs when the electrical sector evolves from a vertical structure to a horizontal structure. Finally it is mentioned the activities that have been carried out in a latter period to the implantation of the reforms in the sector and some important examples such as the obligation for the electric utilities to reduce their technical and commercial losses. [Spanish] Se explica la evolucion de las actividades relacionadas a la eficiencia energetica antes y despues de las reformas del sector electrico en Peru, derivada de la liberacion de la economia. En la primera parte se explica como antecedente el desarrollo de una de las campanas mas exitosas en el manejo de la demanda, considerandola como una variable y no como un dato del problema para efectos estadisticos. Los resultados de tal campana demostraron que manejando adecuadamente la variable demanda de electricidad, se puede diferir inversiones de capital en la infraestructura electrica dentro del marco de un desarrollo social sostenible. A continuacion se explica el nuevo marco regulatorio y los principios que rigen para la fijacion de las tarifas cuando el sector electrico se transforma de una estructura vertical a una estructura horizontal. Finalmente, se menciona las actividades que se

  1. Toward an energy efficient community

    Science.gov (United States)

    Horn, M.

    1980-10-01

    The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.

  2. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  3. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  4. Who should administer energy-efficiency programs?

    International Nuclear Information System (INIS)

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2005-01-01

    The restructuring of the US electricity industry created a crisis for utility operated energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities--utilities, state agencies, and non-profit corporations--that might be administrators. Four criteria are developed for choosing among program administration options: compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition

  5. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  8. Electricity: France tries to restore efficiency

    International Nuclear Information System (INIS)

    Chauveau, L.; Mulot, R.

    2012-01-01

    While recalling some data regarding the French energy consumption and its costs for the French households, the authors evoke Premio, the oldest experimental smart grid in Europe, and describe its operation. They comment the experience made in Brittany where households are warned when a consumption peak occurs, and will be equipped with devices which will automatically cut the electricity in this situation. They outline the role smart grids could have in energy savings. They also comment the possibilities of the Linky smart meter and the associated network security problems

  9. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  10. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  11. EYES -- Energy Efficient Sensor Networks

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Etalle, Sandro; Karl, Holger; Petrioli, Chiara; Zorzi, Michele; Kip, Harry; Lentsch, Thomas; Conti, M.; Giordano, S.; Gregori, E.; Olariu, S.

    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to

  12. The economic crisis and the energy efficiency programs

    International Nuclear Information System (INIS)

    Naturesa, Jim Silva; Mariotoni, Carlos Alberto

    2010-01-01

    This paper presents some data from the Brazilian economy (2009 and 2010) and their impact on energy efficiency programs. It is also shown the main results of the National Electricity Conservation Program (PROCEL) and PROCEL INFO, which aims to gather and make available information on the rational and efficient use of energy. At the end, we present information showing that MSMEs (Micro, Small and Medium Companies) should be the main focus of the technological innovation programs aimed to energy efficiency. (author)

  13. 77 FR 54839 - Energy Efficiency and Conservation Loan Program

    Science.gov (United States)

    2012-09-06

    ... CFR Parts 1710, 1717, 1721, 1724, and 1730 RIN 0572-AC19 Energy Efficiency and Conservation Loan..., proposing policies and procedures for loan and guarantee financial assistance in support of energy efficiency programs (EE Programs) sponsored and implemented by electric utilities for the benefit of rural...

  14. Loss minimization control and efficiency determination of electric drives in traction applications

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Thomas; Hofmann, Wilfried [Technische Univ. Dresden (Germany). Lehrstuhl fuer Elektrische Maschinen und Antriebe

    2012-11-01

    High-power electric drives in automotive traction applications consume a large part of the disposable electric energy. For this reason the energy efficiency of the drives is of great importance for range and fuel consumption of the hybrid electric vehicle. The paper describes two possible drives with different electric motors from a control point of view. The electric power losses in the drive system are determined depending on the operating point of the machine. With these loss characteristics the control of the drives is optimized to produce minimal losses. Finally the energy efficiency for a realistic urban bus drive cycle is calculated to compare the two types. (orig.)

  15. Efficiency and regulation of the Slovenian electricity distribution companies

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hrovatin, Nevenka; Zoric, Jelena

    2004-01-01

    The Slovenian Energy Law, adopted in 1999, has opened the internal market to competition up to 64% of the final consumption. The opening of the internal market to foreign competition is envisaged for 2003. With regard to the methodology of price regulation, the Energy Law introduces the 'price-cap' regulation, which aims to give firms incentive for cost reduction. To provide information for effective price regulation, we estimated a cost frontier function on a sample of Slovenian electricity distribution utilities over the 1991-2000 period. The estimated efficient frontier could be used by Slovenian regulatory agency as a benchmark to regulate network access prices. Our results show that Slovenian distribution companies are cost inefficient. We have also proved the presence of increasing returns to scale with most utilities not achieving the minimum efficient scale. Thus, the Slovenian regulatory authority should consider how to induce mergers of small electricity distribution utilities into larger units

  16. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  17. Saving energy and reducing CO2 with electricity

    International Nuclear Information System (INIS)

    Yau, T.S.; Zaininger, H.W.

    1991-10-01

    Surprising potential exists for new and enhanced electric technologies to reduce energy use and CO 2 emission. Widespread deployment of these technologies could reduce energy use by up to 7 quads in 2010 and a corresponding reduction in carbon dioxide emission of up to 440 million tons. Electricity's unique high form value allows for efficiency at the point of end-use that is multiples of the efficiency possible in gas- or oil-fueled systems. The efficiency advantage at the point of end use more than offset the disadvantage of the high losses in the production of electricity. Hence, widespread deployment of many electric end uses will reduce the nation's total energy requirements. Major technologies which hold the greatest potential include electric process heating, industrial electrotechnologies, electric vehicles, information technologies that substitute electronic communication for transportation of people, and electric heat pumps for space heating, cooling and water heating. Wider use of these beneficial technologies in combination with the efficient use of electricity can reduce the nation's primary energy use and Co 2 emissions from electric generation by more than a quarter. 35 refs., 50 figs., 69 tabs

  18. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  19. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  20. Technical evaluation of the reduction of energy consumption and electrical demand of active power on the campus of UFMT (Universidade Federal de Mato Grosso) after implantation of the energy efficiency project; Avaliacao tecnica da reducao do consumo de energia eletrica e demanda de potencia ativa no campus da UFMT apos implantacao do projeto de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Teresa Irene Ribeiro de Carvalho Malheiro; Vasconcelos, Arnulfo Barroso de [Universidade Federal de Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos de Planejamento Energetico; Ochiuto, Milton de Souza; Bernardes, Thiago Alves [Centrais Eletricas Matogrossenses (CEMAT), Cuiaba, MT (Brazil); Barros, Regiane Silva de [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil)

    2008-07-01

    Since the energy crisis of 2001, measures that promote rational use of energy have been adopted by the Brazilian population. Either by industries that developed more efficient equipment, or by consumers, inclined in acquiring these equipment and adopting rational energy use measures, or by the government, that established a series of measures stimulating the energy efficiency. This work will go to illustrate some of these measures, as the implantation of STAMP PROCEL, that aims to indicate to the consumer which equipment achieve greater efficiency in each category. And law number 9,991, of July 24 2000, that regulates research and development investments in energy efficiency by electric sector companies. Finally, the result of the implantation of a energy efficiency project in a public agency will be shown, illustrating the impacts that the development of these projects bring to society as a whole. (author)

  1. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates. [Reserved

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Small electric motors energy conservation standards and... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their...

  2. From electricity smart grids to smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, Anders N.; Østergaard, Poul Alberg

    2012-01-01

    , electricitysmartgrids must be coordinated with the utilisation of renewable energy being converted into other forms of carriers than electricity including heat and biofuels as well as energy conservation and efficiency improvements, such as CHP and improved efficiencies e.g. in the form of fuel cells. All such measures...... such measures are combined with energy conservation and system efficiency improvements. This article illustrates why electricitysmartgrids should be seen as part of overall smartenergysystems and emphasises the inclusion of flexible CHP production in the electricity balancing and grid stabilisation. Furthermore...

  3. Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces

    Science.gov (United States)

    Kartavtcev, S.; Matveev, S.; Neshporenko, E.

    2018-03-01

    Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.

  4. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  5. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    Lee, Siew Eang; Rajagopalan, Priyadarsini

    2008-01-01

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  6. Worldwide trends in energy use and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Improvements in energy efficiency over the past three decades have played a key role in limiting global increases in energy use and CO{sub 2} emissions. For IEA countries, energy efficiency gains since 1990 have led to annual energy savings of more than 16 EJ in 2005 and 1.3 Gt of avoided CO{sub 2} emissions. However, the recent rate of efficiency improvement has been much lower than in the past. The good news is that a large potential remains for further energy and CO{sub 2} savings across all sectors. In industry alone, the application of proven technologies and best practices on a global scale could save between 1.9 Gt and 3.2 Gt of CO{sub 2} emissions per year. In public power generation, if all countries produced electricity at current best practice levels, CO{sub 2} savings would be between 1.8 Gt and 2.5 Gt. 40 figs., 5 tabs., 3 annexes.

  7. A simple and efficient formula for saving electric energy in lighting systems; Una formula sencilla y eficaz para ahorrar energia electrica en sistemas de iluminacion

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa Noriega, L. R. [Fideicomiso de Apoyo al Programa de Ahorro de Energia del Sector Electrico, Mexico, D. F. (Mexico)

    1995-12-31

    In the Metropolitan Area of Mexico City, as well as in other regions with a similar climate, there are an important number of users of the electric energy service, whose main load consists of lighting, since systems such as environmental conditioning, refrigeration, pumping and others are either not necessary or lack of importance as electric energy consumers. These are classified in the range of small users that altogether represent a significant saving, but the precarious diffusion of the technological advances have not contemplated the need of carrying on corrective actions. Among these users are the offices, sites of entertainment and a range of commerces and services such as clothing stores, pharmacies, shoe stores, printing shops, dry cleaner`s, restaurants, barber shops, etc. The present paper pretends to provide a simple methodology easy to carry on, derived form a demonstrative project that FIDE (Fideicomiso de Apoyo al Programa de Ahorro de Energia del Sector Electrico) successfully carried out for the Club Deportivo Berinbau. [Espanol] En el area Metropolitana de la ciudad de Mexico, asi como en otras regiones con clima similar, existe un numero importante de usuarios del servicio de energia electrica cuya carga principal consiste en iluminacion, ya que sistemas como acondicionamiento ambiental, refrigeracion, bombeo y otros, o bien no son necesarios o carecen de la importancia en cuanto a consumo de energia electrica. Estos se catalogan dentro del rango de pequenos usuarios que en conjunto representan un potencial de ahorro significativo pero que, debido a la precaria difusion de los adelantos tecnologicos, no han contemplado la posibilidad de llevar a cabo acciones correctivas. Entre estos usuarios se encuentran oficinas, lugares de esparcimiento, planteles educativos y una gama de comercios y servicios como tiendas de ropa, farmacias, zapaterias, imprentas, tintorerias, restaurantes, peluquerias, etc. El presente trabajo pretende proporcionarles una

  8. A simple and efficient formula for saving electric energy in lighting systems; Una formula sencilla y eficaz para ahorrar energia electrica en sistemas de iluminacion

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa Noriega, L R [Fideicomiso de Apoyo al Programa de Ahorro de Energia del Sector Electrico, Mexico, D. F. (Mexico)

    1996-12-31

    In the Metropolitan Area of Mexico City, as well as in other regions with a similar climate, there are an important number of users of the electric energy service, whose main load consists of lighting, since systems such as environmental conditioning, refrigeration, pumping and others are either not necessary or lack of importance as electric energy consumers. These are classified in the range of small users that altogether represent a significant saving, but the precarious diffusion of the technological advances have not contemplated the need of carrying on corrective actions. Among these users are the offices, sites of entertainment and a range of commerces and services such as clothing stores, pharmacies, shoe stores, printing shops, dry cleaner`s, restaurants, barber shops, etc. The present paper pretends to provide a simple methodology easy to carry on, derived form a demonstrative project that FIDE (Fideicomiso de Apoyo al Programa de Ahorro de Energia del Sector Electrico) successfully carried out for the Club Deportivo Berinbau. [Espanol] En el area Metropolitana de la ciudad de Mexico, asi como en otras regiones con clima similar, existe un numero importante de usuarios del servicio de energia electrica cuya carga principal consiste en iluminacion, ya que sistemas como acondicionamiento ambiental, refrigeracion, bombeo y otros, o bien no son necesarios o carecen de la importancia en cuanto a consumo de energia electrica. Estos se catalogan dentro del rango de pequenos usuarios que en conjunto representan un potencial de ahorro significativo pero que, debido a la precaria difusion de los adelantos tecnologicos, no han contemplado la posibilidad de llevar a cabo acciones correctivas. Entre estos usuarios se encuentran oficinas, lugares de esparcimiento, planteles educativos y una gama de comercios y servicios como tiendas de ropa, farmacias, zapaterias, imprentas, tintorerias, restaurantes, peluquerias, etc. El presente trabajo pretende proporcionarles una

  9. Towards a more efficient use of energy through beneficial electrification

    International Nuclear Information System (INIS)

    Barbesino, C.; Le Goff, R.; Goericke, P.; Porter, D.F.; Roth, M.F.; Halberg, N.

    1996-01-01

    An important part of any commitment to energy conservation is a commitment to achieving savings in the use of electrical energy. However, to enable true comparisons to be made in the drive for more efficient and effective use of energy, it is essential that the entire primary energy chain, up to and including the final application, is taken into account. Conversion losses, which occur in the generation of electricity can often be offset by very high efficiencies at the point of use. The existence of a wide range of technology, to improve the efficiency of energy use and maximize the quality of usable energy extracted from primary energy resources, is a prerequisite. Of equal importance are the promotion and marketing of these technologies. In attempting to draw up a consistent energy conservation policy, it is essential to adopt approaches which consider all forms of energy. (R.P.)

  10. Energy-Efficient Neuromorphic Classifiers.

    Science.gov (United States)

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2016-10-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

  11. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  12. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  13. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  14. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  15. Energy-efficient neuromorphic classifiers

    OpenAIRE

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2015-01-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. Neuromorphic engineering promises extremely low energy consumptions, comparable to those of the nervous system. However, until now the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, rendering el...

  16. Simulation and energy analysis of distributed electric heating system

    Science.gov (United States)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  17. 77 FR 64106 - Renewable Energy and Energy Efficiency Trade Policy Mission to Chile

    Science.gov (United States)

    2012-10-18

    ... competitiveness of U.S. wind, solar, geothermal, biomass, hydropower, waste-to-energy, smart grid, and energy... technologies--has been largely undeveloped. Chile's new National Energy Strategy contains six pillars: Energy efficiency; renewable energy; traditional fossil fuels; smart grid; competition in electricity distribution...

  18. Energy efficiency information systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    It is well known that different cultures and countries are receptive in different ways to information transfer. Modern information technology, including computers, videos, and telecommunications, can provide a very useful tool for the dissemination of information. At the same time, however, the use of new media involves many new and varied challenges. It is important therefore that the new dissemination methods are developed and utilised in the most effective way depending on the subjects distinctive character, needs and traditions. This workshop was designed to gather experts from all the CADDET member countries, to share knowledge, experiences and ideas about the use of new methods of information exchange and training in the field of energy efficiency. The workshop was divided into four plenary sessions: dissemination of information on energy efficient technologies; training technologies and effective learning; computer-based training tools on energy efficiency; databases and network resources. Two discussion groups followed the plenary sessions, to concentrate on: different aspects of information exchange; and different aspects of state-of-the-art training tools. The workshop was attended by 44 participants from 17 countries, and included 14 speakers

  19. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  20. The Next Frontier to Realize Industrial Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2011-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  1. Elephants produce their electricity by themselves. Wilhelma an integrated energy efficiency concept of Stuttgart (SEE); Elefanten machen ihren Strom selbst. Die Wilhelma als integriertes Energieeffizienzkonzept der Stadt Stuttgart (SEE)

    Energy Technology Data Exchange (ETDEWEB)

    Hilse, Annika; Leix, Carmen; Fischer, Klaus; Kranert, Martin [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft

    2013-10-01

    As a part of the overall project Stuttgart city with energy efficiency - SEE an integrated bioenergy concept Wilhelma at the Institute for Sanitary Engineering, Water Quality and Waste Management (ISWA) in cooperation with the Institute of Energy Economics and the Rational Use of Energy (IER) is created. The biomass potential analysis was recently completed; a differentiated analysis of energy demand is still pending. The Stuttgart Zoo Wilhelma has a significant biomass potential. With about 340 acres of gardens and parks which fall Wilhelma to care and the residue biomass of around 9000 zoo animals, offers the Stuttgart Zoo and Garden Wilhelma, together with the urban green space a high biomass potential, which is currently unused. For energy recovery through anaerobic digestion in a biogas plant are suitable 3900 t/a of biomass, which are 87% of the total exploitable biomass. For energy recovery by incineration are suitable 600 t/a of biomass, equivalent to the remaining 13% of recoverable biomass. This could be a total energy potential of about 6219 MWh/year are covered if the biomass is fully developed. Of these, 64% come from the fermentation and 36% from burning. About the determined biomass potential can be expected to be covered the electricity and heat demand of up to 16% (integrated bio-energy concept). To fully cover the energy requirements possibility of further use of renewable energy sources (e.g. solar panels on the roofs) must be examined and evaluated. (orig.)

  2. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  3. Survey report of year 2000 version. Feasibility study on energy efficiency/conservation, and environmental improvement of district heat and electricity supply station Radom City

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to promote the COP3 joint implementation, discussions were given on the district heat and electricity supply station in Radom City in Poland. Power capacity utilized above a certain level will be generated by cogeneration power plants according to the annual heat supply load patterns, and insufficient capacity will be supplied from the existing hot water boilers during winter when thermal load is high. Daily load variation will be handled by installing auxiliary combustion facilities of 20% of the full capacity. The power plants will be of natural gas burning gas-turbine cogeneration plants, and hot water will be supplied from the modified waste heat boilers. The cogeneration power plants will be capable of taking care of 80% of the annual supply quantity of heat. The heat supply capacity will be 72 MWt including the auxiliary combustion, and the electric power generation capacity will be 35 MWe. Improvement in thermal efficiency to 80% or higher will reduce coal consumption, resulting in saving of 28,117 toe/year after subtracting the increase in natural gas consumption. Reduction in CO2 emission will also be as large as 206,000 tons/year, causing air pollutants to be also reduced. Assuming the facility cost of 4,336 billion yen to be taken care by the Japanese environmental yen loan, the Polish National Fund loan, and the independent fund of the city of Radom, the IRRON investment over the operation period of 30 years is considerably good at 10%. The investment can be recovered in nine years, and the cash flow will have no problems. (NEDO)

  4. Efficient Use of Energy: as a Life Style

    Directory of Open Access Journals (Sweden)

    Omneya Sabry

    2017-06-01

    Full Text Available Since the Early Eighties of the last Century, the Egyptian Government considered Energy Conservation as one of the main pillars of Energy Planning in Egypt, based on the fact that investing in Energy Efficiency is more cost effective than in constructing new Power Plants.Energy Efficiency (EE Programs financed by International Financing Institutions focused at that time, on Energy Audits in Industrial Buildings, Power Plants, Electricity Transmission and in some other Governmental Buildings. Recommendations for Efficient Use of Energy and reducing energy consumption at those entities were implemented by the Use of Efficient Lamps, Improving Power Factor, Waste Heat Recovery, Thermal Insulation, Efficient Firing in Boilers…. Consequently, High Quality Energy Efficient Products were competing in the market with others not having the same advantage.Although the above mentioned EE Programs included Awareness Campaigns for all sectors but the consumption in Residential Sector remained high and increased more and more ,exceeding even the consumption in Industrial Sector specially that the prices of electricity were highly subsidized.For that reason, more awareness campaigns (Lectures, Brochures, Audio and visual advertisement and more incentives were offered by Ministry of Electricity and Renewable Energy (MoERE to consumers in the Residential Sector. Meanwhile, a Program to reduce gradually subsidies on electricity prices started aiming to push consumers to follow energy efficiency instructions and buy efficient appliances especially while they were suffering from electricity cut for about two years.To prepare for Market Transformation to efficient appliances the Government, issued the Standard Specifications and Labeling for Energy Efficient Appliances (lamps, refrigerators, freezers, washing machines, air conditioners, dish washers and others. Meanwhile, these Standards are supported with Accredited Testing Labs in National Entities (NREA

  5. Time-Varying Value of Energy Efficiency in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.

    2018-04-02

    Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning, is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.

  6. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  7. Energy optimization analysis of the more electric aircraft

    Science.gov (United States)

    Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen

    2018-02-01

    The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.

  8. Energy conservation through more efficient lighting.

    Science.gov (United States)

    Maya, J; Grossman, M W; Lagushenko, R; Waymouth, J F

    1984-10-26

    The efficiency of a mercury-rare gas electrical discharge, which forms the basis of a fluorescent lamp, can be increased about 5 percent simply by increasing the concentration of mercury-196 from 0.146 percent (natural) to about 3 percent. These findings can be implemented immediately without any significant change in the process of manufacturing of this widely used source of illumination, provided that mercury-196 can be obtained economically. The potential energy savings for the United States are estimated to be worth in excess of $200 million per year.

  9. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable [[Page 6784

  10. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  11. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  12. Method for calculating annual energy efficiency improvement of TV sets

    International Nuclear Information System (INIS)

    Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.

    2006-01-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification

  13. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2006-10-15

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  14. Middle atmosphere electrical energy coupling

    Science.gov (United States)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  15. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  16. Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment

    International Nuclear Information System (INIS)

    Lobão, J.A.; Devezas, T.; Catalão, J.P.S.

    2014-01-01

    Increasing energy needs are accompanied by environmental responsibilities, since nowadays electricity companies operate in a competitive and sustainable energy framework. In this context, any proposal for action on energy efficiency becomes important for consumers to minimize operational costs. In electrical installations, electricity consumption can be decreased by reducing losses in the cables, associated with the overall efficiency of the equipment, allowing a better use of the installed power. The losses must be analysed in conjunction with all loads that contribute to the currents in the sections of an electrical installation. When replacing equipment in output distribution boxes with more efficient ones, the current in those sections is reduced in association with the decrease in power losses. This decrease, often forgotten, is taken into account in this work for the economic analysis of efficiency and sustainable electrical equipment. This paper presents a new software application that compares and chooses the best investment in the acquisition of electrical equipment. Simulation results obtained with the new software application are provided and are then validated with experimental results from a real electrical installation. - Highlights: • Any proposal for action on energy efficiency is important for consumers. • Electricity consumption can be decreased by reducing losses in the cables. • A new software application that compares and chooses the best investment is provided. • The economic analysis of efficiency and sustainable electrical equipment is carried out. • Simulation results are validated with experimental results from a real electrical installation

  17. Efficiency improvement of variable speed electrical drives for HVAC applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, F.; Blaabjerg, F.; Pedersen, J.K. [Aalborg Univ., Inst. of Energy Technology, Aalborg East (Denmark)

    2000-07-01

    A large part of the produced electrical energy is consumed by ventilators, pumps and compressors, the so-called HVAC applications. A lot of this energy can be saved by speed control, but even with the large saving obtained alone by introduction of variable speed, it is still essential to optimise the control of the variable speed drive and to optimise the electrical machine with respect to efficiency. Experiments are made with energy optimal induction motor control on a 2.2 kW variable speed pump system. It is demonstrated that 10% of the consumed energy can typically be saved by energy optimal motor control compared with constant V/Hz control. In a comparison of induction motors and permanent magnet synchronous motors for a variable speed pump application it is shown that for 2.2 kW motors an investment in high-efficiency or PM motors are typically paid back within 2.5 years and 7 years respectively. For a 90 kW PM motor the pay-back time would be 24 years. It is today not profitable to use PM motors for variable speed HVAC applications above 2 kW rated motor power. A further study is required to determine this limit in power rating more precisely. (orig.)

  18. Energy-efficient cooking methods

    Energy Technology Data Exchange (ETDEWEB)

    De, Dilip K. [Department of Physics, University of Jos, P.M.B. 2084, Jos, Plateau State (Nigeria); Muwa Shawhatsu, N. [Department of Physics, Federal University of Technology, Yola, P.M.B. 2076, Yola, Adamawa State (Nigeria); De, N.N. [Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019 (United States); Ikechukwu Ajaeroh, M. [Department of Physics, University of Abuja, Abuja (Nigeria)

    2013-02-15

    Energy-efficient new cooking techniques have been developed in this research. Using a stove with 649{+-}20 W of power, the minimum heat, specific heat of transformation, and on-stove time required to completely cook 1 kg of dry beans (with water and other ingredients) and 1 kg of raw potato are found to be: 710 {+-}kJ, 613 {+-}kJ, and 1,144{+-}10 s, respectively, for beans and 287{+-}12 kJ, 200{+-}9 kJ, and 466{+-}10 s for Irish potato. Extensive researches show that these figures are, to date, the lowest amount of heat ever used to cook beans and potato and less than half the energy used in conventional cooking with a pressure cooker. The efficiency of the stove was estimated to be 52.5{+-}2 %. Discussion is made to further improve the efficiency in cooking with normal stove and solar cooker and to save food nutrients further. Our method of cooking when applied globally is expected to contribute to the clean development management (CDM) potential. The approximate values of the minimum and maximum CDM potentials are estimated to be 7.5 x 10{sup 11} and 2.2 x 10{sup 13} kg of carbon credit annually. The precise estimation CDM potential of our cooking method will be reported later.

  19. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...

  20. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...

  1. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  2. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...

  3. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  4. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  5. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...

  6. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-10-18

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable... Efficiency and Renewable Energy, U.S. Department of Energy. [FR Doc. 2012-25636 Filed 10-17-12; 8:45 am...

  7. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  8. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  9. NV energy electricity storage valuation :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  10. NV Energy Electricity Storage Valuation

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  11. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  12. Design of variable energy and price components of electricity tariffs as an incentive for system-efficient energy management of flexible consumers in households; Design variabler Energie- und Leistungspreiskomponenten von Stromtarifen als Anreiz fuer ein systemdienliches Energiemanagement flexibler Verbraucher in Haushalten

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Michael

    2017-11-01

    To mitigate anthropogenic climate change, both the heating and transport sectors will need to be electrically driven, with the higher electrical demand met by emission-free technologies, in addition to general efficiency improvements. On the generation side, wind and photovoltaic power plants must have a rated power significantly exceeding the current peak demand, in order to cover this increased electrical requirement. On the consumption side, heat pumps and private electric vehicles will increase the percentage of energy withdrawn at the low-voltage level of the new system. Given the right incentives, these customers will shift the energy demand in such a way as to benefit the system. This flexibility can be used as a tool to deal with variable renewable insertion while avoiding simultaneous overloading of the power grid. This thesis analyses and evaluates the effects of different electricity tariff designs on energy consumption. These tariffs should incentivise households to adapt their energy consumption to market prices, without inducing critical peak demands in times of particularly low prices. Therefore, time-varying energy price components and power price components are combined into flexible electricity tariffs and implemented as target functions within an optimization problem. The cost-minimizing effect of household energy management is determined under these flexible tariffs, and the effects of the tariff designs on energy consumption and the induced costs are evaluated. Additionally, the results of the flexible tariff approach are compared with results from a centralized optimization by a virtual power plant. It is possible to develop a design for a suitable flexible tariff that decreases the energy procurement costs of electric vehicles while simultaneously reducing peak demand in comparison to a single real-time pricing incentive. Furthermore, this thesis shows that certain kinds of electricity tariff design do not only fail to support but actually

  13. A combined sustainability index for electricity efficiency measures

    International Nuclear Information System (INIS)

    Goldrath, T.; Ayalon, O.; Shechter, M.

    2015-01-01

    One of the most substantial tools that serve decision makers in their efforts to reduce greenhouse gas emissions includes energy efficiency measures that in most cases benefit from governmental assistance for achieving electricity consumption reduction goals. This paper examines five energy efficiency measures, defining a combined sustainability index. A multi-criteria analysis of five predefined indices was developed (economic, environmental, technology, social and political), providing a combined index for each measure and a tool for identifying the preferred measure within a specific situation, based on its total sustainability score. In this research, a case study was conducted and the preferred measure was found to be municipal street lighting systems, based on its high political and social scores, and its relatively high installation potential. The second choice would be replacement of chillers in the industrial sector, and the least favorable measure is the replacement of water pumps in the water sector. The methodology described brings into account the technological specifications of the measure implemented, and the specific national conditions under which it is implemented. - Highlights: • A MCDA of five indices was developed to define a combined sustainability index. • Criteria defined were environment, technology, economy, social and political. • Five energy efficiency measures were rated, based on their total sustainability score. • Measures were in five main electricity consumption sectors. • The preferred measure found in the case study was municipal street lighting systems.

  14. Wireless (Power Transfer Transmission of Electrical Energy (Electricity Intended for Consumer Purposes up to 50 W

    Directory of Open Access Journals (Sweden)

    Marek Piri

    2016-01-01

    Full Text Available This project deals with Power Semiconductor Systems PSS for wireless transmission of electricity to the power of 50~W with regard to the distance and transmission efficiency. We decided to use electromagnetic resonance for electrical energy transmission. For experimental verification, we have wound two coils of identical dimensions. At a given power transmission solutions, we obtain the highest efficiency η = 70% at a distance of 5 cm, where the transmitted power was 48 W.

  15. Importance of energy efficiency in Venezuela

    International Nuclear Information System (INIS)

    Corrie, R.

    1991-01-01

    Venezuela's economic development relies heavily on oil. The nation's energy production equals 3.5 million barrels of oil equivalent (boe) per day. Oil comprises 71% of the energy Venezuela produces, natural gas 20%, hydro 9% and coal 1%. Of the energy produced, Venezuela exports three quarters and consumes the remainder. Over 99% of Venezuela's energy exports are crude oil and oil products. Economic problems have constrained Venezuela's development in recent years. Saddled with an external debt of $US 32 billion, Venezuela will continue to encounter barriers for years to come. The nation is, however, in the process of restructuring its economy. As part of this process, the Venezuelan government has begun to integrate opportunities for improving the efficiency of its energy use. As a major oil producer and exporter, Venezuela is conscious of its responsibility to the international community to limit its emissions of energy-related CO 2 into the atmosphere. For this reason, the Venezuelan government is in the process of creating a program to conserve and ration the use of energy. This effort incorporates a number of measures including the substitution of natural gas for liquid fuels for all end uses (including transportation activities), the increased reliance on hydropower in the generation of electricity and the reduction of waste in the production of natural gas to 2% of the economically recollectable volume

  16. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  17. Conservation and energy efficiency plan 2006

    International Nuclear Information System (INIS)

    2005-11-01

    This plan outlined details of Nova Scotia's proposed $5 million incremental investment in energy efficiency and conservation measures in 2006. The plan was developed through consultation with various Canadian utilities, customers and external stakeholders. A team of stakeholders identified lighting, pricing, partnerships and education as opportunities offering the greatest potential for results. Market research was conducted to identify market potential and the identification of barriers to customer adoption of programs as well as customer expectations regarding program implementation. It was anticipated that the plan will reduce electricity usage and result in significant savings for customers, as well as reducing greenhouse gas (GHG) emissions. The aim of the plan is to help build a conservation and energy efficiency culture in Nova Scotia and to bring Nova Scotia Power together with community-based partners. Specific plans for 2007 included: a 72 GWh reduction in annual electricity usage; approximately $7.7 million in annual savings to customers; a 16 MW reduction in peak electricity demand; and a 50 thousand tonne reduction of GHGs. A business case was presented along with details of proposed residential, commercial and industrial programs. A cost benefit analysis was provided, as well as an outline of the plan's budget and organizational structure. It was concluded that the success of the various program elements will be based on quantitative and qualitative data on the actual effect on energy use of each customer sector, as well as its effect on system demand profiles. Data will be collected through the use of customer surveys, questionnaires, and direct feedback from partners, educators and manufactures and suppliers. 11 tabs., 16 figs

  18. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  19. Theoretical efficiency limits for thermoradiative energy conversion

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m 2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices

  20. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  1. Global status report on energy efficiency 2008

    NARCIS (Netherlands)

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s,

  2. Energy forum 92: Efficiency, trade and the environment

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    In 1992 B.C. Hydro's annual Electric Energy Forum was held in conjunction with the National Energy Forum to provide an opportunity for delegates from utilities, government, industry, international development agencies, environmental groups, universities and interested members of the public to discuss major energy issues of today and tomorrow. Three main themes were addressed: Efficiency (the latest developments in energy-efficient technologies and their role in sustainable development), trade (strategies for trade in energy and related technologies), and environment (the effects of energy production, use and trade on the local, regional and global environment). This document presents opening remarks, speeches presented, and panel discussions.

  3. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    Science.gov (United States)

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  4. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  5. Environment: renewable energy, environmental protection and energy efficiency

    International Nuclear Information System (INIS)

    1998-01-01

    The second in the series of IPPSO policy papers for discussion deals with the place of renewable energy sources and environmental protection in relation to the soon-to-be deregulated electricity industry in Ontario. The paper provides a broad statement of principles, defines the issues, identifies the problems, and discusses the various options under consideration. Some of the more important design questions regarding a renewable portfolio standard were discussed, among them the technologies to be included, the treatment of existing generators and expansions, establishment of minimum amounts and targets, responsibility for and means of compliance, compensation for the intermittent nature of some of the renewable resources, mandatory disclosure and labelling, development by the IMO of environmental dispatch protocols, research and development funding for renewable energy technologies, emission caps with tradeable targets, and concerns about the operation of a system benefits fund for energy efficiency. 5 refs

  6. Mixed Solutions of Electrical Energy Storage

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents electrical energy storage solutions using electricbatteries and supercapacitors powered from photovoltaic solarmodules, with possibilities of application in electric and hybrid vehicles.The future development of electric cars depends largely on electricalenergy storage solutions that should provide a higher range of roadand operating parameters comparable to those equipped with internalcombustion engines, that eliminate pollution.

  7. Energy efficiency and social equity in South Africa: seeking convergence

    Energy Technology Data Exchange (ETDEWEB)

    Van Horen, C.; Simmonds, G. [University of Cape Town, Rondebosch (South Africa). Energy and Development Research Centre

    1998-09-01

    A key challenge facing post-apartheid South Africa is to achieve a balance between equity and efficiency goals. On the one hand, the democratic government wishes to improve the quality of life of the majority of the population, whilst on the other, the country needs an efficient and internationally competitive economy. At the more specific level of household energy policy, this efficiency-equity linkage represents a key challenge for policy-making and implementation: it is essential that convergence is sought between household energy strategies aimed at improving energy efficiency, and those strategies which improve the living conditions of the poor. This paper begins by reviewing developments in South Africa`s household energy sector in the early-1990s, most notably the national electrification plan which was launched in 1991. A second development, in 1994, was the establishment of the National Electricity Regulator. Despite the attention given to energy efficiency in the government`s new energy policy, energy efficiency considerations have not yet emerged as a major force in the energy sector. Electricity prices underestimated the environmental and other impacts of coal and nuclear-generated electricity. A range of economic and institutional reasons for this are identified and considered. Finally, two interventions on which some progress has been made, are described: these include insulation and thermal performance projects in new lost-cost houses, and a compact fluorescent lighting programme. 37 refs., 4 figs.

  8. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  9. Nanostructures for Electrical Energy Storage (NEES) EFRC

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanostructures for Electrical Energy Storage (NEES) EFRC is a multi-institutional research center, one of 46 Energy Frontier Research Centers established by the...

  10. ENERGY STAR Certified Electric Vehicle Supply Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  11. Electrical energy: what is in game

    International Nuclear Information System (INIS)

    Miranda Robredo, R.

    2004-01-01

    In the occasion of the inauguration of the Academic Course in the Spanish Club of the Energy, the Endesa president made these reflections on the main factors that actually affect the development of the electrical energy

  12. Electrodynamic energy harvester for electrical transformer's ...

    Indian Academy of Sciences (India)

    Electrical transformer; electrodynamic; energy harvester; self-powered ...... Kennedy S P and Gordner T 2013 Hot spot studies for sheet wound transformer wind- ... and Lambert F 2011 Powering low-cost utility sensors using energy harvesting.

  13. Renewable energy in energy efficient, low-pollution systems

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1997-03-01

    Energy use accounts for the dominating fraction of total sulphur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}), volatile organic compounds (VOCs) and carbon dioxide (CO{sub 2}) emissions. In this thesis, different strategies for reducing these emissions are evaluated, using a bottom-up approach. CO{sub 2} emissions from electricity and heat production in western Scania, Sweden, can be reduced by 25% and the emissions of acidifying gases (SO{sub 2} and NO{sub x}) by 50% by the year 2010, compared with 1988 levels, using energy systems based on efficient end-use technologies, cogeneration of heat and electricity, renewable energy sources and low-pollution energy conversion technologies. Exhaust-pipe NO{sub x} emissions from the Swedish transportation sector can be reduced by 50 percent by the year 2015, compared with 1991, by implementing the best available vehicle technologies. Exhaust-pipe emissions of CO{sub 2} can be stabilized at the 1991 level. With further technical development and the use of fuels from renewable sources of energy, NO{sub x} emissions can be reduced by 75 percent and CO{sub 2} emissions by 80 percent compared with 1991 levels. Swedish biomass resources are large, and, assuming production conditions around 2015, about 200 TWh/year could be utilised for energy. Major reductions in CO{sub 2} emissions could be achieved by substituting biomass for fossil fuels in heat, electricity and transportation fuel production. Transportation fuels produced from cellulosic biomass are likely to be less expensive than transportation fuels from conventional biomass feedstocks such as oil plants, sugar-beet and cereals. 90 refs, 3 figs, 5 tabs

  14. Ferrofluid based micro-electrical energy harvesting

    Science.gov (United States)

    Purohit, Viswas; Mazumder, Baishakhi; Jena, Grishma; Mishra, Madhusha; Materials Department, University of California, Santa Barbara, CA93106 Collaboration

    2013-03-01

    Innovations in energy harvesting have seen a quantum leap in the last decade. With the introduction of low energy devices in the market, micro energy harvesting units are being explored with much vigor. One of the recent areas of micro energy scavenging is the exploitation of existing vibrational energy and the use of various mechanical motions for the same, useful for low power consumption devices. Ferrofluids are liquids containing magnetic materials having nano-scale permanent magnetic dipoles. The present work explores the possibility of the use of this property for generation of electricity. Since the power generation is through a liquid material, it can take any shape as well as response to small acceleration levels. In this work, an electromagnet-based micropower generator is proposed to utilize the sloshing of the ferrofluid within a controlled chamber which moves to different low frequencies. As compared to permanent magnet units researched previously, ferrofluids can be placed in the smallest of containers of different shapes, thereby giving an output in response to the slightest change in motion. Mechanical motion from 1- 20 Hz was able to give an output voltage in mV's. In this paper, the efficiency and feasibility of such a system is demonstrated.

  15. Energy efficiency and conservation in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Samarasekura, S W.R.

    1983-01-01

    Sri Lanka is a tropical, predominantly agricultural island with a mixed population. The economy is rapidly expanding since 1977. So far the country is self-sufficient in rice, which is the staple food of the population. Indiscriminate cutting of forests for firewood resulted in a disastrous upsetting of the rain pattern. The existing capacity of hydro-electric power plants is not adequate to meet the demands of the rapidly growing industries and of households where the use of appliances increases dramatically with the progress of the economy. Periodic cut-offs of electric power supply became necessary. These are very harmful to industry. In order to keep the balance of payments in equilibrium, the government is fostering the development of new sources of foreign income, such as tourism and export of gems and spices. Remedies used to master the energy crisis are: the building of new hydroelectric plants, reforestation; introduction of ''kerosene stamps'' which will restrict the sale of this product at subsidized prices to the needy only; encouraging the use of fuel-efficient motorcycles in preference to automobiles; introduction (in cooperation with Honda) of alcohol-powered motorcycles; appointment of a Ministerial Committee endowed with broad powers to formulate and implement national energy policy. Although the general energy situation in Sri Lanka is rather bleak for the moment, it is confidently hoped that these measures will bear fruit in the long run.

  16. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  17. SADC renewable energy and energy efficiency status report 2015

    International Nuclear Information System (INIS)

    Stiles, Geoff; Murove, Charles; Appavou, Fabiani; Ranalder, Lea; Williamson, Laura E.

    2015-01-01

    Strategic Development Plan (RISDP) and the Regional Infrastructure Development Master Plan (RIDMP). A Regional Energy Access Strategic Action Plan (REASAP) was approved in 2011, setting broad goals for improving access to modern forms of energy as well as specific policy mechanisms to achieve increased access. A Renewable Energy Strategy and Action Plan (RESAP) should be approved in 2016, and SADC energy ministers recently gave approval in principle to the formation of a SADC Centre for Renewable Energy and Energy Efficiency (SACREEE), selecting Namibia as the host country. Despite both regional and national efforts to diversify energy resources, biomass remains by far the major source of energy in most SADC member states. Traditional biomass (e.g., wood and charcoal) accounts for more than 45% of final energy consumption in the region, and if modern biomass (e.g., bagasse for boilers in the sugar industry) is included, the overall biomass share reaches more than 57%. Traditional biomass use exceeds 70% of final energy consumption in the DRC and 60% in Mozambique, Tanzania and Zambia. Key challenges for the SADC region include energy access, health and environment, energy security, infrastructure and financing. Expanding access to modern energy services, including electricity and modern cooking fuels, is an urgent priority. Electricity access rates vary widely, from 9% in the DRC to 100% in Mauritius. In countries such as Tanzania and Zimbabwe, there are wide disparities in access between urban and rural areas (71% vs. 7%, and 80% vs. 14%, respectively), which suggests that there are still large areas which remain undeserved by grid electricity despite strong regional efforts to address this. Health and environmental concerns are based mostly on the adverse effects of extensive fuelwood cutting, with its consequences for deforestation; and on the persistent use of biomass for cooking and heating in the domestic sector, which affects indoor air quality and hence the general

  18. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  19. Charging electric cars from solar energy

    OpenAIRE

    Liang, Xusheng; Tanyi, Elvis; Zou, Xin

    2016-01-01

    Before vehicles were heavily relied on coal, fossil fuels and wind for power.  Now, they are rapidly being replaced by electric vehicles and or plug-in hybrid electric cars. But these electric cars are still faced with the problem of energy availability because they rely on energy from biomass, hydro power and wind turbines for power generation. The abundance of solar radiation and its use as solar energy as a power source in driving these rapidly increasing electric cars is not only an impor...

  20. US energy conservation and efficiency policies. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K.; Onysko, Ganna [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth; Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future. (author)

  1. US energy conservation and efficiency policies: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K. [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States); Onysko, Ganna, E-mail: gonysko@thegef.or [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.